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Linear Network Coding
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Abstract—Consider a communication network in which certain @ @
source nodes multicast information to other nodes on the network / \
in the multinop fashion where every node can pass on any of its re- @ @ @

ceived data to others. We are interested in how fastachnode can
receive the complete information, or equivalently, what the infor- \®/ \ /
mation rate arriving at eachnode is. Allowing a node to encode its

received data before passing it on, the question involves optimiza-
tion of the multicast mechanisms at the nodes. Among the simplest
coding schemes is linear coding, which regards a block of data as a
)

------
......
-------

vector over a certain base field and allows a node to apply a linear
transformation to a vector before passing it on. We formulate this

multicast problem and prove that linear coding suffices to achieve
the optimum, which is the max-flow from the source to each re-

ceiving node.

(a
Fig. 1. Two communication networks.

Index Terms—Coding, network routing, switching. ) o
Fig. 1(a) to both node¥ andZ. One solution is to let the chan-

nelsST,TY,TW,andW Z carry the bith; and channel§U,
. INTRODUCTION UZ,UW,andWY carry the bitb,. Note that in this scheme,
EFINE acommunication networs a paiG, S), where an intermediate node sends out a data bit only if it receives the
G is a finitedirectedmultigraph ands is the unique node same bit from another node. For example, the ribdeceives
in G without any incoming edges. A directed edgéitis called the bith; and sends a copy on each of the two chanfi&fs
a channelin the communication network, S). The special andZ'W. Similarly, the nodd’ receives the bit, and sends a
nodes is called thesource while every other node may serveCopy into each of the two chann€l§¥ andU Z. In our model,
as asinkas we shall explain. we assume that there is no processing delay at the intermediate
A channel in graplt represents a noiseless communicatioRodes.
link on which one unit of information (e.g., a bit) can be trans- Unlike a conserved physical commodity, information can be
mitted per unit time. The multiplicity of the channels from deplicated or coded. Introduced in [1] (see also [5, Ch. 11]), the
node X to another nod€” represents theapacity of direct notion of network Coding refers to Coding at the intermediate
transmission fronX to Y. In other words, every single channenodes when information is multicast in a network. Let us now il-
has unit capacity. lustrate network coding by considering the communication net-
At the sourceS, a finite amount of information is generatedvork depicted by Fig. 1(b). In this network, we want to multicast
and multicast to other nodes on the network in the multihdp/o bitsb; andbs from the sources' to both the node$” and
fashion where every node can pass on any of its received ddta® solution is to let the channeST', TW, T'Y carry the bit
to other nodes. At each nonsource node which serves as a sinkchannelsSU, UW, U Z carry the bith,, and channel$V X,
the complete information generatedis recovered. We are XY, X Z carry the exclusiver b; & b. Then, the nod@” re-
naturally interested in how fast each sink node can receive gfivesb; andb; @ bz, from which the bitb, can be decoded.
complete information. Similarly, the nodeZ can decode the bl from b, andb; @ b,.
As an example, consider the multicast of two data bitsnd The coding/decoding scheme is assumed to have been agreed
bo, from the sourcé in the communication network depicted byupon beforehand.
Itis not difficult to see that the above scheme is the only solu-
_ _ _ tion to the problem. In other words, without network coding, it
Wo“flfg;‘fsc”\?téei?'\‘l’vzds 23;;21?:5 - ;:ri’%yrgr’]'sl\j%fggmsgr SlérggEZT-th‘Tmpossmle to multicast two bits per unit time from the source
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The counterpart for a communication network is as follows.  3) the number of outgoing busy channels frénequals the
The law of information flow The content of any informa- number of incoming busy channels’to
tion flowing out of a set of nonsource nodes can be derivedIn other words, a flow is aacycliccollection of channels that
from the accumulated information that has flown into thabides by the law of commodity flow. The number of outgoing

set of nodes. busy channels from will be called thevolumeof the flow. The
After all, information replication and coding do not increase theode T is called thesink of the flow. All the channels on the
information content. communication network that are not busy channels of the flow

The information rate from the source to a sink can potentialfjfe called thedle channels with respect to the flow.
become higher and higher when the permitted class of COd'nQDroposition 2.1: The busy channels in a flow with volume

schemes is wider and wider. However, the law of informatiop .4 he partitioned intg simple paths from the source to the
flow limits this information rate to the max-flow (i.e., the MaX-gjnk.

imum commodity flow) from the source to that particular sink
for a very wide class of coding schemes. The details are givenlhe proof of this proposition is omitted.
in [1]. Notation: For every nonsource nodéon a network G, S),

It has been proved in [1] that the information rate from thihe maximum volume of a flow from the sourcetds denoted
source to a set of nodes can reach the minimum of the in@gmaxflow (T)), or simplymaxflow(T) when there is no am-
vidual max-flow bounds through coding. In the present papdtguity.

we shall prove constructively that by linear coding alone, the peafinition: A cut on a communication networtG, S) be-

rate at which a message reaches each node can achieve the iidian the source and a nonsource nddeeans a collection
vidual max-flow bound. (This result is somewhat stronger tha§} hodes which includes but notT. A channelXY is said to

the one in [1]. Please refer to the example in Section 11l.) MOi§sin the cutc if X € candY ¢ C. The number of channels in
explicitly, we treat a block of data as a vector over a certaiil.;t is called thealueof the cut.

base field and allow a node to apply a linear transformation to a
vector before passing it on. A preliminary version of this paper The well-known Max-Flow Min-Cut Theorem (see, for ex-
has appeared in the conference proceedings [3] ample, [2, Ch. 4, Theorem 23]) still applies despite the acyclic

The remainder of the paper is organized as follows. In Séé&striction in the definition of a flow.
tion Il, we introduce the basic notions, in particular, the no- Max-Flow Min-Cut Theorem:For every nonsource nodg
tion of alinear-code multicas(LCM). In Section IIl, we show the minimum value of a cut between the source and a ffode
that with a “generic” LCM, every node can simultaneously reequal tomaxflow (7).
ceive information from the source at rate equal to its max-flow We are now ready to define a linear code multicast.
bound. In Section IV, we describe the physical implementation Notation: Let d be the maximum ofnaxflow(7') over all
of an LCM first when the network is acyclic and then when thé- Throughout Sections 1I-V, the symb@lwill denote a fixed
network is cyclic. In Section V, we present a greedy algorithdrdimensional vector space over a sufficiently large base field.
for Constructing a generic LCM for an acyc”c network. The Convention: The information unit is taken as asymb0| in the
same algorithm can be applied to a cyclic network by expandifRgse field. In other words, symbol in the base field can be
the network into an acyclic network. This results in a “timetransmitted on a channel every unit time.
varying” LCM, which, however, requires high complexity in Definition: A linear-code multicast (LCM) on a communi-
implementation. In Section VI, we introduce the time-invariargation network G, S) is an assignment of a vectspacev(.X )
LCM (TILCM) and present a heuristic for constructing a generi® €very nodeX and a vector(X'Y') to every channeX'Y” such
TILCM. Section VIl presents concluding remarks. that

1) v(S) =
2) v(XY) € v(X) for every channeK'Y’;

In this section, we first introduce some graph-theoretic termi-
nology and notations which will be used throughout the paper.
Then we will introduce the notion of an LCM, an abstract alge-
braic description of a linear code on a communication network. {o(T): T e p}) = ({v(XY): X ¢ o, Y € p}).

Convention: The generic notation for a nonsource node will

beT’, U, W, X, Y, or Z. The notationX'Y" will stand for any  The notation(e) is for linear span Condition 3) says that
channel fromX to Y. the vector spaces(7") on all nodesI” inside o together have
Definition: Over a communication networkftow from the  the same linear span as the vectof¥Y") on all channelstY
source to a nonsource nodeis a collection of channels, to beto nodes inp from outside ofp. Conditions 2) and 3) show
called thebusychannels in the flow, such that that an LCM abides by the law of information flow stated in
1) the subnetwork defined by the busy channels is acycl8ection I. The vectop(XY') assigned to every chann&ly’
i.e., the busy channels do not form directed cycles;  may be identified with a-dimensionakolumnvector over the
2) for any node other tha¥ and 7', the number of in- base field of2 by choosing a basis fde.
coming busy channels equals the number of outgoingApplying Condition 3) to the collection of a single nonsource
busy channels; nodeT, the space(T) is linearly spanned by vectoig X T')

II. BASIC NOTIONS

3) for any collectionp of honsource nodes in the network



LI et al. LINEAR NETWORK CODING 373

on all incoming channelXT" to T'. This shows that an LCM Hencedim(v(T)) < dim({(v(Y'Z): Y € CandZ ¢ C)), which
on a communication network is completely determined by thgat most equal to the value of the cut. In particulam (v (7))
vectors it assigns to the channels. Together with Condition &,upper-bounded by the minimum value of a cut betw§en
we have andT, which by the Max-Flow Min-Cut Theorem is equal to

4) The vector assigned to an outgoing channel fiomust maxfiow(T). =

be a linear combination of the vectors assigned to the in-This corollary says thataxflow(7T) is an upper bound on the

coming channels of". amount of information received 8§ when an LCMv is used.
Condition 4) may be regarded as tHaw of information flow
at a node” However, unlike in network flow theory, the law of [ll. ACHIEVING THE MAX-FLOW BOUND THROUGH A
information flow being observed for every single node does not GENERICLCM

necessarily imply it being observed for evegfof nodes when = yiq e ction, we derive a sufficient condition for an LCM
the network contains a directed cycle. A counterexample W|II,[0 achieve the max-flow bound afim(v(T)) in Proposi-

appear in Section V. n2.3.

An LCM v specifies a mechanism for data transmission over
the network as follows. We encode the information to be trans-Definition: An LCM v on a communication network is said
mitted from S as ad-dimensionalow vector, which we shall to begenericif the following condition holds for any collec-

call theinformation vectorUnder the transmission mechanisniion of channelsX;Y;, XoYs, ..., XY, for1 < m < d:
prescribed by the LCM, the data flowing on a chann&lY  (x)v(Xy) ¢ ({v(X;Y;): j # k}) for1 < k < m if and only
is the matrix product of the information (row) vector with théf the vectorsv(X1Y1), v(X2Y2), ..., v(X;,Yy,) are linearly

(column) vectow(XY'). In this way, the vecton(XY') acts as independent.

the kernel in the linear encoder for the chankéf . As a direct If o(X,Y7), (X2Y2) , 0(X.mY,) are linearly indepen-

consequence of the definition of an LCM, the vector as&gna% o W o

; ‘ h 't deis al hinat nt, thenv(Xy) ¢ <{v(X Yj). Jj # k}) sincev(X,Yy) €

?‘?hn ou gtomg c anned trotrrr\] anodeis a |rr]1ear CI;’Td:ma ion (Xk). A generic LCM requires that the converse is also true.

0 etlvet%orj ?ssugnte o the 'tncqmmghc anlnfe %gsd; In this sense, a generic LCM assigns vectors which are as lin-

quently, the data sent on an outgoing channef from a Iarly independent as possible to the channels.

a linear combination of the data sent on the incoming channe

to X. Example 3.1: With respect to the communication network in
Under this mechanism, the amount of information reachingg. 1(b), the LCMv in Example 2.2 is a generic LCM. How-

nodeT is given by the dimension of the vector spa¢@) when ever, the LCMu defined by

the LCMw is used. The physical realization of this mechanism 1
will be discussed in Section IV. w(ST) =u(TW) = u(TY) = <0>
Example 2.2: Consider the multicast of two bits; andbs, 0
from S toY andZ in the communication network in Fig. 1(b). w(SU) =uw(UW) =u(UZ) = <1>

This is achieved with the LCM specified by and
1
_ _ (0 is not generic. This is seen by considering the set of channels
v(SU) =o(UW) = o(UZ) = <1> {8T, WX} where
and 1 0
: ) =un=((a)- (1))
v(WX)=v(XY)=v(XZ) = E

Thenu(S) ¢ (u(WX)) andu(W) ¢ (u(ST)), butu(ST)
andu(W X) are not linearly independent. Thereforeis not
generic.

The data sent on a channel is the matrix product ofdtersector
(b1 b2) with the columnvector assigned to that channel by
For instance, the data sent on the chaiiieX is b; + b». Note
that, in the special case when the base fiel2d§ GF(2),the ~~ Lemma 3.2:Let v be a generic LCM. Any collection

vectorb; + b, reduces to the exclusiver b @ b» in an earlier of channelsXY;, XY, ..., XY, from a nodeX with
example. m < dim(v(X)) must be assigned linearly independent
vectors byw.

Proposition 2.3: For every LCMwv on a network, for all
nodesT Theorem 3.3:If v is a generic LCM on a communication
network, then for all node®
dim(v(7T)) < maxflow(T). )
dim(v(T)) = maxflow(T).
Proof: Fix a nonsource nodg and any cut between the

Proof: Consider a nodél’ not equal toS. Let f be
source and’

the common value ofnaxflow(7") and the minimum value
v(T)C(v(Z): Z¢C)=(v(YZ):Y ecCcandZ ¢ C). of a cut betweenS and T'. The inequalitydim(v(7T)) < f
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follows from Proposition 2.3. Thus, we only have to show that

dim(v(T)) > f.

Let dim(C) = dim((v(X,Y): X € candY ¢ cC)) for
any cutC betweenS andT. We will show thatdim(v(T")) >
f by contradiction. Assuméim(v(7T)) < f and letA be the
collection of cutsU betweenS andT such thatdim(U) < f.
Sincedim(v(T)) < f impliesV\{T'} € A, whereV is the set of
all the nodes irG, A is nonempty.
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Proof: By removing an edg#& X, the value of a cut be-
tween the sourcé and nodeX (respectively, nodd”) is re-
duced byl if edgeUX is in C, otherwise, the value of is
unchanged. By the Max-Flow Min-Cut Theorem, we see that
maxflow(X) andmaxflow(Y") are reduced by at mostwhen
edgeU X is removed from the graph. Now consider the value of
a cutC between the source and nodeZ. If C contains nodeX,
then edgd/ X is notinC, and, therefore, the value 6fremains

By the assumption that is a generic LCM, the number of unchanged upon the removal of edg« . If C does not contain

edges out of is at leastl, anddim({S}) = d > f. Therefore,
{S} ¢ A. Then there must exist a minimal memlieE A in
the sense that for anyy € U\{S} # ¢, U\{Z} ¢ A. Clearly,
U # {S} becausd S} ¢ A.

Let X be the set of channels in cutandB be the set of
boundary nodes df, i.e.,Z € Bif and only if Z € U and there
is a channe(Z,Y) such that” ¢ U. Then for allW € B,

v(W) ¢ (v(X,Y): (X,Y) €K)

which can be seen as follows. The set of channels it'c{#/}
but not inK is given by{(X, W): X € U\{W}}. Sincev is an
LCM

(v(X, W): X e U\{W}) C v(W).
If o (W) C (v(X,Y): (X,Y) €K), then
(X", Y): X" e U\{W}, Y' ¢ U\{W})
the subspace spanned by the channels irugd¥}, is con-
tained by(v(X, Y): (X, Y) € K) . This implies
dim(U\{W}) < dim(U) < f
a contradiction.

Therefore, forallW € B, v(W) ¢ (v(X,Y): (X,Y) € K).
For all (W, Y) € K, since

(v(X, 2): (X, 2) e R\{(W, Y)})
CwX,Y):(X,Y)€eR),v(W) ¢ (v(X,Y): (X,Y) €K)
implies

o(W) ¢ (o(X, Z): (X, Z) € E\[(W, V)}).

Then, by the definition of a generic LCMly(XY): (X,Y) €K}
is a collection of vectors such thdim(U) = min(|K|, d). Fi-
nally, by the Max-Flow Min-Cut Theorenk| > f, and since

d > f,dim(U) > f. This is a contradiction to the assumption

thatU € A. The theorem is proved. O
An LCM for which dim(v(T")) = maxflow(T) for all T pro-

nodeX, thenC is a cut between the sourSeand nodeX . By the
Max-Flow Min-Cut Theorem, the value dfis at leasti. Then
upon the removal of edgé X, the value of is lower-bounded
byi— 1 > k. Hence, by the Max-Flow Min-Cut Theorem,
maxflow(Z) remains to beé: upon the removal of edgé X .
The lemma is proved.

Example 3.5: Consider a communication network for which
maxflow(7") = 4, 3, or1 for nodesI’ in the network. The source
S is to broadcast 12 symbols, ..., a1» taken from a suffi-
ciently large base field”. (Note thatl2 is the least common
multiple of 4, 3, and1.) Define the set

S = {7 maxflow(T") = i}, fori=4, 3, 1.

For simplicity, we use the second as the time unit. We now de-
scribe howaq, . . ., a12 can be broadcast to the nodesiip, 33,

S in 3, 4, and 12 s, respectively, assuming the existence of an
LCM on the network ford = 4, 3, 1.

a) Letv; be an LCM on the network withd = 4. Let

a] = (al a2 as a4)

as = (a5 ag a7 ag)
and

a3 = (a9 a10 a11 al2)~
In the first second, transmit; as the information vector
usingwy, in the second second, transmit, and in the
third second, transmit;. After 3 s, all the nodes i,
can recovery;, as, andas. Throughout this example,

we assume that all transmissions and computations are
instantaneous.

b) Letr be a vector inf* such that {r}) intersects trivially
with v, (T) for all 7' in 33, i.e., ({r, vi(T)}) = F*

for all T in S3. Such a vector can be found whed”

is sufficiently large because there are a finite number
of nodes in&3. Defineb;, = a;r fori = 1, 2, 3. Now
remove incoming edges of nodesdn, if necessary, so

~

vides a way for broadcasting a message generated at the source
S for which every nonsource node receives the message at
rate equal tomaxflow(T). This is illustrated by the next ex-
ample, which is based upon the assumption that the base field
of 2 is an infinite field or a sufficiently large finite field. In this
example, we employ a technique which is justified by the fol-
lowing lemma.

Lemma 3.4:Let X, Y and Z be nodes such that
maxflow(X) = ¢, maxflow(Y) = j, andmaxflow(Z) = k,
wherei < j andi > k. By removing any edgé/ X in the
graph,maxflow(X) andmaxflow(Y") are reduced by at most
1, andmaxflow(Z) remains unchanged.

c)

that maxflow(7") becomes3 if 7' is in 4, otherwise,
maxflow(7T") remains unchanged. This is possible by
virtue of Lemma 3.4. Let, be an LCM on the resulting
network withd = 3. Let 8 = (b1 b2 b3) and transmit3

as the information vector using in the fourth second.
Then all the nodes iRs3 can recoveld and hencex;,
a2, andas.

Let s; and s, be two vectors inf® such that({s1, s2})
intersects withvy(T') trivially for all T in Sy, i.e.,
({51, 82, v2(T)}) = F3 for all T in 3. Definey; = (s;
for i = 1, 2. Now remove incoming edges of nodes in
$y andSs, if necessary, so thahaxflow(7") becomed
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if T isin Sy or S5, otherwise,maxflow(T) remains If it is not necessary for the nodes ¥ to receive the mes-
unchanged. Again, this is possible by virtue of Lemmsage, i.e., the message is multicast to the nod€s,iand 33

3.4. Now letvs be an LCM on the resulting network with only, the session can be terminated after 4 s. Then the average
d = 1. In the fifth and the sixth seconds, transmit information rate arriving at each node @, and 3 over the
and~, as the information vectors using. Then all the truncated session is 3 symbols/s, with the node3irand 3
nodes ing; can recovefs. receiving the whole message in the first 3 and 4 s, respectively.

d) Lett; andt, be two vectors inF* such that({¢;, t»})
intersects with({r, v1(T")}) trivially for all T'in &4, i.e.,
({t1, t2, 7, v1(T)}) = F* for all T in $;. Define§; = Letv be an LCM on a communication netwa&, S), where
ait; andéy = ajts. In the seventh and eighth secondshe vectorsy(SX) assigned to outgoing channeds\ linearly
transmité; andé, as the information vectors using. span ad-dimensional space. As before, the vecigiXY)
Since all the nodes 5, already knowsb;, upon re- assigned to a channélY is identified with ad-dimensional
ceiving 6, andds, a1 can then be recovered. column vector over the base field 8fby means of the choice

h of a basis. On the other hand, the total information to be trans-

mitted from the source to the rest of the network is represented

by a d-dimensional row vector, called the information vector.

Under the transmission scheme prescribed by the LChkhe

f) Define 65 = ast; andés = asty. In the eleventh and data flowing over a channelY is the matrix product of the
twelveth seconds, transntif and ¢ as the information information vector with the column vectar(XY). We now
vectors usingus. Thenag can be recovered by all theconsider the physical realization of this transmission scheme
nodes ing;. associated with an LCM.

IV. THE TRANSMISSION SCHEME ASSOCIATEDWITH AN LCM

e) Defineds = ast; anddy = ants. In the nineth and tent
seconds, transmif; and é, as the information vectors
usinguz. Thenas can be recovered by all the nodesiin

Let us now give a summary of the preceding scheme. liitthe  Definition: A communication networkG, S) is said to be
second fori = 1, 2, 3, via the generic LCMv;, each node in acyclicif the directed multigraplt:’ does not contain a directed
34 receives all four dimensions of;, each node i3 receives cycle.

three dimensions af;, and each node i receives one di-
mension ofx;. In the fourth second, via the generic LCM,
each node i3 receives the vectg#, which provides the three
missing dimensions af;, as, andas (one dimension for each)
during the first 3 s of multicast by;. At the same time, each 1) v(S) = ©;

node inJ; receives one dimension 6f Now, inordertorecover  2) »(XY) € v(X) for every channeKY;

(3, each node if¥; needs to receive the two missing dimensions 3) for every nonsource nodg, the space/(T) is the linear

of 8 during the fourth second. This is achieved by the generic span of vector&(XT) on all incoming channelst T
LCM w3 in the fifth and sixth seconds. So far, each nod&ijn to T

has received one dimension®f for i = 1, 2, 3 viav; durin . . .
of for i T e g In other words, for an acyclic network, the law of information

the first 3 s, and one dimensionef for: = 1, 2, 3 from 3 via flow bei b dqf ial de imolies it bei b
vo andws during the fourth to sixth seconds. Thus, it remainéOW €ing observed for every Single node Implies It being ob-

to provide the six missing dimensions @f, a», andas (two served for evergetof nodes.

dimensions for each) to each node&din, and this is achieved in Proof: Let  be a set of nonsource nodes on an acyclic
the seventh to the twelveth seconds via the generic LgGM network. Let an edge(y” be called an internal edge pfwhen
X € pandY € . Similarly, let an edgeX'Y be called an

Remark: The scheme in Example 3.5 can readily be generahcoming edge op whenX ¢ o andY € o. We need to show
ized to arbitrary sets of max-flow values. The details are omittelat, for every internal edg€ Z of p, (U Z) is generated by
here.

Lemma 4.1: An LCM v on an acyclic networkG, S) is an
assignment of a vector spaegX ) to every nodeX and a vector
v(XY') to every channeK'Y such that

. _ {v(XY): XY is an incoming edge qf}.
In the scheme in Example 3.5, at the end of the 12-s session,

each node receives a message of 12 symbols taken from the s@use the network is acyclic, there exists a nédm ¢
field F'. Thus, the average information rate arriving at each noggthout any edgd’ X, whereX € . Thus,

over the whole session is 1 symbol/s. The result in [1] asserts . . ; ; .
that this rate, which is the minimum of the individual max-flow 1) every incoming edge g#\{7'} is an incoming edge a.

bounds of all the nodes in the network, can be achieved. Hof induction onj|, we may assume that for every internal edge
ever, it is seen in our scheme that the nodesinSs, S; can UZ of p\{T'}

actually receive the whole message in the first 3, 4, and 12 s, re2) v(UZ) is generated by{v(XY): XY is an incoming
spectively. In this sense, each node in our scheme can receive the edge ofp\{7'}}.

message at rate equal to its individual max-flow bound. Thusjven an internal edgé/ T of o, we need to show thai W T)

our result is somewhat stronger than that in [1]. However, oy generated byv(XY): XY is an incoming edge gf}. Since
result does not mean that information can be multicast continy4y 1) is generated by

ally from the source to each node at rate equal to its individual
max-flow bound. {v(QW): QW is an edgé
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it suffices to show that(QW) is generated byv(XY): XY
is an incoming edge gb}.

If the edgeQW is incoming ofp\{T'}, then it is incoming to /
p by 1). Otherwisep(QW) is generated by \
{v(XY): XY is an incoming edge of\{7}} —_— @
according to 2) and, therefore, is also generated by /
{v(XY): XY is an incoming edge ab} @
because of 1). O

. L Fig. 2. An LCM on a cyclic network.
Lemma 4.2:The nodes on an acyclic communication net-

work can be sequentially indexed such that every channel is . i i i
from a smaller indexed node to a larger indexed node every set of nodes. Specifically, the law of information flow is
' observed for each of the nod&s Y, andW, but not for the set
Lemma 4.3: Assume that nodes in a communication networf nodes{X, Y, W}.

are sequentially indexed as, = S, X1, ..., X,, such that Now, assume that

every channel is from a smaller indexed node to a larger indexed

node. Then, every LCM on the network can be constructed by — p = <(1]> , qg= <(1)> , and r= <}> .
the following procedure:

Then,v is an LCM. Write the information vector g%, b),

{ whereb; andb, belong to the base field ¢1. According to the
for ( j=0. j<n j++) transm|SS|on.scheme associated .Wlth the LCM, alll threg chan-
{ nels on the dwepted cycle transmit the same data b?. This
arrange all outgoing channels X,Y from X Ieadg to the logical prob!em of how any of these cyclic channels
in an arbitrary order: acquires the datbal_ + by in the flrs_t place. _ _
take one outgoing channel from X, at a time In order to realize the transmission scheme associated with

{ an LCM over a network containing a directed cycle, we shall in-
troduce the parameter of time into the scheme. Instead of trans-

let the channel taken be X,Y; o - . )
assign o(X,;Y) to be a vector in the space mitting a single data symbol (i.e., an element of the base field
o(X,); e of Q) through each channel, we shall transmit a time-parame-
) o terized stream of symbols. In other words, the channel will be
w(X,+1) = linear span by vectors W(XX,41) on time-slotted. Concomitantly, the operation of coding at a node
Ay - g J . .
all incoming channels XX to Xjpu; will be time-slotted, as well.
} Definition: Given a communication networ{G, S) and a
} positive integerr, the associatechemorylesommunication

network denoted ag=("), S) is defined as follows. The set of
On an acyclic network, a straightforward realization of thgodes inG/() mgludes the nodé& and_all the pairs of the type
above transmission scheme is as follows. Take one node at'atl: WhereX is a nonsource node ifi and: ranges through
time according to the sequential indexing. For each node, “walft€gersl to 7. The channels in the network:("), S) belong
until data is received from every incoming channel before pdf One of the three types listed below. For any nonsource nodes
forming the linear encoding. Then send the appropriate data-sn2"dY in (G, S)
each outgoing channel. 1) fort < 7, the multiplicity of the channel fron§ to [ X, ¢]
This physical realization of an LCM over an acyclic network, is the same as that of the chaniSeY’ in the network(G,
however, does not apply to a network that contains a directed  S);
cycle. This is illustrated by the following example. 2) fort < 7, the multiplicity of the channel fromiX, ¢] to
[Y, t + 1] is the same as that of the chand€}” in the
network (G, S);
3) fort < 7, the multiplicity of the channel fromiX, ¢] to
v(SX) =p, v(SY) =q [X, 7] is equal tomaxflowg (X).

Example 4.4: Let p, ¢, andr be vectors i), wherep andg
are linearly independent. Define

and Lemma 4.5:The memoryless communication network

v(WX) =0(XY) =0(YW) =r. (G, S) is acyclic.

This specifies an LCM on the network illustrated in Fig. 2 Lemma 4.6: There exists a fixed numbet independent of
if the vectorr is a linear combination of andq. Otherwise, 7, such that for all nonsource nod&sin (G, S), the maximum
the functionv gives an example in which the law of informa-volume of a flow fromS to the nodd X, ] in (G(7), S) is at

tion flow is observed for every single node but not observed f@astr — ¢ timesmaxflow (X).
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Proof: Given a nonsource nodg in G, consider a max-
imum flow from S to X in the network(G, S). This maximum
flow may be partitioned into directed simple paths fréhto

X. Lete x be the maximum length among these directed simple

paths. Then, there exists a flow frofhto the noddX, ex] in
(G(7), S) that is isomorphic to the maximum flow ifG, S).
Moreover, time-shifted isomorphs of this flow {6:(7), S) are
flows from S to [X, ¢] for ex < t < 7. Moreover, the iso-
morphs are edge-disjoint flows in the netwgr®(™), S) due to

the acyclic nature in the definition of a flow. The union of these

flows, together with edges fromX, ¢] to [X, 7] for ¢t < 7 in
(G(7), 8), constitute a flow fron® to [ X, 7] with volumer —e x
timesmaxflow (X). The proof is completed by choosiago
be the largest xy minusl among allX . O

Transmission of data symbols over the netwdi®("),
S) may be interpreted asrfemorylesstransmission of data
streamsover the networKG, S) as follows.

1) A symbol sent fronf to [X, ¢] in (G(7), S) corresponds
to the symbol sent on the chanrfeX in (G, S) during
the time slott.

2) A symbol sent fromX, t] to [V, t + 1] in (G(7, S)
corresponds to the symbol sent on the chankXi#l in
(G, S) during the time slot + 1. This symbol is a linear
combination of symbols received by during the time
slot¢ and is unrelated to symbols received earliety

3) The channels frorhX,, t] to [ X, 7] for t < 7 signify the
accumulation of received information by the nadein
(G, S) over time.
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Lemma 4.7:The communication networkG[™,S) is
acyclic.

Lemma 4.8: Every flow from the source to the nodéin the
network(G(™, S) corresponds to a flow with the same volume
from the source to the nod&’, 7] in the network(GI[™, 5).

Lemma 4.9: Every LCM v on the network G(7), S) corre-
sponds to an LCM; on the network GI™!, S) such that for all
nodesX in G

dim(u([X,7])) = dim(v(X)).

Communication networks with or without memory both have
been defined in order to compensate for the lack of a direct
physical realization of an LCM on a network that may contain
a directed cycle. In Section VI, we shall present another way to
make the compensation, which will offer a physical realization
by “time-invariant linear coding.

V. CONSTRUCTION OF AGENERIC LCM ON AN ACYCLIC
COMMUNICATION NETWORK

We have proved that for a generic LCM, the dimension of
the vector space at each ndfies equal to the maximum flow
betweenS andT. However, we have not shown how one can
construct a generic LCM for a given communication network.
In the next theorem, we present a procedure which constructs a
generic LCM for any acyclic communication network.

Theorem 5.1:A generic LCM exists on every acyclic com-
munication network, provided that the base field(dfis an
infinite field or a large enough finite field.

Proof: Let the nodes in the acyclic network be sequen-

Now suppose an LCM has been constructed on the netwdiklly indexed asX, = S, X1, Xo, ..., X,, such that every
(G, 8). Since this is an acyclic network, the LCM can behannel is from a smaller indexed node to a larger indexed node.
physically realized in the way mentioned above. The physicahe following procedure constructs an LCM by assigning a
realization can then be interpreted as a memoryless transmissiegatorv(XY") to each channeX'Y’, one channel at a time.
of data streams over the original netwdrk, S).

Transmission, with memory, of data streams over the original
network (G, S) is associated with the acyclic network defined
below, which is just a slight modification frofG(™), S).

for all channels XY

v(XY) = the zero vector; // initialization
for ( j=0; J++)

Definition: Given a communication networ{GG, S) and a  {
positive integefr, the associated communication network with
memory, denoted %71, S), is defined as follows. The set of in an arbitrary order;
nodes inG["! includes the nod& and all pairs of the typgX, #], take one outgoing channel from
whereX is a nonsource node {& andt ranges through integers {
1 to 7. Channels in the networtG(™, S) belong to one of the
three types listed below. For any nonsource natleandY in
(@, 5)

1) fort < 7, the multiplicity of the channel fron$ to [ X,
t] is the same as that of the chani$eX in the network
(G, S);

2) fort¢ < 7, the multiplicity of the channel fromiX, ¢] to
[Y, t + 1] is the same as that of the chandé}l” in the
network (G, S);

Jj<n

arrange all outgoing channels X;Y from X;

X, at a time

let the channel taken be X,Y;

choose a vector w in the space  v(X;) such

that w ¢ (v(UZ): UZ €¢) for any collection

¢ of at most d—1 channels with
v(X;) € (u(UZ):UZ € &)

v(X;Y) = w;

}

v(Xj4+1) = the linear span by vectors

v(X X 41) on all incoming channels

to

_X‘Xj+1
Xj+1,
3) fort < 7, the multiplicity of channels fromiX, ¢] to 1

[X, t + 1] is equal tot timesmaxflowg (X). }
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The essence of the above procedure is to construct the genieléal domain and every ideal in it is generated by for some
LCM iteratively and make sure that in each step the partialty. Algebraic properties of vector spaces over a field can often
constructed LCM is generic. One pointin the above constructibe generalized tmodulesover a principle ideal domain. In fact,
procedure of needs to be clarified. Given a nodg, there can our previous results on LCM and generic LCM on vector spaces
be only finitely many collection§ of cardinality at most such can readily be generalized to modules ob#&(z)).
thatv(X;) ¢ (v(UZ): UZ € &). When the base field df is The concept of the dimension of a vector space is generalized
large enough to therank of a module. To facilitate our discussion, we shall

v(X;) ¢ Ue(w(UZ): UZ € €) refer to the rank of a module ovét((z)) as itsdimensionThe
elements of the module will be callegctors

Throughout this section, we assume thais a module over
F((2)) with a finite but very large dimension (say, larger than
the number of channels times the length of transmission stream
in the problem instance). Physically, an elemgnt) of F'((z))

w(Z) & ({v(Z;Y;):5 # k) is the z-transform of a stream of symbols, a1, as, ..., as,
... that are sent on a channel, one symbol at a time. The formal
for1 < k < mandl < m < d. In order to assert that the LCM variablez is interpreted as a unit-time shift.
v is generic, we need to prove the linear independence amon

the vectors)(Z,Y1), v(Z2Y2), ..., v(ZnYom). The proofis by o0 communication networl, S) is an assignment of a

induction onm. Without loss of generality, we may assume th%
. . odulev(X) overF to every nodeX and avecton(XY
Zm Y is the last among the, channels to be assigned avectO{ ulev () ov ((2)) very v ( )

: ; . o every channeK'Y such that
in the above construction procedurewfSince

. 1) v(S) = Q;
v(Zm) & {v(Z;Y;):1 <j < m}) ) :
. ) 2) v(XY) € v(X) for every channeXY;
the construction procedure gives

) 3) for any collectionp of honsource nodes in the network
0(ZmYm) ¢ {0(Z;Y)):1 < <mj).

T):T = XY): X , Y .
On the other hand, the induction hypothesis asserts the linear {u(T):T € ph) = {z0(XY) £,V €ph)

where the union is over all such Hence, the choice of the
vectorw in the above procedure has been possible.

Let Z1 Y1, Z5Y5, ..., Z,Y,, be any collection of channels
such that

Definition: A time-invariant linear-code multicast (TILCM)

independence among Z,Y1), v(Z2Y2), ..+, v(Zm-1Ym-1).  In particular, the vector assigned to an outgoing channel from
Thus, the vectors(Z,Y1), v(%Y2), - .., v(ZmYm) arelinearly 3 node is: timesa linear combination of the vectors assigned to
independent. The theorem is proved. 0 incoming channels to the same node. Hence a TILCM is com-

Given a communication networtG, S) and a positive in- pletely determined by the vectors that it assigns to channels.
tegerr, there exists a generic LCM on the associated mem- 1 "€ adoption ot times a linear combination, instead of simply
oryless communication netwo'(l(;(f), S) by Lemma 4.5 and a.ny Ilnea}r comt_)manon, allows _a un|t-t|_me.delay for transm|§-
Theorem 5.1. From Theorem 3.3, for every nddén (G, S), s!on/codlng. This a_ll_lows a physical reallzat|o_n for th_e transmis-
the dimension ofy([X, 7]) for the node[X, 7] in (G(™), §) Sion _scheme sp_ecmed by a_TILCM. Ifacerta|_n physical system
is equal to the maximum volume of a flow from the source tgEauires nonuniform duration of delay on different channels,

[X, 7]. This maximum volume, according to Lemma 4.6, is dpen artificial nodes need to be inserted. For instance, if the delay
leastr — e timesmaxflowg (X), wheres is a fixed integer. on a channel is three unit times, then two serial nodes should be

In view of Lemmas 4.7—4.9, we have the following similapdded on the channel so that the channel becomes a tandem of
conclusion about the adapted communication network. Féyee channels.

every nodeX in (G, 5), the dimension of the spaeg[X, 7])  Example 6.1:On the communication network illustrated in
for the corresponding nodgX, 7] in (GI"), S) is equal to Fig. 2, define the TILCMv by
the maximum volume of a flow from the source [t&, 7] in

(G], ), and this maximum volume is at least— ¢ times  v(SX) = <(1)> . v(SY) = <(1)> . u(XY) = < ’25)
maxflowg (X) for some fixed number. ‘

We now translate this conclusion about linear-code multicast 22 23
over the memoryless network back to the original netw(@rk v(YW) = < ) »and v(WX)= < 2) ’
). Let f* be the minimum ofnaxflow (X) overallnonsource one can readily check thatis in fact a TILCM. For example
nodesX in G. Then for a sufficiently large integéf, using the 1 3
technique in Example 3.5, it is possible to design a broadcast v(XY) = < Z3> =2(1 —2°) (0) +z <22>
session of length equal #§ time units which broadcasts a mes- i i
sage of approximateli( f* symbols from the source. Moreover, =2[(1 - 2*)v(SX) + v(WX)].
the whole message can be recovered at each nonsourc&no
after approximatelyK f*/maxflowq (X) time units.

ClIenus,fu(XY) is equal toz times the linear combination of

v(SX) andv(W X) with coefficientsl — z* and1, respectively.

This specifies an encoding process for the chamni#l that

does not change with time. It can be seen that the same is true
Let F' be a finite field. LetF'((z)) denote the ring of formal for the encoding process of every other channel in the network.

power series oveF' with the variablez. F'((z)) is aprincipal  This explains the terminologytime-invariant for an LCM.

VI. TIME-INVARIANT LCM AND HEURISTIC CONSTRUCTION
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Write the information vector agi(z) b(z)), where
a(z) = Z a;z and b(z) = Z bz’
720 720

belong toF((z)). The product of the information (row) vector
with the (column) vector assigned to that channel represents the °
data stream transmitted over a channel \

(a(z) b(2)) @ v(SX) = a(z) I
_>(a07a17a27 az, Aq, A5, ..., Qt, ) @

(a(2) b(z)) e v(SY) = b(2) |
— (b, by, ba, b, by, bs, ..., by, ...)

(a(z) b(2)) @ v(XY) = za(z) + 2°b(2)
Fig. 3. Redundant channels in a network.
— (0, ao, a1, az + bo, az + by, ag +ba, ...,

a1+ b3, ...) That is, the data symbol
at—1+ a—ata—7+ -+ b3+ b+ b9+

(a(z) b(z)) e v(YW) = 2%a(z) + 2b(2) . . .
is sent on the channeXY at the time slott. This TILCM

— (0, by, ao + b1, a1 + ba, az + bz, az + by, ..., v, besides being time invariant in nature, is a “memoryless”
4yt b ) one because the following linear equations allows an encoding
=2 el mechanism that requires no memory:
(a(z) b(2)) e v(WX) = z%a(2) + 2°b(2) v(XY) = 20(SX) + zv(WX)
— (0,0, bo, ao + by, ay + bz, az +bs, ..., v(YW) = 20(SY) + 20(XY)
ai_3+ bi_o, .. ) and
Adopt the convention that, = b, = 0 for all t < 0. Then the o(WX) =z0(YW).

data symbol flowing over the chann&lY’, for example, at the

time slott is a,_1 + by_s forall ¢ > 0. There are potentially various ways to defingemericTILCM

and, as an analog to Theorem 3.3, to establish desirable dimen-
Example 6.2: Another TILCM on the same communicationsions of the module assigned to every node. Another desirable

network can be defined by characteristic of a TILCM is to be “memoryless.” Empirically,
1 0 it has been relatively easy to construct a TILCM that carries all
v(SX) = <0> v(SY) = <1> conceivable desirable properties.
) The remainder of this section presents a heuristic construc-
o(XY) = 1 . ( Zg) 7 o(YW) = 1 . <Z ) tiqn procedure fora“good"TILCM. The heuris_tip construction
1—2°\% 1-=2 z will follow the graph-theoreticablock decompositioaf the net-
and . work. For the sake of computational efficiency, the procedure
W(WX) = 1 z3 will first remove “redundant channels from the network before
1—23\2%2 )" identifying the “blocks” so that the “blocks” are smaller.
The data stream transmitted over the chan¥l, for instance,  pefinition: A channel in a communication network is said
is represented by to beirredundantif it is on a simple path starting at the source.
. ’ Else, it is said to beedundant Moreover, a communication
Z a;z’ Z bz’ | ev(XY) network is said to bérredundantif it contains no redundant
>0 j>0 channels.
— Z (a]-zj+1 + bjzj+3)/ (1—2%) Example 6.3:1n the network illustrated in Fig. 3, the chan-
=0 nelsZX, TX, andTZ are redundant.
Lemma 6.4: The deletion of a redundant channel from a net-
- Z (a;271 4+ b;27+3) Z 230 work results in a subnetwork with the same set of irredundant
7~ 7= ~ H i
S0 >0 channels. Consequently, the irredundant channels in a network
define an irredundant subnetwork.
— Z Z (a,z3z’+j+1 + b'z3i+j+3) )
e J J Theorem 6.5:Letv be an LCM (respectively, a TILCM) on a
7 7

network. Therv also defines an LCM (respectively, a TILCM)
= 2 a1+ as_g+as_74--+bi_z+bi_g+bi_g+---). ON the subnetwork that results from the deletion of any redun-
1 dant channel.
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Proof: We shall prove the case of LCM, the case ofvork consisting of just the source and then expand it to a “good”
TILCM being similar. Denote the deleted redundant chann&lLCM v that covers one more block at a time.
as XW. Given a setfp of nonsource nodes with' ¢ o and The sequential choices of blocks are according to the acyclic
W € p, we need to show order in the block decomposition of the network. Thus, the
expansion of the “good” TILCMy at each step involves only
(wYZ):Y ¢ p, ZepandYZ £ XW) incoming channels to nodes in the new block. A heuristic
=(v(YZ):Y ¢ pandZ € p). algorithm for assigning vectors( XY) to such channelXY

Due to the redundancy o€ W', any simple path frons to X is for v(XY') to be z times anarbitrary convenientlinear
' combination of vectors assigned to incoming channelX'to

must go through the nodé’. Let oy, denote the set consisting . . . -
of the nodeW plus all those node¥ such that any path from _In this way, a system of linear equations of the for =0

S to Y must go throughV’. (If there is no simple path fror is set up, whered is a square matrix with the dimension

to a particular node, then that node fully qualifies as a node elgual to the total number of channels in the network ansl

pw.) Then, every channel from outside @fy into oy must the unknown column vector whose entries a(é{Y) fpr all
be toward the nod&”. Therefore channelsX'Y. The elements aft andb are polynomials irx. In

particular, the elements of are eithert1, 0, or a polynomial
(wYZ):Y ¢ pUpw andZ € pU pw) in z containing the factor. Therefore, the determinant of
is a formal power series with the constant term (the zeroth

= (Y 2):Y ¢ pUpw andZ € p) power of z) being +1, and, hence is invertible iF((z)).
CW(YZ):Y ¢p, ZepandYZ # XW) According to Cramer’s rule, a unique solution exists. (This
/ is consistent with the physical intuition because the whole
C(wYZ):Y ¢ pandZ € p) network is completely determined once the encoding process
_ . for each channel is specified.) If this unique solution does
- (U(Z)' Z € g‘)> - H H “ ”
not happen to satisfy the requirement for being a “good
C(v(Z2): Z € pU pw) TILCM, then the heuristic algorithm calls for adjustments on

the coefficients of the linear equations on the trial-and-error
basis.

This implies the desired equality. O After a “good” TILCM is constructed on the subnetwork
formed by irredundant channels in a given network, we may
simply assign the zero vectors to all redundant channels.

=(w(lYZ):Y ¢ pUpw andZ € pU pw)

Corollary 6.6: Letv be an LCM (respectively, a TILCM) on

a network. Then defines an LCM (respectively, a TILCM) on
the subnetwork formed by irredundant channels. Example 6.7: After the removal of redundant channels, the

, . , , . . network depicted by Fig. 3 consists of four blocks in the order
In a directed multigraph, an equivalence relationship (whigl (S}, {W, X, Y}, {Z}, and{T"}. The subnetwork consisting
by definition is reflexive, symmetri@nd transitive) among ¢ the first two blocks is the same as the network in Fig. 2. When
nodes can be defined as follows. Two nodes are equivalenff exnand the trivial TILCM on the network consisting of just

there exists a directed path leading from one node to the ot <\ rce to cover the blodkV, X, Y}, a heuristic trial would
andvice versaAn equivalence class under this relationship igg

called ablockin the graph. The source node by itself always

forms a block. When every blockcbntract$ into a single v(SX) = <1> ) v(SY) = <0>
node, the resulting graph is acyclic. In other words, the blocks 0)" 1
can be sequenf[ially indexed so that every interblock Channeléﬁether with the following linear equations:
from a smaller indexed block to a larger indexed block.

For the construction of a “good” TILCM, smaller sizes of v(XY) =20(5X) + z0(WX)
blocks tend to facilitate the compl_Jtation. The extreme favor- o(YW) = 20(SY) + 20(XY)
able case of the block decomposition of a network is when the
network is acyclic, which implies that every block consists of gnd
single node. The opposite extreme is when all nonsource nodes v(WX) =z0(YW).
form a single block exemplified by the network illustrated irThe result is the memoryless TILCM in the preceding ex-
Fig. 3. ample. This TILCM can be further expanded to cover the block

The removal of redundant channels sometimes serves for {i#} and then the blockT'}.
purpose of breaking up a block into pieces. For the network
illustrated in Fig. 3, the removal of the three redundant channels
breaks the blocKT', W, X, Y, Z} into the three block$7'}, VII. CONCLUDING REMARKS
{W, X,Y}, and{~Z}. In this paper, we have presented an explicit construction of

In the construction of a “good” LCM on aacyclicnetwork, a code for multicast in a network that achieves the max-flow
the procedure inside the proof of Theorem 5.1 takes one ndutmund on the information transmission rate. An important
at a time according to the acyclic ordering of nodes and assigrspect of our code is its linearity, which makes encoding and
vectors to outgoing channels from the taken node. For a gelecoding easy to implement in practice. Our greedy algorithm
eral network, we can start with the trivial TILCMon the net- for code construction works for all networks, but the code
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so constructed is not necessarily the simplest possible. dut it can be a serious problem for real-time applications (e.g.,
fact, there often exist optimal LCMs much simpler than theoice and video transmission). On the other hand, certain types
ones constructed according to the presented greedy algoritlminnetworks, for example switching networks, are inherently
Therefore, there is much room for further research in thially synchronized. These networks are excellent candidates for
direction. network coding, and, in fact, the possible use of linear network
The code we have constructed for a cyclic network is timedes in switching networks has been investigated [6].
varying, which makes it less appealing in practice. To our
knowledge, there has not been a proof for the existence of an ACKNOWLEDGMENT
optimal time-invariant code for a cyclic network. However, .
P yel ; The authors would like to thank Venkat Anantharam for
examples of such a code have been given in the present paper .. . -
. . : ointing out an error in the original proof of Theorem 3.3 and
and also in [1]. Therefore, proving the existence of such codgs, | . . :
. . . o . of his very careful reading of the manuscript. They also thank
in particular, constructing such codes in simple linear form, IS . g
. e anonymous reviewers for their useful comments.
a challenging problem for future research.
Further research problems in network coding include code
construction when two or more sources are simultaneously mul-
ticast in the network. This is the so-called multisource network [1] R- Alshwede, N. Cai, S.-¥. R. Li, and R. W. Yeung, “Network informa-
di bl in M1which i t unexplored | 5. Ch tion flow: Single source,1IEEE Trans. Inform. Theorysubmitted for
coding problem in [1] which is yet unexplored (see also [5, Ch. pjication.
15]). [2] E.L.Lawler,Combinatorial Optimization: Network and Matraid Fort
When networking coding is implemented in computer or __ Worth, TX: Saunder College Pub., 1976. . L
llite networks. svnchronization is a broblem that needs to bésl S.-Y. R. Li and R. W. Yeung, “Network multicast flow via linear
satell W_ » SY Ization | ) p ; coding,” inProc. Int. Symp. Operational Research and Its Applications
addressed. Since an encoder at an intermediate node may take (ISORA'98) Kunming, China, Aug. 1998, pp. 197-211.
more than one incoming data stream as input, it is necessar{fl D J. A. WelshMatroid Theory New York: Academic , 1976.
. R . 5] R. W. Yeung, A First Course in Information Theory Norwell,
to acquire synchronization among these data streams. This i

] ) - - MA/New York: Kluwer/Plenum, 2002.
not a problem for nonreal-time applications (e.g., file transfer), [6] F. R. Kschischang, private communication.
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