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Ubiquitous Smart Metering and Energy Sensing 

• Utilities rapidly deploying smart meters
- >50 million deployed in U.S.
- Record energy usage data every 5-60 minutes
- Next-generation meters use higher resolutions (1Hz)

• In-home energy sensing also becoming common
- Included in many IoT devices, e.g., Belkin WeMo
- Included as part of solar panel systems
- Typically 1Hz

• Sensors now producing a massive amount of energy data 
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Exploiting Energy Data using Analytics

• Companies actively working to develop energy data analytics
- How much energy are individual devices using?
- Are any devices malfunctioning or being used inefficiently?
- What brands/models of appliances do occupants own?
- What are a home’s occupancy patterns?
- How often do occupants eat-in versus go out to eat?
- Preventing such analytics is also an active research area

• Companies can apply energy analytics to utility-scale data to 
identify energy-inefficiencies or profile customer behavior (for 
marketing)
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Example Energy Data Analytics

• Non-Intrusive Load Monitoring (NILM)
- Also called “load disaggregation”
- Analyze smart meter data from an entire building….
- ….infer the energy usage (over some interval) of the building’s individual 

devices
- Many NILM algorithms proposed in prior work

• Many other variants of similar Non-Intrusive Analytics
- Non-Intrusive Occupancy Monitoring (NIOM) – infer occupancy from 

smart meter data
- Non-Intrusive Thermal Disaggregation – separate energy usage of 

temperature-dependent loads from temperature-independent loads
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Problem 

• Properly evaluating energy data analytics requires ground truth 
energy data from many buildings
- For NILM, need building data and energy data from every device
- Need data from many buildings with different characteristics
- Collecting data is time-consuming, expensive, and logistically hard

‣ Public datasets available, but none has ground truth data for many buildings

- The best evaluations in prior work include only a few buildings
‣ Many include only a single building, and have no evaluation

• Even given a large-scale public dataset, researchers cannot…
- …rigorously vary building and device characteristics….
- …to determine characteristics that affect analytics accuracy.
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Solution: SmartSim

• SmartSim is a device-accurate home energy trace generator
- Device-accurate -> Generates ground truth energy trace for each device
- Home energy trace -> Sums device energy traces to generate home 

trace
- Goal: Generate realistic home energy traces similar in complexity to real 

homes, but allow users to control home characteristics
‣ Enable evaluation of energy analytics on synthetic data
‣ Able to generate data for many homes and rigorously vary home characteristics 

• Leverages two primary components in generating traces
- Device energy model – describes how a device uses energy when active 
- Device usage model – describes when a device is active over time
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Challenge

• Real energy data is highly complex, especially at high resolution
- Modern devices have continuous/stochastic changes in energy usage

‣ Often not clear “steps” in usage

- Not trivial to generate synthetic data at similar complexity 
- Focus on 1Hz data, since this is the resolution most end-user sensors 

support (and are a focus of analytics)
‣ Utility meters may support similar high resolutions in the future 
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Outline

• Motivation 
• SmartSim Workflow Overview
• Implementation 
• Evaluation
• Related Work
• Conclusion
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SmartSim Workflow Overview

• 1. Select set of devices to include in energy trace
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SmartSim Workflow Overview

• 1. Select set of devices to include in energy trace
• 2. Select usage model for each device

- May select from well-known distributions, e.g., gaussian, etc.
- May also empirically learn distribution from historical data (below)
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SmartSim Workflow Overview

• 1. Select set of devices to include in energy trace
• 2. Select usage model for each device

- May select from well-known distributions, e.g., gaussian etc.
- May also empirically learn distribution from historical data (below)

• 3. Select energy model for each device from library 
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SmartSim Workflow Overview

• 1. Select set of devices to include in energy trace
• 2. Select usage model for each device

- May select from well-known distributions, e.g., gaussian,etc.
- May also empirically learn distribution from historical data (below)

• 3. Select energy model for each device from library 
• 4. Generate random device energy traces based on usage 

distributions and energy model
- Output in HDF5 format – ready-to-use by NILM-TK (open-source library)
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Device Energy Models

• Leverage modeling methodology from prior work [JSAC 2014]
- Models device energy usage using four basic models

‣ Models are device-specific: parameterized based on real data

- Derived from fundamental AC characteristics:
‣ Resistive (heating element), inductive (AC motor), or non-linear (electronics)
‣ All devices are one or a combination of these basic elements

- SmartSim includes a library of models to choose from
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Increasing Realism

• Modeling Errors, Noise, and Dropouts
- SmartSim includes support for adding sensor error and data dropouts
- Most sensors have an error that is 1-2% of the total load
- Data dropouts in real data occur frequently and affect analytics accuracy
- Include these features to increase realism of the data
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Device Usage Models

• Captures the frequency, timing, and duration of device activity
- Dictates when to insert device energy model into trace
- Separate background loads from interactive loads
- Background load operation captured in device energy model

‣ Devices operate cyclically every interval, e.g., refrigerator, air conditioner, etc.

- Interactive load operation captured by device usage model
‣ Define probability distribution for time-of-use, frequency-of-use, duration-of-use
‣ 1) Use frequency-of-use distribution to determine frequency of use each day
‣ 2) Use time-of-use distribution to determine when each use occurs
‣ 3) Use duration-of-use distribution to determine each activity duration 

- For each device in our library, we automatically derive these distributions 
from device’s historical data (or users may select standard distribution)
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SmartSim Implementation

• Implemented in python
- Current library includes 25 devices with device energy and usage models
- Plan to expand the library using data from more devices
- Includes tools to derive energy and usage models from existing data

• Output compatible with NILM-TK toolkit
- NILM-TK -> open-source library of common NILM algorithms

‣ Combinatorial Optimization (CO)
‣ Factorial Hidden Markov Models (FHMM)

- Uses a common dataset format (HDF5)
- Many publicly-available energy datasets already available 

‣ Enables comparison between SmartSim data and real data 
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Evaluation

• Include qualitative and quantitative evaluation
- Qualitative -> SmartSim generates traces similar to real data
- Quantitative -> NILM algorithms (CO and FHMM) perform similarly on 

SmartSim-generated data and real data
‣ Compare with Public Datasets: REDD and Smart*

• NILM Accuracy Metrics
- F1 = 2 * (precision * recall) / (precision + recall)
- Normalized Error in Assigned Power (NEP)

- Matthews Correlation Coefficient
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Qualitative Evaluation

• Examples – more available in paper
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Quantitative Evaluation

• Smart* and SmartSim+Noise have comparable accuracy and 
performance for CO and FHMM algorithms
- Performance: similar training and test times

‣ ~10 seconds training for CO, ~900 seconds for FHMM
‣ ~2-3 seconds testing for CO and FHMM

- Accuracy: similar MCC and NEP
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Related Work

• Significant prior work on NILM and other energy analytics
- Most do little-to-no evaluation 
- Best evaluations are small-scale on a few homes
- Recent survey demonstrates widely disparate results on different homes 

using same/similar algorithms (Armel et al.)
- Must test on more/better/controlled data

• Also related to prior work on modeling energy usage
- SmartSim is a tool that applies these models to generate device-

accurate energy data traces 
- Prior work on modeling focuses on modeling methodology and not 

application
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Conclusion

• SmartSim fills a gap in evaluative techniques for energy analytics
- Moves beyond evaluating techniques on a random sampling of homes 

with no ability to control characteristics

• Enables researchers to…
- …generate device-accurate 1Hz energy data for home….
- …choose the set of devices (and usage patterns) to control home 

characteristics…
- …and apply to existing NILM algorithms by producing data in a common 

format (HDF5) compatible with existing open-source implementations.
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Questions
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