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ABSTRACT
Background and Purpose: COVID-19 is a new strain of viruses that causes life
stoppage worldwide. At this time, the new coronavirus COVID-19 is spreading
rapidly across the world and poses a threat to people’s health. Experimental medical
tests and analysis have shown that the infection of lungs occurs in almost all
COVID-19 patients. Although Computed Tomography of the chest is a useful
imaging method for diagnosing diseases related to the lung, chest X-ray (CXR)
is more widely available, mainly due to its lower price and results. Deep learning
(DL), one of the significant popular artificial intelligence techniques, is an effective
way to help doctors analyze how a large number of CXR images is crucial to
performance.
Materials and Methods: In this article, we propose a novel perceptual two-layer
image fusion using DL to obtain more informative CXR images for a COVID-19
dataset. To assess the proposed algorithm performance, the dataset used for this work
includes 87 CXR images acquired from 25 cases, all of which were confirmed with
COVID-19. The dataset preprocessing is needed to facilitate the role of convolutional
neural networks (CNN). Thus, hybrid decomposition and fusion of Nonsubsampled
Contourlet Transform (NSCT) and CNN_VGG19 as feature extractor was used.
Results: Our experimental results show that imbalanced COVID-19 datasets can be
reliably generated by the algorithm established here. Compared to the COVID-19
dataset used, the fuzed images have more features and characteristics. In evaluation
performance measures, six metrics are applied, such as QAB/F, QMI, PSNR, SSIM,
SF, and STD, to determine the evaluation of various medical image fusion (MIF).
In the QMI, PSNR, SSIM, the proposed algorithm NSCT + CNN_VGG19 achieves
the greatest and the features characteristics found in the fuzed image is the largest.
We can deduce that the proposed fusion algorithm is efficient enough to generate
CXR COVID-19 images that are more useful for the examiner to explore patient
status.
Conclusions: A novel image fusion algorithm using DL for an imbalanced
COVID-19 dataset is the crucial contribution of this work. Extensive results of the
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experiment display that the proposed algorithm NSCT + CNN_VGG19 outperforms
competitive image fusion algorithms.

Subjects Artificial Intelligence, Computer Vision
Keywords Coronavirus, COVID19, NSCT, CNN, Feature extraction, Feature analysis,
Image fusion, Deep learning, Machine learning, VGG19

INTRODUCTION
MIF provides crucial information representing the source images helpful in diagnosis,
prognosis, treatment, and classification (Ganasala & Kumar, 2016). For a quick and
accurate diagnosis, supplementary information must be extracted from the various source
images in one image. It is well known that medical images have different and variable
modalities that carry information with complementary properties (Srivastava, Prakash &
Khare, 2016). A selection of image pixels or patches is performed to construct a fuzed
image in the spatial domain to preserve each source image’s information. The major
limitation of spatial information fusion is the non-integrality of the fuzed information
producing the contrast and sharpness, which in turn leads to the decrease of detailed
information in the fuzed image (Liu et al., 2017a; Zhu et al., 2018, 2019).

Chest X-Ray imaging, also called CXR, is generally a commonmethod and non-invasive
radiology examination. In the recent pandemic of COVID-19, the use of CXR is desired
because radiologists easily interpret it, and the time-consumption is decreased with
minimum assessment errors (Liu et al., 2019). The fusion of CXR images can be performed
in feature extraction and classification stages, as demonstrated by Liu et al. (2019) and
Huang et al. (2020a). Furthermore, CXR can be utilized as large-scale input images that
can be combined with deep convolution neural networks (DCNN) to boost the
performance of the variable sizes of thoracic diseases (Hu et al., 2020)

One of the recent fusion techniques is fusion based on Nonsubsampled Contourlet
Transform (NSCT). The fusion technique can avoid spectral aliasing and provide more
characteristics of the invariance translation (Huang et al., 2020b). Moreover, NSCT is
proposed in the input image decomposition level to transform the source image to both
low and high-pass subbands, providing more details and reservation of input images
(Liu et al., 2019). The limitation of using NSCT is the resulting fusion performance in
humanoid visualization based objective metrics that need more enhancement like adding
an optimizer or classifier (Bhatnagar, Wu & Liu, 2013; Tian, Yibing & Fang, 2016;
Gomathi & Kalaavathi, 2016). Another fusion technique is the utilization of deep learning
in fusion strategies. Liu et al. (2018) present convolutional neural networks (CNN) for
image fusion by which a weighted map of the source images are generated with promising
results.

The correlation between NSCT and deep learning is demonstrated in Liu et al.
(2017b) by which a fusion based on CNN and NSCT of multi-focus images is performed.
Moreover, two-scale decomposition transforms are presented in Lahoud & Süsstrunk
(2019) such that the image layers are fuzed based on CNN intermediate feature maps.
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They used a guided filter to smooth the weight maps and enforce consistency with the
source images. Therefore, the merge between deep learning and NSCT is very attractive
and helpful in discovering more details and consuming a minimum of less time
(Hermessi, Mourali & Zagrouba, 2018; Tang et al., 2018; Amin-Naji, Aghagolzadeh & Ezoji,
2019).

The development and design of an effective MIF algorithm based on DL is still an open
area. The key contributions of this research may be summarized as the following:

� Initially, the proposed approach decomposes the image into subbands using NSCT.

� For feature extraction of the output CXR COVID-19 images from NSCT, CNN-VGG19
is then utilized.

� Euclidean distance and weights subband calculations are applied to obtain the fuzed
rules, a temporal consistency of extracted features, Euclidean distance, and weights
subband calculations.

� A fuzed image is computed using the inverse NSCT.

� Finally, the comparative evaluation was performed using two methods; the first method
is to determine the pre-trained framework efficiency using evaluation metrics. While
the second method is based on classifying the fuzed CXR COVID-19 images using the
deep learning approach CNN-VGG19 compared with the state-of-the-art.

The paper is organized as follows: in “Related Work”, the authors review the research
field's literature. “Proposed Algorithm Framework” displays the suggested algorithm
design, evaluation measures, and implementation techniques. The discussion and results
then follow in “Evaluation Matrices” and “Experimental Results and Discussion”, and the
conclusion of the research is then stated in “Conclusion”.

RELATED WORK
Before explaining our architecture in more depth, this article's following section presents a
brief introduction to the NSCT fusion strategy and deep neural network.

COVID-19 or coronavirus is an updated version of pneumonia of unknown cause
found in Wuhan, China, and was first confirmed in China’s WHO Country Office; the
disease was named COVID-19 by WHO (Cascella et al., 2020). To fight this virus’s spread,
the cooperation between specialists in medical and artificial intelligence is required.
From this pandemic, the attempts to diagnosis, classify, detect, and specify the suitable
recovery method is performed and widely spread all over the countries (Bullock et al., 2020;
Shi et al., 2020; Pham et al., 2020; Elavarasan & Pugazhendhi, 2020; Vafea et al., 2020;
Raoofi et al., 2020).

Certainly, data fusion is essential to discover more details and improve observed data's
extracted features (Meng et al., 2020; Attallah, Sharkas & Gadelkarim, 2020; Thabtah &
Peebles, 2020). Typically, the Generative Adversarial Network (GAN) is widely used for
data augmentation, especially for small data presented by Shams et al. (2020) for CXR
images. In medical applications, the fusion of images is performed to discover essential
parts (Tian, Yibing & Fang, 2016). It is well known that images are in three levels: binary
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level 0 and one, grayscale level 0 to 255, and RGB level. Most medical images, especially
CT and CXR images, are grayscale (Ran et al., 2020).

Image fusion (IF) is an essential branch of information science. IF was widely used in
different fields, including medical imaging, bioinformatics, simulation of military targets,
etc. (Raol, 2009). This paper will study the fusion strategies based NSCT, deep learning
CNN-VGG19, and the hybrid of NSCT and deep learning CNN-VGG19.

NSCT fusion strategy
The combination of low and high-frequency coefficient of source images is called
NSCT (Bhatnagar, Wu & Liu, 2013) presented an architecture applied to CT and MRI
images to be fuzed using NSCT to extract edge information and prominent texture based
on directive contrast of the frequency coefficients. The main limitation is the shift variance
problem that may occur in the fuzed images. To overcome this problem, a cascaded
combination of NSCT and stationary wavelet transform (SWT) is presented by Bhateja
et al. (2015) to enhance the phase's shift variance problem information of the fuzed images.

Precisely, pixel-level image fusion is promising in many image fusion strategies. Li et al.
(2017) present multi-scale transformation coefficients to produce fuzed images with
inter-scale correlation. They apply MRI and PET images to observe fusion performance
objectives and determine the source images’ miss-registration.

Hybrid decomposition of NSCT and morphological sequential toggle operator (MSTO)
is presented by Wang et al. (2020). Their methodology can extract significant feature
information of the source images while preserving the unambiguous edges with a little
produced noise in both visible and infrared image fusion.

Bashir et al. (2019) present an algorithm for multi-modal imagery based on SWT,
and principal component analysis (PCA) applied to CXR, CT, and MRI images.

In addition to using NSCT in fusion strategy, the noise distribution produced by CXR
images can be handled using Poisson-Gaussian noise analysis, as presented by Lee, Lee &
Kang (2018). The authors apply their algorithm on CXR images to reduce the resulting
noise images. Moreover, Chandra et al. (2020) presented an algorithm to extract shape
features from CXR images based on a gray level co-occurrence matrix (GLCM) with an
improved abnormality detection.

Deep learning in image fusion strategies
Deep learning (DL) approaches can be used as a late step in most fusion strategies
(Lee, Mohammad & Henning, 2018). Most of CT and CXR images in medical applications
can be handcrafted and fuzed in score level fusion strategy (Baumgartl et al., 2020).

Moreover, DL can be used as a feature extractor by which the fusion process is
carried out in the feature extraction step. Next, the choice of features is determined using
both CNN and PCA presented by Bhandary et al. (2020). The combination of one-
dimensional feature vectors and the dimensionality reduction is performed using PCA are
then applied to the source CXR images and tested the normal bacterial pneumonia.

A proposed method based on pre-trained CNN to fuze different subsets and transfer
learning classifiers is presented by Ozkaya, Ozturk & Barstugan (2020). It is applied to CT
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images to classify COVID-19 cases. To visualize different registration of essential data
of the source images using fixed and moving data labels as well as fixed and moving
images, Haskins, Kruger & Yan (2020) presented an algorithm based on DCNN applied in
MRI, CXR, and CT modality.

Hybrid NSCT and CNN fusion strategies
Hybrid techniques are generally helpful in many medical applications as it supports the
strength points of approach while avoiding issues of shortage (Jaradat & Langari, 2009).
In this study, we implement the use of a hybrid fusion technique using NSCT and
CNN. The fusion of infrared and visible medical images can be performed using NSCT and
dual-channel of pulse coupled neural network (PCNN) as presented by Xiang, Yan & Gao
(2015).

A deep-stacked convolution neural network (DSCNN) for multiband images represent
CT, MRI, and PET scan are presented by Lin et al. (2020). They used DSCNN and
NSCT to fuze multiband images reconstructed by long short-term memory (LSTM) and
DSCNN to overcome the data-driven approach's controllability problem.

Hybrid multimodality medical image fusion applied in both CXR and CT images were
presented by Rajalingam, Priya & Bhavani (2018) based on convolutional and hybrid
algorithms for disease analysis. A fusion architecture based on CNN of two source images
and decomposition level based on NSCT is reconstructed using Gaussian pyramid
reconstruction of the fuzed images (Huang et al., 2020b).

The maximum selection fusion rule of two source CT images based on NSCT and
spatial frequency analysis of the source images are applied to the pulse coupled neural
network presented as hybrid fusion architecture by Das & Kundu (2012). Moreover, for
MRI modality (Maharjan et al., 2020) proposed a hybrid model to detect brain tumors
using NSCT and extreme learning machinery (ELM).

Fusion strategies in classifying COVID-19 CXR images
Different approaches are recently used to classify CXR images with fusion strategies to
enhance, detect, and recognize the COVID-19 cases easier and precisely. The fusion of
deep learning and statistical features of the enrolled CXR images are performed to ensure
the clarity of the relevant information without losing more details where the patches of
CXR images of COVID-19 cases are located.

Pereira et al. (2020) presented four phases to classify CXR images: the feature extraction,
the Early Fusion technique, the data resampling, and the generation and classification of
outcomes for the multi-class and hierarchical scenarios. They used both the Early and
Late Fusion strategy based on recognized texture descriptors and a pre-trained CNN
model. The fusion strategy is based on a weighted sum, weighted product, and the enrolled
features’ voting strength. They achieved an average F1-Score of 0.65 and 0.89 multi-class
and hierarchical classification, respectively.

Deep feature fusion algorithm presented by Wang et al. (2021) was utilized to fuze
both individual image-level features and relation-aware features to produce Graph
Convolutional Networks (GCN) and CNN, respectively. The extracted features are based
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on self-created CNN that learn image-level individually. The applied algorithm used to
classify COVID-19 cases that assist radiologists in detecting COVID-19 cases rapidly.
Commonly, deep learning fusion classifiers provide more encouraging results to detect
COVID-19 cases than traditional RT-PCR testing. It made the detection and prediction
process more reliable with increased accuracy (Panwar et al., 2020). They used a color
visualization approach to make the deep learning model more interpretable and
explainable.

Two collaborative stream networks presented by Chen et al. (2020) are used to classify
multi-label CXR images based on lung segmentation. A self-adaptive weighted fusion
scheme is applied to aggregate the contextual information in both global and lung fields
with the mean area under the curve AUC = 0.82. Moreover in Li et al. (2020) used multi-
resolution convolutional networks to learn the features and employed four different fusion
methods that are CNN, Committee, late, and Full fusion strategies for lung classification
and the results obtained are 95.01%, 97.17%, 97.92%, and 98.23% respectively.

Parallel-dilated convolutional neural network (PDCNN) based COVID-19 classification
system from chest X-ray images is presented by Chowdhury, Rahman & Kabir (2020)
generated features are fuzed into the CNN network to produce the final prediction.
They used 2,905 chest X-ray images representing COVID-19, Normal, and Pneumonia
cases with a reasonable accuracy reached to 96.58%.

COVID-19 hybrid classification approach based on a fusion of CNN and swarm-based
feature selection algorithm is presented by Sahlol et al. (2020). This combination is helpful
to obtain high performance with minimum computational time. They used fractional
order-marine predictors algorithm (FO-MPA) as an optimizer to select the most
significant features from deep features produced from CNN that usually have redundancy;
therefore, thereby depreciating the resources’ capacity higher classification rate of
COVID-19 X-ray images are achieved. The major limitation is eliminating the CNN
redundancy, and the low quality of the fuzed image may produce an error in diagnosis and
classification. For this reason, in diagnosis and classification issues, the need to improve
the quality of the fuzed image is required, and it is conducive to detect the relevant features
of the applied images.

One of the well-known methods is Non-subsampled Contourlet Transform (NSCT).
Xinqiang, Jiaoyue & Gang (2017) present an image fusion method based on local neighbor
features and NSCT with a promising fusion effect on multi-focus images, especially
medical images with infrared and visible light images.

Therefore, in this work, we exploit the advantages of deep learning approaches with
the NSCT method to obtain more precise and accurate images with specific detail to
diagnose CXR COVID-19 cases. The best of our knowledge is the fusion of NSCT, and
deep learning features are not used in the CXR COVID-19 classification issue. In Table 1,
we investigate the summary of the related work.

PROPOSED ALGORITHM FRAMEWORK
The system proposed in this article is two-layer image fusion using deep learning as shown
in Fig. 1. The proposed method can adaptively decompose two images or more and
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Table 1 Summary of the related work.

Author Modality Methodology Discussion

Wang et al.
(2021)

COVID-19 Images GCN + CNN The fusion of both individual image-level features and relation-
aware features to produce Graph Convolutional Networks
(GCN), and CNN respectively

Wang et al.
(2020)

kurtosis map Hybrid decomposition of NSCT and
morphological sequential toggle
operator (MSTO)

Their methodology extracted major feature information of the
source images and preserved the unambiguous edges with a
little produced noise in both visible and infrared image fusion

Chandra et al.
(2020)

CXR images gray level co-occurrence matrix
(GLCM)

extract shape feature from CXR images based on gray level co-
occurrence matrix (GLCM) with an improved abnormality
detection

Bhandary et al.
(2020)

CXR images CNN and PCA The combination of one-dimensional feature vectors and the
dimensionality reduction is performed using PCA are then
applied to the source CXR images and tested for the normal
bacterial pneumonia

Ozkaya, Ozturk
& Barstugan
(2020)

CT images DCNN pre-trained CNN to fuze different subsets and transfer learning
classifiers to classify COVID-19 cases

Haskins, Kruger
& Yan (2020)

MR, CXR, and CT
modality.

DCNN To visualize different registration of essential data of the source
images using fixed and moving data labels as well as fixed, and
moving images

Lin et al. (2020) CT, MR, and PET scan stacked convolution neural network
(DSCNN) for multi band images

DSCNN and NSCT fuze multiband images reconstructed by long
short-term memory (LSTM) and DSCNN to overcome the
data-driven approach's controllability problem.

Huang et al.
(2020b)

MRI-CT NSCT and DCNN (NSCT) by which the fusion technique able to avoid the spectral
aliasing and provide more characteristic of the invariance
translation

Maharjan et al.
(2020)

Brain Tumor CT ELM and NSCT Detect brain tumor using NSCT and extreme learning machinery
(ELM].

Pereira et al.
(2020)

CXR images
COVID-19

multi-class
hierarchical CNN

The fusion strategy based on weighted sum, weighted product,
and the voting strength of the enrolled features. They achieved
average F1-Score of 0.65, and 0.89 multi-class, and hierarchical
classification respectively.

Panwar et al.
(2020)

Chest X-ray and CT-
Scan images of
COVID-19 cases

deep learning and grad-CAM based
color visualization

Color visualization approach to make the deep learning model
more interpretable and explainable

Chen et al.
(2020)

Multi-label CXR image self-adaptive
weighted fusion scheme

Contextual information in both global and lung field with the
mean area under the curve AUC = 0.82

Chowdhury,
Rahman &
Kabir (2020)

2905 chest X-ray
images
COVID-19

PDCNN+CNN Accuracy = 96.58 for COVID-19, Normal, and Pneumonia cases

Bashir et al.
(2019)

CXR, CT, and MRI multimodal imagery based on using
SWT and principal component
analysis (PCA)

A dimensionality reduction is performed using PCA and then
SWT to extract features

Lee, Lee & Kang
(2018)

CXR images Poisson-Gaussian noise analysis NSCT in fusion strategy, the noise distribution produced by CXR
images

Rajalingam,
Priya &
Bhavani
(2018)

CXR and CT NSCT and DCNN Hybrid multimodality medical image fusion are applied in both
CXR and CT images

Li et al. (2017) MRI and PET images Multi-scale transformation coefficients
to produce a fuzed image with inter-
scale correlation

They apply MRI and PET images to observe the objectives of
fusion performance and determine the source images' miss-
registration
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reconstruct the new image with a high-quality image in the fusion. Using NSCT to
decompose the input images to get their high frequency and low-frequency images, and
extract their features vector for each low-pass subband and high-pass subband by the
CNN-VGG19, combine them our fusion method (NSCT) to achieve the final fusion
images.

The system is made up of five major stages, as shown in Fig. 2:

� Data preprocessing: reading CXR images Dataset in grayscale, converting to RGB,
resizing, and denoising are all done in the first stage of data preprocessing.

� NSCT decomposition: image X and Y or more than two ready images are decomposed
into their low-pass subband and high-pass subband images, respectively.

� Deep learning convolutional neural networks (VGG19): The third stage is DL using
CNN-VGG19 as a feature extractor.

� Fusion rule: A temporal consistency of extracted features, Euclidean distance and
weights subband calculations are used

� NSCT fusion technique: finally, the fuzed image is computed from the fuzed high-pass
subband and the fuzed low-pass subband images by applying the inverse NSCT.

MATERIALS AND METHODS
Dataset preprocessing
The first step before the fusion model is data preprocessing, which includes the following
steps:

� Initially, we start reading the datasets.

� All datasets of CXR images in grayscale are converted to RGB images to be appropriate
for CNN-VGG19.

� One of the significant phases in the data preprocessing is resizing the resulting RGB
images. Since the dataset is collected from different waves, they have different sizes
aligned into (224, 224).

Figure 1 The proposed algorithm framework. Full-size DOI: 10.7717/peerj-cs.364/fig-1
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� An aligned CXR image’s appearance is enhanced using the proposed method
(Kraetschmer, Dagel & Sanders, 2008).

� Finally, the total variation for image components is denoised using the method proposed
(Chambolle et al., 2010).

Figure 3 indicates dataset preprocessing steps by taking an example of CXR COVID-19
image cases. The resulting histograms of distributed pixels in each step of the
preprocessing reflect that the preprocessing strategy aims to maintain the pixel
distribution’s original essence, thus suppressing the abnormal strengths.

Fusion based on NSCT
NSCT has significant features of avoiding spectral invariance in aliasing and translation.
The decomposition and reconstruction procedure preserves the source image's specifics so
that the image’s features can be extracted. NSCT carries out processing on the source
image to obtain low-pass frequency and high-pass frequency in each direction, and by
inverse NSCT a fuzed image is transformed as shown in Fig. 4 (Huang et al., 2020b).

High-pass subbands fusion rule
The CXR is processed as the input image to the NSCT decomposition level stage; therefore,
a fusion process integrates the trained image with enhancement performance. High-pass
filter fusion’s significant subbands are the augmentation process that performs each
source image’s specific features. Equation (1) describes the fuzed high-pass HPF subband
image as follows.

HPFðx; yÞ ¼
(
HPAðx; yÞ if LmapAðx; yÞ ¼ 1
HPBðx; yÞ otherwise

(1)

where HPF, HPA and HPB are subband high-pass images for the fuzed image of source IA
and IB images, respectively. DmapA x; yð Þ means the map decision for the high-pass sub-
band as determined in Eq. (2).

Dmapiðx; yÞ ¼
(
1 if Siðx; yÞd e.

~Q� ~R
2

0 otherwise
: (2)

In Eq. (2), Si signifies the sliding window with a specific size of ~Q� ~R; and is concentrated
at (x, y) with i number of source images.

Low-pass subbands fusion rule
In Low-pass subbands filter, most source images’ energies are contained to produce
significant fuzed images with enhanced performance. While the NSCT filters have the
most exhaustive information than the high-pass subbands, there are still restricted
decomposition levels of NSCT that cannot filter all the images’ information. Therefore, to
ultimately preserve the detailed information of low-pass subbands, we attempt to use
different measurements that reflect the fuzed images' structured data based on NSCT
(Liu, Liu & Wang, 2015).
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Figure 2 Proposed perceptual two layer image fusion using deep learning.
Full-size DOI: 10.7717/peerj-cs.364/fig-2
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Figure 3 Example of dataset preprocessing steps of raw CXR COVID-19 image. (A) Input CXR
COVID-19 image, (B) resized CXR COVID-19 image, (C) refined CXR COVID-19 image, and
(D) denoised CXR COVID-19 image. Full-size DOI: 10.7717/peerj-cs.364/fig-3

Figure 4 The NSCT fusion method. Full-size DOI: 10.7717/peerj-cs.364/fig-4
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Equation (3) investigates the presence of two activity level measures that are
implemented to determine the detailed information, which is the weighted sum (WS) of
the 8-neighborhood, weighted local energy (WE), respectively.

WE is determined as Eq. (3) as follows:

WE x; yð Þ ¼
Xr

m¼�r

Xr

n¼�r
�� mþ r þ 1; nþ r þ 1ð Þ � LP x þm; y þ nð Þ2 (3)

where LP signifies the low-pass subband of source image at (x, y), WE signify the localized
WE at (x, y),� is a matrix that contains (2r + 1) × (2r + 1) and the elements in� are 22r�d.
The radius of matrix � is r and d is the distance of four-neighborhood distance to the
center of matrix �. A matrix is shown in Eq. (4) investigated that when r is set to 1, the
normalized matrix � is

1
16

1 2 1
2 4 2
1 2 1

2
4

3
5 (4)

Here WE is utilized to measure the structured information, whereas WS is used to measure
the detailed extracted features shown in Eq. (5).

WS x; yð Þ ¼
Xr

m¼�r

Xr

n¼�r
� mþ r þ 1; nþ r þ 1ð Þ � j x þm; y þ nð Þ (5)

� is the weighted matrix investigated in Eq. (3), while the n is illustrated in Eq. (6).
The parameter n indicated that full usage of the neighbored information was performed.
Therefore, exhaustive information can be restored by n. In this scenario, When n and WS
are achieved, the fusion of both low-pass subband images can be determined by the
rule proposed in Eq. (7), given that LPF , LPA; and LPB are low-pass subband images of the
fuzed image given the source image IA and IB respectively. WLNA and WSNB are the
normalized WS of IA and IB respectively.

n x; yð Þ ¼ 2L x; yð Þ � L x � 1; yð Þ � L x þ 1; yð Þj j
þ 2L x; yð Þ � L x; 1; yð Þ � L x þ 1; yð Þj j
þ 1ffiffiffi

2
p 2L x; yð Þ � L x � 1; y � 1ð Þ � L x þ 1; y þ 1ð Þj j

þ 1ffiffiffi
2
p 2L x; yð Þ � L x � 1; y þ 1ð Þ � L x þ 1; y � 1ð Þj j

(6)

LPF x; yð Þ ¼ LPAðx; yÞ if 0:5:WLENAðx; yÞ þ 0:5:WSNAðx; yÞ � 0:5:WLENB ðx; yÞ þ 0:5:WSNB ðx; yÞ
LPBðx; yÞ otherwise

�
(7)

The fuzed coefficients of high-pass subband (HF) and low-pass subband (LF) are
determined, the resulting fuzed image (IF) can be acquired by inverting NSCT over
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HF; LFf g. The inverse transformation of the NSCT is realized by optimizing linear
reconstruction for HF and LF based on dual coordinate system operators.

Finally, to obtain a fuzed image, the image is reverse by NSCT. In Fig. 4, a block diagram
of the NSCT-based fusion approach is shown.

Convolutional neural network architectures
Recently, the usage in all-purpose of DL algorithms and CNNs has directed several
innovations in a diversity of computerized applications, such as object segmentation,
classification, and recognition (LeCun, Bengio & Hinton, 2015). DL methods have proven
effective in automating learning to represent features and characteristics while actively
seeking to remove handcrafted features engineering's repetitive task. By adding a
hierarchical layer of feature representation, the DL and CNNs aim to mimic the human
visual cortex system’s purpose and construction.

After the 2012 ImageNet competition, CNNs have been commonly used in image
processing problems. In a convolution layer, the output feature map is produced when the
preceding layer’s feature maps are converted to learnable kernels by using the activation
function. Multiple input maps will combine convolutions with each output map. It is
generally formulated as it is in Eq. (8).

xlj ¼ f
X
i2Mj

xl�1i � klij þ blj

0
@

1
A (8)

Within Eq. (8),Mj denotes the range of an input map. If both output map j and map k both
sum over input map i, then the kernels added to map i are distinct (Liu, Liu & Wang,
2015), for output maps j and k.

Convolutional neural networks for features extraction
Spatial exploitation based on CNN’s
CNN’s consist of a relatively large number of hyperparameters and parameters, such as
neurons, number of layers, biases, filter sizes, stride, learning rate, activation function, and
weights. Here, different correlation levels can be explored based on other filters as the
combinatorial process considers the local area of the input pixels. Different filter sizes
encapsulate various complexity levels; small filters typically extract fine-grained while
large filters extract coarse-grained data. As a result, researchers exploited spatial filters
in early 2000 to enhance quality and explored a spatial filter relationship with network
learning. Multiple kinds of research were published in this era indicated that CNN could
perform effectively on coarse and fine-grained data when modifying filters.

The technical descriptions of different CNN models, their parameters and principal
contribution, rate of error, categorization, and depth are summarized in Table 2 (Khan
et al., 2020).

VGGNet
The experiment in structural technology has accelerated with the active use of CNNs in
image classification tasks. A simple and efficient design theory for CNN architectures was
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proposed by Simonyan & Zisserman (2014) in this regard. Their style, known as VGG,
was modular in layer structure patterns compared to AlexNet and ZfNet; VGG was
rendered 19 layers deep to visualize the depth with the network’s truly representative
capability. ZfNet, the 2013-ILSVRC competition frontline network, indicated that limited
filtering could increase the efficiency of CNNs. Based on the results obtained, VGG
displaced the 11 × 11 and 5 × 5 filters with a 3 × 3 filter layer stack and demonstrated
experimentally that the concomitant positioning of small filters (3 × 3) could produce
the impact of large filter sizes (5 × 5 and 7 × 7). By decreasing the number of variables,
small filters offer an additional advantage of low computational complexity. These results
set a new trend in research for CNN to work with narrower filters. By putting 1 × 1
convolutions between the convolutional layers, VGG controls a network’s configuration,
learning a feature vector of the resulting feature maps. For both image classification and
localization challenges, VGG provided excellent performance. In the 2014-ILSVRC
competition, VGG had been in second place, and due to its simple design, heterogeneous
configuration, and improved scale, it gained popularity. The critical drawback associated
with VGG is that the use of 138 million variables, making it costly and challenging to
implement computationally on low-resource systems (Khan et al., 2020). The graphical
representation of VGG19 adopted from Özyurt (2019) is investigated in Fig. 5 and Table 3.

We used a standard and effective CNN model in this work, named VGGNet,
illustrated in Fig. 5, with 16 convolutional and three layers of wholly connected.
The convolutional layers' width is comparably small, rising by a factor between 64 in
the initial layer to 512, of 2 during each process of max-pooling. There is a reasonable
size of 224 × 224 pixels on the input layer. A stride is implemented to retain spatial
resolution since each image is transferred through a convolution stack. Pooling is done
throughout a fixed window by five max-pooling layers with stride following some but not
all convolutional layers. During the first two, three completely connected layers with 4,096

Table 2 Characteristics of CCN used in the proposed framework.

CNN
models

Year Principal contribution Parameters Rate of error Depth Categorization Reference

VGGNet 2014 � Homogeneous topology

� Using fewer filters

138 M ImageNet: 7.3 19 Spatial Exploitation Simonyan &
Zisserman (2014)

AlexNet 2012 � More deep and broader than the LeNet

� Using Relu, drop and overlap Pooling

� NVIDIA GTX 580 GPU

60 M ImageNet: 16.4 8 Spatial Exploitation Krizhevsky, Sutskever
& Hinton (2017)

ResNet 2016 � Residual training

� Identity object tracking skip connection

25.6 M
1.7 M

ImageNet: 3.6
CIFAR-10:
6.43

152
110

Depth and
Multipath

He et al. (2016)

GoogleNet 2015 � Introduced principle of block

� Divide the idea of transformation and
fusion

4 M ImageNet: 6.7 22 Spatial Exploitation Szegedy et al. (2016)
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channels are accompanied by a stack of convolution layers with depth varying in various
configurations, during the third complete identification.

Temporal consistency is an effective methodology for capturing the contrasting
harmony in any input sequence image, especially gray-level images. In turn, for any
gray level change in the input sequence, even though at least one must be in the fuzed
sequence without any change in contrast or delay. When CXR image sequences are
combined, there is a problem reflected in the merging sequence images’ consistency
because light stimuli' movement has a responsive effect on the human visual system
(Rockinger & Fechner, 1998). The contrast changes introduced by the fusion process will
therefore be very distracting, and therefore we will apply (El-Gamal, Elmogy & Atwan,
2016).

Table 3 The collected dataset that describe different features related to each patient.

Layer Patch size/Stride Depth Output size

Convolution 3 × 3 × 64/1 2 224 × 224 × 64

Max pool 3 × 3/2 1 112 × 112 × 64

Convolution 3 × 3 × 128/1 2 112 × 112 × 128

Max pool 3 × 3/2 1 56 × 56 × 128

Convolution 3 × 3 × 256/1
1 × 1 × 256/1

3
1

56 × 56 × 256

Max pool 3 × 3/2 1 28 × 28 × 256

Convolution 3 × 3 × 512/1
1 × 1 × 512/1

3
1

28 × 28 × 512

Max pool 3 × 3/2 1 14 × 14 × 512

Convolution 3 × 3 × 512/1
1 × 1 × 512/1

3
1

14 × 14 × 512

Max pool 3 × 3/2 1 7 × 7 × 512

Fully connected – 2 1 × 4096

Softmax – 1 1 × 1000

Figure 5 Blocks graphical representation of VGG19. Full-size DOI: 10.7717/peerj-cs.364/fig-5
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A simplified pseudo-code implementation of two-layer image fusion using deep
learning is summarized in Algorithm 1.

EVALUATION MATRICES
This section is dedicated to exploring the effectiveness of the proposed approach. Two
different experimental studies were carried out, discussed, and analyzed in detail due to the
variability of the updated standard datasets versions of X-ray COVID-19 images.

All experiments were carried out using the MATLAB 2019b software package running
on Microsoft machine with Core i7 processor, 16-RAM, and NVIDIA 4G-GT 740m GPU
environment. This section presents a dataset description, validation, and the findings of
adding a convolutional deep neural network to NSCT fusion method.

COVID-19 dataset and evaluation metrics
COVID-19 dataset
The Dataset used for this work includes 87 chest X-ray images acquired on 25 cases
(17 male, 7 females, and 1 blank) all of which were confirmed with COVID-19. The CXR
COVID-19 images cases are available at the Kaggle repository, CXR COVID-19 Dataset
(Cohen et al., 2020), existing at https://www.kaggle.com/bachrr/covid-chest-xray.

In this study, a clinical dataset for CXR COVID-19 images was utilized for training
and validation. This Dataset consists of images for 25 patients, it has two images or more
for each patient. Figure 6 shows four samples CXR images from Dataset for one patient
(Bachrr Kaggle, 2020, https://www.kaggle.com/bachrr/covid-chest-xray). Table 4
investigated the complete datasets, including patient data and class labels, and can be
demonstrated as follows.

Evaluation metrics

Performance Analysis needs to be evaluated using a consistently approved standard of
image fusion quality. QMI (Quality Mutual Information), Standard Deviation (STD), Peak
Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), QAB/Fmetric,
and Spatial Frequency (SF) are the evaluation measures used and were applied as follows
(Xydeas & Petrovic, 2000; Yang et al., 2008;Hossny, Nahavandi & Creighton, 2008; Chen &
Blum, 2009; Chen, Pan & Han, 2011).

Standard deviation

To measure the global divergence of the fuzed image, the standard deviation is practically
used. Furthermore, the difference between the data obtained and the mean is calculated
using it. More useful information from the fuzed image is obtained when the STD value
is higher, as investigated in Eq. (9).

s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI

i¼1
PJ

j¼1 f i; jð Þ � lð Þ2
MN

s
(9)

where (I) and (J) are the length and width of the fuzed image f (i, j), and is generally
determined as 256 with the mean value of the merged image (μ).
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Algorithm 1 Two layer perceptual image fusion using deep learning.

Procedure: Fusion Schema using NSCT

Input  X, Y are two CXR input image(s) and VGGNet is the pretrained VGG-16 network.

Output  Z is the fuzed CXR image

Begin

Xa, Xb  decomposeByNSCT (X)

Ya, Yb decomposeByNSCT (Y)

Za DeepLearningFusionRule (Xa, Ya, VGGNet)

Zb DeepLearningFusionRule (Xb, Yb, VGGNet)

Z recomposeByNSCT(Za,Zb)

saveImageFile(Z)

[ ] evalautionMetrics(X, Y, Z)

Print([ ])

End

Procedure Deep Learning Fusion Rule

Input  A, B are two subband of CXR input image(s) and VGGNet is the pretrained VGG-16 network.

Output  C is the fuzed subband of CXR image

Begin

Afeature  extractFeatures(VGGNet, A)

Avec  kAfeaturek
ATC  Avec=norm Afeature

� �
For each Bi in B subband CXR images

Bifeature  extractFeatures(VGGNet, Bi)

Bivec  kBifeaturek
BiTC  Bvec=norm Bfeature

� �
End

S; Vimg ; denom  zeros Bð Þ
For each Bi in B subband CXR images

S  Sþ BiTC

Vimg  Vimg þ Bivec

denom denomþ Bivec

End

For each Bi in B subband CXR images

W  BiTC=denom

End

C  zeros Bð Þ
For each Wi in W

C  C þ Bi�Wi

End

End
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Quality mutual information

Generally, MI is the degree of dependance amongst two source images (X, Y). MI
investigated the amount of calculated information that represents the source image
concerning the fuzed image. The MI denoted by (MÞ is relative to the fuzed message by
which the formula (MÞ can be defined as Eqs. (10)–(14):

M¼ I x; fð Þ þ I y; fð Þ; (10)

I X;Yð Þ ¼
X
y2Y

X
x2Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ (11)

where p(x) and p(y) represents the Probability Density Functions (PDF) of the two images,
and p (x, y) represents the Joint-Probability Density Function (JPDF) of the source image
X, Y, and fuzed image.

To estimate the dependability between the random variables X, and Y, the I(X, Y) can be
determined as in Eq. (12):

I X;Yð Þ ¼
X
y2Y

X
x2Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ ¼ 0 (12)

Figure 6 (A–D) CXR COVID-19 images of a 53-year-old patient with pneumonia after 10 days of
infection. Full-size DOI: 10.7717/peerj-cs.364/fig-6

Table 4 Evaluation indicator data of various patients (source and fuzed CXR COVID_19 images).

Class labels Patient data

Patient ID Internal Patient Identifier

Offset Is very useful to provide as there are several images for the same patient to track progression
while being imaged, the number of days after the beginning of symptoms for each image

Gender Blank, Male, or Female

Age Patient age in Years

Result Pneumonia?

Survival Have they survived? Yes or No

Sight PA, AP, or L for CXRs

Modality CT, CXR, or something else

Date Date of the acquisition of the image

Position Relevance from right to left (hospital name, area, state, country)

Medical
Notes

In specific, about the radiograph, not objective patient
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Given that X, Y and F are the histogram normalization of the source images x, y with the
resulting fuzed image f, respectively. By applying MI, the problems regarding the
boundness of the metric since is realized as in Eq. (13):

I X;Xð Þ ¼ H Xð Þ (13)

Hence:

QMI ¼ 2
I F; Xð Þ

H Fð Þ þH Xð Þ þ
I F; Yð Þ

H Fð Þ þ H Yð Þ
� �

(14)

where H(X), H(Y) and H(F) represents the entropies of X, Y and F, respectively.

Peak signal to noise ratio

It is well-known that PSNR is a quantitative indicator depending on Mean Square Error
(MSE). The large value of PSNR leads to improve the fuzed image and enhancement of
SNR of the source image Eq. (15).

PSNR ¼ 10� log10
L2

RMSE2

� 	
(15)

Given the PSNR denotes the maximum gray pixel value of the fuzed image, which is 255.
The RMSE can be determined as in Eq. (16) by which it represents the difference between
the source images and the fuzed images.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1
PN

n¼1 ground m; nð Þ � fused m; nð Þ½ �2
M � N

s
(16)

RMSE reflects the fuzed image’s ability compared with Ground (m, n) to determine the
error with the applied length and width of the image with size M and N, respectively.

Structural similarity index measure

One of the essential benchmarks for the similarity evaluation of the fuzed and source
images are SSIM by which the structural similarity (SSIM) metric of the corresponding
regions is determined as in Eq. (17) as follows:

SSIM x; yjwð Þ ¼ 2�wx�wy þ C1
� �

2swxwy þ C2
� �

�w2
x þ �w2

y þ C1


 �
s2
wx
þ s2

wy
þ C2


 � (17)

Which can be decomposed as

SSIM x; yjwð Þ ¼ 2�wx�wy þ C1
� �

2swxwy þ C2
� �

swxwy þ C3
� �

�wx
2 þ �wy

2 þ C1
� �

r2wx
þ r2wy

þ C2


 �
swxrwy þ C3
� � (18)

Given that the parameters C1, C2 and C3 represent the small constants such that C3 = C2/2,
and the wx denotes the sliding region in x, so that �wx is the mean of x, r2wx

and swxwy

represents both variance and covariance of the x and y, respectively.
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Spatial Frequency

SF determines the sharpness of the image in fusion. Besides, SF is calculated as the change
rate in the gray level of the image. As in Eq, (19), the greater the SF, the higher the image
quality.

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2 þ CF2

p
(19)

Moreover,

RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M N � 1ð Þ

s XM
i¼1

XN
j¼2

X i; j� 1ð Þ � X i; jð Þð Þ2 (20)

CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1ð ÞN

s XM

i¼2
XN
j¼1

X i; jð Þ � X i� 1; jð Þð Þ2 (21)

where RF and CF represent the row and column frequencies of the image, respectively.

QAB/F measurement

We used the QAB/F parameter determined by the Sobel edge detection operator to evaluate
the amount of edge information in the fuzed image compared to the source images.
The higher value of QAB/F denotes, the extra data is renewed from the source image, and
the edge information is improved and conserved. Generally, the great edge strength
produce a great impact on QAB/F as in Eq. (22)

QAB=F ¼
PN

n¼1
PM

m¼1 QA n;mð ÞWA n;mð Þ þ QB n;mð ÞWB n;mð Þð ÞPN
n¼1

PM
m¼1 WA i; jð Þ þWB i; jð Þð Þ (22)

where QA(n, m), QB(n, m) is the edge information storage value; WA n;mð Þ;WB n;mð Þ is
the weighting map.

EXPERIMENTAL RESULTS AND DISCUSSION
Statistical analysis
In this article, we determine the mentioned parameters statistically in the previous section.
These parameters include the average, standard deviation, min, max, and median of the
fuzed features obtained in the training phase. Different standard image fusion quality
performance metrics including QMI, STD, PSNR, SSIM, QAB/F, and SF are used for
evaluation and analysis a statistical study which was applied as follows (Chen, Pan & Han,
2011; Hossny, Nahavandi & Creighton, 2008; Xydeas & Petrovic, 2000; Yang et al., 2008;
Chen & Blum, 2009).

Table 5 indicates the performance metric values in terms of QAB/F, QMI, PSNR, SSIM,
SF, and STD. Various experiments are performed independently for different traits of the
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fuzed CXR COVID-19 images. From this Table 5, the following remarks could be
concluded as follows:

� Higher values of PSNR are produced at the maximum level (Max value is 20.91);
consequently, the (average value is 16.92).

� The Standard Deviation (STD) is determined in both sample STDEV.S and population
STDEV.P, and the result of the fuzed CXR COVID-19 images are in between 0.02 to
0.23 maximum value.

� These results indicate that the proposed fusion strategy is stabled during the training
process as the statistical balancing in the obtained results are achieved.

Performance comparison of the recent CNN architectures of different
categories
Six well-known convolutional neural networks were used to study the effect of feature
extraction and extraction time: AlexNet, VGG-16, VGG-19, GoogleNet, ResNet-50, and
ResNet-101. The best performance was achieved among all CNN networks by VGG-19,
as shown in Fig. 7. VGG19 has the smallest value, 512 feature vector length, with a
minimum extraction time of 0.543489 sec. Therefore, VGG19 is used in the proposed
framework to satisfy the trade-off between feature vector length and extraction time.

Table 5 Fused images evaluation metrics of different algorithms.

Statistical measure Performance metrics

QAB/F QMI PSNR SSIM SF STD

Average 0.54 0.56 16.92 0.80 0.68 0.21

STDEV.S 0.05 0.07 2.48 0.03 0.20 0.02

STDEV.P 0.05 0.06 2.29 0.03 0.18 0.02

Min 0.49 0.48 13.78 0.76 0.30 0.18

Max 0.61 0.65 20.91 0.84 0.95 0.23

Median 0.53 0.58 17.75 0.81 0.68 0.21

Figure 7 Comparative results of different CNN and the proposed framework CNN-VGG19.
(A) Feature vector size vers pre-trained models, and (B) feature extraction time (sec) vers pre-trained
models. Full-size DOI: 10.7717/peerj-cs.364/fig-7
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Evaluation performance of CXR COVID-19 images for image fusion
using DL
CXR imaging characteristics

CXR entering the entity can be sensed in the CXR imaging process, such as Compton
scattering effect and other effects to create CXR attenuation, as the thickness or density of
the object to be measured varies, the energy attenuation is also diverse. Thus, screening or
film creates a CXR image with black and white contrast, with a gradual increase of the
CXRs’ dose in penetrating objects, and an increase in the image region's brightness.
Once the tube voltage is constant, the tube current increases, the number of photons in
the scan range increases, and the entire CXR image’s grayscale increases (Chen, Pan &
Han, 2011).

Figures 8 and 9 show images and histogram distribution for CXR COVID-19 images
input and fuzed CXR COVID-19 images with a diverse radiation source dose. In the
image’s background region, when the gray scale difference is small, then the histogram of
this image appears at a single peak and the gray scale near one as shown in Fig. 8C or
the gray scale near zero as shown in Fig. 9C. Whereas in the fuzed CXR COVID-19 images,
the gray scale value is high in the overall image, and the histogram background region
is spread over the grayscale as shown in Figs. 8D and 9D. In our patients’ results, the CXR
COVID-19 images had high contrast and many features.

Table 6 includes the fuzed CXR COVID-19 image. The value is denoted in bold
lettering, which presents the evaluation parameters of the different datasets of the various

(A) Source of CXR COVID_19 images
of a female year’s patient 

(B) Fused CXR output COVID_19 image of a
female 52 year’s patient  

(C) Histogram of CXR source COVID_19 images
of a female 52 year’s patient  

(D) Histogram of fused CXR COVID_19
image of a female 52 year’s patient  
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Figure 8 Example of a female 52-year-old patient (P1) CXR COVID-19 image fusion. (A) Source of
CXR COVID-19 images of a female year’s patient, (B) fused CXR output COVID-19 image of a female
52-year-old patient, (C) histogram of CXR source COVID-19 images of a female 52-year-old patient, and
(D) histogram of fused CXR COVID19 image of a female 52-year-old patient.

Full-size DOI: 10.7717/peerj-cs.364/fig-8
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random patients (P1, P2,…, and P7) of input and fuzed CXR COVID-19 images. Two
metrics are used for measurable performance evaluations, such as SF and STD, to assess
the proposed algorithm performance. The larger values of the SF for the fuzed image in all
patients indicates the higher image resolution. For fuzed CXR COVID-19 images, the
highest STD value is calculated. Then without distortion, the proposed algorithm can
maintain the CXR COVID-19 image, the fuzed image is more apparent than input images,
and the effect of fusion is powerful.

In Fig. 10, the proposed CXR COVID-19 image fuzed algorithm produces CXR
COVID-19 images for random seven patients during seven experiments using only two
CXR COVID-19 images. Our proposal generates a CXR COVID-19 image with SF greater
than or equal to SF of the input image(s). When there are more than two CXR COVID-19

(A) Source of CXR COVID_19 images
of a male year’s patient

(B) Fused CXR COVID_19 image
of a male year’s patient

(C) Histogram of CXR COVID_19 source images
of a male 67 years patient 

(D) Histogram of fused CXR COVID_19 image
of a male 67 years patient  
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Figure 9 Example of a male 67-year-old patient (P1) CXR COVID-19 image fusion. (A) Source of
CXR COVID-19 images of a male 67-year-old patient, (B) fused CXR output COVID-19 image of a male
67-year-old patient, (C) histogram of CXR COVID-19 source images of a male 67-year-old patient, and
(D) histogram of fused CXR COVID-19 image of a male 67 years patient.

Full-size DOI: 10.7717/peerj-cs.364/fig-9

Table 6 Evaluation indicator data of various random patients. Where the best results are highlighted
in bold.

Evaluation parameters Patients

P1 P2 P3 P4 P5 P6 P7

SF Input image X 0.6157 0.608 0.6022 0.6557 0.2608 0.8374 0.6123

Input image Y 0.4209 0.7012 0.6519 0.5346 0.2251 0.6198 0.64725

Fused CXR COVID-19 image 0.668 0.7944 0.7016 0.6608 0.2958 0.9548 0.6822

STD Input image X 0.1563 0.162 0.1921 0.1948 0.2378 0.252 0.15

Input image Y 0.204 0.1496 0.2184 0.1599 0.2109 0.19 0.1692

Fused CXR COVID-19 image 0.274 0.216 0.2544 0.2073 0.2451 0.2548 0.2489
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images, we compromise the highest and lowest resolution image to guarantee our
proposal’s best performance.

Figure 11 shows that the generated CXR COVID-19 image gains a significant SF value
against the first input CXR COVID-19 image values. Since the SF measures the sharpness of
objects in the CXRCOVID-19 image and gray level change ratio, the proposed fusionmethod
leads to better judgment and diagnosis of the patient from his CXR COVID-19 image(s).

A comparative evaluation is performed for the two input CXR COVID-19 image and
the produced CXR COVID-19 image based on the STD evaluation metric during seven
experiments for random seven patients. The proposed algorithm generates significant
STD values five times higher than the two input images vs the same STD values as shown

Figure 10 Comparison between input image X and fuzed image of evaluation indicator SF.
Full-size DOI: 10.7717/peerj-cs.364/fig-10

Figure 11 Comparison between input image Y and fuzed image of evaluation indicator SF.
Full-size DOI: 10.7717/peerj-cs.364/fig-11
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in Fig. 12. We can compromise that the proposed fusion method is efficient enough to
generate CXR COVID-19 images that are more useful for the examiner for exploring
patient status.

Comparative analysis
Validation performance using evaluation metrics
The algorithms for evaluation performance, by comparison, are GFF (Li, Kang & Hu,
2013), MSA (Du et al., 2016b), NSCT + LE (Zhu et al., 2019), NSST + PAPCNN (Yin et al.,
2018), respectively. Six metrics are practical to objective evaluation metrics measurements,
such as QAB/F, QMI, PSNR, SSIM, SF, and STD (Du et al., 2016a), to determine the
competence of the various multi-modal MIF algorithms mentioned above.

In Table 7, The highest QAB/F value is the GFF algorithm. The result is that the
GFF algorithm protects the input image's edge information. The GFF algorithm also
achieves good results on the evaluation metric for the SF. This algorithm enhances the
resolution of the fuzed image by utilizing guided filtering to display each pixel’s saliency
and spatial accuracy. The algorithm NSST + PAPCNN performs best on the indicator STD
of evaluation, leading to purer fuzed images.

Figure 12 Comparison between input image X, Y and fuzed image of evaluation indicator STD.
Full-size DOI: 10.7717/peerj-cs.364/fig-12

Table 7 Fused images evaluation metrics of different algorithms. Where the best results are highlighted in bold.

Fusion method Evaluation metrics

QAB/F QMI PSNR SSIM SF STD

Spatial domain GFF (Li, Kang & Hu, 2013) 0.5978 3.127 42.9419 0.4865 31.7488 63.882

MSA (Du et al., 2016a) 0.3038 2.8495 28.75 0.4829 17.0158 55.9475

Transform domain NSCT + LE (Zhu et al., 2019) 0.5184 2.6052 26.0083 0.4861 31.337 75.5464

NSST + PAPCNN (Yin et al., 2018) 0.5206 2.6297 25.2629 0.4914 31.7002 77.6748

Deep Learning Proposed Algorithm NSCT + CNN − VGG19 0.5415 3.8606 44.8445 0.6509 31.66083 77.2692
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The proposed algorithm NSCT + CNN_VGG19 also accomplishes good results on
the QMI, SSIM, and PSNR evaluation metric measures. The use of DL to extract the
features improves the proposed algorithm’s performance, so the NSCT + CNN − VGG19
algorithm achieves the highest in the QMI, PSNR, SSIM. The higher PSNR value means the
pixel gray value is higher than the comparative algorithms in the fuzed image. Also, the
great benefit of SSIM means that the fuzed image and the input image are structurally
identical to other algorithms. The higher values of QMI, PSNR, SSIM, as shown in Table 7
and Fig. 13, mean that the fusion effects of images are strong compared to competitive
approaches.

This study compared the evaluation metrics of the different proposals. Upon prior
knowledge of the authors, QAB/F, QMI, PSNR, SSIM, SF, and STD were deemed significant
metrics in evaluating the fusion method. In turn, the achieved points of the proposal vs
other research was compared as shown in Fig. 14 and found that:

1. Two proposals (MSA (Du et al., 2016b) and NSCT + LE (Zhu et al., 2019)) did not meet
any of the evaluation measures.

2. Yin et al. (2018) scored a total of 33% of the overall evaluation metrics (QAB/F and SF) to
evaluate the performance of the algorithm (NSST + PAPCNN).

3. The proposed research achieved 50% of the overall evaluation metrics in QMI, PSNR,
SSIM

Validation Performance using classification
To assess the performance of the proposed framework, we used accuracy, sensitivity, and
specificity. The descriptions of these measures are as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(23)

Sensitivity ¼ TP
TPþ TN

(24)

Figure 13 Representation of evaluation index data of different methods of fuzed images. (A) Com-
prehensive comparative evaluation regards to (STD, SF, and PSNR), and (B) comprehensive comparative
evaluation regards to (QAB/F, SSIM, and QMI). Full-size DOI: 10.7717/peerj-cs.364/fig-13
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Specificity ¼ TN
TNþ TP

(25)

where:
“TP”: true positives cases in an instance of COVID-19 case, “TN”: true negatives cases,

significantly negative COVID-19 case, “FP”: false positives cases, and “FN”: false negatives
cases are the incorrect categorized by the classifier for COVID-19.

The evaluation of fuzed CXR COVID-19 images for the pre-trained proposed
framework image fusion using DL classification was performed for the COVID-19 dataset
using deep learning and compared accuracy in recognizing the different systems as
shown in Table 8. The dataset that is already used in classification comparison is the same
dataset used in Abbas, Abdelsamea & Gaber (2020),Apostolopoulos &Mpesiana (2020) and
Luz et al. (2020).

Decompose, transfer, and compose (DeTraC) model for detecting COVID-19 from
CXR images was presented (Abbas, Abdelsamea & Gaber, 2020). They used different
pre-trained transfer learning model based on both shallow and deep learning approaches.
They tested their method with and without decomposition, and the VGG-19 accuracy
is determined in both shallow and deep learning tuning mode, and the resulting accuracy
was 93.42% and 94.59%, respectively.

Table 8 Comparison with other CNN architectures. Where the best results are highlighted in bold.

VGG19 Pre-trained model Tuning mode Performance metrics (%)

Accuracy Sensitivity Specificity

Abbas, Abdelsamea & Gaber (2020) Shallow (KNN) 93.42 89.71 95.7

Deep learning (CNN) 94.59 91.64 93.08

Apostolopoulos & Mpesiana (2020) Deep learning (CNN) 98.75 92.85 98.75

Luz et al. (2020) Deep learning (CNN) 75.3 77.4 50.0

Proposed framework Shallow (KNN) 96.93 57.14 99.2

Deep learning (CNN) 99.04 85.71 99.6

GFF

MSA

NSCT+LE

NSST+PAPCNN

Proposed (NSCT+CNN_VGG19)

QAB/F,SF

0

0

STD

QMI, PSNR, SSIM

0.33

0.17

0.5

Figure 14 Cluster dendrogram hierarchy evaluation of the proposed algorithm with competitive
metrics of fuzed methods for images. Full-size DOI: 10.7717/peerj-cs.364/fig-14
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Apostolopoulos & Mpesiana (2020) presented a transfer learning approach to detect and
classify COVID-19 cases from normal cases automatically. They used VGG-19 compared
with other transfer learning methods, and the achieved results based on accuracy,
sensitivity, and specificity were 98.75%, 92.85%, and 98.75%, respectively.

Luz et al. (2020) presented an architecture based on CNN to detect the abnormality
caused by COVID-19 using 13,569, 231 trained, and tested cases, respectively. They tested
the three-class labels normal, pneumonia, and COVID-19 using the well-known transfer
learning approaches VGG-19, VGG-16, and Resnet-15, and the resulting accuracy was
75.3%, 77.0%, and 83.5%, respectively.

As present in Table 8, The pre-trained proposed model using Shallow (KNN) compared
with other pre-trained models and achieved results based on accuracy, sensitivity, and
specificity were 96.93%, 57.14%, and 99.2%, respectively. The pre-trained proposed model
using Deep Learning (CNN-VGG19) compared with other pre-trained models and
achieved results based on accuracy, sensitivity, and specificity was 99.04%, 85.71%, and
99.6%, respectively. In turn, classification rates (accuracy and specificity) indicating the
result of fusion as enhancement and riching image with extra details as a side effect of
classification in CXR vision application.

Due to the insights in terms of average precision, average recall, and accuracy that is
mined based on Fig. 15, the proposed fusion method helps either shallow classifier,
KNN, and deep learning classifier (CNN-VGG19) in the classification task. In turn, the
fusion is a positive initiative for enhancing the classification and aided computer vision
models using CXR COVID-19 images.

CONCLUSION
MIF growth varies from the spatial domain, transformation domain, to DL. Its rapid
growth also suggests a strong demand for computer-aided clinical diagnosis. Different
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Figure 15 Confusionmatrix of the proposed framework. (A) Confusionmatrix of the pre-trained proposed
framework using VGG19 for CXR COVID-19 images and (B) confusion matrix of the pre-trained pro-
posed framework using KNN for CXR COVID-19 images. Full-size DOI: 10.7717/peerj-cs.364/fig-15
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researchers suggest various fusion methods, each of which has its advantages in the
multiple measures of evaluation indicators. However, there exist approximately thirty
types of evaluation indicators for MIF. Furthermore, the fusion techniques developed
depend on early methods. The researchers enhanced the existing problems in fusion but
did not resolve it; distortion of colors and features extraction. In MIF, innovative
algorithms remain a major challenge in this field of research.

DL has strengthened the effect of fusion, but research also has some rules; DL structure,
for instance, is single, and the amount of training data is limited. Because professional
labeling by medical experts is required for the qualified CXR images, they hardly work, and
the cost is high. Therefore, there is also a lack of data for training, eventually leading to
overfitting.

A fast and effective diagnostic test or protocol will help achieve appropriate early
medical care for COVID-19 patients, helping save many lives worldwide. Finding a rapid
and effective diagnostic protocol or test becomes one of the critical priorities. This paper is
one step ahead towards implementing Deep Learning-based fusion methods to obtain
more informative CXR images for the COVID-19 dataset. It could aid in screening or
accelerate the speed of COVID-19 diagnosis. We observe that in the COVID-19 CXR
image’s background region, when the grayscale difference is small, then the histogram of
this image appears at a single peak and the grayscale near one as shown in Fig. 8C or
the grayscale near zero as shown in Fig. 9C. Whereas in the fuzed CXR COVID-19 images,
the grayscale value is high in the overall image, and the histogram background region is
spread over the grayscale as shown in Figs. 8D and 9D. All the fuzed images show the
same features, and it works in both hard and light cases. The fuzed algorithm proposed
works well in all cases, and its appearance in the Evaluation indicator data of various
random patients, as shown in Tables 6 as an example.

The future trend is the study of DL in MIF, according to the previous section.
This research proposes a novel MIF algorithm based on DL for Imbalanced COVID-19
Dataset (NSCT + CNN_VGG19). Thus, hybrid decomposition and fusion of NSCT and
CNN_VGG19 as features extractor is also used. The proposed algorithm can determine
that the proposed fusion method is efficient enough to generate CXR COVID-19 images
that are more useful for the examiner for exploring patient status. The comparative
evaluation was performed using two methods; the first method is to determine the
pre-trained framework efficiency using evaluation metrics. While the second method is
based on classifying the fuzed CXR COVID-19 images using the deep learning approach
CNN-VGG19 compared with the state-of-the-art.

A comparison was also undergone to evaluate the different MFI algorithms
performance models using six metrics as evaluation measures; these are QAB/F, QMI, PSNR,
SSIM, SF, and STD. The proposed algorithm NSCT + CNN_VGG19 performed best on
the predictor of QMI, PSNR, SSIM evaluation measures. The image was more apparent,
and the fuzed image contained extensive information. Finally, the suggested algorithm is
more efficient than comparable approaches.

The results demonstrate that the pre-trained proposed framework using fusion based on
NSCT with deep learning VGG19 may significantly affect the classification and feature
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extraction from X-ray COVID-19 images automatically related to the diagnosis
COVID-19.
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