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ABSTRACT
Cardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating
the development of efficient diagnostic tools.Machine learning (ML) andmetaheuristic
algorithms have become prevalent in addressing these challenges, providing promising
solutions in medical diagnostics. However, traditional ML approaches often need to
be improved in feature selection and optimization, leading to suboptimal performance
in complex diagnostic tasks. To overcome these limitations, this study introduces a
new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm
(CSA) and differential evolution (DE) with logistic regression. This integration is de-
signed to optimize logistic regression weights efficiently for the accurate classification of
CVD.Themethodology employs three optimization strategies based on the F1 score, the
Matthews correlation coefficient (MCC), and themean absolute error (MAE). Extensive
evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DE-
LR outperforms state-of-the-art ML methods. In addition, generalization is evaluated
using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin
Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior
efficacy compared to previous research studies in this domain. This study’s findings
highlight the potential of hybridmachine learning approaches for improving diagnostic
accuracy, offering a significant advancement in the fields of medical data analysis and
CVD diagnosis.

Subjects Computational Biology, Artificial Intelligence, Data Mining and Machine Learning, Data
Science
Keywords Cardiovascular diseases, Machine learning, Clonal selection algorithm, Differential
evolution, Logistic regression, Medical diagnostics

INTRODUCTION
Individuals follow a daily routine and maintain a busy schedule, leading to stress and
concern. Moreover, there has been a significant rise in the prevalence of cigarette addiction
and obesity, contributing to the surge in diseases such as cancer, cardiac issues, and
various other health conditions (Pouriyeh et al., 2017). The most formidable aspect
of these illnesses lies in their predictability. Anticipating the onset of these diseases
poses a considerable challenge. A staggering reality is revealed by estimations from the
World Health Organization (WHO): approximately 17.9 million lives are lost annually
to cardiovascular diseases, underscoring the alarming fact that nearly 32% of global
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fatalities are attributed to heart-related issues (World Health Organization, 2021). Within
the spectrum of cardiovascular diseases, one notably challenging and prevalent condition
is coronary artery disease (CAD).

CADmanifests when the coronary arteries, which supply the heart with its essential blood
requirements, become obstructed. The accumulation of cholesterol and other substances
within these arteries leads to plaque formation, gradually filling the vessels and impeding
blood flow. In its early stages, this arterial narrowing may manifest as chest pain. However,
diagnosing CAD poses a significant challenge, often resulting in severe symptoms such as
heart attacks or heart failure becoming the primary indicators for patients.

The initial step in ascertaining the presence of CAD involves assessing whether a patient
falls within the high-risk category. Once identified as high-risk, a battery of tests, including
but not limited to blood tests, chest X-rays, coronary angiograms, electrocardiograms, and
echocardiograms, is administered (CDC, 2021). These diagnostic procedures, while crucial,
are not only intricate but also incur substantial costs, contributing to the complexity and
expense associated with the identification and management of CAD. Thus, the imperative
for ongoing research and innovative approaches in the medical field persists to enhance
both the accuracy and accessibility of cardiovascular disease diagnoses.

The application of machine learning (ML) is widely endorsed for cardiovascular disease
prediction, given its proficiency in extracting exceptionally efficient and precise data from
extensive datasets, streamlining the prediction process (Alkayyali, Idris & Abu-Naser, 2023;
Azmi et al., 2022). As the fundamental tenet of ML, it excels in managing substantial data
volumes, demonstrating swift processing capabilities, and furnishing predictions at the
initial stages of development. ML applications are pivotal in alleviating hospital errors and
propelling advancements in health policy, disease prevention, early detection, and reducing
avoidable hospital fatalities. Several studies have undertaken similar objectives, specifically
delineating ML approaches adept at diagnosing CAD (Naser et al., 2024).

Initially, ML algorithms like logistic regression (LR), XGBoost, support vector machine
(SVM), andNaive Bayes (NB) were used for CVD prediction (Kolukısa et al., 2019;Kolukisa
et al., 2020; Kolukisa & Bakir-Gungor, 2023; Dhanka, Bhardwaj & Maini, 2023), but they
struggle with handling complex and multidimensional data, leading to lower success
rates (Ramudu et al., 2023). The local minima problem, a major obstacle to traditional
approaches, affects convergence to optimum solutions. Tominimize the objective function,
model parameters are updated iteratively using gradient-based optimization techniques
like gradient descent. However, if initialization or parameter updates push algorithms into
less-than-ideal solutions, they may become stuck in local minima (Ghassemi et al., 2020).
In the literature, metaheuristics have been employed by researchers to select features,
to optimize parameters, and to train the standard ML algorithms for improving their
classification accuracy by avoiding local minima.

Most studies in the literature have usedmetaheuristic approaches for feature selection (to
reduce dimensionality and speed up computation time) and hyperparameter optimization
(to find the nearly optimal configurations for ML models) problems without focusing
on training ML algorithms (Nalluri et al., 2017; Murugesan et al., 2021; Muliawan, Rizal &
Hadiyoso, 2023; Torthi et al., 2024; Sampathkumar & Periyasamy, 2024; Dhanka & Maini,
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2024). These works are distinct from problems of the proposed method since in this study,
metaheuristics are used to train the LR while maintaining their good qualities.

In a few research works, metaheuristics have been employed by researchers to train
the standard ML algorithms for improving their classification accuracy by avoiding local
minima (Leema, Nehemiah & Kannan, 2016; Arabasadi et al., 2017; Poornima & Gladis,
2018; Shahid & Singh, 2020; Al Bataineh & Manacek, 2022). These hybrid algorithms,
which combine metaheuristics and machine learning algorithms, have shown superior
performance in diagnosing cardiovascular disease (CVD) compared to other techniques.
However, these methods require significant time and effort to improve detection rates and
classification performance. To minimize these disadvantages of current hybrid methods,
the ML method to be used must first be computationally efficient for large datasets and
have simplicity-interpretability in disease diagnosis problems. Afterwards, it is necessary
to choose the metaheuristic algorithm that will best overcome the disadvantages of the
ML method to be used and will be successful for the train and suitable for the relevant
problem (Naser et al., 2024).

An important artificial immune system (AIS) method called the clonal selection method
(CSA) produces antibodies with increased affinity over time, hence enhancing the immune
system’s response to antigens. CSA is widely used in optimization problems due to its ability
to employ receptor editing and hyper-mutation processes to explore the solution space for
both local and global solutions (Rahman et al., 2023). Additionally, research have shown
that, in a variety of scenarios, CSA-based strategies perform better than other bio-inspired
and optimization methods (Haktanirlar Ulutas & Kulturel-Konak, 2011; Duru et al., 2022;
Rahman et al., 2023). However, there is a chance that conventional CSA methods aren’t
providing enough search power and might use some refinement (Gong, Jiao & Zhang,
2010; Zhang et al., 2008; Xu et al., 2017). Thus, by utilizing techniques that are known to
have exceptional search performance, such as the differential evolution (DE) algorithm, a
hybrid optimization approach may be built to enhance the local search performance of the
CSA method (Mostafa et al., 2024; Azevedo, Rocha & Pereira, 2024; Song et al., 2024).

In this study, a novel hybrid classifier called as CSA-DE-LR is proposed in an attempt
to improve the poor detection rate in CVD prediction and address the inadequacies of
previous studies (Naser et al., 2024). Because LR is easily interpretable in illness diagnostic
issues and computationally economical for big data sets, it is used as a classification
model in this work for the diagnosis of CVD. Then, CSA-DE optimization method
employees for model training instead of the gradient descent algorithm to improve LR’s
classification accuracy by avoiding local minima (Dedeturk & Akay, 2020; Dedeturk, Akay
& Karaboga, 2021). Based on the F1 score, the Matthews correlation coefficient (MCC),
and the mean absolute error (MAE), the technique uses three optimization strategies.
CSA-DE-LR outperforms state-of-the-art ML methods, according to extensive evaluations
on benchmark datasets which include Cleveland and Statlog. In addition, generalization
tests are evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer
Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates
superior efficacy compared to previous research studies in this domain. The results of
this study demonstrate how hybrid ML techniques may improve diagnostic precision and
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represent a substantial breakthrough in the domains of medical data analysis and CVD
diagnosis. The main contributions of this study are as follows:

• Introducing a breakthrough in classification methodology: This article presents CSA-
DE-LR, a pioneering classification methodology that merges a clonal selection algorithm
(CSA) and differential evolution (DE) with LR. This innovative hybrid approach is
tailored to enhance LR weights for efficient classification, particularly in the context
of CVD. Most studies in the literature have used meta-heuristic approaches for the
problems of feature selection and hyperparameter optimization without focusing on
training ML algorithms. Unlike these studies, metaheuristics are used to train the ML
algorithms for the proposed method. It also provides detailed information about the
rationale behind combining these three specific methodologies.
• Implementation of three optimization techniques:The proposedCSA-DE-LRmethod
offers three distinct optimization strategies based on the F1 score, MCC, andMAE. These
metrics guide the training process and are critical in fine-tuning the model weights for
optimal classification performance.
• Comprehensive evaluation of the method: The study extensively evaluates the CSA-
DE-LR method using two well-known datasets: the Cleveland and Statlog datasets. The
performance is assessed using a range of metrics, including accuracy, F1 score, MCC,
ROC-AUC, false negative rate, and false positive rate, and the results are compared with
various popular machine learning techniques. Care is taken to be fully transparent and
fair when comparing the proposed method with other studies and displaying the results.
In addition, generalization tests are evaluated using the WBCO and WBCD datasets.
The ethical implications of using ML models in healthcare are also evaluated.
• Insights into feature selection andmodel optimization: Unlike current studies, the
article provides valuable insights into the impact of feature selection and model
optimization through detailed analysis. It explores how excluding certain features can
lead to improved predictive consistency and generalizability, highlighting the importance
of dataset-specific tuning and careful consideration of feature selection with a different
approach.
• Advancement in classification performance: The article shows that CSA-DE-LR
outperforms previous methods in terms of accuracy and precision on both Cleveland
and Statlog datasets. This demonstrates the method’s effectiveness and potential in
improving diagnostic decision-making processes in the medical field.

This article introduces CSA-DE-LR, a novel method for classifying cardiovascular
diseases. The ‘Methods’ section explains how the Clonal Selection Algorithm,
Differential Evolution, and Logistic Regression are integrated into CSA-DE-LR. The
‘Experiments’ section outlines the datasets utilized, the evaluation metrics applied, and the
hyperparameter optimization process. The ‘Discussion’ section explores the implications
of the proposed model findings, focusing on feature selection and the effectiveness of
CSA-DE-LR in diagnosing cardiovascular diseases. Finally, the ‘Conclusions’ section
summarizes this research, emphasizing the significance and potential applications of the
CSA-DE-LR method in the medical field.
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RELATED WORK
Multiple investigations are currently underway in the field of cardivascular disease
diagnosis, each serving distinct objectives (Naser et al., 2024). These investigations are
driven by the need to enhance diagnostic accuracy and efficiency. These objectives
include identifying optimal features crucial for accurate diagnosis, developing innovative
classification models tailored to the complexities of cardiac conditions, and creating highly
efficient classification methods capable of streamlining the diagnostic process. Various
methods, encompassing ML techniques and metaheuristic-based approaches, have been
proposed to achieve comprehensive and effective diagnostic outcomes (Cai et al., 2024;
Rani et al., 2024).

Machine learning techniques
In the initial research works, ML algorithms such as LR, XGBoost, SVM, NB, etc. and
similar methods were used for CVD prediction (Kolukısa et al., 2019; Kolukisa et al., 2020;
Kolukisa & Bakir-Gungor, 2023; Dhanka, Bhardwaj & Maini, 2023).

Kolukısa et al. (2019) expanded the range of feature selection methodologies to enhance
performance. Additionally, Fisher linear discriminant analysis was applied to reduce
computational time by decreasing the number of features in diagnosing coronary artery
disease, resulting in well-performing models for each dataset. Utilizing the MLP classifier,
they achieved an accuracy of 82.5% and an F-measure of 83.80% on the Cleveland dataset.
In Kolukisa et al. (2020), a novel self-optimized and adaptive ensemble ML algorithm
was introduced. This algorithm autonomously identifies the most appropriate machine
learning models, ensuring high accuracy across diverse coronary artery disease datasets.
On the Cleveland dataset, an accuracy of 83.43% was achieved. Furthermore, Kolukisa
and Bakir-Gungor’s work (2023), which incorporated the Z-Alizadehsani, Cleveland, and
Statlog datasets, proposed an exhaustive ensemble feature selection (FS) method and a
probabilistic ensemble FS approach. The evaluation encompassed six distinct classification
algorithms and four variants of voting algorithms. The obtained accuracy values were
85.47% for the Cleveland dataset and 85.55% for the Statlog dataset.

Dhanka, Bhardwaj & Maini (2023) present a thorough examination of LR and XGBoost
in the Statlog heart disease dataset as a benchmark.Model parameters are optimized through
Random SearchCV hyperparameter tuning. The study encompasses an analysis of both
non-optimized and optimized models. The results derived from 10-fold cross-validation
indicate that LR and XGBoost accuracies are 85.2% and 81.5%, respectively.

Although standard ML techniques have shown notable success in CVD prediction,
they often struggle with handling complex and multidimensional data, which can lead
to lower success rates (Ramudu et al., 2023). Furthermore, the local minima problem
presents a major obstacle to typical machine learning approaches, affecting algorithms’
convergence to optimum solutions. The complexity and non-convexity of objective
functions, which can have several local minima in addition to a global minimum, are
at the core of this problem. Points in the parameter space where the objective function
approaches a local low are known as local minima, however they are not always the lowest
points overall. In order tominimize the objective function,model parameters are frequently
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updated iteratively using gradient-based optimization techniques such as gradient descent.
Nevertheless, if initialization or parameter updates push these algorithms into areas of the
parameter space that match these less-than-ideal solutions, they may become stuck in local
minima (Ghassemi et al., 2020). Reaching the best possible model performance requires
breaking out of such local minima. To address these problems, various metaheuristics
algorithms have been employed by researchers with ML algorithms.

Hybrid approaches using metaheuristics and ML algorithms
In the literature, metaheuristics have been employed by researchers to select features,
to optimize parameters, and to train the standard ML algorithms for improving their
classification accuracy by avoiding local minima.

Most studies in the literature have used metaheuristic approaches for feature selection
problems without focusing on training ML algorithms, to select the most appropriate
features among different types of CVD datasets (Murugesan et al., 2021;Muliawan, Rizal &
Hadiyoso, 2023; Torthi et al., 2024; Sampathkumar & Periyasamy, 2024). These works differ
from the proposed work in that metaheuristic methods are used to train ML algorithms
while preserving their good qualities. In feature selection problems, metaheuristics help to
reduce dimensionality and speed up computation time. One of these studies is the work
ofMurugesan et al. (2021), where authors created a super learner by fusing three bioinspired
algorithms with ANN. Using the methods for BFO (bacterial foraging optimization), KH
(krill herd), and CSO (cat swarm optimization), three sets of features were chosen. Using
the characteristics chosen by each method, a backpropagation neural network (BPNN) was
trained. The Statlog dataset yielded an accuracy of 86.36%, whereas the Cleveland dataset
produced an accuracy of 84%.

The study by Muliawan, Rizal & Hadiyoso (2023) uses ensemble classifiers with
parameter optimization to predict heart disease using a public dataset from the UCI
machine learning repository. The dataset includes 13 variables influencing heart disease.
Particle swarm optimization (PSO) was used for feature selection and principal component
analysis (PCA) for feature extraction. Parameter optimization was applied to machine
learning methods like SVM, deep learning, and ensemble classifier. The results showed the
highest accuracy in Deep Learning and SVM parameters, with bagging on SVM achieving
83.51% accuracy.

Torthi et al. (2024) proposed BAPSO-RF, a Bat algorithm and particle swarm
optimization-based Random Forest, to improve heart disease prediction accuracy. Using
270 records and 14 variables from the UCI heart disease dataset, the proposed BAPSO-RF
is assessed. The model outperformed other methods like GAPSO-RF, GA, and GA-RBF by
using metrics like accuracy, precision, recall, and f1-score values of approximately 98.71%,
98.67%, 98.23%, and 98.45%, respectively.

Sampathkumar & Periyasamy (2024) proposed a method using binary particle swarm
optimization and attention-based deep network (BPSO-ADN) to extract significant features
from a cardiac dataset for improved prediction accuracy. The technique uses BPSO for
feature selection and ADN for detailed pattern analysis, with BPSO directed by a fitness
evaluation method to find the most suitable subset for heart disease prediction.
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In some research works, metaheuristics have been employed by researchers to optimize
parameters for improving their classification accuracy (Nalluri et al., 2017; Dhanka &
Maini, 2024). These works differ from the proposed work in that metaheuristic methods
are used to train ML algorithms while preserving their good qualities. Metaheuristics
are a useful tool for effectively exploring complicated search spaces in hyperparameter
optimization issues. This aids in the finding of optimum or nearly optimal configurations
formachine learningmodels. These techniques, which use parallelization, stochastic search,
and adaptive exploration to break free from local optima and enhance model performance
over a wide range of tasks and datasets, provide adaptable and reliable solutions. One of
these studies is the work of Nalluri et al. (2017), where authors diagnosed heart disease
using the hybrid system. The classification was done using SVM and MLP classifiers. The
parameters were optimized using three evolutionary algorithms: PSO, FA (frefy algorithm),
andGSA (gravity search algorithm). Learning rate andmomentumwere optimized inMLP.
Margin was optimized in SVM. Five datasets related to cardiovascular disease were used to
verify the system. On the Cleveland dataset, 90.74% on the Statlog dataset, 89.5% on the
SPECT dataset, 90.6% on the SPECTF dataset, and 91.4% on the Eric dataset, the system
achieved an accuracy of 94.1%.

Dhanka & Maini (2024) developed two clever models—HyOPTRF (Model 1) and
HyOPTXGBoost Classifier (Model 2)—that were applied to the Statlog HD dataset using
both hyper-tuned and default parameters. On Trial (2) the HyOPTRF recorded the highest
Accuracy of 92.59% and F1 score 93.75%, while on Trial (33) theHyOPTXGBoost Classifier
recorded the highest Accuracy of 96.30% and F1 Score 96.77%. The suggested models were
compared to the other models that were already in use and verified using the Stratify Kfold
Cross-Validation approach.

In a few research works, metaheuristics have been employed by researchers to train
the standard ML algorithms for improving their classification accuracy by avoiding local
minima (Leema, Nehemiah & Kannan, 2016; Arabasadi et al., 2017; Poornima & Gladis,
2018; Shahid & Singh, 2020; Al Bataineh & Manacek, 2022). The resulting algorithms
which combine metaheuristics and ML algorithms are referred as hybrid algorithms in
the literature. For example, In Leema, Nehemiah & Kannan (2016), the authors aimed to
enhance the performance of ANNs by applying a hybrid optimization algorithm. This
approach was implemented on three benchmark datasets: Wisconsin Breast Cancer, Pima
Indian Diabetes, and Cleveland. The ANN training incorporated a combination of DE
and PSO for global search and the backpropagation (BP) algorithm for local search. Prior
to constructing the model, the datasets underwent min-max normalization. A 10-fold
cross-validation was conducted, and the proposed approach, termed Differential Evolution
with Global Information and Back Propagation (DEGI-BP), was compared with DE-BP
and PSO-BP. The experiments conducted on the Cleveland dataset demonstrated that
the proposed approach outperformed other hybrid optimization algorithms, achieving an
accuracy of 86.66%.

A neural network-based approach for diagnosing CAD was proposed by Arabasadi et
al. (2017). GA optimized the neural network’s weights. The ANN was trained using the
backpropagation technique. GA started with an initial population of 100 chromosomes.
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The root mean square error, or RMSE, of the untrained ANN was used to determine the
chromosomes’ fitness value. GA employed the roulette wheel algorithm for selection. With
a crossover probability of 1, two-point crossover was employed. Gaussian mutation was
used to carry out the mutation. Every gene on a chromosome carried one neural network
weight, and every chromosome had all of the neural network’s weights. SVM was used
to choose features. The system was evaluated on the Z-Alizadeh Sani dataset. The system
achieved an accuracy of 93.85%.

A hybrid classifier was presented by Poornima & Gladis (2018) to predict cardiac disease.
Using the orthogonal local preserving projection (OLPP), features were chosen. The ANN
was used to carry out the classification. The neural network consisted of four neurons in
the input layer, one hundred neurons in the hidden layer, and five neurons in the output
layer. The range of weights for the connections between neurons was between−10 and 10.
Levenberg–Marquardt (LM) and group search optimization (GSO) were used to optimize
the network by determining the weights. The optimal weights in the network were selected
from the two sets of weights that LM and GSO had produced. The results were validated
using three datasets: Switzerland, Hungarian, and Cleveland. Using the Cleveland dataset,
the accuracy rate of the method was 94%.

Shahid & Singh (2020) introduced a pioneering approach, amalgamating PSO with
an emotional neural network (EmNN). The performance of this novel approach was
compared with a hybrid model named PSO-ANFIS, which integrates an artificial neural
network (ANN) with fuzzy logic. The study concentrated on leveraging brain-based
emotional learning within EmNNs, renowned for their heightened accuracy. PSO was
employed to optimize the proposed neural network. The evaluation encompassed three
datasets: Z-Alizadeh Sani, Cleveland, and Statlog. While data preprocessing was omitted,
feature selection was conducted, resulting in the selection of 8 features for the Statlog
dataset and 7 features for the Cleveland dataset. The achieved accuracy was 84% for the
Cleveland dataset and 85.2% for the Statlog dataset.

In a study conducted by Al Bataineh & Manacek (2022) utilizing the Cleveland dataset
with 13 features and 303 samples, a hybrid algorithm named MLP-PSO was introduced.
This algorithm involved replacing missing values with feature-specific mean values and
incorporated categorical data encoding and feature scaling techniques. The MLP model
was trained using weights and biases optimized through the particle swarm optimization
(PSO) algorithm. Performance evaluation was conducted using 5-fold cross-validation, and
hyperparameter tuning was executed through the grid search method. Upon comparing
the results with ten different machine learning algorithms, the proposed MLP-PSO
method demonstrated the highest accuracy, reaching 84.60%. To enhance classification
performance, they refined the feature extraction process and training step of a neural
network (NN) following the methodology described in Cherian, Thomas & Venkitachalam
(2020). Statistical and higher-order statistical features were extracted from the dataset, and
principal component analysis (PCA) was performed.

The findings demonstrate that metaheuristic-based ML methods for diagnosing
CVD exhibit superior performance over alternative ML techniques in terms of different
performance criteria.However, thesemethods generally require significant time, to improve
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regarding low detection rates and effort to achieve high classification performance, which
negatively impacts their applicability and effectiveness. To minimize these disadvantages of
current hybrid methods, the ML method to be used must first be computationally efficient
for large datasets and have simplicity-interpretability in disease diagnosis problems.
Afterwards, it is necessary to choose the metaheuristic algorithm that will best overcome
the disadvantages of the ML method to be used and will be successful for the train and
suitable for the relevant problem (Naser et al., 2024).

To eliminate the shortcomings of existing studies and increase the low detection rate
in CVD prediction, a pioneering hybrid classifier, denoted as CSA-DE-LR, is introduced
in this research endeavor (Naser et al., 2024). In this study, the diagnosis of CVD utilizes
LR as a classification model because it is computationally efficient for large data sets and
simple interpretability in disease diagnosis problems. Then, CSA-DE optimization method
employees for model training instead of the gradient descent algorithm to improve LR’s
classification accuracy by avoiding local minima.

The reasons for choosing CSA-DE as an optimization method can be justified as
follows. The CSA is a crucial AIS algorithm that improves the immune system’s response
to antigens by generating antibodies with greater affinity over time. CSA is popular for
optimization tasks because it can search for local and global solutions in the solution space
using hyper-mutation and receptor editing processes (Rahman et al., 2023). Furthermore,
studies have demonstrated that CSA-based techniques outperform other bio-inspired and
optimization methods in various contexts (Haktanirlar Ulutas & Kulturel-Konak, 2011;
Duru et al., 2022; Rahman et al., 2023). However, traditional CSA techniques may not
offer sufficient search capabilities and could benefit from improvement (Gong, Jiao &
Zhang, 2010; Zhang et al., 2008; Xu et al., 2017). Therefore, to improve the local search
performance of the CSA method, a hybrid optimization method can be developed by using
methods that are known to have remarkable search performance, such as the differential
evolution (DE) algorithm (Mostafa et al., 2024; Azevedo, Rocha & Pereira, 2024; Song et al.,
2024).

As a summary, proposed hybrid classifier CSA-DE-LR combines two optimization
algorithms, leveraging their strengths and applying them to LR during training to attain
heightened performance. Significantly, it offers three optimization options—based on F1
score, MCC, and MAE—enhancing its adaptability. Additionally, implementing feature
selection in this study significantly enhanced the outcomes. By identifying and utilizing
the most relevant features, the CSA-DE-LR method achieved remarkable accuracy and
efficiency, demonstrating the value of meticulous feature selection in improving diagnostic
models for CVD. Employing Bayesian optimization for fine-tuning hyperparameters and
utilizing ten-fold cross-validation, CSA-DE-LR demonstrates a notable improvement
in diagnostic accuracy across datasets, presenting a substantial advancement in medical
diagnostics.
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METHODS
Logistic regression
Selecting Logistic Regression (LR) is a form of statistical modeling that’s especially suitable
for situations where the outcome variable is binary, meaning it takes on two possible
outcomes. The primary concept behind LR is to model the probability that a given input
point belongs to a particular category. This probability estimation is achieved by fitting the
data to a logistic curve, hence the name ‘‘Logistic Regression.’’

The training set of features {(Ex1,y1),...,(ExM ,yM )} comprisesM instances. Each instance
has a feature vector Exi ∈RD and the corresponding yi is the label for each feature vector,
which, in this binary classification scenario, can either be 0 or 1.

In mathematical terms, the prediction for a given Exi is determined by inputting the
weighted sum of its features into the sigmoid function, and Eq. (1). is used to describe the
class of Eq. (1).

y
′

i =

{
0, pi< 0.5

1, pi≥ 0.5
(1)

where pi is determined by Eq. (2). LR uses the sigmoid function, which outputs a value
between 0 and 1 for any input as outlined in Eq. (3). This value can be interpreted as the
probability that the input instance belongs to the class labeled as 1.

pi= σ ( EwExi) (2)

σ (a)=
1

1+e−a
. (3)

The goal of the learning algorithm is to adjust its internal parameters (typically weights
associated with each feature and a bias term) to minimize the difference between its
predicted probabilities and the actual outcomes in the training set. This difference is often
captured by a cross-entropy cost function given in Eq. (4).

J ( Ew)=−
m∑
i=1

yi log(pi)+ (1−yi)log(1−pi) (4)

Clonal selection algorithm
The CSA (de Castro & Von Zuben, 2002) emulates the adaptive immune system’s response
to antigenic stimuli. An algorithm, CLONALG, was developed based on the principles
of clonal selection and affinity maturation inherent in immune responses. Different
adaptations of CLONALG were employed to handle pattern recognition and optimization
problems (de Castro & Von Zuben, 2002; Azevedo, Rocha & Pereira, 2024; Duru et al.,
2022). For the application of CSA, a version of CLONALG optimized for such tasks
was employed. The primary objective of CSA is to identify an antibody with peak affinity
(de Castro & Von Zuben, 2002; Rahman et al., 2023). The key steps of CSA are outlined in
Algorithm 1.
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Algorithm 1 The Clonal Section Algorithm
1: Set up the control parameters: total antibodies (P), the highest iteration count, receptor editing rate (B),

and clonal multiplication coefficient (α).
2: Create an initial set of P antibodies.
3: Determine the affinity score for every antibody Ab.
4: for each iteration do
5: Clone the antibodies α times and calculate the affinity scores for these clones.
6: for each clone Ci do
7: Apply reverse mutation to Ci, resulting in the mutated clone σi.
8: if f (σi)> f (Ci) then
9: Ci := σi
10: else
11: Carry out pair-wise mutation on Ci to produce σi.
12: Compute the affinity value of σi.
13: if f (σi)> f (Ci) then
14: Ci := σi
15: else
16: Ci :=Ci
17: end if
18: end if
19: end for
20: for each antibody Abi do
21: Choose the clone Cj from Abi clones with the topmost affinity
22: Abi :=Cj
23: end for
24: Substitute the lowest performing B% of antibodies with the newly formed ones.
25: end for

The set of P antibodiesAb={Ab1,Ab2,...,AbP} is initially formed randomly as indicated
in Eq. (5). This set undergoes enhancement in every cycle through processes like selection,
cloning, hyper-mutation, re-selection, and receptor-editing until the highest iteration count
is reached (de Castro & Von Zuben, 2002). Each antibodyAbi= [Abi,1,Abi,2,...,Abi,D] ∈RD

within the group represents a potential solution. The ultimate goal is to identify an antibody
with the utmost affinity score once all cycles have concluded.

Abi,j = lbj+ rand(0,1)× (ubj− lbj) (5)

where rand(0,1) is a function producing random numbers uniformly spread between 0 and
1. The terms lbj and ubj denote the minimum and maximum limits for the jth parameter,
respectively. After establishing a population of P antibodies, the fitness score for every
antibody in the Ab set can be determined as illustrated in Eq. (6).

f (Abi)=
1

1+ J (Abi)
(6)

f (Abi) represents the fitness function determining the fitness score of Abi. Meanwhile,
J (Abi) serves as the cost function, as depicted in Eq. (4), providing the cost measure of
Abi. The clone count(αi) for every chosen antibody Ab may remain consistent (de Castro
& Von Zuben, 2002). The aggregate count of clones within the clone group C is derived
from Eq. (7).

|C | =
n∑

i=1

αi=α×n (7)

where α represents the clonal multiplication coefficient and is a positive whole number. In
this study, every antibody in the group is chosen for cloning (n= P), and the quantity of
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clones for each selected antibody remains consistent (αi=α) to aid in identifying multiple
optimal solutions (de Castro & Von Zuben, 2002).

Following the formation of the clone group, the antibodies undergo enhancement via
hyper-mutation processes, namely inverse mutation and pair-wise mutation. In the inverse
mutation method, for each clone Ci= [C1,C2,...,CD], parameters j and l are chosen at
random, ensuring |j− l|> 2, and the parameters between j and l within Ci are inverted
to produce the mutated clone σi. If σi’s affinity surpasses that of Ci, it replaces Ci. If not,
pair-wise mutation is applied to Ci. Here, parameters j and l of Ci are randomly selected
and swapped. The affinity of σi, resulting from pair-wise mutation, is assessed. If σi’s
affinity is superior to that of Ci, it takes the place of Ci; if not, Ci remains unaltered.

Post hyper-mutation, a re-selection step ensures the antibody population size stays
consistent. For each antibody, Abi, the highest affinity clone among Abi’s clones is chosen
and allocated to Abi. Concludingly, receptor editing is executed, substituting the least
efficient B% of antibodies with new ones. The procedures of the CSA optimization
approach are detailed in Algorithm 1.

Differential evolution
The DE algorithm (Storn & Price, 1997) operates as a collective method that encompasses
processes like crossover, mutation, and selection. Its core mechanism hinges on mutation,
which derives from the distinctions between randomly chosen solution pairs within the
collective. This algorithm harnesses mutation as an exploration tool and the selection
process to guide the exploration towards favorable areas in the solution environment.
The DE algorithm also employs a distinctive crossover that may favor parameters from
one parent over another. By leveraging attributes from current collective members to
formulate trial solutions, the crossover operator adeptly redistributes insights about potent
combinations, facilitating a more effective search for optimal solutions. Initially, DE
establishes a random set of solution vectors. This set undergoes enhancements through
the application of mutation, crossover, and selection processes. In the DE method, every
newly generated solution is compared against a mutated one, and the superior of the two
emerges victorious. The DE algorithm has captured the attention of scholars in diverse
fields and has proven valuable in solving numerous real-world challenges (Storn & Price,
1997; Corne et al., 1999; Mostafa et al., 2024; Song et al., 2024; Azevedo, Rocha & Pereira,
2024). The essential steps of the DE algorithm are described as follows:

Algorithm 2 Differential Evolution Algorithm
1: Initialize Population
2: Evaluation
3: repeat
4: Mutation
5: Recombination
6: Evaluation
7: Selection
8: until requirements are met
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During the mutation process, all of theM parameter vectors are subjected to mutation.
This mutation step broadens the exploration area. A mutated solution vector, denoted as
wi, is formulated by Eq. (8):

Ew
′

i = Ewi1+ sf × ( Ewi3− Ewi2), 1≤ i≤M (8)

where sf represents the scaling factor with values from [0,1], and the solution vectors i1,
i2, and i3 are selected randomly and are required to conform to i1 6= i2 6= i3 6= i, where i
represents the current solution’s index. During the crossover procedure, the parent vector
merges with the mutated vector, generating a trial vector as given in Eq. (9).

Ewi,j =

{
Ew
′

i,j, rj ≤ cr

Ewi,j, rj > cr
(9)

where cr represents the crossover constant, rj is a real number picked randomly from the
range [0,1], and j indicates the jth element of the related array.

Every solution within the population possesses an equal probability of being chosen as a
parent, regardless of its fitness value. After undergoing mutation and crossover processes,
the offspring’s performance is assessed. Subsequently, a comparison between the offspring
and its parent takes place, with the superior entity prevailing. If the parent remains superior,
it is preserved in the population.

Proposed method (CSA-DE-LR)
This study introduces a novel classificationmethodology, leveraging a hybrid approach that
combines CSA and DE to optimize the LR weights for classification tasks. The proposed
method, henceforth referred to as CSA-DE-LR, offers three optimization techniques based
on different performance metrics: F1 score, MCC, and MAE. These metrics guide the
training process to fine-tune the model weights to achieve an optimal balance between
precision and generalizability.

Algorithm 3 Proposed CSA-DE-LR classification method
1: Determine the input parameters: Input matrix XM×N , target EyM , number of antibodies P , population of P
antibodiesWP×D, percentage of receptor editing B, maximum evaluation numberMEN , lower bound lb, up-
per bound ub, number of clones for each antibody α, scaling factor sf , crossover rate cr
Output:
1: D←N +1
2: W←CreateAntibodies(P,D)
3: W ′

←W
4: Efit←CalculateFitness(W )
5: evaluation_number← 0
6: while evaluation_number <MEN do
7: Cloning ()
8: LocalSearchViaDE()
9: Selection()
10: ReceptorEditing ()
11: FindBestAntibody()
12: end while
13: return Egpar F return global best antibody params
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Algorithm 4 Create population of P antibodies
1: procedure CreateAntibodies(P, D)
2: for i← 1 : P do
3: for j← 1 :D do
4: W [i,j]← lb+ rand(0,1)× (ub− lb)
5: end for
6: end for
7: return W
8: end procedure

Algorithm 5 Clone each antibody α times
1: procedure Cloning ()
2: for i← 1 : P do
3: C[i×α : (i+1)×α,:]←W [i,:]
4: end for
5: end procedure

Algorithm 6 Local search via DE
1: procedure LocalSearchViaDE()
2: for i← 1 : P×α do
3: j← i//α F //, floor division
4: Einds←{x|x ∈Z,0≤ x < P,x 6= j}
5: pars= rand_choice( Einds,3)×α+ randint (0,α,3) F randomly select 3 neighbour clones
6: Earr←C[pars[0],:]+ sf × (C[pars[2],:]−C[pars[1],:])
7: Ear← rand(low = 0,high= 1,size= (D))
8: Eρ← Ear ≤ cr F param to change
9: C[i,Eρ]← Earr[Eρ]
10: Evec←C[i,Eρ]
11: Evec[ Evec < lb]← lb
12: Evec[ Evec > ub]← ub
13: C[i,Eρ]← Evec
14: end for
15: Ecfit←CalculateFitness(C)
16: end procedure

Algorithm 7 Selection Phase
1: procedure Selection()
2: cfit ′← reshape( Ecfit ,size= (P,α))
3: Emaxidxs← argmax(cfit ′ ,axis= 1)
4: Einds←[0 : 1 : P]×α
5: Eidxs← Einds+ Emaxidxs
6: EbestIdxs= Ecfit [ Eidxs]> Efit
7: W [ EbestIdxs,:] =C[ Eidxs,:][ EbestIdxs,:]
8: Efit [ EbestIdxs] = Ecfit [ Eidxs][ EbestIdxs]
9: end procedure

Algorithm 8 Receptor Editing Phase
1: procedure ReceptorEditing ()
2: EfIndex← argsort ( Efit )
3: n← round(P×B)
4: worstNindex← EfIndex[0 : n]
5: newNantibodies←CreateAntibodies(n,D)
6: newNfitness←CalculateFitness(newNantibodies)
7: W [worstNindex,:] = newNantibodies
8: Efit [worstNindex]← newNfitness
9: end procedure
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Algorithm 9 Find best antibody
1: procedure FindBestAntibody()
2: index← argmax( Efit )
3: gmax← Efit [index] F global maximum
4: Egpar←W [index,:] F global params
5: end procedure

Algorithm 10 Calculate prediction
1: procedure CalculatePrediction(φ)
2: w←φ[:,1 :]
3: b←φ[:,0]
4: prediction← σ (X .dot (wT )+b) F σ is sigmoid func
5: return prediction
6: end procedure

Algorithm 11 Calculate fitness function using Matthews correlation coefficient
1: procedure CalculateFitnessMCC(φ)
2: a←CalculatePrediction(φ)
3: p← round(a) F round function round elements 1 if elements ≥ 0.5, otherwise 0
4: f ←MCC( EyM ,p)
5: evaluation_number← evaluation_number+ len(f )
6: return f
7: end procedure

Algorithm 12 Calculate fitness function using F1 score
1: procedure CalculateFitnessF1(φ)
2: a←CalculatePrediction(φ)
3: p← round(a) F round function round elements 1 if elements ≥ 0.5, otherwise 0
4: f ← F1( EyM ,p)
5: evaluation_number← evaluation_number+ len(f )
6: return f
7: end procedure

Algorithm 13 Calculate fitness function using mean absolute error (MAE)
1: procedure CalculateFitnessMAE(φ)
2: p←CalculatePrediction(φ)
3: f ←MAE( EyM ,p)
4: f ← 1/(f +1)
5: evaluation_number← evaluation_number+ len(f )
6: return f
7: end procedure

Algorithm 14 Calculate Matthews correlation coefficient
1: procedureMCC(actual,predicted)
2: tp← sum(predicted ∗actual,axis= 0)
3: tn← sum((1−predicted)∗ (1−actual)),axis= 0)
4: fp← sum(predicted,axis= 0)− tp
5: fn← sum(actual,axis= 0)− tp
6: mcc← (tp∗ tn− fp∗ fn)/(tp+ fn)∗ (tp+ fp)∗ (tn+ fn)∗ (tn+ fp)
7: return mcc
8: end procedure
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Algorithm 15 Calculate F1 score
1: procedure F1(actual,predicted)
2: tp← sum(predicted ∗actual,axis= 0)
3: fp← sum(predicted,axis= 0)− tp
4: fn← sum(actual,axis= 0),tp
5: precision← tp/(tp+ fp)
6: recall← tp/(tp+ fn)
7: F1← 2∗precision∗ recall/(precision+ recall)
8: return F1
9: end procedure

Algorithm 16 Calculate MAE
1: procedureMSE(actual,predicted)
2: mae=mean((actual−predicted)2,axis= 0)
3: return mae
4: end procedure

The CSA-DE-LR method begins by initializing a population of P antibodies, each
representing a potential solution to the classification problem. The antibodies undergo
cloning and local search procedures via DE, followed by a selection phase that favors the
most promising candidates. Receptor editing is applied to introduce diversity by replacing
a portion of the least-fit antibodies with new candidates. This iterative process continues
until the maximum evaluation number (MEN ) is reached, at which point it returns the
best-performing antibody, indicative of the optimal model weights.

The detailed pseudocode for the CSA-DE-LR classification method is presented from
Algorithm 3 to Algorithm 11. Algorithm 3 outlines the main procedure, which utilizes sub-
procedures defined in Algorithms 4 to Algorithm 11. Each sub-procedure is dedicated to
a specific task within the optimization process, including the initialization of the antibody
population (Algorithm 4), cloning (Algorithm 5), local search via DE (Algorithm 6),
selection (Algorithm 7), receptor editing (Algorithm 8), and the identification of the best
antibody (Algorithm 9).

A critical phase within this process is detailed in Algorithm 7, the Selection Phase, where
the efficacy of each antibody’s clone is rigorously evaluated. Every antibody’s clones are
compared, and the clone with the highest fitness value is identified. If this clone surpasses
the original antibody in terms of fitness, it is preferentially selected as a superior solution.
This approach ensures that the proposed model continuously evolves towards higher
accuracy by adopting the most advantageous traits of each generation.

Following this, Algorithm 8, the Receptor Editing Phase, comes into play. Here,
antibodies are ranked based on their fitness values, and the bottom percentile, amounting
to PxB antibodies, is identified for replacement. This mechanism introduces strategic
diversity to the population by substituting the least-fit antibodies with newly created
ones, thus preventing premature convergence and maintaining a robust search within the
solution space.

Prediction calculations are performed per Algorithm 10, where the sigmoid function (σ )
is applied to the weighted sum of inputs plus the bias term. The fitness of each antibody is
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evaluated using one of the three fitness functions (Algorithms 11 to 13), each corresponding
to one of the selected optimization metrics.

Algorithms 14 to 16 encapsulate the calculation of the MCC, F1 score, and MAE,
respectively. The MCC computation follows the standard formula involving true positives,
true negatives, false positives, and false negatives. Similarly, the F1 score is computed using
precision and recall derived from the confusion matrix. The MAE, on the other hand, is
inverted to ensure that a lower error results in higher fitness.

By integratingCSA andDEwith LR, the proposedCSA-DE-LRmethod aims to effectively
navigate the search space and converge to an optimal set of weights for the logistic regression
classifier, thereby enhancing classification accuracy and model robustness.

EXPERIMENTS
Datasets
In this study, four well-known datasets were used for empirical analysis: the Cleveland,
Statlog, Breast Cancer Wisconsin Original (WBCO), and Breast Cancer Wisconsin
Diagnostic (WBCD) datasets. All four datasets are publicly available through the UCI
Machine Learning Repository and are commonly used in medical classification research.

• The Cleveland dataset contains 303 instances, each described by 13 attributes. It is used
to classify instances as indicative of CAD or representing a healthy state.
• The Statlog dataset consists of 270 instances, also described by 13 attributes. It is similar
in structure to the Cleveland dataset and is used to classify the presence of CAD.
• The WBCO dataset comprises 699 instances, each described by nine attributes based on
biopsy data. This dataset is used to classify tumors as either benign or malignant.
• The WBCD dataset contains 569 instances, each described by 30 attributes. This dataset
is used to classify tumors as benign or malignant.

Preprocessing
Data preprocessing was crucial to ensure consistent scaling and accurate results. First, any
missing values were identified and addressed to maintain data integrity. In the Cleveland
dataset, six instances with missing values were removed, and in the WBCO dataset, 16
instances containing missing values were excluded. The Statlog and WBCD datasets did
not contain any missing values.

After addressing the missing data, the scaling process was carried out. For the Cleveland,
Statlog, and WBCO datasets, the training data for each fold was normalized using the
MinMaxScaler, which scales data values to the [0, 1] range. For the WBCD dataset, the
StandardScaler was applied to normalize the data by centering and scaling based on the
mean and standard deviation. The scalers were first fit and applied to the training data, and
subsequently, the transformation was applied to the test data to ensure consistent scaling.

Following the scaling procedures, a 10-fold cross-validation process was employed to
evaluate the model’s performance. This involved dividing the data into 10 equally sized
folds. Each fold was used as a test set while the remaining nine folds formed a training
set, allowing the model to be trained and evaluated 10 separate times. The individual
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results from each fold were then averaged to provide a more comprehensive and reliable
assessment of the model’s overall performance.

Evaluation metrics
In this study, several key metrics were utilized to evaluate and compare the performance
of the classification processes. These include:

• Accuracy (ACC): This metric measures the ratio of correctly predicted observations to
the total observations and the formula for ACC is provided by Eq. (10).

ACC =
TP+TN

TP+TN +FP+FN
(10)

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False
Negatives.
• F1 score: The F1 score is a metric that balances precision (the quality of the positives
identified) and recall (the ability to find all relevant instances). The F1 score is calculated
as:

F1= 2×
Precision×Recall
Precision+Recall

(11)

where Precision = TP/(TP + FP), Recall = TP/(TP + FN). This metric is critical for
understanding the model’s accuracy in classifying positive cases.
• Matthews correlation coefficient (MCC): This coefficient is a reliable statistical rate
which yields a value between -1 and +1. It is especially useful for imbalanced datasets.
The formula for MCC is:

MCC =
(TP×TN )− (FP×FN )

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

(12)

• False negative rate (FNR) and false positive rate (FPR): These rates are crucial for
understanding the types of errors made by the model. FNR measures the rate at which
positive cases are mistakenly classified as negative, while FPR measures the rate of
negative cases incorrectly classified as positive. Their formulas are:

FNR=
FN

TP+FN
(13)

FPR=
FP

TN +FP
(14)

• ROC-AUC score: The receiver operating characteristic (ROC) curve and the area under
the curve (AUC) represent the model’s ability to distinguish between classes. A score
close to 1 indicates perfect classification, while a score around 0.5 is no better than
random guessing.

Hyper-parameter optimization
A crucial aspect of the experimental design involved meticulously optimizing
hyperparameters for each classification method, including the CSA-DE-LR, CSA-LR,
DE-LR, and other popular machine learning techniques such as decision tree (DT), linear
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Table 1 Hyperparameter ranges and the optimal hyperparameters obtained after 300 iterations for various classifiers on Statlog and Cleveland
datasets.

Classifier Parameter Low High Statlog
(Best)

Cleveland
(Best)

WBCD
(Best)

WBCO
(Best)

Min Samples Split 2 100 83 92 3 54
DT

Min Samples Leaf 1 100 65 76 4 12
LDA Shrinkage 0 1 0.747 0.875 0.422 0.698

Learning Rate 10−8 10−1 0.028 0.290 0.261 0.331
Number of Hidden Units 2 40 6 16 18 25
Batch Size 1 1024 182 247 501 209

MLP

Number of Epochs 1 50 22 31 5 33
RF Number of Trees 1 200 75 122 172 168
SVM C 0.001 1 0.014 0.577 0.953 0.772

Eta 0.1 1 0.222 0.948 0.997 0.935
XGBoost

Depth 1 40 14 15 27 16
LR C 10−4 104 63576.24 19600.49 35937.61 13519.16

lb −64 −16 −60.839 −47.767 −44.305 −61.344
ub 16 64 53.250 43.126 45.543 27.328
P 10 80 74 61 73 20
α 2 6 4 3 4 5

CSA-LR

B 0.05 0.2 0.050 0.162 0.104 0.194
lb −64 −16 −55.968 −34.463 −53.381 −59.298
ub 16 64 22.412 22.809 38.460 53.334
P 10 80 53 29 70 50
sf 0.01 2 0.940 1.790 0.116 0.257

DE-LR

cr 0.01 1 0.755 0.432 0.651 0.884
lb −64 −16 −48.353 −27.010 −36.035 −63.765
ub 16 64 19.487 24.245 29.282 32.241
P 10 80 78 27 37 10
α 2 6 4 4 3 5
B 0.05 0.2 0.198 0.165 0.132 0.053
sf 0.01 2 0.670 0.070 0.167 1.610

CSA-DE-LR

cr 0.01 1 0.577 0.554 0.333 0.958

discriminant analysis (LDA), Logistic Regression (LR), Multi-Layer Perceptron (MLP),
Random Forest (RF), XGBoost, and Support Vector Machine (SVM). Table 1 details the
hyperparameter ranges and the best values obtained for each classifier on the Statlog,
Cleveland, WBCD, and WBCO datasets, achieved after 300 iterations of tuning using the
Hyperopt (Bergstra, Yamins & Cox, 2013) method.

For the CSA-LR approach, the hyperparameters tuned included the lower and upper
bounds (lb and ub), population size (P), number of clones (α), and receptor editing rate
(B). The DE-LR method involved optimizing the lower and upper bounds (lb and ub),
population size (P), scaling factor (sf ), and crossover rate (cr). These adjustments ensured
that bothmethods could operate efficiently within their designed optimization frameworks.
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Table 2 Comparative analysis of optimization strategies (F1-Opt, MAE-Opt, andMCC-Opt) of the proposed method on statlog and cleveland
datasets using 10-fold cross validation. Performance metrics: ACC, F1 score, MCC, ROC-AUC Score, FNR, and FPR with standard deviations
(Std). The highest values are highlighted in bold.

Statlog Cleveland

Criteria F1-Opt MAE-Opt MCC-Opt F1-Opt MAE-Opt MCC-Opt

ACC± Std 88.15 ± 0.039 87.78 ± 0.040 87.04 ± 0.041 86.00 ± 0.053 85.67 ± 0.073 86.67 ± 0.059
F1± Std 86.73 ± 0.049 84.76 ± 0.062 83.98 ± 0.062 84.44 ± 0.061 82.87 ± 0.101 84.64 ± 0.066
MCC± Std 76.74 ± 0.075 75.83 ± 0.081 74.46 ± 0.082 71.79 ± 0.105 71.76 ± 0.145 74.32 ± 0.115
ROC-AUC± Std 88.42 ± 0.039 87.20 ± 0.048 86.50 ± 0.048 85.67 ± 0.053 85.26 ± 0.076 86.52 ± 0.056
FNR± Std 0.099 ± 0.071 0.199 ± 0.109 0.199 ± 0.118 0.161 ± 0.083 0.209 ± 0.144 0.191 ± 0.105
FPR± Std 0.137 ± 0.046 0.057 ± 0.043 0.070 ± 0.054 0.125 ± 0.065 0.085 ± 0.055 0.077 ± 0.079

In the proposed CSA-DE-LR approach, a combination of hyperparameters was tuned,
including the lower and upper bounds (lb and ub), population size (P), number of clones
(α), receptor editing rate (B), scaling factor (sf ), and crossover rate (cr). The optimization
process balanced exploration and exploitation, finding the best parameter settings to
maximize performance.

For other classifiers, the DT focused on ‘Min Samples Split’ and ‘Min Samples Leaf’
to control tree depth and prevent overfitting. LDA tuned the ‘Shrinkage’ parameter for
improved generalization. LR optimized the ‘C’ parameter, which controls regularization
strength.

In the MLP, hyperparameters like the learning rate, number of hidden units, batch size,
and the number of epochs were tuned to discover the best settings. For RF, the number of
trees in the forest was the focal point of optimization.

The SVM involved tuning the ‘C’ parameter, which defines the trade-off between smooth
decision boundaries and classifying training points correctly. Finally, XGBoost focused on
‘Eta’ (learning rate) and ‘Depth’ (tree depth) to maximize predictive performance.

These comprehensive optimizations via Hyperopt were crucial in maximizing each
classifier’s performance. They allowed an exhaustive search of the hyperparameter space
to ensure optimal settings were used across the various datasets.

PERFORMANCE RESULTS AND DISCUSSION
In the comparative analysis of different optimization strategies applied to the Statlog
and Cleveland datasets, distinct patterns of performance emerge, reflecting the diverse
characteristics of these datasets. For the Statlog dataset, the F1-Optimization strategy
exhibits superior performance, particularly in Accuracy, F1 score, and ROC-AUC metrics,
as detailed in Table 2. This indicates a well-balanced approach in terms of precision and
recall, which is essential for achieving a harmonious balance in classification tasks where
both aspects are equally critical. Such a result suggests that the F1-Optimization is adept
at handling the specific nature and distribution of the Statlog dataset, underlining its
suitability for similar data types.

On the other hand, the Cleveland dataset presents a different scenario where the MCC-
Optimization strategy outperforms others, particularly in theMCC and ROC-AUCmetrics.
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Table 3 Comparative performance of various MLmethods and the proposed method (CSA-DE-LR) on the Statlog dataset, evaluated using
metrics such as ACC, F1 score, MCC, ROC-AUC score, FNR, FPR, and training time in seconds (Time), with results derived from 10-fold cross-
validation. The highest values are highlighted in bold.

Method ACC± Std F1± Std MCC± Std ROC-AUC± Std FNR± Std FPR± Std Time± Std

DT 80.37± 0.057 76.67± 0.078 61.20± 0.125 80.24± 0.062 0.254± 0.111 0.140± 0.094 0.001± 0.000
LDA 85.18± 0.043 82.52± 0.058 70.82± 0.084 84.95± 0.044 0.190± 0.102 0.110± 0.079 0.001± 0.000
MLP 85.55± 0.034 82.99± 0.049 71.17± 0.069 85.08± 0.039 0.183± 0.107 0.114± 0.064 0.004± 0.000
RF 84.81± 0.074 81.72± 0.091 70.00± 0.147 84.48± 0.076 0.213± 0.122 0.096± 0.086 0.086± 0.001
XGBoost 83.70± 0.052 81.05± 0.068 67.87± 0.109 83.78± 0.054 0.197± 0.093 0.127± 0.086 0.048± 0.021
SVM 83.70± 0.041 79.71± 0.058 68.55± 0.075 83.21± 0.042 0.260± 0.109 0.075± 0.074 0.005± 0.000
LR 83.33± 0.041 80.50± 0.054 66.88± 0.087 83.03± 0.044 0.206± 0.103 0.132± 0.075 0.002± 0.001
CSA-LR 86.30± 0.060 83.22± 0.067 72.78± 0.108 86.29± 0.063 0.205± 0.116 0.069± 0.061 10.36± 0.116
DE-LR 86.30± 0.055 84.27± 0.064 72.94± 0.099 86.84± 0.055 0.118± 0.106 0.145± 0.098 9.175± 0.596
CSA-DE-LR 88.15± 0.039 86.73± 0.049 76.74± 0.075 88.42± 0.039 0.099± 0.071 0.137± 0.046 0.494± 0.025

This highlights its effectiveness in dealing with potentially imbalanced data structures and
its superior capability in distinguishing between classes with higher precision. The superior
performance of MCC optimization in this context underscores the importance of choosing
an optimization strategy that aligns with the inherent characteristics of the dataset. This
divergence in the performance of optimization strategies across the twodatasets underscores
the necessity of a tailored approach in machine learning applications, considering each
dataset’s unique aspects. These findings emphasize the significance of context-dependent
strategy selection in machine learning endeavors. The variations in performance across the
two datasets illustrate that there is no one-size-fits-all approach, and careful consideration
must be given to the specific attributes of each dataset to achieve optimal results. This
nuanced understanding of the interplay between optimization strategies and dataset
characteristics is crucial for developing robust and effective machine-learning models.

The evaluation of classification methods on the Statlog and Cleveland datasets, as
depicted in Tables 3 and 4, offers a comprehensive view of the performance of various
popular classification techniques. In this context, the proposed CSA-DE-LRmethod stands
out as a novel approach, sparking curiosity and interest. The performance was assessed
using metrics such as ACC, F1-score, MCC, ROC-AUC score, FNR, and FPR, with the
results obtained through 10-fold cross-validation providing both the mean and standard
deviation (Std) for each metric. In the Statlog dataset (Table 3), the CSA-DE-LR method
clearly outperformed the other methods across all metrics, achieving the highest ACC,
F1, MCC, and ROC-AUC scores. This clear superiority of CSA-DE-LR, particularly in
significantly lowering the FNR to 0.099, instills confidence in its effectiveness, making it
an efficient choice for the Statlog dataset.

Similarly, for the Cleveland dataset (Table 4), the CSA-DE-LR method again
demonstrated superior performance, leading to ACC, F1, MCC, and ROC-AUC scores.
While the FNR of CSA-DE-LR was slightly higher compared to XGBoost, it excelled in
minimizing the FPR, establishing it as the most effective method for this dataset.
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Table 4 Comparison of several popular classifiers and the proposed method on the Cleveland dataset, measured using metrics like ACC, F1
Score, MCC, ROC-AUC Score, FNR, FPR, and training time in seconds (Time), based on 10-fold cross-validation results. The highest values are
highlighted in bold.

Method ACC± Std F1± Std MCC± Std ROC-AUC± Std FNR± Std FPR± Std Time± Std

DT 81.66± 0.060 78.19± 0.094 63.14± 0.130 80.96± 0.067 0.238± 0.149 0.142± 0.063 0.001± 0.000
LDA 85.33± 0.068 83.31± 0.079 71.05± 0.132 85.04± 0.067 0.189± 0.105 0.109± 0.092 0.001± 0.000
MLP 85.66± 0.068 83.35± 0.088 71.78± 0.130 85.35± 0.069 0.187± 0.136 0.104± 0.064 0.005± 0.002
RF 85.33± 0.061 83.34± 0.067 71.05± 0.123 84.72± 0.058 0.197± 0.100 0.107± 0.091 0.027± 0.001
XGBoost 86.00± 0.051 84.14± 0.055 72.43± 0.099 85.74± 0.047 0.180± 0.087 0.104± 0.079 0.013± 0.001
SVM 83.33± 0.066 80.40± 0.092 66.90± 0.132 82.78± 0.068 0.228± 0.123 0.115± 0.091 0.005± 0.000
LR 83.00± 0.078 80.78± 0.087 66.50± 0.145 82.75± 0.075 0.205± 0.115 0.139± 0.119 0.002± 0.001
CSA-LR 84.00± 0.047 81.98± 0.055 68.40± 0.088 83.86± 0.045 0.184± 0.094 0.139± 0.082 9.107± 0.124
DE-LR 83.33± 0.061 82.08± 0.065 67.14± 0.123 83.31± 0.058 0.156± 0.079 0.178± 0.099 8.755± 0.207
CSA-DE-LR 86.67± 0.059 84.64± 0.066 74.32± 0.115 86.52± 0.056 0.191± 0.105 0.077± 0.079 0.720± 0.033

The consistently high performance of CSA-DE-LR across both datasets underscores its
effectiveness in handling the diverse characteristics of heart disease data. In contrast, other
classification methods showed varying levels of efficiency. However, they did not match
the balanced performance of CSA-DE-LR, particularly in achieving low false negative rates
without a significant increase in false positives. These findings, detailed in Tables 3 and
4, highlight the importance of incorporating advanced optimization techniques like CSA
and DE into logistic regression models. CSA-DE-LR’s adaptability and accuracy position
it as a valuable tool for medical diagnostic applications, offering potential enhancements
in diagnostic decision-making processes.

Although the primary focus of the research was on CAD using the Statlog and Cleveland
datasets, the performance of the proposed method was also evaluated on the Breast Cancer
datasets (WBCO and WBCD) to demonstrate its generalizability and provide additional
validation. In evaluating the WBCO and WBCD datasets, the different optimization
strategies (F1-Opt, MAE-Opt, and MCC-Opt) produced distinct results, as presented in
Table 5. For the WBCD dataset, the MCC-Opt strategy achieved the best performance
across all metrics, including ACC (98.93%), F1 (98.57%), MCC (97.76%), and ROC-AUC
(98.68%). It also minimized the false negative rate (FNR) at 0.024 and false positive
rate (FPR) at 0.003, demonstrating strong classification capabilities. This indicates that the
MCC-Opt strategy is highly effective at distinguishing between classes in theWBCDdataset.
For the WBCO dataset, the MAE-Opt strategy stood out as the best performer, delivering
high scores in ACC (97.94%), F1 (96.93%), MCC (95.49%), and ROC-AUC (98.28%).
It also achieved the lowest FNR (0.008) and FPR (0.027), showcasing its effectiveness in
classifying breast cancer data accurately. Furthermore, the MAE-Opt strategy required the
least amount of time for training on the WBCD dataset, highlighting its computational
efficiency.

These findings underscore the importance of using tailored optimization strategies
to accommodate the specific characteristics of each dataset. For the WBCO dataset,
MAE-Opt provides a strong balance between accuracy and computational efficiency, while
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Table 5 Comparative analysis of optimization strategies (F1-Opt, MAE-Opt, andMCC-Opt) of the proposed method onWBCD andWBCO
datasets using 10-fold cross validation. Performance metrics: ACC, F1, MCC, ROC-AUC, FNR, FPR, and training time (Time) in seconds with
standard deviations (Std). The highest values are highlighted in bold.

WBCD WBCO

Criteria F1-Opt MAE-Opt MCC-Opt F1-Opt MAE-Opt MCC-Opt

ACC± Std 98.21± 0.016 98.39± 0.015 98.93± 0.010 97.65± 0.016 97.94± 0.015 97.65± 0.013
F1± Std 97.84± 0.017 97.74± 0.022 98.57± 0.013 96.54± 0.028 96.93± 0.026 96.64± 0.020
MCC± Std 95.95± 0.035 96.52± 0.033 97.76± 0.019 94.88± 0.037 95.49± 0.035 94.92± 0.029
ROC-AUC± Std 98.08± 0.016 97.98± 0.019 98.68± 0.015 98.05± 0.013 98.28± 0.012 97.90± 0.011
FNR± Std 0.036± 0.034 0.035± 0.033 0.024± 0.027 0.008± 0.016 0.008± 0.016 0.015± 0.019
FPR± Std 0.003± 0.008 0.006± 0.011 0.003± 0.007 0.031± 0.024 0.027± 0.023 0.027± 0.024
Time± Std 1.208± 0.055 1.028± 0.035 1.260± 0.056 1.242± 0.042 1.366± 0.054 1.674± 0.062

Table 6 Comparison of the proposed method CSA-DE-LR with LR, CSA-LR, DE-LR, and several popular classifiers on theWBCD dataset,
measured using metrics like ACC, F1 score, MCC, ROC-AUC score, FNR, FPR, and training time in seconds (Time), based on 10-fold cross-
validation results. The highest values are highlighted in bold.

Method ACC± Std F1± Std MCC± Std ROC-AUC± Std FNR± Std FPR± Std Time± Std

DT 93.92± 0.026 91.81± 0.032 87.40± 0.051 93.17± 0.031 0.105± 0.068 0.032± 0.034 0.004± 0.001
LDA 96.07± 0.021 94.46± 0.028 91.79± 0.040 94.97± 0.025 0.098± 0.051 0.003± 0.007 0.001± 0.000
MLP 98.04± 0.017 97.33± 0.023 95.88± 0.035 97.82± 0.021 0.032± 0.043 0.011± 0.019 0.011± 0.005
RF 96.79± 0.016 95.64± 0.023 93.30± 0.033 96.49± 0.021 0.047± 0.053 0.023± 0.029 0.150± 0.005
XGBoost 97.50± 0.016 96.51± 0.024 94.68± 0.035 96.92± 0.022 0.053± 0.046 0.009± 0.013 0.026± 0.003
SVM 97.32± 0.022 96.27± 0.029 94.21± 0.045 96.78± 0.024 0.053± 0.036 0.011± 0.014 0.011± 0.000
LR 96.25± 0.036 95.03± 0.044 92.05± 0.074 95.94± 0.036 0.052± 0.042 0.029± 0.039 0.016± 0.011
CSA-LR 97.67± 0.022 96.82± 0.033 95.03± 0.050 97.33± 0.027 0.038± 0.045 0.014± 0.019 16.89± 0.073
DE-LR 98.03± 0.014 97.23± 0.022 95.77± 0.032 97.50± 0.018 0.044± 0.034 0.005± 0.011 19.59± 0.320
CSA-DE-LR 98.93± 0.010 98.57± 0.013 97.76± 0.019 98.68± 0.015 0.024± 0.027 0.003± 0.007 1.260± 0.056

MCC-Opt delivers the best classification performance for the WBCD dataset. Ultimately,
this comparative analysis demonstrates that the appropriate optimization strategy can
significantly impact the performance of a machine learning model, emphasizing the need
for a context-driven approach.

In Table 6, the performance of the proposed CSA-DE-LR model on the WBCD dataset
shows clear superiority over other classifiers. The model achieves exceptional results across
key metrics, with an accuracy of 98.93% and an F1 score of 98.57%, demonstrating its
ability to accurately classify the benign and malignant classes. The MCC and ROC-AUC
scores of 97.76% and 98.68%, respectively, highlight its robust predictive power and ability
to differentiate between the classes. Moreover, with an FNR of 0.024 and an FPR of 0.003,
the model minimizes errors and reduces the risk of incorrect classification. Despite the
high accuracy, it maintains a training time of 1.26 s, showcasing its efficiency.

Similarly, Table 7 provides insights into the performance of CSA-DE-LR and other
classifiers on the WBCO dataset. The proposed model achieves an accuracy of 97.94%
and an F1 score of 96.93%, emphasizing its classification prowess. The MCC of 95.49%
and ROC-AUC of 98.28% reflect the model’s strong ability to correctly identify the two
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Table 7 Comparison of the proposed method CSA-DE-LR with LR, CSA-LR, DE-LR, and several popular classifiers on theWBCO dataset,
measured using metrics like ACC, F1 score, MCC, ROC-AUC score, FNR, FPR, and training time in seconds (Time), based on 10-fold cross-
validation results. The highest values are highlighted in bold.

Method ACC± Std F1± Std MCC± Std ROC-AUC± Std FNR± Std FPR± Std Time± Std

DT 95.00± 0.029 92.79± 0.042 89.12± 0.061 94.82± 0.026 0.059± 0.033 0.045± 0.044 0.001± 0.000
LDA 96.18± 0.027 94.62± 0.035 91.76± 0.057 95.57± 0.030 0.070± 0.049 0.018± 0.023 0.001± 0.000
MLP 97.65± 0.015 96.60± 0.022 94.86± 0.033 97.75± 0.015 0.020± 0.027 0.025± 0.021 0.007± 0.004
RF 97.50± 0.015 96.32± 0.025 94.53± 0.034 97.72± 0.014 0.019± 0.026 0.026± 0.023 0.017± 0.000
XGBoost 96.91± 0.019 95.54± 0.028 93.25± 0.041 97.03± 0.020 0.031± 0.033 0.029± 0.022 0.036± 0.004
SVM 97.21± 0.021 95.96± 0.032 93.87± 0.047 97.37± 0.021 0.024± 0.026 0.029± 0.024 0.006± 0.000
LR 96.62± 0.023 95.26± 0.030 92.66± 0.048 96.36± 0.025 0.048± 0.039 0.025± 0.022 0.002± 0.002
CSA-LR 97.35± 0.021 96.10± 0.033 94.24± 0.047 97.40± 0.022 0.027± 0.040 0.024± 0.028 11.60± 0.098
DE-LR 97.35± 0.021 96.15± 0.033 94.27± 0.046 97.75± 0.018 0.011± 0.017 0.033± 0.029 9.600± 0.085
CSA-DE-LR 97.94± 0.015 96.93± 0.026 95.49± 0.034 98.28± 0.011 0.007± 0.015 0.026± 0.023 1.366± 0.054

classes. Furthermore, a low FNR of 0.007 and an FPR of 0.026 underscore its reliability
in minimizing classification errors. Despite its comprehensive performance, CSA-DE-LR
maintains an efficient training time of 1.366 s.

Overall, the results from Tables 3, 4, 6 and 7 highlight that the CSA-DE-LR model offers
substantial improvements over other methods, effectively combining the strengths of CSA
and DE optimization techniques with logistic regression. Its consistently high performance
across diverse metrics ensures reliable and accurate classification, making it a valuable tool
for medical diagnostics.

In this study, Wilcoxon signed-rank tests were conducted to evaluate the statistical
significance of performance differences between CSA-DE-LR and the other classifiers.
Each classifier was tested 30 times across four datasets using the hyperparameters that
had previously provided the best performance. The performance results were calculated
using 10-fold cross-validation, and the final results are expressed as averages for Accuracy
(ACC), F1 score (F1), andMatthews correlation coefficient (MCC). Table 8 demonstrates a
consistent and statistically significant difference in classification performance between the
proposed CSA-DE-LR method and other classifiers across four datasets. This conclusion is
drawn from theWilcoxon signed-rank tests, which consistently returned very low p-values,
generally considered significant at less than 0.05, across all three evaluation metrics. These
low p-values indicate that the performance differences between CSA-DE-LR and the other
classifiers are statistically significant and unlikely to occur due to random chance.

In the Cleveland dataset, CSA-DE-LR’s performance showed statistically significant
improvements compared to other classifiers, with p-values suggesting a meaningful
difference. In the Statlog dataset, CSA-DE-LR again significantly outperformed other
methods, with the Wilcoxon tests confirming substantial differences in performance.
Similar trends were observed in the WBCD dataset, where CSA-DE-LR demonstrated its
effectiveness in all three metrics, consistently outperforming other classifiers. Finally, in
the WBCO dataset, CSA-DE-LR maintained its advantage, with significant improvements
across all evaluation metrics.
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Table 8 Wilcoxon test results indicating p-values for comparisons between CSA-DE-LR and other classifiers across multiple datasets.

Cleveland Statlog WBCD WBCO

Classifier ACC F1 MCC ACC F1 MCC ACC F1 MCC ACC F1 MCC

LR 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

CSA-LR 1.86e−09 1.30e−08 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

DE-LR 1.86e−09 3.73e−09 1.86e−09 2.51e−06 1.86e−09 3.73e−09 9.76e−06 8.01e−08 8.01e−08 2.53e−06 3.73e−09 3.73e−09

MLP 9.31e−09 1.30e−08 9.31e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

RF 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

XGBoost 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

DT 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

SVC 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

LDA 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09 1.86e−09

These results indicate that the proposed CSA-DE-LR method consistently provides
superior classification performance over other classifiers across various data environments.
The low p-values reflect statistically significant differences, implying that CSA-DE-LR is
a reliable and effective classification method that generally outperforms other existing
classifiers.

While the proposedmethod demonstrates reliable and robust classification performance
with its various optimization options, there is still significant potential for further enhancing
its classification capabilities on the Statlog and Cleveland datasets. In this regard, a detailed
examination of the models that produce the best results with F1-Opt and MCC-Opt on the
Statlog and Cleveland datasets and analyzing their respective weights could offer invaluable
insights for model refinement and feature selection. Figure 1 illustrates the average feature
weights derived from a 10-fold cross-validation of the best-performing models for both
datasets. The comparative analysis presented in Fig. 1 highlights the predictive power
of certain clinical variables in the context of heart disease. Notably, features such as ‘cp’
(chest pain type), ‘thal’ (thalassemia), and ‘ca’ (number of significant vessels colored by
fluoroscopy) demonstrate substantial positive weights across both datasets, underscoring
their critical importance in predicting cardiovascular events. These features have been
consistently acknowledged as crucial factors in diagnosing heart disease, irrespective of
patient cohort or dataset characteristics. Conversely, ‘thalach’ exhibits a significant negative
weight, suggesting its inverse correlation with the target variable.

However, some features exhibit contrasting weights between the two datasets, which
is particularly intriguing. In Statlog, ‘age’ shows a positive weight, suggesting a direct
correlation with the presence of heart disease, whereas in Cleveland, it has a negative
weight, which could indicate a less straightforward or even inverse relationship in that
specific patient population. Similarly, ‘sex’ presents a positive weight in Statlog, while it
carries a lesser weight in Cleveland. These discrepancies could be due to demographic
differences in the datasets or varying patterns of disease presentation between the groups.

Furthermore, ‘trestbps’ (resting blood pressure) shows a notable difference, with a high
positive weight in Statlog but a negative one in Cleveland. This suggests that the same
clinical measurement can have a different prognostic value depending on the dataset,
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Figure 1 Mean weight of each feature for the Statlog and Cleveland datasets.
Full-size DOI: 10.7717/peerjcs.2197/fig-1

potentially influenced by the underlying distribution of the feature, its interaction with
other variables, or population-specific health trends.

Additionally, ‘restecg’ (resting electrocardiographic results) exhibits a weight close
to zero in both datasets, implying its limited predictive value in the context of these
datasets. This observation aligns with the principle of parsimony, suggesting that the
model complexity can be reduced without significant loss of information by omitting
this variable. Simplifying the model this way could improve its generalizability and
interpretability, making it more accessible for clinical use.

The negative weights for features such as ‘chol’ (serum cholesterol) and ‘fbs’ (fasting
blood sugar) in both datasets challenge common assumptions about the role of these
factors in heart disease, prompting a re-evaluation of their predictive significance. This
could reflect the multifactorial nature of heart disease, where the relevance of certain risk
factors may be diminished or outweighed by others in specific populations.

In conclusion, this analysis underlines the necessity of dataset-specific model tuning
and the careful consideration of feature selection based on their differential impact across
datasets. It highlights the importance of context in developing predictive models for heart
disease and advocates for a nuanced approach to understanding the contribution of each
clinical variable.

Nonetheless, inconsistencies between equivalent features across the Statlog and
Cleveland datasets necessitate a more nuanced examination. Accordingly, Figs. 2 and
3 illustrate the fold-specific weights for each feature within the Statlog and Cleveland
datasets, respectively. Under normal circumstances, one would anticipate fold weights for
the same attribute to exhibit similar directionality and closely clustered values. As depicted
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Figure 2 Fold-specific weights for each feature of the best-performing model on the Statlog dataset.
Full-size DOI: 10.7717/peerjcs.2197/fig-2

Figure 3 Fold-specific weights for each feature of the best-performing model on the Cleveland dataset.
Full-size DOI: 10.7717/peerjcs.2197/fig-3

in Fig. 2, such consistency is largely maintained for the Statlog dataset, with the notable
exception of the ‘restecg’ attribute.

Prompted by these observations, amethodical reevaluationwas undertaken by selectively
omitting the ‘restecg’ feature from the Statlog dataset and the ‘trestbps’, ‘fbs’, and ‘restecg’
features from the Cleveland dataset. This was undertaken to discern the consequential
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Table 9 Enhancing diagnostic performance: a comparative analysis of the CSA-DE-LRmethod with
feature selection on Cleveland and Statlog datasets.

Criteria Statlog (F1-Opt) Cleveland (MCC-Opt)

ACC± Std 88.15 ± 0.027 88.00 ± 0.049
F1± Std 86.86 ± 0.037 86.08 ± 0.059
MCC± Std 76.63 ± 0.054 76.17 ± 0.100
ROC-AUC± Std 88.44 ± 0.027 87.54 ± 0.049
FNR± Std 0.099 ± 0.071 0.175 ± 0.089
FPR± Std 0.132 ± 0.051 0.074 ± 0.050

effects on the classification performance and to understand whether excluding these
variables would lead to a model with improved predictive consistency and generalizability.
Here, this study aims to enhance themodel’s robustness by eliminating variables that exhibit
high variability and do not consistently contribute to predictive accuracy. This strategy is
particularly pertinent in the context of medical diagnostics, where the interpretability and
reliability of a predictive model are paramount.

Following this strategic reevaluation and feature omission, the performance of the
optimized models was tested: CSA-DE-LR with F1-Opt for the Statlog dataset and CSA-
DE-LR with MCC-Opt for the Cleveland dataset. These models were executed using the
same hyperparameter settings that previously yielded optimal results. The outcomes of this
process are detailed in Table 9. Applying these models with refined feature sets aimed to
further probe into the effectiveness of the feature selection approach. This step was crucial
in determining the impact of feature exclusion on the overall model performance, mainly
focusing on predictive accuracy and consistency.

Table 9 presents the best results after implementing feature selection, directly comparing
initial models. This comparison not only underscores the tangible benefits of feature
selection in enhancing the performance of CSA-DE-LR but also highlights its practical
implications. The improvements in accuracy, F1 score, MCC, and ROC-AUC for both
datasets illustrate the method’s heightened ability to effectively discern and classify cases
post feature selection. These enhancements are particularly significant inmedical diagnostic
applications where precision is paramount, demonstrating the real-world impact of this
research. Furthermore, the stability observed in FNR and FPR rates across both datasets
post feature selection reaffirms the reliability of the CSA-DE-LRmethod, providing further
assurance of its practicality and usefulness.

In essence, the results in Table 9 validate the efficacy of feature selection in this proposed
method and highlight its critical role in achieving a balance between model complexity and
performance. This balance is essential in ensuring that the model remains both accurate
and interpretable, a vital consideration in the field of medical diagnostics.

Finally, the proposed method is compared with outcomes from previous studies. While
numerous studies have utilized the Statlog andCleveland datasets, only a few have employed
the 10-fold cross-validation technique. Studies with similar preprocessing procedures that
also applied 10-fold cross-validation were selected to ensure a fair comparison for reasons
such as some studies: (i) using the highest value obtained after cross-validation instead of
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Table 10 A historical comparison of CSA-DE-LR performance against previous studies on Cleveland and Statlog heart disease datasets. The
highest values are highlighted in bold.

Dataset Method ACC (%) F1 (%) K-Fold CV Article

NN-DEGI-BP 86.66 – 10 Leema, Nehemiah & Kannan (2016)
MLP 82.50 83.80 10 Kolukısa et al. (2019)
Ensemble 83.43 81.10 10 Kolukisa et al. (2020)
PSO-EmNN 84 82.29 10 Shahid & Singh (2020)
MLP-PSO 84.60 84.40 5 Al Bataineh & Manacek (2022)
MGOHBO-KELM 82.22 – 10 Shan et al. (2022)
MLP 85.47 83.90 10 Kolukisa & Bakir-Gungor (2023)

Cleveland

CSA-DE-LR 88.00 86.08 10 Proposed method (2024)
PSO-EmNN 85.20 84 10 Shahid & Singh (2020)
MGOHBO-KELM 81.85 – 10 Shan et al. (2022)
MLP 85.55 85.30 10 Kolukisa & Bakir-Gungor (2023)
LR 85.2 – 10 Dhanka, Bhardwaj & Maini (2023)
XGBoost 81.5 – 10 Dhanka, Bhardwaj & Maini (2023)

Statlog

CSA-DE-LR 88.15 86.86 10 Proposed method (2024)

the mean value of all results (Nalluri et al., 2017), (ii) showing resampling results (Dhanka
& Maini, 2024), and (iii) putting the results obtained on the train set instead of the test
set. The effectiveness of the CSA-DE-LR method is not just underscored in a comparative
analysis with these studies, as detailed in Table 10, but it also shines through, highlighting
its novelty and superiority. This comparison, focusing on both the Cleveland and Statlog
datasets, reveals the significant advancements in classification performance achieved by
the CSA-DE-LR method, sparking excitement about its potential in the field of medical
diagnostics.

For the Cleveland dataset, CSA-DE-LR, optimized through 10-fold cross-validation,
demonstrates a notable improvement in both ACC and F1 scores, achieving 88.0% and
86.08%, respectively. This surpasses the results of previous methods like NN-DEGI-BP
(2016), variousMLP implementations (2019–2023), Ensemble (2020), PSO-EmNN (2020),
and MGOHBO-KELM (2022). The improvement is particularly evident when compared
with the most recent MLP method in 2023, underscoring the advancements made by
CSA-DE-LR in classification accuracy and precision.

Similarly, for the Statlog dataset, CSA-DE-LR outperforms the other methods listed,
including PSO-EmNN (2020), MGOHBO-KELM (2022), MLP (2023), LR (2023), and
XGBoost (2023). With an ACC of 88.15% and an F1 score of 86.86%, the CSA-DE-LR
method demonstrates its superiority in this dataset, further validating the proposed
approach’s efficacy.

These results, achieved in 2024, position CSA-DE-LR as a leading method in heart
disease classification. This method may identify instances of heart disease with lower error
rates, as evidenced by its high accuracy, F1-score, and ROC-AUC. Low false negative and
false positive rates are attained by CSA-DE-LR, which reduces misdiagnoses and reduces
needless therapies while also improving patient outcomes. By providing insights into
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important clinical aspects, the feature weights analysis enables more focused and effective
diagnostic procedures. These elements, along with the method’s resilience and flexibility,
imply that CSA-DE-LR can be an effective tool in medical contexts by speeding diagnostic
procedures and optimizing resource allocation, hence lowering the cost of healthcare.

Ethical implications of deploying ML models in healthcare
Healthcare professionals may greatly benefit from ML models, which have the potential
to improve patient outcomes and clinical decision-making. To guarantee the proper and
ethical use of predictive technology, it is necessary to address important ethical concerns
in conjunction with these breakthroughs (Chotrani, 2021). Securing patient privacy and
confidentiality is one of the ethical issues with machine learning in healthcare (Manoharan
et al., 2023). Data protection laws were followed, and steps were taken to anonymize patient
information in order to reduce privacy concerns. In this work, a cardiovascular disease
prediction model was trained using publicly accessible healthcare datasets, including
Cleveland and Statlog. These datasets frequently have usage and sharing agreements that
the researchers agreed to abide by. These policies may include limitations on redistribution,
citation requirements, and ethical considerations.

The possibility of biases in the machine learning model either from the training data or
the algorithms themselves is a further ethical concern. Biases can manifest in various forms,
including demographic, socioeconomic, or access-related biases (Mehrabi et al., 2021). This
work included rigorous data pretreatment methods to reduce biases. Addressing biases
in the model aims to ensure fairness and equity in predictive healthcare analytics. In
this work, we emphasize the significance of human supervision in addition to machine
learning forecasts for cardiovascular disorders. Although our models provide insightful
information, they should not be used as a substitute for physicians but rather as decision
support tools (Bankins, 2021). In order to guarantee the proper implementation of models
and patient-centered care, collaboration between data scientists, healthcare professionals,
and ethicists is essential. Additionally, this work supports accountability and transparency,
which are essential values in the moral application of machine learning algorithms (Hosain
et al., 2023). This involves transparent reporting of performance metrics, documentation
of decisions, and addressing errors, fostering trust in the proposed predictive model for
clinical practice.

CONCLUSIONS
This study introduced CSA-DE-LR, a novel hybrid classification method that integrates
the clonal selection algorithm (CSA) and differential evolution (DE) to enhance diagnostic
accuracy for cardiovascular diseases (CVD). The empirical analysis of the Cleveland
and Statlog datasets showed that CSA-DE-LR outperforms current state-of-the-art
machine learning methods in classification accuracy and balanced performance. Multiple
optimization techniques, including the F1 score, Matthews correlation coefficient (MCC),
and mean absolute error (MAE), highlight the method’s adaptability across different
scenarios.
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One of the notable advantages of CSA-DE-LR is its high accuracy and balanced
performance, which is consistent across various metrics, indicating robustness. The
method’s adaptability to specific datasets through customized feature selection enhances
its applicability and generalizability in varied contexts. Additionally, incorporating diverse
optimization approaches offers the flexibility to cater to different needs and circumstances.

However, the study also acknowledges certain limitations. The computational complexity
of the hybrid approach can be higher, especially with larger datasets. The complex nature
of these hybrid models could pose challenges in terms of interpretability, particularly in
clinical settings.

Future research should consider testing CSA-DE-LR on various medical datasets
to validate its generalizability and applicability further. Exploring how adaptable this
method is to different medical conditions and diseases could provide broader insights.
Additionally, there is scope for enhancing the computational efficiency of the hybrid
model and improving its interpretability. Investigating the feasibility of implementing
CSA-DE-LR in clinical settings for real-time diagnostic tools could be a significant step
forward. Lastly, combining the model with deep learning approaches might enhance its
performance and broaden its application spectrum.

In summary, CSA-DE-LR emerges as a promising method that overcomes some
limitations of traditional machine learning and metaheuristic approaches to diagnosing
CVD. Its potential to improve diagnostic processes in the medical field is substantial, but it
requires ongoing exploration and refinement for broader adoption in clinical applications.
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