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ABSTRACT
Rainfall prediction is immensely crucial in daily life routine as well as for water
resource management, stochastic hydrology, rain run-off modeling and flood risk
mitigation. Quantitative prediction of rainfall time series is extremely challenging as
compared to other meteorological parameters due to its variability in local features
that involves temporal and spatial scales. Consequently, this requires a highly
complex system having an advance model to accurately capture the highly non linear
processes occurring in the climate. The focus of this work is direct prediction of
multistep forecasting, where a separate time series model for each forecasting horizon
is considered and forecasts are computed using observed data samples. Forecasting in
this method is performed by proposing a deep learning approach, i.e, Temporal
Deep Belief Network (DBN). The best model is selected from several baseline models
on the basis of performance analysis metrics. The results suggest that the temporal
DBN model outperforms the conventional Convolutional Neural Network (CNN)
specifically on rainfall time series forecasting. According to our experimentation, a
modified DBN with hidden layes (300-200-100-10) performs best with 4.59E−05,
0.0068 and 0.94 values of MSE, RMSE and R value respectively on testing samples.
However, we found that training DBN is more exhaustive and computationally
intensive than other deep learning architectures. Findings of this research can be
further utilized as basis for the advance forecasting of other weather parameters with
same climate conditions.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Artificial
Intelligence, Data Mining and Machine Learning, Emerging Technologies
Keywords Rainfall prediction, Deep learning, Convolutional neural networks (CNNs), Temporal
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INTRODUCTION
Anticipating the future values of an observed time-series phenomena plays a significant
role to improve the quality of services. For instance, accurate predictions can greatly
revolutionize the performance in the arena of medical, engineering, meteorology,
telecommunication, control systems, business intelligence, crypto-currency and most
important the financial outcomes. Anticipating adequate predictors and indicators
from historical data requires statistical and computational methods for correlating
dependencies. Specifically, between past and future values of observed samples and
techniques to cop up with longer horizons (Bontempi, Taieb & Le Borgne, 2012). Over the

How to cite this article Narejo S, Jawaid MM, Talpur S, Baloch R, Pasero EGA. 2021. Multi-step rainfall forecasting using deep learning
approach. PeerJ Comput. Sci. 7:e514 DOI 10.7717/peerj-cs.514

Submitted 26 November 2020
Accepted 8 April 2021
Published 4 May 2021

Corresponding author
Sanam Narejo,
sanam.narejo@faculty.muet.edu.pk

Academic editor
Othman Soufan

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.514

Copyright
2021 Narejo et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.514
mailto:sanam.�narejo@�faculty.�muet.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.514
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


last few decades, the research community has shown an increasing interest in the time
series analysis, modelling, prediction and forecasting. However, future prediction remains
challenging due to the complex nature of problem.

It is important to mention that weather forecasting is significant not only for
individual’s everyday life schedule, but also for agriculture sector as well as several
industries. These forecasts can also help decision-making processes carried out by
organizations for disaster prevention. Being specific, rainfall is significant for agriculture,
food production plan, water resource management and likewise other natural systems
(Bushara & Abraham, 2015). The variability of rainfall in space and time, however, renders
quantitative forecasting of rainfall extremely difficult (Luk, Ball & Sharma, 2001). The
behaviour and structure of rainfall including its distribution in temporal and spatial
dimensions depends on several variables, for instance, humidity, pressure, temperature
and possibly wind direction and its speed. Apart from this, a time series of rainfall usually
contains local features too, for example, bursts of heavy rain between prolonged low
intensity rainfall duration. In real, these local features are not fixed in a time slot which
renders the prediction of occurrence more difficult.

Since decades, the atmospheric forecasting was calculated through physical simulations
in which the present state of the atmosphere is sampled, and future state is computed by
numerically solving the equations of fluid dynamics and thermodynamics. Usually, the
temporal and spatial characteristics of rainfall forecast rely heavily on the hydrological
requirements. A hydrological model is characterization of a real-world hydrologic features,
for example, water surface, soil water, wetland, groundwater, estuary. This type of
modelling supports in managing, predicting, evaluating and understanding water
resources by developing small-scale computer simulations, constructing physical models
and mathematical analogues. This indicates that hydrological process models can be
divided into three major categories, specifically, physical, conceptual and metric-based or
computational models (Beck, Kleissen &Wheater, 1990). Conceptual modelling is simply a
graphical visualization and representation of real world model using hydrological
components. It is used to determine what aspects of the real world to include, and exclude,
from the model, and at which level of detail, the model will demonstrate. On the other
hand, physical models focus more towards the underlying physics using mathematical
equations for hydrological process. Despite their good performance, these hydrological
models, conceptual and physical do not perform well when applied to periods with climate
conditions that differ from those during model calibration (Bai, Liu & Xie, 2021;
Duethmann, Blöschl & Parajka, 2020; Xu et al., 2020). Thus, one of the possible solutions
might be to select site-specific model, which includes non-hydrostatic cloud physics.
Nevertheless, the black-box models are an alternative and more successful approach for
modeling complex and nonlinear hydrological processes.

Moreover, in order to forecast the rainfall using physical-based process, model becomes
unfeasible due to the complexity of the atmospheric processes by which rainfall is
generated. In addition, the lack of data on the necessary temporal and spatial scales affects
the prediction process (Cristiano, Ten Veldhuis & Van de Giesen, 2017). Thus, all these
factors make rainfall time series prediction more challenging task as compared to other
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meteorological parameters. Accordingly, we believe that the requirements for such a highly
complex system should include an advance model to accurately capture the highly non
linear processes occurring in the climate.

The size of forecasting horizon is enormously critical and is considered as one of the
important feature in prediction process. One-step forecasting of a time series is already a
challenging task, performing multi-step, i.e, h-steps ahead forecasting is more difficult
(Längkvist, Karlsson & Loutfi, 2014) because of additional complications, such as
accumulation of errors, reduced accuracy, and increased uncertainty (Kuremoto et al.,
2014). Generally, on broader spectrummultistep forecasting can be computed through two
major strategies. The first is recursive approach and the second one is direct approach.
In recursive approach, multi step forecasting is handled iteratively. This means a single
time series model is developed and each subsequent forecast is estimated using previously
computed forecasts. On the other hand, the direct approach establishes a separate
time series model for each forecasting horizon and forecasts are estimated directly by
implemented models. However, the choice of selection in between of these two strategies
involves a trade-off between bias and variance (Taieb & Hyndman, 2014). Conventionally,
multistep forecasting has been managed recursively, where a model is setup as one step
forecasting model and each forecast is estimated using previous forecasts.

Nevertheless, one cannot ignore the fact that minimization of 1-step forecast errors is
not guaranteed to provide the minimum over textbfh-steps ahead errors. In this
current research, the emphasis is on direct prediction of multistep forecasting, where a
separate time series model for each forecasting horizon is considered and forecasts are
computed using the observed data samples. In fact, the direct strategy minimizes the
h-step ahead errors instead of considering one-step ahead. Huge number of studies
comparing recursive and direct forecasting strategies are present in literature; for further
details, see (Tiao & Tsay, 1994; Cheng et al., 2006; Hamzaçebi, Akay & Kutay, 2009; Kline,
2004; Kock & Teräsvirta, 2011). It is also apparent from the literature that the simple
time series models contain no hidden variables.

In general terms, the fully observed models depend upon two types of variables: the
first one is vector autoregressive and the subsequent one is Nth order Markov model.
Despite of the simplicity, these models are constrained by their lack of memory (Taylor,
Hinton & Roweis, 2011). Initially, classic time series modeling was performed by using
autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA)
(Zhang, Patuwo & Hu, 1998; Tseng, Yu & Tzeng, 2002). However, these models are
basically linear models (Zhang, 2003) and have a limited ability to capture highly nonlinear
characteristics of rainfall series. Recent developments in artificial intelligence and, in
particular, those techniques aimed at pattern recognition, however, provide an alternative
approach for developing of a rainfall forecasting and run-off models (Wu, Chau & Fan,
2010; Dounia, Dairi & Djebbar, 2014; Nourani, Tajbakhsh &Molajou, 2019;Nourani et al.,
2019a; Ali et al., 2018; Ali et al., 2020b; Ali et al., 2018). Artificial neural networks
(ANNs), which perform a nonlinear mapping between inputs and outputs, are one
such technique.
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In particular, for rain prediction researchers in Kashiwao et al. (2017) predicted local
rainfall in regions of Japan using data from the Japan Meteorological Agency (JMA).
A multi-layer perceptron (MLP) is implemented with a hybrid algorithm composed of
back-propagation (BP) and random optimization (RO) methods, and radial basis function
network (RBFN) with a least squares method (LSM), and compared the prediction
performance of the two models. Similarly, ANN shows superior result in comparison to
the traditional modeling approaches in Hung et al. (2009). In their research, results show
that ANN forecasts achieved satisfactory results and have superiority over the ones
obtained by the persistent model. Emotional artificial neural network (EANN) models
have recently been developed and deployed by integrating artificial emotions and the
ANN technique as a new generation of traditional ANN-based models. Nourani et al.
(2019b), proposed the first ever application of these models for multistep precipitation
forecasting. Simultaneously, researchers have also suggested the long-term forecasting of
precipitation using threshold-based hybrid data mining approach (Nourani, Sattari &
Molajou, 2017) and a novel data-intelligent approach (Ali et al., 2020a).

It is important to mention that a multilayer ANN usually contains three layers: an input
layer, an output layer, and one or more hidden layer. The hidden layer is useful for
performing intermediary computations before mapping the input to the output layer
(Darji, Dabhi & Prajapati, 2015). Prior to deep learning, problems involving more than
two hidden layers were uncommon. With simple data sets, two or fewer layers are
often adequate. ALbeit, additional layers may be useful in complex datasets involving
time series or computer vision applications. Artificial neural networks with many hidden
layers forms a deep architecture composed of multiple levels of non linear operations.
Training those deep architectures comes under the umbrella of Deep Learning. When a
neural network is composed of more than one or two hidden layers, contingent upon that
situation the higher layers compose abstractions on the top of previous layers. Deep
Learning Architectures are able to extract high level abstractions from input distribution of
data by means of multiple processing layers, composed of multiple linear and non-linear
transformations.

To summarize, a number of forecasting approaches have been reported in literature as
recent advancements in computing technologies combined with the growing availability of
weather-related data has served to dramatically improve the accuracy of forecasts.
Recent literature demonstrates that deep learning models are excelling on the platform of
machine learning algorithms for time series prediction (Hinton, Osindero & Teh, 2006;
Bengio et al., 2007; Mohamed et al., 2011; Mohamed, Dahl & Hinton, 2011; Seide et al.,
2011; Bordes et al., 2012; Glorot, Bordes & Bengio, 2011; Hernández et al., 2016; Busseti,
Osband &Wong, 2012; Liu et al., 2014;Dalto, Matuško & Vašak, 2015;He, 2017; Kuremoto
et al., 2014; Längkvist, Karlsson & Loutfi, 2014; Narejo & Pasero, 2017); however, an
accurate forecasting of rainfall is still challenging in context of hydrological research
(Hong, 2008). Accordingly, an attempt is made in this work for multi-step rainfall
prediction using deep learning approach.
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Main contribution of this research
DBNs are effective models for capturing complex representations mostly from static and
stationary data such as image classification and object recognition. DBNs actually lacks the
dynamic modelling and are not accurately adequate for non-stationary environments
based on time variant features. In Narejo & Pasero (2016), researchers have proposed a
hybrid approach for time series forecasting of temperature data using DBN and Nonlinear
Autoregressive Neural Networks (NARX). The authors employed DBN for feature
extraction whereas NARX network was developed and trained for extrapolating the
temporal forecasts. On the contrary, in the current research, we propose a simple extension
to DBN-RBM model in order to capture temporal dependencies for multi-step ahead
rainfall prediction. Additionally, the extended model is now capable to forecast multi-steps
ahead, rather than just performing prediction for next one step ahead. The extended
model still maintains its most important computational properties, such that exact
inference and efficient approximate learning using contrastive divergence. Comparative
analysis is also conducted by comparing the performance metrics with other state of the art
deep learning models.

RESEARCH BACKGROUND
The key focus of deep learning is, to automatically discover the hierarchical
representations of data, from lowest level features to high level concepts. This automatic
learning of features at multiple levels of abstraction influences to learn complex functions
mapping the input to the output directly from data, independent of human-crafted
features.. Deep learning is not a single approach, rather it is a class of algorithms and
topologies including Recurrent Neural Networks (RNNs), Convolutional Neural networks
(CNNs), Deep Belief Networks (DBNs), Long short term memory (LSTMs), and stacked
Auto-Encoders (SAEs). These approaches are applied to solve a a broad spectrum of
problems. Although, depending upon their architecture, training and nature of the
problem, these models achieve breakthrough performance in specific domains as
summarized in Table 1. Apart from this, a number of complex problems can be solved by
employing these models in combination. For instance, human activity recognition,
document analysis, processing and labelling video frames. In this context, we present
theoretical concepts of selected deep learning models and their implementation over

Table 1 Deep learning architectures and their applications domain.

Deep learning
architectures

Excelled domains

CNN Speech recognition, image recognition and classification, human pose and 3D human action recognition

DBN Dimensionality reduction, image recognition, information retrieval, natural language understanding, prediction problems,
feature extraction

SAE Data compression, dimensionality reduction and representation learning, document clustering, sentiment analysis, image
processing and object recognition

RNN\LSTM Sequence prediction, online handwriting recognition, gesture recognition, natural language and speech processing, human
activity recognition, automatic translation of texts and images
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time-series data. Moreover, we present our implementation for training these models over
time series meteorological data.

From structural point of view, deep learning is in fact adding more hidden layers to
the neural network architecture. The depth of architecture denotes the depth of the graph,
i.e, the longest path or number of levels from input node to output node. Practical
implementations indicate that training these architectures is much more challenging
and difficult than the shallow architectures (Bengio et al., 2007; Erhan et al., 2009).
The gradient based training of deep supervised multi-layer neural networks with random
initialization of network parameters often gets stuck in local minima. Consequently, it
becomes difficult to obtain good generalization. Therefore, the training strategy for deep
neural network has been modified in this work to distinguish from the reported studies. In
this context, a number of deep architectures are discussed below.

Deep belief network
DBNs are intended to be one of the foremost non-Convolutional models to successfully
admit the training of deep architectures. DBN has played Key role in the revival of deep
neural networks. Earlier than the preface of DBN, deep models were hard to optimize
(Bengio, 2009). The layered structure in DBN can be formed by stacking RBMs which are
used to initialize the network in the region of parameter space that finds good minima of
the supervised objective. RBM relies on two layer structure comprising on visible and
hidden nodes as shown in Fig. 1. The visible units constitute the first layer and correspond
to the components of an observation whereas the hidden units model dependencies
between the components of observations. Then the binary states of the hidden units are all
computed in parallel using (1). Once binary states are chosen for the hidden units, a
“reconstruction” is achieved by setting each vj to 1 with a probability given in (2).

pðhi ¼ 1jvÞ ¼ sigmoid

�Xm
j¼1

wijvj þ ci

�
(1)

Figure 1 Two layered RBM with hidden and visible units. The visible units are responsible to take the
input data. the hidden units working on generating observations of model dependencies. Subsequently,
the process is back and forth for understanding the patterns and underlying structure of provided data.

Full-size DOI: 10.7717/peerj-cs.514/fig-1
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pðvj ¼ 1jhÞ ¼ sigmoid

�Xn
i¼1

wijhi þ bj

�
(2)

The weight wij can be updated using difference between two measured data dependent
and model dependent expectations as expressed in Eq. (3). Where ε is a learning rate.

Dwij ¼ eð, vjhi. data � , vjhi. reconÞ (3)

The DBN model is trained by training RBM layers using contrastive divergence or
stochastic maximum likelihood. The parameters of RBM then designate the parameters of
first layer of the DBN. The second RBM is trained to model the distribution defined by
sampling the hidden units of the first RBM whose visible layer is also working as an input
layer as well. This procedure can be repeated as desired, to add as many layers to DBN.

Convolutional neural network
CNNs are made up of neurons that have learnable weights and biases. Each neuron
receives some inputs, performs a dot product and optionally follows it with a non-linearity.
The whole network still expresses a single differentiable score function. Convolution is
a mathematical concept used heavily in digital signal processing when dealing with
signals that take the form of a time series. To understand, CNN is a deep network where
instead of having stacks of matrix multiply layers, we are going to have stacks of
convolutions. As it can be seen in Fig. 2, three main types of layers are used to build
ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer
or Next layers. Convolution is basically combined integration of two functions as equated
in (4)

Figure 2 Layered architecture of CNN. A generalized architecture of CNN model is presented with
conventional layers. Apart from the input layer and the next layer, most noteable ones are convolutional
layer, detector layer and a pooling or subsampling layer. Full-size DOI: 10.7717/peerj-cs.514/fig-2
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SðtÞ ¼
Z

ðaÞwðt � aÞda (4)

The convolution operation is typically denoted by asterisk as shown in (5)

SðtÞ ¼ ðx � wÞðtÞ (5)

The first arguments x to the convolution is often referred to as input and the second
argument w as the kernel. The output s(t) is sometimes referred to feature map. In ML
applications, the input is usually a multidimensional array of data and the kernel is
usually a multidimensional array of parameters that are adapted by learning algorithm.
The Next layers can be the same conv-nonlinear-pool or can be fully connected layers
before output layer.

To summarize, convolutional mechanism to combine or blend two functions of
time in a coherent manner. Thus, the CNN learns the features from the input data.
Consequently, the real values of the kernel matrix change with each iteration over the
training, indicating that network is learning to identify which regions are of significance for
extracting features from the data.

RESEARCH METHODOLOGY
Figure 3 presents the general overview of methodology employed in this work. The real
time meteorological data was downloaded from Meteo weather station installed at
Neuronica Laboratory, Politecnico Di Torino (Narejo & Pasero, 2017) as shown in Fig. 4.
Recorded data contains several meteorological parameters such as however our primary
concern for the current research was rainfall forecasting. In order to compute the accurate
forecast, the foremost step was data analysis. This analysis was performed by applying
some pre-processing steps over the experimental data i.e data filteration, noise removal
and outlier detection as follows.

Figure 3 Research Methodology. Initially the data recorded by sensor through Meteo weather station is
downloaded via Neuronica Lab resources.The next step is to apply pre-processing and perform feature
extraction accordingly. Finally, training and optimizing the deep learning model as forecasting model.

Full-size DOI: 10.7717/peerj-cs.514/fig-3
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Filtering and noise removal
In order to smoothen the time series rain data and to normalize noisy fluctuations, a
number of different filters were applied. However, the first step towards filter applications
was outlier detection in our rain dataset as shown in Fig. 5. Subsequently, we filtered the

Figure 4 Meteo Weather station at Politecnic Di Torino. The time series data is recorded from the
Meteo weather station mounted at the top of DET building and connected with Neuronica Laboratory,
Politecnico Di Torino. (Narejo & Pasero, 2017). Full-size DOI: 10.7717/peerj-cs.514/fig-4

Figure 5 Outlier detection in Rainfall time series data. Outliers are highlighted with red triangles in
Rainfall time series data. Full-size DOI: 10.7717/peerj-cs.514/fig-5
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rain data using Moving Average, Savitzkey golay and other low pas filters as presented in
Table 2. The original and filtered rain data is presented in Fig. 6 to demonstrate the
effectiveness of the pre-processing step. However, when we trained our temporal DBN
models with these filtered data, it was observed that learning rate was much better for
models based upon Moving Average and low pass filtered data. However, it was observed
later that the input data with moving average filter introduces some delay in estimated
rainfall predictions. Hence, we opted for lowpass filteration for subsequent experiments .

Feature extraction
In order to compute accurate rainfall predictions, we must have some meaningful
attributes that provides content contribution and possibly reduced error rates. Both the
internal and external characteristics of rainfall field depend on a number of factors
including pressure temperature, humidity, meteorological characteristics of catchments
(Nasseri, Asghari & Abedini, 2008). However, the rainfall is one of the most difficult
variables in the hydrologic cycle. The formation mechanism and forecast of rainfall involve

Table 2 Mean square error on filtered rain data.

Filter MSE

Median 0.0569

Moving Average 0.0447

Low-pass Butterworth 0.0352

Savitzky golay 0.0302

Figure 6 Filtering the rainfall time series. It can be observed from figure that original rain data is highly
fluctuated and sharp edges. This is further smoothened and sharp edges are reduced by applying different
filters as shown in the figure. Full-size DOI: 10.7717/peerj-cs.514/fig-6
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a rather complex physics that has not been completely understood so far (Hong & Pai,
2007). In order to resolve this, we put some more efforts while creating significantly
relevant feature set particularly for rainfall nowcasting. Accordingly, we investigated a
number of different feature sets by adding and deleting the meteorological parameters in
sequence. Subsequently, finding the appropriate lagged terms of selected parameters to be
used included as features.

Successively, we also calculated some statistical features considering mean, standard
deviation, variance, maximum, minimum, skewness and kurtosis. We tested our feature
sets by training some models and later on, we found that the DBNmodels were performing
comparatively better if we exclude skewness and kurtosis from the selected features. Hence,
the finalized features to predict rainfall at (t+h) were:

Rainðt þ hÞ ¼ ½rainðtÞ; rainðt � 1Þ; rainðt � 2Þ; rainðt � 3Þ;meanðt : t � 3Þ;
stdðt : t � 3Þ; humidityðtÞ; pressureðtÞ; temperatureðtÞ; humidityðt � 1Þ;
pressureðt � 1Þ; temperatureðt � 1Þ; humidityðt � 2Þ;
pressureðt � 2Þ; temperatureðt � 2Þ�

(6)

where, h in Eq. (6) is a selected horizon for forecasting. In our case, it was fixed as 1, 4,
and 8 indicating for the next sample, for the next 1 h and the next 2 h respectively in future.
It is highly important to reiterate that the frequency of our time series recorded data is
15 min. Sensor generates the value after every 15 min. Therefore, in next 1 h, 4 samples
being recorded. With in 2 h, 8 samples. Also, the subtraction in the equation, let it be
considered as “-n” is indicating that previous n samples in the series. let us suppose that
if n = 1, this suggests the one sample earlier than the current one in the series or the
immediate previous sample in series. If n = 2, this suggests 2 previous samples next to the
current sample will be chosen. Similarly, if n = 3, the three immediate previous samples
from the series will be selected. Finally, in summary, in order to forecast rainfall for h
steps ahead, the required input attributes as presented in (6) are the thre previous samples
and one current value at time “t” of the rain data. Moreover, the mean and standard
deviation of earlier mentioned four rain samples.Humidity, pressure and temperature at
current time t also two previous samples of these variable as time t-1 and t-2.

Experimental setup
The RBM models imitate static category of data and it does not integrate any temporal
information by default. In order to model time series data, we added the autoregressive
information as input by considering the previous lag terms in series. Here, in the
proposed method, apart from autoregressive terms, we also incorporate some statistical
dependencies from the temporal structure of time series data in the form of input
feature set parameters. This was done due to the fact that, multistep forecasting for longer
horizon is more challenging task. Therefore, some extra statistical considerations and
computations needed to be done in order to understand the proper underlying behaviour
of temporal sequence. This additional tapped delay of previous samples as input attributes,
is shown in Eq. (6). It actually introduces temporal dependency in the model and further
transforms the model from static to dynamical form. In general, the dynamic ANN
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depends on a set of input predictor data. Consequently, the dataset needs to define and
represent relevant attributes, to be of good quality and to span comparable period of time
with data series (Abbot & Marohasy, 2012). The rainfall time series dataset is in total
composed of 125691 no. of sample recordings. The dataset is divided into three parts prior
to training. We divided 70% of the total data for training of the models, 20% for testing and
rest was used to validate the h-step ahead forecasting.

Selecting deep layered architecture
In machine learning while fitting a model to data, a number of model parameters are
needed to be learned from data, which is performed through model training. Moreover,
there is another kind of parameters that cannot be directly learned from the legitimate
training procedures. They are called hyper parameters. Hyper-parameters are usually
selected before the actual training process begins. The hyper-parameters can be fixed by
hand or tuned by an algorithm. It is better to adopt its value based on out of sample data,
for example, cross-validation error, online error or out of sample data. The classical
recommendation of selecting two layered architecture for neural networks has been
modified in this work with the advent of deep learning.

Deeper layers, or layers with more than two hidden layers, may learn more complex
Â representations (equivalent to automatic featureÂ engineering). The number of neurons
in the hidden layers is an important factor in deciding the overall architecture of the neural
network. Despite the fact that these layers have no direct interaction with the outside
world, they have a tremendous effect on the final outcome. The number of hidden layers as
well as the number of neurons in each hidden layer must be considered carefully.
Use of few neurons in the hidden layers will result in underfitting i.e. failure to adequately
detect the signals in a complicated data set. On the other hand, using too many neurons in
the hidden layers can result in several problems. First, a large number of neurons in
the hidden layers may result in overfitting. Overfitting occurs when the neural network has
extraordinary information processing capacity that the limited amount of information
contained in the training set is not sufficient to train all of the neurons in the hidden layers.
Even when the training data is adequate, a second issue may arise. An inordinately
large number of neurons in the hidden layers can increase the time it takes to train the
network. The amount of training time can increase to the point that it is impossible to
adequately train the neural network. Obviously, some compromise must be reached
between too many and too few neurons in the hidden layers.

The researchers have advocated in Erhan et al. (2010) that the reason for setting a
large enough hidden layer size is due to the early stopping criteria and possibly other
regularizers, for instance, weight decay, sparsity. Apart from this, the greedy layer wise
unsupervised pretrainig also acts as data dependent regularizer. In a comparative study
(Larochelle et al., 2009), authors found that using same size for all layers worked generally
better or the same as using a decreasing size (pyramid like) or increasing size (upside down
pyramid). They further argued that certainly this must be data dependent. However, in
our research task the decreasing size structure worked far better than the other too.
Consequently, this architectural topology was chosen as standard for further forecasting
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models. The authors in Narejo & Pasero (2018) have argued that in most of the conducted
experiments it was found that an over-complete first hidden layer in which the dimensions
are higher than the input layer dimensions, works better than the under-complete one.

Due to the availability of high performance computing facilities and massive
computational resources, the more productive and automated optimization of hyper
parameter is possible through grid search or random search methods. We have applied
both of the mentioned strategies in our experiments as discussed in the next section.

RESULTS
For each forecasting horizon, a separate model is trained and optimized. However, as
explained in earlier in Introduction section, multi-step forecasting is much more
challenging than one-step ahead. Because, as the forecasting horizon is increased, it is
obvious that the propagation of error in each sample will be raised. Due to this known fact,
the performance accuracy for longer horizon is slightly less than that of the short
forecasting horizon. While training and selecting the final model for each separate
forecasting horizon, multiple models were developed and one for each forecasting horizon
was finalized on the basis of performance evaluation in terms of RMSE, MSE and R
parameters.

One step ahead forecasting
The commendable deep RBM model for one step ahead rainfall forecasting was chosen
with the architecture of (800-400-100-10) hidden layers resulting the depth of four levels.
Apart from this, one input layer consisting of fifteen units and one output layer with
one unit for predicting the target. The model performed well with RMSE of 0.0021 on
training data and 9.558E−04 on test data set. The actual and the forecasted time series is
plotted in Fig. 7.

Four steps ahead forecasting
In order to perform four steps ahead forecasting the model with the following hidden
layer dimensions (600-400-100-10) is proposed. Similar to earlier mentioned model, the
input layer is created with 15 nodes and an output layer is connected for predictions.
It resulted with RMSE of 0.0093 on training and 0.0057 on test data set. The actual and the
forecasted rainfall time series can be seen in the Fig. 8.

Eight steps ahead forecasting
Eight step ahead forecasting was more troublesome task than the rest two mentioned
above. Considerably, more networks were attempted to be trained and to be selected as
the optimal one. However, the accuracy of each model varies with very slight difference.
The outcomes observed for each trained model were almost equivalent. A variety of
architectures were optimized and performance measures are summarized in Table 3. It can
be observed that the deep architecture of DBN-RBM with (300-200-100-10) as hidden
layer dimensions shown in Fig. 9 was found to be the most appropriate and adequate for
eight steps ahead forecasting.
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Figure 10 presents the forecasting of eight steps ahead rainfall time series. It can be
observed in the figure that the forecasting samples are not exactly replicating the original
data indicated by blue circles. Apart from this there is some sort of delay. This delay is due
to the prediction of longer multi-step samples. Forecasting for longer horizon is an
arduous task, therefore a deep CNNmodel is also introduced for forecasting in this section
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Figure 7 Rainfall forecasting for next sample. Actual rain samples and model predictions for one-step-
ahead forecasting. The blue line with circle is representing the actual samples. The data in red is high-
lighting the estimations computed by model as one step ahead forecasting.
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Figure 8 Rainfall forecasting for next 1 h. Actual rain samples and model predictions for one-step-
ahead forecasting. The blue line with circle is representing the actual samples. The data in red is high-
lighting the estimations computed by model as one step ahead.
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Figure 9 Optimal DBN model for rainfall prediction for eight steps ahead forecasting.
Full-size DOI: 10.7717/peerj-cs.514/fig-9

Table 3 Performance measures MSE, RMSE and R of proposed deep architectures for eight step
ahead rainfall forecasting.

S.No Hidden layers RMSE MSE R

Training Test Training Test

1 600-400-100-10 0.0187 0.0068 3.4842E−04 4.6692E−05 0.943

2 500-500-100-10 0.0188 0.0070 3.5372E−04 4.9085E−05 0.941

3 300-200-100-10 0.0182 0.0068 3.3915E−04 4.5971E−05 0.944

4 800-400-100-10 0.0184 0.0070 3.4021E−04 4.9127E−05 0.944

5 CNN 0.0209 0.0072 4.3475E−04 5.1615E−05 0.929
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Figure 10 Rainfall forecasting for next 2 h. Actual rain samples and model predictions for next 2 h, i.e,
eight steps ahead forecasting according to the frequency of our time series dataset. The blue line with
circle is representing the actual samples. The data in red line is highlighting the estimations computed by
model as eight-step-ahead forecasting. Full-size DOI: 10.7717/peerj-cs.514/fig-10
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of our research activity. The latest literature exhibits that the structurally diverse CNN
stands out for their pervasive implementation and have led to impressive results (Cui,
Chen & Chen, 2016; Krizhevsky, Sutskever & Hinton, 2012; Schroff, Kalenichenko &
Philbin, 2015).

In CNNmodel, the convolution filter or kernel is basically an integral component of the
layered architecture. The kernels are then convolved with the input volume to obtain
so-called activation maps. Activation maps indicate activated regions, i.e. regions where
features specific to the kernel have been detected in the input data. In general, the kernel
used for the discrete convolution is small, this means that the network is sparsely
connected. This further reduces the runtime inference and back propagation in the
network. CNN also typically include some kind of spatial pooling in their activation
functions. This helps to take summary statistics over small spatial regions of input in order
to make the final output invariant to small spatial translations of the input. CNNs
have been very successful for commercial image processing applications since early.

In contrast to image classification, the modified version of conventional CNN is applied
to time series prediction task for eight steps ahead forecasting of rainfall series. The
proposed CNN includes four layers as shown in Fig. 11. The first convolutional layer was
developed by thre filters with kernel size of (3, 1). Similarly, the second conv layer
contained 10 filters with the same size as earlier (3, 1). The pooling layer was added by
following the “average” approach for sub-sampling. However, in our case the averaging
factor was unity. For fully connected layers, tangent hyperbolic activations were used
followed by a linear layer for output predictions. To find out the accurate forecasting
model, it is far important to evaluate and compare the performance of trained models. The
natural measure of performance for the forecasting problem is the prediction error. MSE
defined in Eq. (7) is the most popular measure used for the performance prediction
(Zhang, 2003; Ribeiro & Dos Santos Coelho, 2020; Ma, Antoniou & Toledo, 2020; Aliev
et al., 2018). However, the use of only one error metric (MSE) to evaluate the model
performance actually lacks to represents the entire behaviour of the predictions in a
clear way. Therefore, more performance measuring criteria should be considered to
validate the results Hence, performance for each predictive model is quantified using two
additional performance metrics, i.e. Root Mean Squared Error (RMSE) and Regression
parameter R on Training and Test sets.

Figure 11 CNN architecture for eight steps ahead rain forecasting.
Full-size DOI: 10.7717/peerj-cs.514/fig-11

Narejo et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.514 16/23

http://dx.doi.org/10.7717/peerj-cs.514/fig-11
http://dx.doi.org/10.7717/peerj-cs.514
https://peerj.com/computer-science/


MSE ¼
Xn
i¼1

�
Et
N

�2

(7)

Where, N is the total number of data for the prediction and Et is the difference or error
between actual and predicted values of object t. Table 3 presents the details related with
the performance of each model for eight steps ahead forecasting. It can be observed from
the table that the third model with the deep architecture of (300-200-100-10) layers, stands
optimal in terms of all three performance metrics. The R parameter is linear regression,
which relates targets to outputs estimated by network. If this number is near to 1, then
there is good correlation between targets and outputs which shows that outputs are
approximately similar to targets .

DISCUSSION
In weather forecasting, specifically rainfall prediction is one of the most imperatives,
demanding, critical operational problem. It is complex and difficult because, in the field of
meteorology decisions are taken with a degree of uncertainty. This actually happens due to
chaotic nature of the atmosphere which limits the validity of deterministic forecasts.
Generally, the required parameters to predict rainfall are extremely complicated and highly
variable. This increases the uncertainty in rainfall prediction task even for the shorter
horizons (Bushara & Abraham, 2013). It is important to mention that it needs much more
effort to compare and contrast different types of existing rainfall forecasting models as
reported methods usually provides the comparison of their output with observed values.
Thus, this evaluation becomes data-dependent due to the difference of data taken for the
different regions and time periods.

In this context, we also trained some significant nonlinear autoregressive neural
networks on our data. As our research work is based on time series forecasting of rainfall,
the forecasting is done for three different forecasting horizons, next immediate value, the
value of rain variable after 1 h, the value of rain variable for next 2 h. To develope and to
further train the models efficiently, we selected seperate model for each forecasting
horizon. This was done due to the data dependency available in the historical samples and
also to produce accurate forecasting correspondingly. Despite of training deep learning
architectures which automatically extract the meaningful features and patterns, we applied
sufficient efforts to compute some statistical features for each forecasting horizon
separately prior to giving the input data to the deep learning models. Number of attempts
were taken to produce the deep learning model as accurate forecaster based on different
architecture and different parameter settings. In partcular, we have only mentioned
some optimal models in the result sections. The performance of each model was computed
using MSE, RMSE and R.

CONCLUSIONS
The paper presents rainfall time series forecasting of a specific site in Italy using deep
learning architectures.. Deep learning architectures are accelerating rapidly in almost every
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field of interest and replacing several other machine learning algorithms. Consequently,
this gave us direction to further investigate these deep architectures over time series rainfall
forecasting. Therefore, the primary focus of this research was to perform multi-step
forecasting for rainfall data as its much more challenging than single-step ahead. During
our research, it was observed that the parameters required to predict rainfall were
enormously complex and subtle even for a short term period. Thus, different combinations
of inputs and statistical features were investigated. The results presented in Table 3 indicate
that DBN outperforms the conventional CNN model when larger forecasting horizon
was considered.

It is important to mention that error measures play an important role in calibrating or
refining a model in order to forecast accurately for a set of time series. Thus, three different
performance metrics were considered for comparative analysis over the trained models.
Considering the obtained RMSE and MSE values of trained models, it is obvious that deep
learning architectures are significantly improving the test errors in contrast with the
training errors.

During the training phase of models, it was observed that the Deeper architectures are
more exhaustive as far as the computational resources are concerned. Due to this, it took
almost more than couple of weeks to well train the deep hierarchical models on High
Performance Computing (HPC). However, our major concern was not about acceleration
but accurate modelling of data. Albeit, from future perspective the acceleration can be
improved by utilizing the GPUs and FPGAs for similar implementations. In context of the
future works, we believe that findings of this research can be further utilized as basis for the
advance forecasting of weather parameters with same climate conditions.
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