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ABSTRACT
The great advance and affordability of technologies, communications and sensor
technology has led to the generation of large amounts of data in the field of the
Internet of Things and smart environments, as well as a great demand for smart
applications and services adapted to the specific needs of each individual. This has
entailed the need for systems capable of receiving, routing and processing large
amounts of data to detect situations of interest with low latency, but despite the many
existing works in recent years, studying highly scalable and low latency data
processing systems is still necessary. In this area, the efficiency of complex event
processing (CEP) technology is of particular significance and has been used in a
variety of application scenarios. However, in most of these scenarios there is no
performance evaluation to show how the system performs under various loads and
therefore the developer is challenged to develop such CEP-based systems in new
scenarios without knowing how the system will be able to handle different input data
rates and address scalability and fault tolerance. This article aims to fill this gap by
providing an evaluation of the various versions of one of the most reputable CEP
engines—Esper CEP, as well as its integration with two renowned messaging brokers
for data ingestion—RabbitMQ and Apache Kafka. For this purpose, we defined a
benchmark with a series of event patterns with some of the most representative
operators of the Esper CEP engine and we performed a series of tests with an
increasing rate of input data to the system. We did this for three alternative software
architectures: integrating open-source Esper and RabbitMQ, integrating one instance
of Esper enterprise edition with Apache Kafka, and integrating two distributed
instances of Esper enterprise edition with Apache Kafka. We measured the usage of
CPU, RAM memory, latency and throughput time, looking for the data input rate
with which the system overloads for each event pattern and we compared the results
of the three proposed architectures. The results have shown a very low CPU
consumption for all implementation options and input data rates; a balanced
memory usage, quite similar among the three architectures, up to an input rate of
10,000 or 15,000 events per second, depending on the architecture and event pattern,
and a quite efficient response time up to 10,000 or 15,000 events per second,
depending on the architecture and event pattern. Based on a more exhaustive
analysis of results, we have concluded that the different options offered by Esper for
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CEP provide very efficient solutions for real-time data processing, although each with
its limitations in terms of brokers to be used for data integration, scalability, and fault
tolerance; a number of suggestions have been drawn out for the developer to take as a
basis for choosing which CEP engine and which messaging broker to use for the
implementation depending on the of the system in question.

Subjects Computer Networks and Communications, Data Mining and Machine Learning, Data
Science, Emerging Technologies, Internet of Things
Keywords Complex event processing, Internet of Things, Evaluation, Esper, RabbitMQ, Apache
Kafka

INTRODUCTION
Thanks to the enormous advances on the Internet of Things (IoT) and the emergence of
smart scenarios in everyday life, large amounts of data are currently generated from
multiple sources and are expected to be processed to gain a better understanding of the
domain in question and make improved decisions in smart environments. Thus, there is a
growing body of work seeking efficiency in real time and intelligent processing of massive
amounts of streaming data, with a special emphasis on IoT data processing and smart
scenarios (Skarlat & Schulte, 2021; Ponce & Abdulrazak, 2022). Despite the many existing
works in recent years, the need to study systems that can perform the processing of large
amounts of data in a scalable way (Rahmani, Babaei & Souri, 2021) and with low latency
(Bhatt & Thakkar, 2021) is still highlighted as an open issue (Babar et al., 2022). In
particular multiple frameworks for big data analysis in the IoT face numerous challenges
such as the high volume of data and their heterogeneity, as well as processing time, among
others.

In Rahmani, Babaei & Souri (2021) it is stated that complex event processing (CEP) has
become a successful technology for streaming data processing and their integration with
message brokers has provided a fundamental part of IoT and smart environments systems,
since it facilitates the integration of multiple sources for their joint real-time processing, as
supported by multiple publications (Mayer, Koldehofe & Rothermel, 2015; Akbar et al.,
2017; Garcia-de-Prado, Ortiz & Boubeta-Puig, 2017). This use of CEP for the IoT is not
only in the cloud, but also at levels closer to the device, such as the fog or the edge
(Mondragón-Ruiz et al., 2021). Although high performance of streaming data processing is
achieved with CEP and solutions for data heterogeneity have also been proposed with this
technology (Corral-Plaza et al., 2021, p.; Rath, Mandal & Sarkar, 2023), we can sometimes
encounter scenarios that require higher performance, not forgetting the unpredictable
growth that is being experienced both in the quantity and speed of the data generated by
the improvement in cyber-physical devices, as well as communications.

In this context, the developer may face limitations in terms of scalability and/or
performance of the system once it has been implemented, leading to the need to evolve to
other technologies or to replace the implemented software architecture with another one.
For this reason, it is essential to have a reference before starting to implement the necessary
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software architecture. While there are multiple distributed stream processing systems
(DSPS) and several articles where we can find evaluations of their performance and
scalability, for instance (Dayarathna & Suzumura, 2013; Shukla, Chaturvedi & Simmhan,
2017; Hesse et al., 2021); in this article we focus specifically on CEP engines and more
particularly on one of the most widely renowned and efficient CEP engines, the Espertech
Esper CEP engine, which use has been proposed in multiple domains in the last years, such
asMa et al. (2019), Zhu (2021),Helal & Awad (2022). However, most of these proposals do
not provide a performance or scalability assessment or present a very limited one. This
research gap involves that developers of big data applications with Esper CEP do not have
an understanding of how their system will perform in terms of both response time and
scalability until they implement it and do real tests, which can lead to the implementation
of under-resourced or over-dimensioned systems for the application domain in question,
with the consequent loss of time and economic benefits. We firmly believe it is important
to fill this gap because there are already many companies that are starting to use CEP for
their IoT applications and smart cities or smart environments ones, such as for air quality
control in smart ports (Ortiz et al., 2022a), water supply network management in smart
cities (Corral-Plaza et al., 2020) and fall detection for smart health (Blunda et al., 2020).
Therefore, in this work we expect to fill such research gap by carrying out a performance
and scalability analysis of Espertech Esper CEP engine, integrating it with two reputable
message brokers and in a centralized and distributed configuration. Our main aim is to
provide developers with an analysis of various Esper implementation options, where
different options are considered in terms of resource requirements, efficiency and
scalability, allowing them to make a design decision before starting with the
implementation of the system. It is not our aim to compare Esper to other CEP systems,
but we discuss some other articles focused on such comparison in the related work section.

With this aim in mind, the following research questions have been defined:
RQ1. In a centralized architecture, with a single Esper CEP engine, what are the

advantages and disadvantages of integrating it with two competing brokers such as
RabbitMQ and Kafka and which one should be used to achieve the best performance in
real-time stream data processing?

RQ2. When does it outweigh using a distributed CEP architecture to achieve greater
horizontal scalability and how does this impact system performance?

RQ3. Which of these Esper engines and which messaging broker should I use depending
on my system requirements?

To answer these questions, we have defined a series of event patterns with different
operators that constitute an extension of the benchmark we presented in Ortiz et al.
(2022b) and compared the performance and scalability of various architectures, using, as
mentioned, different Espertech software products, on which the event patterns of the
defined benchmark were deployed, with two widely used message brokers—RabbitMQ and
Kafka, which will receive data with several input rates. Particularly, to answer RQ1 we have
compared two centralized implementations, on the one hand, an open-source CEP engine
integrated with RabbitMQ, and, on the other, an Esper enterprise edition with EQC and
HA CEP engine with Kafka, since the use of Kafka with such engine provides additional
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reliability that cannot be provided with open-source Esper and RabbitMQ. To answer RQ2
it was also necessary to integrate the latest with two distributed instances of Esper
enterprise edition with EQC and HA. The comparison and analysis of the results of these
three configurations led us to the discussion of RQ3. To summarize, the main contribution
of this article is a performance comparison of several CEP products from Espertech, a
company which offers one of the most reliable and efficient CEP engines, and a
comprehensive grammar for event pattern definition, together with the well-known
messaging brokers RabbiMQ and Apache Kafka. For this purpose, we provide:

� A benchmark with a variety of operators commonly used in CEP event patterns.

� The performance and resource consumption evaluation of a software architecture
integrating an instance of Esper open-source CEP engine with RabbitMQ using the
provided benchmark and an incremental rate of incoming events to the system.

� The performance and resource consumption evaluation of a software architecture
integrating an instance of Esper enterprise edition with EQC and HA with Kafka using
the same benchmark and incremental rate of incoming events.

� The performance and resource consumption evaluation of a software architecture
integrating two distributed instances of Esper enterprise edition with EQC and HA with
Kafka using the same benchmark and incremental rate of incoming events.

� Finally, a discussion on the results of the empirical evaluations is provided, along with
the answer to the research questions previously stated. The answer to RQ3 includes a
series of suggestions to consider when choosing which Espertech CEP product and
which broker may be most suitable, according to the requirements in terms of resource
consumption, response time, and the expected or desired rate of incoming data that the
system should be able to handle, as well as reliability and fault tolerance requirements.

The rest of the article is structured as follows: First the background on the technologies
used in the implementation of the architectures evaluated in the article is presented.
Then the implementation of the software architectures to be evaluated are presented.
Afterwards, materials and methods used for the evaluation, i.e., the hardware resources
used, the method followed and the benchmark proposed are explained; and then the tests
results are analyzed. Following, related work is examined. Finally, the results of the
evaluation are discussed and the responses to the research questions provided, to conclude
with the outlined conclusions.

BACKGROUND
In this section, we present the main technologies used in this article, namely CEP and
message brokers, as well as their integration.

Complex event processing
CEP (Luckham, 2012) is a robust technology by means of which we can capture, analyze
and correlate huge amounts of data in real time, from different application domains and in
different formats, to detect key situations in one or several specific domains at the moment
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the situation occurs (Inzinger et al., 2014). When working with this technology, the
incoming data to be processed by the system are called simple events, while the detected
situations are called complex events. In order to detect these complex events, it is necessary
to first define the combination of simple events that will allow the complex event to be
detected. This is done by defining what is called an event pattern; this event pattern
analyzes and correlates one or several simple events in a given period of time. Thus, for a
particular application domain, a set of event patterns is defined to specify the conditions
that must be met from the event content of one or more incoming data streams in order to
detect the situations of interest within the scope of that domain. These event patterns must
be deployed in a CEP engine, that is the software responsible for capturing the simple input
events, analyzing in real time whether some of the event patterns deployed on the simple
input event stream are fulfilled, and creating the complex output events. Typically, event
patterns are defined manually, either by software programmers directly in the
programming language of the CEP engine in question, or by domain experts using specific
graphical tools for the automatic generation of event patterns in that language (Corral-
Plaza et al., 2021). This is because domain experts usually have the knowledge of the
situations of interest they seek to detect and the series of events that cause them; however,
it may also be the case that some of these patterns are unknown, in which case CEP can be
combined with machine learning techniques to try to automatically learn new CEP rules
for the domain in question.

In this article, we have carried out a manual definition of patterns without combining
them with machine learning techniques, since what we are interested in finding out is the
cost of processing in the CEP engine and not the cost of learning new patterns in those
domains in which these are unknown a priori. Concerning the CEP engine, we have
adopted the Java-based Esper CEP engine, not only because of its high performance,
versatility of operators for the event patterns and technological maturity, but also because
it has not only one version for centralized processing, but, in addition, also two versions for
distributed and high availability processing.

Esper (EsperTech Inc, 2023a) is an open-source software available under the GNU
general public license (GPL) v2. This open-source version can be used as a centralized CEP
engine. In addition to this open-source version, Espertech provides two closed-source
options. The first one is Esper high availability (Esper HA) (EsperTech Inc, 2023b), which
has two main capabilities: (1) it allows to save and recover the runtime state, providing
high-availability in horizontal architectures. This enables several CEP engines to be
deployed to solve problems such as service outages, with a possibility to recover the state of
the failed engine in another of the available engines. (2) In addition, Esper HA supports
memory management, with it being unnecessary to store all states in heap memory, unlike
Esper open-source, which keeps all runtime in memory only. Esper HA thus has the added
advantage of fast recovery from failure.

The second one is Esper enterprise edition (EsperTech Inc, 2023c); this provides a
technology called Esper query container (EQC), which encompasses the horizontal scale-
out architecture for Esper and Esper HA. EQC allows more engines to be added and
removed, distributing the load dynamically, and providing greater fault tolerance—if an
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engine shuts down automatically, it immediately corrects the error by sending the load to
another engine. However, Esper EQC has one limitation: it must obligatorily be used with
Kafka and Kafka streams, as will be explained in the following sub-section.

Message broker
The use of a message broker is essential to facilitate the reception of simple events from
various sources and their forwarding to be processed by the CEP engine. Message brokers
implement an asynchronous mechanism that allows for complete decoupling of source
and destination messages as well as enabling messages to be stored in the broker until they
can be processed by the destination element when needed; they are widely used in the IoT
domain. Although there are many messaging models, the most common mechanism used
in the IoT domain is publish/subscribe, where messages are published according to a set
topics and users subscribe to the topics of their interest. In particular, two models are more
commonly used: queues and topics. Message queues implement a load balancing algorithm
so that only one consumer receives the message; thus, the message remains in the system
until the consumer is connected to process it. In the case of message topics, a standard
publish/subscribe mechanism is implemented, where each published message can be
processed by all subscribed consumers currently connected to the topic. There are multiple
message brokers (Singh & Verma, 2022), but we have identified RabbitMQ and Apache
Kafka as among the best rated (Lazidis, Tsakos & Petrakis, 2022).

RabbitMQ (VMware Inc, 2023) is a distributed and scalable open-source message
broker that acts as middleware between producers and consumers. RabbitMQ implements
the protocol AMQP (advanced message queuing protocol) which is an asynchronous
message delivery protocol with delivery guarantee. RabbitMQ provides several
communication models including the most commonly used: publish/subscribe mechanism
and topics implementation. Event producers send simple events to the publish/subscribe
queue and these are stored in RabbitMQ until a consumer retrieves it; in our case, this
consumer is Esper CEP. When we process the simple events and generate a complex event,
the latter is sent to the desired recipient.

Apache Kafka (Apache Software Foundation, 2023a) is an event streaming platform that
allows to publish and subscribe to event streams, store event streams, and process event
streams as they occur, or retrospectively. It therefore provides real-time continuous data
processing. Along with Apache Kafka, we can use Apache Kafka streams (Apache Software
Foundation, 2023b), which is an open-source library that adds many advantages to Apache
Kafka. Among them, we can highlight that Apache Kafka stream permits the automatic
inclusion of several input and output in the stream, rather than having a single stream.
When integrating Apache Kafka with CEP, the messages are published in the Kafka broker
and stored temporarily until they are processed by the CEP engine. The complex events are
then stored, and finally all the data are submitted to the desired recipient.

Integration of complex event processing and message brokers
As mentioned, the CEP engine must receive a stream of simple streaming events, which in
the IoT domain could typically come from a message broker. The integration can be more

Ortiz et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1437 6/34

http://dx.doi.org/10.7717/peerj-cs.1437
https://peerj.com/computer-science/


or less expensive, depending on the particular CEP engine used, as well as depending on
the message broker used, that is, the source of the data to be integrated. While, in the past,
we have made use of Enterprise service buses (ESBs), which facilitate integration, routing
and connection between different artefacts in our software architectures, we have also seen
how the use of these ESBs can be a burden on system performance. For this reason, this
article explains in “Alternative Software Architecture for the Integration of Esper CEP with
a Message Broker in a Centralized and Distributed Environment” that the integration of
both artefacts is straightforward. In particular, Esper CEP provides straightforward
adapters to AMQP and Kafka; this is why we plan to use RabbitMQ with the AMQP 0.9.1
protocol and Apache Kafka as brokers for integration with Esper CEP engines. As will be
seen in the following section, we use them to implement several different software
architectures, which will be evaluated and compared to each other.

ALTERNATIVE SOFTWARE ARCHITECTURE FOR THE
INTEGRATION OF ESPER CEP WITH A MESSAGE BROKER
IN A CENTRALIZED AND DISTRIBUTED ENVIRONMENT
In this section, we explain the three different implementations evaluated in this article: two
centralized implementations, on the one hand, using a unique open-source CEP engine
integrated with RabbitMQ, and, on the other, integrating a unique Esper enterprise edition
with EQC and HA with Kafka. Finally, a distributed option with two Esper enterprise
edition with EQC and HA integrated with Kafka will also be implemented.

Implementations integrating centralized CEP and a message broker
In this section, we explain two centralized implementations for CEP with Esper 8.8.0
(EsperTech Inc, 2022), the latest version the engine currently offers. As just discussed, the
first centralized implementation consists of the integration of open-source Esper with
RabbitMQ, and the second is based on the integration of Esper enterprise edition with
EQC and HA (from now on Esper Enterprise-HA-EQC) with Apache Kafka.

Figure 1 represents the data flows in the first implementation (hereon, Configuration 1),
where open-source Esper CEP is integrated with RabbitMQ. The flow is as follows: (1) the
external data source sends the incoming data stream to RabbitMQ, (2) Esper receives the
data stream by being subscribed to a RabbitMQ queue, (3) Esper sends the detected
complex events to a new queue in RabbitMQ, and (4) the external destination machine will
subscribe to the new RabbitMQ queue to receive the complex events detected in order to
conduct the performance analysis.

Figure 2 represents the data flows in the second implementation (hereon Configuration
2), where the Esper Enterprise-HA-EQC CEP engine is integrated with Apache Kafka. The
flow is as follows: (1) the external data source sends the incoming data stream to Apache
Kafka, (2) Esper receives the data stream through the subscription to an Apache Kafka
topic, (3) Esper sends the complex events detected to a new topic in Apache Kafka, and
(4) the external destination machine subscribes to the new Apache Kafka topic to receive
the complex events detected in order to conduct the performance analysis.
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In both implementations, all components (incoming message broker, CEP engine and
outgoing message broker) can be located on the same or different machines; in the
evaluation carried out in this article, each component has been located on a different
machine. As discussed, the implementations are very similar: in both cases, the data stream
arrives at the messaging broker in a format readable by the CEP engine (in JSON format in
our case). The CEP engine then receives the data from the broker and detects the different
complex events. Finally, these complex events are sent back to the broker, from which we
can extract the information we are interested in. However, it should be remembered that
we used Esper open-source CEP engine in the RabbitMQ implementation, but Esper
Enterprise-HA-EQC CEP engine in the Apache Kafka implementation.

Figure 1 Data flows for the architecture integrating open-source Esper with RabbitMQ.
Full-size DOI: 10.7717/peerj-cs.1437/fig-1

Figure 2 Data flows for the architecture integrating one instance of Esper enterprise edition with
EQC and HA with Kafka. Full-size DOI: 10.7717/peerj-cs.1437/fig-2
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The use of EQC and Apache streams with Esper enterprise edition handles complex
events in such a way that they natively return to the input Kafka broker. Although we could
gain in memory usage by using separate brokers for the input of simple events and the
output of complex events, we have adopted this architecture proposed by Esper EQC. We
will follow the same criteria for the configurations of the integration of open-source Esper
and RabbitMQ for the homogeneity of the tests. However, separate queues/topics are used
within the broker itself. On the one hand, in RabbitMQ, we have used two queues, as there
is no need to filter by topics. On the other, although Kafka streams forces the system to use
topics, as there is only one incoming topic and one outgoing topic, there is no comparative
decrease in performance compared to using queues in RabbitMQ for this reason.

Implementation integrating distributed CEP and a message broker
In this section, we explain a distributed implementation for CEP with Esper 8.8.0, based on
the integration of the Esper Enterprise-HA-EQC CEP engine with Apache Kafka. Figure 3
represents the data flows in the distributed implementation (hereon Configuration 3),
where two instances of Esper Enterprise-HA-EQC are integrated with Apache Kafka. The
flow is as follows: (1) the external data source sends the incoming data stream to Apache
Kafka, (2) Esper Enterprise-HA-EQC receives the data stream by being subscribed to an
Apache Kafka topic; depending of the key of each message, the message is sent to one or
the other instance of the two deployed Esper Enterprise-HA-EQC CEP engines, (3) Esper
Enterprise-HA-EQC CEP engine sends the detected complex events to a new topic in
Apache Kafka, and (4) the external destination machine subscribes to the new Apache
Kafka topic to receive the detected complex events in order to do conduct the performance
analysis.

Figure 3 Data flows for the architecture integrating two instances of Esper enterprise edition with
EQC and HA with Kafka. Full-size DOI: 10.7717/peerj-cs.1437/fig-3
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This implementation behaves in the same way as the implementations described in the
previous subsection. In this case, however, we take advantage of the possibility of
distributed processing by using Esper Enterprise-HA-EQC CEP engine and instantiate two
CEP engines that work in a distributed way, together with Apache Kafka streams,
balancing the number of events between them, and recovering the state in case one of them
fails.

MATERIALS AND METHODS
Having described the implementation of the three software architectures, we now explain
the materials and methods used to evaluate their respective performance. In this section,
we first describe the materials used for the tests, that is, the computer resources needed.
Then we explain, on the one hand, the method followed to conduct the tests and, on the
other, the benchmark event patterns defined to perform the tests.

Computer resources
The following computer resources were used for the evaluation tests:

� A server machine with an Intel Xeon Silver 4110 processor, and 32 GB of RAM. This
machine was used as broker: in the case of Configuration 1, this server hosts the
RabbitMQ broker; in the case of Configurations 2 and 3, this server hosts the Kafka
broker.

� A server machine with an Intel Xeon Silver 4210R processor, and 32 GB of RAM. This
machine was used to host the CEP engine: it hosts the open-source Esper CEP engine
in Configuration 1; it hosts Esper Enterprise-HA-EQC CEP engine in Configurations 2
and 3.

� A server machine with an Intel Xeon Silver 4210R processor, and 32 GB of RAM. This
machine was used as the Esper Enterprise-HA-EQC CEP engine in the distributed
implementation (configuration 3).

� A PC with an Intel i3 3220T and 4 GB of RAM. This machine was used as the external
source to send data to the inbound queue.

� A PC with an Intel Core i7 8750H and 16 GB of RAM. This machine was used as the
external destination machine to pull the data from the output queue and to analyze it.

� All tests were performed within the University of Cadiz network.

Note that with the proposed architectures there is no additional communication cost for
the distributed implementation. This is because there is no communication between the
various CEP engines, but rather it is Kafka that communicates the corresponding data to
each of the CEP engines, in a similar way to how RabbitMQ or Kafka itself communicates
with the single CEP engine in the centralised versions. Additional communications would
only be required if a machine failed, and we wanted to recover the system. For this purpose,
Esper HA, when using one or more CEP engines, makes use of the Kafka changelog file to
restore the system. The changelog sets a checkpoint periodically (by default 30 s), updating
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the status of the running engines up to that moment and could be used to continue
processing on that or another machine from the last checkpoint.

Methods
The tests consist of deploying a series of event patterns—described in the following
subsection—in the CEP engine for each of the three configurations described above. We
first evaluate the performance of the engine by deploying the event patterns separately and
then deploy the whole set of event patterns at once. For each event pattern, we
progressively increase the number of events sent to the CEP engine per second—for 100,
1,000, 5,000, 10,000, 15,000 and 20,000 events/s, until we reach the maximum number
supported during the testing time. When reaching the limit of input events at which each
configuration responds appropriately, higher event rates were not tested for such an input
rate. During the test, we measure the following key performance indicators:

� CPU usage: percentage of CPU usage during the test execution in isolation from other
processes.

� RAM usage: Megabytes (MB) of memory usage during the test execution in isolation
from other processes.

� Latency: average time taken by the CEP engine to process each incoming event in
milliseconds (ms).

� Throughput Time: total time taken by the engine to process all the incoming events in
minutes (min). It allows us to quickly identify when the system becomes overloaded.

Additional time measurements are taken to check that the system is processing the
events correctly, but it is considered unnecessary to detail all these times in this article.

Each of these tests is carried out for a short period of time; specifically, in our case, for 11
min. Once the short test is carried out for all the event patterns separately, the short test is
performed once all the event patterns are deployed in the CEP engine. With the
information on the latter, we assess the input event rate of the shortest test for which the
system remains stable. We then proceed with a long test of 61 min for all the event patterns
together to see if the system remains stable for a longer period of time.

We used a synthetic data emulator—nITROGEN (Garcia-de-Prado, 2020)—to emulate
a series of data with which we ensure that a specific percentage of events meet the event
patterns in the tests, therefore, the latter will be homogeneous for all rates of input events
and patterns and would be reproducible if necessary. More particularly, according to the
data emulated, 1 in 5 data sent to the input broker cause the event pattern conditions to be
met in the case of short tests and 1 in 5,000 cause the event pattern conditions to be met in
the case of long tests. Note that 1 in 5 is a very high number of complex outgoing events for
the long test and we would overload the outgoing broker before being able to evaluate
whether our CEP engine is able to process the event load over a long period of time, which
is the key interest in this evaluation. If necessary, we could always add more brokers to
process the complex outgoing events.
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Benchmark event patterns
In this section, we define the types of events and the event patterns used in the proposed
tests. Event types are defined in Esper by using schemas; specifically, we defined the
BenchmarkEvent schema shown in Listing 1. As shown below, the BenchmarkEvent
schema contains the following fields:

� id: event identifier.

� Attr1, attr2, attr3: these are event attributes that take different values to test the different
event patterns and their functionality.

� timestamp: this field stores the timestamp when the simple events is created.

� esperInputTimestamp: this field stores the timestamp when the simple event is sent to
the CEP engine.

Listing 1. Benchmark type of events
Create schema BenchmarkEvent

(id string, attr1 string, attr2 string, attr3 string, timestamp long,

esperInputTimestamp long)

As mentioned, the emulated data allowed the existing conditions—when a condition is
set—to be met in the following event patterns in one out of every five simple events
generated.

The event patterns have been chosen to test the most commonly used operators in Esper
according to our experience in real domains, some of which require more memory
consumption (for instance data or temporary windows) and others burden more CPU
consumption (such as a GROUP BY operator).

Statement 1
In this event pattern, as shown in Listing 2, all messages are selected with no condition.

This means a complex event will be generated for each simple event received.
Listing 2. Statement 1 implementation
@Name(‘Statement1’)

INSERT INTO Statement1

SELECT *

FROM BenchmarkEvent

Statement 2
In this event pattern, we add a condition to statement 1 so that we increase the

complexity of the event pattern. As shown in Listing 3, a complex event is generated when
the incoming event has the value Attribute in the field attr1. As discussed, this condition
will only be fulfilled in a fifth of the simple events reaching the CEP engine.

Listing 3. Statement 2 implementation
@Name(‘Statement2’)

INSERT INTO Statement2

SELECT *

FROM BenchmarkEvent

WHERE attr1=”Attribute”
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Statement 3
In this event pattern, we add a length sliding window of size 10 (see Listing 4) to

Statement 2, so that we increase the memory usage of the event pattern. This type of
window is a length sliding window that keeps the specified number of events in memory.
This means that, in our case, this window keeps the last 10 events that meet the condition
of having Attribute in the field attr1. Thus, one complex event is generated for every simple
event meeting the condition in every 10-event window.

Listing 4. Statement 3 implementation
@Name(‘Statement3’)

INSERT INTO Statement3

SELECT �

FROM BenchmarkEvent.win:length(10)

WHERE attr1=″Attribute″

Statement 4
In this event pattern, we add a temporal 2-min sliding window (see Listing 5) to

Statement 2, so that we increase the complexity of the event pattern, but, on this occasion,
using 2-min windows, which requires greater memory than 10-event windows. This type
of window is a temporal sliding window that extends the time interval specified in the
event pattern based on the system time. This means that, in our case, this window keeps
the events that meet the conditions for 2 min from the first event that meets the condition
of value atr1 equal to Attribute. Thus, one complex event is generated for every simple
event meeting the condition in every 2-min window.

Listing 5. Statement 4 implementation
@Name(‘Statement4’)

INSERT INTO Statement4

SELECT *

FROM BenchmarkEvent.win:time(2 min)

WHERE attr1=″Attribute″

Statement 5
As shown in Listing 6, in this event pattern, we add a clause COUNT DISTINCT to the

time window in Statement 4, so that we increase the complexity of the event pattern,
together with the memory usage. Thus, a complex event is generated for all the simple
events produced in the last 2 min that have a field attr3 with value Attribute, which will
give us the number of events with a different attr2 for every temporal window of 2 min.

Listing 6. Statement 5 implementation
@Name(‘Statement5’)

INSERT INTO Statement5

SELECT COUNT (DISTINCT attr2) as eventTotal

FROM BenchmarkEvent.win:time(2 min)

WHERE attr3=″Attribute″

Statement 6
As shown in Listing 7, in this event pattern, we add a GROUP BY clause to Statement 5

so that we further increase the complexity of the event pattern. This allows us to separate
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the events depending on the attr1 value. Thus, a complex event is generated for all the
event produced in the last 2 min that have a field attr3 with value Attribute, grouped by
attr1.

Listing 7. Statement 6 implementation
@Name(‘Statement6’)

INSERT INTO Statement6

SELECT COUNT (DISTINCT attr2) as eventTotal

FROM BenchmarkEvent.win:time(2 min)

WHERE attr3=″Attribute″

GROUP BY attr1

Statement 7
In this event pattern, we replace the time sliding window in Statement 5 with a size-10

length sliding window (see Listing 8), so that we increase the complexity of the event
pattern, together with the memory usage. Thus, a complex event is generated for every
simple event that accomplishes the condition of field attr3 with value Attribute in every 10-
event window.

Listing 8. Statement 7 implementation
@Name(‘Statement7’)

INSERT INTO Statement5

SELECT COUNT (DISTINCT attr2) as eventTotal

FROM BenchmarkEvent.win:length(10)

WHERE attr3=″Attribute″

Statement 8
To finish, we replace the time sliding window in Statement 6 with a size-10 length

sliding window (see Listing 9), so that we further increase the complexity of the event
pattern. Thus, a complex event is generated for every simple event that accomplishes the
condition of field attr3 with value Attribute grouped by attr1 in every 10-event window.

Listing 9. Statement 8 implementation
@Name(‘Statement8’)

INSERT INTO Statement8

SELECT COUNT (DISTINCT attr2) as eventTotal

FROM BenchmarkEvent.win:length(10)

WHERE attr3=″Attribute″

GROUP BY attr1

RESULTS
This section first explains the preprocessing of the raw data obtained in the tests for further
assessment, and then explains the results and their assessment.

Preprocessing the data obtained from the tests
To be able to evaluate the results and show them in a comprehensible way in the body of
the article, a preprocessing of the raw data obtained during the tests has been carried out.
The result of this preprocessing, which has served as the basis for the subsequent results
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assessment section, is provided as Supplemental Material. In this Supplemental Material a
number of spreadsheets can be found, in particular one spreadsheet for each set of tests,
i.e., one spreadsheet for each short test of each benchmark event pattern, one with the short
test of all event patterns and one with the long test of all event patterns. In each of these
spreadsheets we can find a series of tabs representing each of the configurations
(Configuration 1, Configuration 2 and Configuration 3) with each of the input rates (100,
1,000, 5,000, 10,000, 15,000 and 20,000 events per second or up to the maximum input rate
supported in each case). Each of these tabs includes measurements and calculations for
each parameter analyzed (latency, percentage of CPU usage and memory usage, as
described in the Methods section).

These spreadsheets have been populated after preprocessing the huge set of raw data
obtained in each test; note that, for example, in a short test of 11 min with an input rate of
100 events per second we could obtain up to 66,000 latency data and in the same short test
with an input rate of 20,000 events per second we could obtain up to 13,200,000 latency
data. This is why the average of the data received in each second has been calculated during
the preprocessing, which is the average value that has been included for latency, CPU usage
and memory usage in the spreadsheets. Depending on the input rate tested and the
corresponding complex events detected for each of the evaluated event pattern, more or
less latency data per second have been used to calculate the average; the spreadsheet
indicates in its Cont column the number of data used for the average of each second for
each configuration, input rate and event pattern; in addition, the maximum and minimum
value of the data set of that second is also indicated, as well as the standard deviation of
each second and the average ± the standard deviation. In the short tests, for the CPU and
memory measurements, only one sample is taken per second so as not to slow down the
system with such a data collection, so the average coincides with the only sample of that
second and the standard deviation is zero, since, as we have said, there is only one sample.
In the long test the same has been done, but grouping the data every 10 s, so the average
latency the average for all the data measured during every 10 s is calculated, and the
average of CPU and memory of the 10 available data every second is calculated; therefore,
the standard deviation is no longer zero.

In the following subsection, these average data will be the one represented in the figures.
Besides, to make it easier to understand the data at a glance and to compare the data for
each configuration, average latency, CPU and memory consumption of the data obtained
for all seconds of each test duration has been included in a set of tables in the following
subsection.

Results assessment
Based on the preprocessing of the raw data obtained during the tests, this section presents
the results obtained in the performance tests with Configurations 1, 2 and 3 with each of
the event patterns explained in the benchmark event patterns section separately and
together for a short period of time (11 min) and for a longer one (61 min) for all the event
patterns together, as explained in the Methods section. We sought to evaluate performance
from an incoming event rate of 100 events/s, progressively, as previously explained, up to
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20,000 events/s. When reaching the limit of input events at which each configuration
responds appropriately, higher event rates were not tested for this input rate, and those
cells in the tables thus appear with values (−). It should be noted that at 15,000 events per
second and above, the message brokers, together with the capacity of the network, cause a
delay in execution and may be responsible for the instability of the system. However, the
CEP engine could handle a greater number of events/s in isolation, but we must evaluate
the architecture as a whole.

As explained, the event pattern in Listing 2 generates a complex event for each simple
event entering the system. Table 1 shows the results of the tests performed with Statement
1 for the three configurations. After performing the tests, we were able to draw the
conclusion that, in the centralized architectures (Configurations 1 and 2), the integration
of RabbitMQ with open-source Esper performs better than integrating Esper Enterprise-
HA-EQC with Kafka. As shown in the table, the latter cannot properly deal with an input
rate of 10,000 events per second since it takes 22 min to finish processing an 11-min data
entrance, vs 11 min and 11 s of the open-source version. We can also observe a poorer
average latency for Esper Enterprise-HA-EQC version compared to the open-source one.
The reason for the lower performance may be the backups that Esper HA makes to be able
to recover the system after a failure. However, in both implementations, the tests show
similar memory and CPU consumption, although always slightly better for the open-
source version. In the case of the distributed architecture (Configuration 3), although the
performance is not better, with an average latency of 0.124 ms for an input of 10,000
events/s compared to 0.017 ms for open-source Esper, it can complete the execution in the
11 min that the test should take. In this case, CPU usage is slightly better in the distributed
version than in the open source, although memory seems to be better managed by the
latter. We tested whether the distributed configuration could cope with an input of 15,000
events/s, but, in this case, the execution took 42 min to finish. In the case of Configuration
2 it was inappropriate to increase the incoming event rate as it was not able to handle the
rate of 10,000 events/s; and in the case of Configuration 1, although 11 min and 11 s is a
reasonable throughput time, it already shows that we cannot increase the incoming data
rate.

Table 1 Performance of statement 1 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage (MB)

CPU
usage (%)

Latency
(ms)

100 11 468 0.23 0.07 11 521.5 0.6 0.077 11 518.9 523.8 0.39 0.4 0.072

1,000 11 475.5 1.73 0.09 11 551.1 2.2 0.13 11 547.7 544.6 1.46 1.46 0.093

5,000 11 482.4 3.45 0.046 11 594.6 2.34 0.23 11 608.5 594.2 2.95 2.87 0.099

10,000 11:11 532 3.32 0.017 22 606 2.12 0.19 11 580.1 586.6 2.88 2.89 0.124

15,000 – – – – – – – – 42 604.5 664.6 0.87 0.87 0.46

20,000 – – – – – – – – – – – –
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As explained, the event pattern in Listing 3 (Statement 2) generates a complex event for
one out of every five incoming events. Table 2 shows the results of the tests performed with
Statement 2 for the three configurations. For the three configurations, we can see a similar
behavior in question of memory and CPU consumption. In this case, by having less
complex generated events than in the previous statement, both Configurations 1 and 3
were able to perfectly handle an input rate of 15,000 events/s, with an average latency of
0.021 ms per event for the open source Esper vs 0.027 ms for the distributed Esper
Enterprise-HA-EQC implementation. However, Configuration 2 was unable to handle it
correctly, taking 14 min to finish the test. Neither Configuration 1 nor Configuration 3
were able to properly finish the execution with an input event rate of 20,000 events/s.

The event pattern in Listing 4 (Statement 3) generates a complex event for every simple
one that accomplishes the condition in every 10-event window, with only 1 out of 5
incoming events meeting the condition. Table 3 presents the results of the tests performed
with Statement 3 for the three configurations. Again, for all the configurations, we can see a
similar behavior in terms of memory, but a higher, albeit not significant, CPU
consumption for Configuration 1. Note that we do not consider CPU consumption of up
to 10% to be significant, although using less powerful machines may have a greater impact
on CPU consumption. In this case, both Configurations 1 and 3 were perfectly able to
handle an input rate of 15,000 events/s, with an average latency of 0.029 ms for the open-
source Esper vs 0.052 ms for the distributed Esper Enterprise-HA-EQC implementation.

Table 2 Performance of statement 2 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
Usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage (MB)

CPU
usage (%)

Latency
(ms)

100 11 483.9 0.16 0.052 11 523.6 0.54 0.088 11 638.3 560.7 0.37 0.35 0.085

1,000 11 486.6 1.34 0.0178 11 539.3 1.76 0.09 11 530.7 554.4 1.2 1.22 0.077

5,000 11 496.9 2.64 0.0615 11 596.6 2.97 0.089 11 559.5 562.3 2.59 2.58 0.061

10,000 11 545.2 3.78 0.045 11 691.79 3.41 0.04 11 554.3 596.6 2.97 2.91 0.046

15,000 11 558.3 3.76 0.021 14 671.6 2.32 0.094 11 579.5 604.1 3.27 3.18 0.027

20,000 13 547.6 2.14 0.0104 – – – – 11:15 645.6 591.3 2.41 2.23 0.092

Table 3 Performance of statement 3 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage (MB)

CPU
usage (%)

Latency
(ms)

100 11 431 0.2 0.057 11 586.1 0.53 0.08 11 591.1 672.8 0.35 0.36 0.086

1,000 11 495 1.37 0.014 11 543.8 1.79 0.092 11 585.3 541.9 1.27 1.26 0.101

5,000 11 507.9 2.66 0.041 11 630.6 2.97 0.087 11 625.8 617.7 2.58 2.62 0.091

10,000 11 518.3 3.68 0.002 11 606.3 3.47 0.053 11 566.5 585.6 2.92 2.94 0.031

15,000 11 518.6 4.72 0.029 15 609.3 2.16 0.085 11 621.3 647 2.96 2.97 0.052

20,000 13 546.4 2.25 0.01 – – – – 12 626.5 617.8 2 1.97 0.092
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However, Configuration 2 was unable to handle it correctly, taking 15 min to finish the
test.

The event pattern in Listing 5 (Statement 4) generates a complex event for all events that
meet the condition during 2 min, with only 1 out of 5 incoming events meeting the
condition. Table 4 shows the results of the tests performed with Statement 4 for the three
configurations. As in the previous case, we can see a higher, albeit not significant, CPU
consumption for Configuration 1, but, in this case, we see that Configuration 1 is
considerably more efficient in terms of memory usage than the other 2 configurations:
1,004.6 MB used in Configuration 1 compared to 3,072 MB in Configuration 2 and an
average of 1,843 MB from the two distributed machines in Configuration 3 (we have
discarded decimals for both CPU and memory usage in the explanation as they are not
significant) with an input rate of 15,000 events/s. Although we have more than sufficient
RAM memory on the servers on which we deployed Esper, we do feel it important to
highlight the increase in memory for some of the configurations. Both Configurations 1
and 3 were able to perfectly deal with an input rate of 15,000 events/s, with an average
latency of 0.0114 ms for the open-source Esper vs 0.041 ms for the distributed Esper
Enterprise-HA-EQC implementation. However, Configuration 2 was unable to handle it
properly, taking 16 min to finish the test.

Table 4 Performance of statement 4 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory usage
(MB)

CPU
usage (%)

Latency
(ms)

100 11 487.9 0.2 0.005 11 675.9 0.58 0.093 11 539.1 518 0.38 0.37 0.104

1,000 11 661.2 1.43 0.117 11 711.6 1.95 0.112 11 566.6 573.7 1.32 1.31 0.082

5,000 11 693.2 3 0.0015 11 1,011.1 4.04 0.089 11 791.2 782.3 3 3.03 0.087

10,000 11 760.5 5.17 0.032 11 1,536 5.31 0.078 11 949.2 1,024 3.96 3.97 0.068

15,000 11 1,004.6 6.35 0.0114 16 3,072 3.61 0.083 11 1,740.8 1,945.6 4.54 4.56 0.041

20,000 14 997.9 8.1 0.0106 – – – – 11:27 1,945.6 1,945.6 3.68 3.59 0.086

Table 5 Performance of statement 5 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory usage
(MB)

CPU
usage (%)

Latency
(ms)

100 11 493.5 0.18 0.0079 11 594 0.58 0.102 11 522.3 522.1 0.36 0.38 0.106

1,000 11 677.7 1.43 0.0315 11 729.5 1.96 0.11 11 591 653.5 1.35 1.33 0.097

5,000 11 723.6 3.02 0.0034 11 1,008.4 4.01 0.06 11 779.6 770.5 3 3.01 0.091

10,000 11 727.9 4.99 0.0179 11 1,536 5.19 0.043 11 1,126.4 1,024 3.9 3.9 0.059

15,000 11 968 9.78 0.014 15 2,560 3.62 0.08 11 1,433.6 1,331.1 4.48 4.44 0.029

20,000 15 1,126.4 6.72 0.0109 – – – – 11:18 2,764.8 1,740.8 3.75 3.14 0.11
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The event pattern in Listing 6 (Statement 5) generates a complex event for every 2-min
temporal window that has field attr3 with value Attribute, but we only store the value of the
account, not all attributes of the event. Table 5 shows the results of the tests performed with
Statement 5 for the three configurations. In this test, we can see a similar behavior in terms
of CPU consumption as in the two previous statements; and, as in the case of Statement 4,
we see that Configuration 1 is significantly more efficient in terms of memory usage than
the other two configurations: 968 MB used in Configuration 1 vs 2,560 MB and an average
of 1,382 MB in Configurations 2 and 3, respectively, for an input rate of 15,000 events/s.
Although this event pattern generates a smaller number of events than the previous one,
the reason for the high memory consumption is that 2-min windows with all the
events meeting the condition have to be kept in memory during the whole test run.
Configurations 1 and 3 were both able to perfectly handle an input of 15,000 events/s, with
an average of 0.014 ms of latency for the open-source Esper vs 0.029 ms for the distributed
Esper Enterprise-HA-EQC implementation. However, configuration 2 was unable to
handle it correctly, taking 15 min to finish the test.

The event pattern in Listing 7 (Statement 6) generates a complex event for every 2-min
temporal window grouped by a particular attribute, but we only store the value of the
account, not all attributes of the event. In Table 6, we can find the results of the tests
performed with Statement 6 for the three configurations. Again, we can find the same
behavior as in previous statements: a higher but not significant CPU consumption for
Configuration 1 and considerably better efficiency in terms of memory usage for
Configuration 1 than for the other 2 configurations: 942.2 MB used in Configuration 1 vs
2,764.8 MB and 1,331.2 MB in Configurations 2 and 3, respectively, for an input of
15,000 events/s. Configurations 1 and 3 were both able to perfectly handle an input rate of
15,000 events/s, with an average of 0.041 ms of latency in both implementations. However,
Configuration 2 was unable to handle it properly, taking 15 min to finish the test.

The event pattern in Listing 8 (Statement 7) generates a complex event for every 10
simple events that accomplish the condition, but we only store the value of the account, not
all attributes of the event. Table 7 details the results of the tests performed with Statement 7
for the three configurations. In this case, we can see similar CPU consumption and

Table 6 Performance of statement 6 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory usage
(MB)

CPU
usage (%)

Latency
(ms)

100 11 423.1 0.2 0.035 11 709.1 0.58 0.098 11 529.8 509.7 0.38 0.38 0.098

1,000 11 696.6 1.38 0.0026 11 736 2.02 0.12 11 578.6 597.7 1.31 1.31 0.103

5,000 11 712.4 2.99 0.075 11 1,024 4.06 0.076 11 877.5 865.5 3.06 3.04 0.097

10,000 11 746.9 4.9 0.038 11 2,252.8 4.89 0.037 11 1,018.2 1,126.4 3.94 3.78 0.066

15,000 11 924.2 9.87 0.041 14 2,764.8 3.99 0.086 11 1,331.2 1,331.2 4.65 4.55 0.041

20,000 15 1,001.1 6.55 0.0447 – – – – 11:04 2,252.8 1,945.6 4.28 3.31 0.081
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memory usage for the three configurations. Configurations 1 and 3 were both able to
perfectly handle an input rate of 15,000 events/s, with an average latency of 0.037 ms in
both implementations. However, Configuration 2 was unable to handle it, taking 16 min to
finish the test.

The event pattern in Listing 9 (Statement 8) generates a complex event for every 10
simple events that accomplish the condition grouped by a particular attribute, but we only
store the value of the account, not all attributes of the event. Table 8 presents the results of
the tests performed with Statement 8 for the three configurations. As in the previous
statement, we have similar memory usage for all three configurations, and slightly higher
but not significant CPU usage in Configuration 1. In addition, Configurations 1 and 3 were
both able to handle an input rate of 15,000 events/s, with an average latency of 0.031 and
0.036 ms, respectively. However, Configuration 2 was unable to handle it correctly, taking
16 min to finish the test.

As explained in the Methods section, we also performed the test by deploying all event
patterns at the same time. Table 9 shows similar CPU consumption for all configurations,
although the open-source Esper version (configuration 1) shows a significant increase in
CPU consumption during execution with an input rate of 15,000 events/s. However, it is
Configuration 1 that still maintains the best performance in terms of memory usage:

Table 7 Performance of statement 7 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate (Events/
s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage (MB)

CPU
usage (%)

Latency
(ms)

100 11 383.3 0.18 0.003 11 599.3 0,55 0.093 11 684.3 577.8 0.36 0.36 0.097

1,000 11 508.7 1.36 0.011 11 555.2 1.78 0.097 11 533.6 544.4 1.2 1.28 0.091

5,000 11 519.1 2.67 0.056 11 594.6 2.92 0.06 11 544.7 572.4 2.59 2.58 0.084

10,000 11 528 3.86 0.0021 11 650.4 3.38 0.059 11 598 544.1 2.98 2.95 0.05

15,000 11 532.6 2.92 0.037 16 667.9 2.19 0.11 11 641.4 587.9 3.25 3.24 0.037

20,000 14 563.1 2.05 0.033 – – – 11:05 615.2 609.9 2.74 2.75 0.084

Table 8 Performance of statement 8 for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage (MB)

CPU
usage (%)

Latency
(ms)

100 11 390.5 0.19 0.024 11 648.3 0.51 0.095 11 520.7 520.3 0.36 0.37 0.107

1,000 11 506.5 1.36 0.013 11 540.7 1.82 0.102 11 566.2 549.3 1.23 1.27 0.097

5,000 11 499.7 2.71 0.004 11 577.2 2.95 0.049 11 599.7 655.8 2.58 2.56 0.096

10,000 11 518.8 3.76 0.033 11 609.1 3.49 0.053 11 605.7 592.5 2.92 2.90 0.076

15,000 11 540.3 4.99 0.031 15 759.7 2.27 0.102 11 658.5 608.7 3.23 3.21 0.036

20,000 14 546.4 2.1 0.0298 – – – – 11:01 639.5 611.5 2.31 2.34 0.101

Ortiz et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1437 20/34

http://dx.doi.org/10.7717/peerj-cs.1437
https://peerj.com/computer-science/


1,228.8 MB with the open-source Esper version vs 3,072 MB on the distributed machines.
Configuration 2 did not successfully terminate the execution for an input rate of 15,000
events per second, but Configurations 1 and 3 did.

To see whether the system remains stable over time, we performed a longer test with all
the event patterns deployed. In this case, as shown in Table 10, Configuration 1 was unable
to cope with the constant load of 20,000 events/s. Only Configuration 3 was able to cope,
while Configuration 1 managed to reach 15,000 events/s and Configuration 2 only
10,000 events/s. Configuration 1 was able to handle 15,000 events/s with 6.56% of CPU
usage, 1,331 MB of memory usage and an average processing time per event of 0.019 ms.
Configuration 2 was able to handle 10,000 events/s also with a low CPU usage of 5.12%,
but with a high memory usage of 3,072 MB and an average latency of 0.075 ms. Finally, the
execution with the input rate of 20,000 events per second of Configuration 3 also remained
at a low CPU consumption (5%) but with a somewhat high memory consumption
(2,103.7 MB average) and an adequate latency of 0.047 ms.

To visualize the results more clearly, Figs. 4–6 have been added. Since representing data
for each second did not permit to visualized data well due to their density, such figures
represent the average data for every 10 s of execution. In particular, the average processing
time of each event for every 10 s of execution is shown in Fig. 4. It clearly shows how the
open-source Esper option with RabbitMQ presents better performance, although it is not
able to reach as high rates of incoming events per second as the option with distributed
Esper Enterprise-HA-EQC with two machines.

Table 9 Performance of all statements for configurations 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory usage
(MB)

CPU
usage (%)

Latency
(ms)

100 11 541.6 0.25 0.011 11 669.7 0.63 0.2 11 553.5 569.6 0.4 0.41 0.21

1,000 11 744.1 1.9 0.024 11 780.2 2.44 0.21 11 704.8 718.7 1.46 1.56 0.2

5,000 11 765.3 4.41 0.003 11 1,740.8 4.71 0.12 11 1,228.8 1,228.8 3.73 3.7 0.14

10,000 11 879 6.87 0.089 11 3,379.2 6.38 0.103 11 1,433.6 1,433.6 4.4 4.42 0.074

15,000 11 1,228.8 13.85 0.049 11:05 3,276.8 7.64 0.11 11 3,072 3,072 5 5.15 0.062

20,000 12 1,331.2 11.5 0.044 11 2,355.2 2,252.8 5.65 5.57 0.13

Table 10 Performance on long test of all statements together for configuration 1, 2 and 3.

Configuration 1 Configuration 2 Configuration 3

Incoming
rate
(Events/s)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory
usage
(MB)

CPU
usage
(%)

Latency
(ms)

Throughput
time (min)

Memory usage
(MB)

CPU
usage (%)

Latency
(ms)

10,000 Test not performed 61 3,072 5.12 0.075 Test not performed

15,000 61 1,331.2 6.56 0.019 Unsuccessful test Test not performed

20,000 Unsuccessful test Test not performed 61 2,252.8 1,945.6 5.22 5.39 0.047
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The CPU average consumption of the system during the execution of the long test for
the three configurations have also been represented in Fig. 5; representing only the CPU
consumption of one of the machines in Configuration 3, since the values taken by both in
the two distributed machines are similar. As we can see in the figure, the CPU
consumption is very similar in the three configurations, and in all cases the consumption is
not significant, below 10%.

Memory consumption of the system during the execution of the long test for the three
configurations has also been represented in Fig. 6, respectively; representing only the
memory consumption of one of the machines in configuration 3, since the values taken by
both two distributed machines are similar. In Fig. 6 we can see how the open-source Esper
option also presents the best values in terms of memory consumption. The graph remains
very flat as it has been rounded around the GB as the values increase.

Finally, it is important to mention that we also tested the fault tolerance of the system
with Esper HA; by shutting down one of the machines: no messages were lost, and the
other machine continued to do all the work normally.

Figure 4 Average execution time on long test of all statements together for configuration 1, 2 and 3.
Full-size DOI: 10.7717/peerj-cs.1437/fig-4

Figure 5 CPU consumption on long test of all statements together for configuration 1, 2 and 3.
Full-size DOI: 10.7717/peerj-cs.1437/fig-5

Figure 6 Memory consumption on long test of all statements together for configuration 1, 2 and 3.
Full-size DOI: 10.7717/peerj-cs.1437/fig-6
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RELATED WORK
Firstly, it is important to note that we found no directly related work that provides a
performance comparison between different configurations of Esper’s CEP engine with
different brokers, but rather we have generally identified work that separately evaluates
either several CEP engines, several message brokers, or the integration of a particular
engine with a particular broker.

It is important to note that a number of benchmarks for IoT data processing platforms
have been published in recent years, most notably (Dayarathna & Suzumura, 2013;
Shukla, Chaturvedi & Simmhan, 2017; Hesse et al., 2021); however, they are not suited to
the needs of the performance tests we propose in this article, as explained in the following
lines. RioTBench (Shukla, Chaturvedi & Simmhan, 2017) classifies IoT tasks into parse,
filter, statistical analytics, predictive analytics, pattern detection, visual analytics and IO
operations. They propose a series of microbenchmarks for many of these categories, but
none for pattern detection, which is precisely what CEP engines do and which, as they
explain, could be embedded in the DSPS that they analyze. Regarding ESPBench (Hesse
et al., 2021), again it should be noted that it is focused on DSPSs; besides, the system under
test is only prepared for integration with Apache Kafka and limited, as indicated in the
threads to validity section, to manufacturing applications. Although some of the queries
could be reused for other domains by using a large number of core DSPS operations, we
consider it preferable to create a more generic benchmark, which allows the separation of
these operations. It is interesting the discussion of the results of Apache Spark in some
cases (for example in the article query 1) which, although it can process the result more
quickly by using independent micro-batches, it can lead to different results from those
expected and, therefore, it is not comparable with the other systems in this type of scenario.
Also the article (Nasiri, Nasehi & Goudarzi, 2019) is a relevant reference for the
comparison of several DSPS; they compare the performance and scalability of Apache
Storm, Apache Spark and Apache Flink, which provides FlinkCEP—a CEP library
implemented on top of Flink, integrated with Kafka. They conclude that Flink behaves well
at small-scale clusters, but it has poor scalability on the large-scale clusters. Again, there is
no evaluation of various CEP operators. Finally, four scenarios with different stream
processors (S, S4 and Esper) are evaluated in (Dayarathna & Suzumura, 2013). The results
show a much better performance in Esper compared to the rest of the systems when a
single node is used; the tests on distributed nodes (distributing the messages manually with
the open-source version of Esper), show a worse performance in Esper, probably due,
according to the authors, to delays in the communication network and serialization. This
benchmark does not show which Esper operators have been included in the four scenarios
and does not seem to include, for example, any time window, which is one of the key
operators of Esper. On the contrary we have proposed a benchmark in which we see the
use of several common operators in the use of Esper.

Regarding the benchmarking of various message brokers in various comparative
analyses, we can see that Apache Kafka and RabbitMQ stand out from many others as fast
and reliable brokers. However, there is no clear winner, as shown in the evaluation
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presented in Lazidis, Tsakos & Petrakis (2022), since Kakfa presents better throughput
than RabbitMQ, while RabbitMQ presents a much lower latency. Therefore, it would be
necessary to evaluate the needs of the particular case study throughput vs latency, when
choosing one or the other option. Although in many cases Kafka can support very high
input event rates, it should be noted that this depends on the case study. The article
(Langhi, Tommasini & Valle, 2020) illustrates exactly that situation; in this article Kafka
streams for complex event recognition is used and two examples are presented in the
evaluation; while for one a throughput of 112,114 events per second is reached, for the
second only a throughput of 2,565 events per second is achieved.

On the other hand, we found some comparisons between different rule/CEP engines; for
example (Rosa et al., 2015) present a comparative study of correlation engines for security
event management. Esper CEP engine is among the engines evaluated; in their analysis, we
can see that the Esper engine has a very good performance with a high throughput, as well
as a fast processing of large amounts of data. Although it is not the best under all
circumstances, the authors consider it to be the most suitable in terms of an adequate
compromise between performance, configuration flexibility and easiness of setup.

We also found an evaluation of the integration of the Esper engine with an ESB and the
Mosquito broker (Roldán et al., 2020). There also exist some evaluations of the integration
of Node-RED with Mosquito MQTT (Kodali & Anjum, 2018). Note that Node-RED
provides a much more succinct syntax for defining event patterns and lower performance
than the Esper CEP engine. Meanwhile, Mosquitto, a broker specifically designed for
lightweight protocols for the IoT, does not reach the throughput and versatility of the
RabbitMQ or Apache Kafka brokers.

In (Aktas & Astekin, 2019) several comparisons integrating various tools are also made.
First, they compare three alternatives: Kafka plus Storm, Storm plus Esper and Esper plus
Kafka, the latter being the one that obtains the best latency results up to an input rate of
50,000 events per second, taking into account that it is a simple test in which the data are
processed without applying any processing pattern. The same tests are then performed for
Kafka plus Spark, Spark plus Drools and Drools plus Kafka, with the last one obtaining the
best results. Then they compare the integration of Apache Storm with Esper vs Apache
Spark with Drools Fusion using a set of CEP rules; in this comparison we can see that the
option including Esper got better results in the performance tests. The latest tests were only
performed with a suitable latency for an incoming rate of 1,000 events per second, though.

Additionally, other evaluations of Esper CEP as found in the literature only focus on the
integration of the open-source Esper CEP engine with a message broker. In the past, we
proposed a microservice-based architecture in which one of the microservices is an Esper
CEP engine (Ortiz et al., 2022a). Although the article performs a reasonably extensive
evaluation, it proposes no benchmark, but rather evaluates the system with a event pattern
linked to the case study by evaluating the time it takes to transfer events between
microservices and to process them in the Esper microservice. Although we achieved higher
input event rates than those achieved in this evaluation, it is due to the simplicity of the
event pattern used (select � from Dummy) which did not require great memory or
computation resources, the low number of complex events generated at the output and the
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lack of sliding windows that overload the system. Corral-Plaza et al. (2021) evaluate how
the integration of Esper with Kafka behaves with up to 32 partitions, processing up to
150,000 events per second. Again, the tests are performed without defining a benchmark,
with a simple event pattern (select �); it is demonstrated that the system is highly scalable
under these simple conditions. Also, in Roldán-Gómez et al. (2021), the performance of
Esper CEP integrated with Mule ESB is compared to the one of WSO2 Siddhi CEP engine
and ESB (WSO2, 2019) in a network security scenario, without contemplating the chance
of scaling through a distributed version of the CEP engines. Thus, all these works are
valuable to see how Esper’s open-source engine behaves in conditions where the event
patterns do not demand a great amount of memory, which is what requires the greatest
amount of system resources. It is also difficult to compare, for example, Esper’s integration
with Rabbit vs its integration with Kafka through these works, as they use different event
patterns, machines and architectures; in any event, our work complements the information
in these other publications.

Special attention deserves a article in which we evaluated and compared the open-
source Esper CEP engine in an event-driven architecture with the use of an ESB compared
to the use of data-flows both in a server and in a Raspberry Pi (Ortiz et al., 2022b). The
benchmark used in this article is the one we extended for our tests here. Although our
article focuses on processing on servers with good performance, other scenarios may
require deployment on devices with fewer resources, such as a Raspberry Pi; article (Ortiz
et al., 2022b) helps developers to see how the system would behave in this scenario.

To facilitate the understanding of this section, we have included Table 11, which
summarizes each of the proposals discussed above. The table indicates for each work, the
technology evaluated, the CEP operators evaluated in that work, the peak processing rate
or maximum value of incoming messages (events) per second that the system is able to
process and the limitations or disadvantages of this proposal in relation to the main
objective of this article, which is to have a reference for the evaluation of complex event
processing products, particularly in comparison with the open source and enterprise
alternatives of Esper CEP. In relation to the peak processing rate, it has been determined to
be the maximum processing rate as long as a latency of 1 s is not exceeded; this value has
been shown for the operations or operators with which the lowest and highest ratio has
been achieved.

Thus, to summarize this section, we can conclude that, to the best our knowledge, no
work has compared the various CEP products offered by Espertech, nor has any work
explicitly compared their integration with two of the most powerful message brokers on
the market.

Discussion and responses to research questions
In this section, we discuss the results of the tests and responses to the research questions,
making special emphasis on responding to RQ3 to give a number of suggestions to be
considered when implementing a new system based on a software architecture with Esper
CEP.
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Table 11 Summary of related work reviewed.

Proposal Technology
evaluated

CEP operators evaluated Peak processing rate
(Messages per second)

Threats to validity/Drawbacks

DSPS

Shukla, Chaturvedi
& Simmhan
(2017)

Apache Storm for
DSPS

None (IoT data processing operations
evaluated).

310 to 68,000 No CEP operators evaluated.

Hesse et al. (2021) Apache Kafka-
Apache Flink for
DSPS

None (Manufacturing operations
evaluated).

1,000 to 10,000 Limited to Manufacturing
Applications.
No CEP operators evaluated.

Apache Kafka-
Hazelcast Jet for
DSPS

1,000 to 10,000

Nasiri, Nasehi &
Goudarzi (2019)

Apache Storm None (Advertising application and model
training application evaluated). 2 nodes.

200 to 500,000 No CEP operators evaluated.

Apache Storm-No
Ack

200 to 500,000

Apache Flynk 100 to 500,000

Spark Streaming 150 to 400,000

Dayarathna &
Suzumura (2013)

S Not described (microbenchmark). 10,000 CEP operators evaluated are not
described.S4 3,000

Esper 10,000

Message brokers

Lazidis, Tsakos &
Petrakis (2022)

Apache Kafka None (Processing 100 Bytes message). 80,436 No CEP operators evaluated.

RabbitMQ 61,824

Complex event processing

Langhi, Tommasini
& Valle (2020)

Kafka Streams
Processor

(a) Every A followed by B (b) Every A
followed by every B.

(a) 112,114
(b) 2,565

Only 1 CEP operator evaluated
(followed by).

Rosa et al. (2015) Esper 20 event patterns (operators not specified). 38,461 CEP operators evaluated are not
described.Drools 21,272

NodeBrain 6,369

SEC 4,405

Roldán et al. (2020) Mosquito-MULE
ESB-Esper

Time to detect network security patterns
evaluated.

No performance
evaluation.

No CEP operators evaluated.

Kodali & Anjum
(2018)

NodeRed-
Mosquitto

No performance
evaluation

No CEP operators evaluated.

Aktas & Astekin
(2019)

Kafka-Storm Six event patterns (arithmetic comparison
operators and time windows).

5,000 Suitable latency is only guaranteed
up to 1,000 message/second rate.
Only open source Esper engine is
evaluated.

Storm-Esper 50,000

Esper-Kafka 50,000

Kafka-Sparks 1,000

Spark-Drools 50,000

Drools-Kafka 50,000

Ortiz et al. (2022a) RabbitMQ-Esper Three event patterns (statistic operations,
comparisons, grouping and time
windows).

50,000 Low number of even patterns.
Only open source Esper engine is
evaluated.

(Continued)

Ortiz et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1437 26/34

http://dx.doi.org/10.7717/peerj-cs.1437
https://peerj.com/computer-science/


DISCUSSION
Prior to discussion, it is worth emphasizing that the Esper engine was chosen, as
mentioned, because of its good reputation for robustness and performance, as well as its
very extensive grammar, which allows a wide variety of event patterns and functionalities
to be defined in an intuitive language, similar to SQL. Besides, we have had experiences of
real use cases with companies in our environment in which the companies have opted for
the use of Esper, particularly with the port authority of the Bay of Cadiz and the Puerto
Real Energy Group (GEN) in the areas of air quality control (Ortiz et al., 2022a) and water
supply network management (Corral-Plaza et al., 2020), respectively. We are currently
working on a joint project with the company GEN that has led us to carry out this study of
the various options of Esper CEP and its integration with RabbitMQ and Kafka to see
which are the most convenient options for them.

One of the most striking results is that in the case of working with a centralized
architecture, Esper’s open-source engine performs very well; when engaging in centralized
processing on a single machine, the system performs better when we integrate Esper CEP
with RabbitMQ, even in its open-source version, as the system is not overloaded as much
with Kafka and Esper Enterprise-HA-EQC backups. In general, we find a poorer average
processing time with the Esper Enterprise-HA-EQC version compared to the open-source
one. The reason for the lower performance may be the backups that Esper HA makes to be
able to recover the system after a failure. However, in both implementations, the tests show
similar memory and CPU consumption, although, in general, it is slightly better for the
open-source version.

However, when the event load is kept high over time, the integration of open-source
Esper with RabbitMQ was unable to handle a continuous load of 20,000 events per second.
However, the CEP engine is capable of processing such a load, handling it at the broker and
sending it over the network overloaded the system. It is worth noting that we are unlikely
to have a system that receives such a rate of data input over a sustained period of time and

Table 11 (continued)

Proposal Technology
evaluated

CEP operators evaluated Peak processing rate
(Messages per second)

Threats to validity/Drawbacks

Corral-Plaza et al.
(2021)

Kafka-Esper One dummy event pattern (select *). 150,000 (eight
partitions)

Very simple pattern evaluated.
Only open source Esper engine is
evaluated.

Roldán-Gómez et al.
(2021)

MQTT-Mule ESB-
Esper

Time to detect network security patterns
compared.

No performance
evaluation.

No CEP operators evaluated.

MQTT-WS02 ESB-
Siddhi

Ortiz et al. (2022b) RabbitMQ-Mule
ESB-Esper

Six event patterns (statistic operations,
comparisons, grouping and time
windows).

5,000 to 10,000 Only open source Esper engine is
evaluated.

RabbitMQ-Esper
Dataflows

10,000
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that, where appropriate, more instances of the broker in question could be deployed and
have multiple incoming queues to the CEP engine.

It is also important to remember that, although with distributed processing we can
obviously achieve better performance, especially in long tests, distribution is only possible
in systems where the processing done on one machine does not depend on another, as
there is no communication between the different distributed CEP installations: the
different engines cannot share information with each other to apply a event pattern to
shared information. That is, for the distributed architecture to be useful, we must apply it
to an environment in which all the nodes can independently apply the operations of the
event patterns on the dataset they receive, without being able to relate the complex events
of the different engines.

Moreover, it is also clear that the system consumes much more memory resources with
time windows than with data windows; it is key to take this issue into account when
deciding which event patterns to deploy in our system.

Responses to research questions
Response to RQ1. In a centralized architecture, with a single Esper CEP engine, what are
the advantages and disadvantages of integrating it with two competing brokers such as
RabbitMQ and Kafka and which one should be used to achieve the best performance in
real-time stream data processing?

Based on the previous discussion, in a centralized architecture with a single Esper CEP
engine, if we do not need to have a system backup, the open-source version of Esper
integrated with RabbitMQ provides better performance compared to its integration with
Kafka. Although the memory and CPU consumptions are similar in both cases, we get
better latency and throughput time in its integration with Rabbit. However, if you have
high reliability requirements and need a backup, you will be forced to use the Esper
Enterprise-HA-EQC version integrated with Kafka. In short, RabbitMQ offers the
advantage of better latency and time throughput; whereas Kafka will offer reliability and, in
case you need rates above 10,000 or 15,000 events per second, you could do it through the
horizontal scalability options of Esper Enterprise-HA-EQC.

Response to RQ2. When does it outweigh using a distributed CEP architecture to
achieve greater horizontal scalability and how does this impact system performance?

Depending on the patterns we have deployed in the system, from 15,000 or 20,000 input
events per second, it may be necessary to make use of a distributed architecture that allows
us to scale CEP horizontally. This horizontal scaling will imply worse performance rates
than a centralized architecture when we have lower input event rates, especially in terms of
memory consumption, but without limiting the good performance of the system; but it is
definitely the only option to achieve good, sustained performance with constant high event
rates over time. It is important to stress the limitation of Esper CEP with Kafka for
horizontal scalability: there can be no dependencies between the events processed on the
distributed machines nor between the complex events detected on these, since there is no
communication between the distributed engines.
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Response to RQ3. Which of these Esper engines and which messaging broker should I
use depending on my system requirements?

In light of the above discussion and the answer to previous RQs, we provide the
following recommendations, including some limitations:

� If there is no compelling need for fault tolerance and our system is going to do
centralized processing on a single machine, we suggest using free and open-source
software for the implementation of our architecture; in particular, the open-source Esper
CEP engine and RabbitMQ.

� If we need high availability and a higher fault tolerance, we must use Esper HA, but
being aware that the integration has to be done with Kafka.

� The same applies to horizontal scalability, if our domain has no dependencies between
complex events or between simple events of different types, we can scale the system
using an Enterprise Esper CEP configuration with EQC. However, in the case of having
dependencies between them, we will be unable to scale using the distributed option, but
will need a more powerful machine and this is the main limitation of the horizontal
scalability with Esper CEP and Kafka.

� In terms of choosing RabbitMQ over Apache Kafka, in the architectures to be used
should take into account that RabbitMQ provides better latency, especially for low
workloads, but Apache Kafka deals better with higher workloads. Therefore, in case of
having very high workloads, but no need for very low latency, it is better to use Apache
Kafka. However, if low latency is needed and workloads are not so high over a long
period of time, it is advisable to go for RabbitMQ.

� Besides, as for the definition of the event patterns, it is the time windows that most
overloads the system. If we can implement the same functionality with another type of
operator, our system will probably consume much less memory. So, if we intend to use
time windows, we need a computer with high RAM availability.

We consider this study to be applicable to multiple contexts and application domains
related to the processing and correlation of real-time data from IoT or smart city
environments. As previously introduced, Esper CEP’s EPL language provides a wide
grammar that provides a great versatility for the definition of the patterns to be detected;
this added to its good performance and native integration with some message brokers such
as RabbitMQ and Kafka, postulate it as a suitable candidate for these scenarios. However,
each scenario has its own particular characteristics and may require the use of operators
other than those used in the benchmark proposed in this article, but I think that the study
can be extrapolated to other operators in terms of memory or CPU consumption and
scalability. However, we must always bear in mind the limitation of a scenario in which we
have a very high load of incoming events per second maintained over time and where there
are many dependencies between incoming events to the system that hinder horizontal
scalability, in which case it may require a greater effort in the design of the topics used in
the message broker and the way of distributing the events between different machines for
processing.
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CONCLUSIONS
In conclusion, we can say that the different options offered by Esper for the CEP provide
highly efficient solutions for real-time data processing. There is a wide range of options,
from the free and open-source version for centralized processing, without fault tolerance
but with direct integration with different message brokers, to paid products with fault
tolerance availability and high horizontal scalability, although with limitations in terms of
the brokers to be used for data integration. This article complements other evaluation
articles that focus on other aspects of DSPs and provides additional tools for choosing a
CEP engine and messaging broker for real-time data processing and correlation.

In our future work, we will perform the tests within a company setting with real data
and event patterns tailored to the company’s needs. This is a water supply management
company that aims to detect fraud and leaks in the city’s water network in real time. It is
therefore a scenario where there is no great need for fault tolerance since the fact that data
is lost for a few minutes does not have a serious impact on the detection of fraud or leaks.
In order to save costs for the company, without reducing efficiency and given that there is
no critical need for fault tolerance, our best proposal is to implement the system with the
open-source version Esper’s CEP engine. Once we test the system with real data and
custom event patterns, we expect the system to perform satisfactorily. In the event of the
need to scale horizontally, the city could be divided into sectors and the data from each
sector to different machines, where the same event patterns would be applied on different
data sets using Esper Enterprise-HA-EQC version, although, in this case, with a higher
economic cost for the company. While the company has identified the situations they wish
to detect and we have manually defined the event patterns according to the corresponding
simple event correlation in each case, we are also planning a new collaboration in which we
would use machine learning techniques to learn new event patterns for their domain.
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