
GrimoireLab: A toolset for software
development analytics
Santiago Dueñas1, Valerio Cosentino1, Jesus M. Gonzalez-Barahona2,
Alvaro del Castillo San Felix1, Daniel Izquierdo-Cortazar1,
Luis Cañas-Díaz1 and Alberto Pérez García-Plaza1

1 Bitergia, Leganes, Madrid, Spain
2Escuela Superior de Ingeniería de Telecomunicación, Universidad Rey Juan Carlos, Fuenlabrada,
Madrid, Spain

ABSTRACT
Background: After many years of research on software repositories, the knowledge
for building mature, reusable tools that perform data retrieval, storage and basic
analytics is readily available. However, there is still room to improvement in the area
of reusable tools implementing this knowledge.
Goal: To produce a reusable toolset supporting the most common tasks when
retrieving, curating and visualizing data from software repositories, allowing for the
easy reproduction of data sets ready for more complex analytics, and sparing the
researcher or the analyst of most of the tasks that can be automated.
Method: Use our experience in building tools in this domain to identify a collection
of scenarios where a reusable toolset would be convenient, and the main components
of such a toolset. Then build those components, and refine them incrementally
using the feedback from their use in both commercial, community-based, and
academic environments.
Results: GrimoireLab, an efficient toolset composed of five main components,
supporting about 30 different kinds of data sources related to software development.
It has been tested in many environments, for performing different kinds of studies,
and providing different kinds of services. It features a common API for accessing
the retrieved data, facilities for relating items from different data sources, semi-
structured storage for easing later analysis and reproduction, and basic facilities for
visualization, preliminary analysis and drill-down in the data. It is also modular,
making it easy to support new kinds of data sources and analysis.
Conclusions:We present a mature toolset, widely tested in the field, that can help to
improve the situation in the area of reusable tools for mining software repositories.
We show some scenarios where it has already been used. We expect it will help to
reduce the effort for doing studies or providing services in this area, leading to
advances in reproducibility and comparison of results.

Subjects Data Science, Software Engineering
Keywords Mining software repositories, Empirical software engineering, Software development,
Software analytics, Datasets, Toolset, Software development visualization

INTRODUCTION
Software development, and in particular open source software development, relies on
an increasing number of support tools (Dabbish et al., 2012; Storey et al., 2010; Lanubile
et al., 2010). Each of them maintain data about the software development process, the

How to cite this article Dueñas S, Cosentino V, Gonzalez-Barahona JM, del Castillo San Felix A, Izquierdo-Cortazar D, Cañas-Díaz L,
Pérez García-Plaza A. 2021. GrimoireLab: A toolset for software development analytics. PeerJ Comput. Sci. 7:e601 DOI 10.7717/peerj-
cs.601

Submitted 11 November 2020
Accepted 28 May 2021
Published 9 July 2021

Corresponding author
Jesus M. Gonzalez-Barahona,
jesus.gonzalez.barahona@urjc.es

Academic editor
Ahmed Hassan

Additional Information and
Declarations can be found on
page 48

DOI 10.7717/peerj-cs.601

Copyright
2021 Dueñas et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.601
http://dx.doi.org/10.7717/peerj-cs.601
mailto:jesus.�gonzalez.�barahona@�urjc.�es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.601
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

developed artifacts, and how developers are working. The analysis of these data sources
(usually referred as software repositories) has favored the creation of an active community
of miners, both from academia and industry, interested in the empirical study of how
software artifacts are created and maintained, and the related processes, activities and
persons (Cosentino, Izquierdo & Cabot, 2017).

Motivation
As the mining software repositories community has matured (Hemmati et al., 2013), tools
have been built to retrieve and curate large datasets. Already before 2010, many tools had
been built to deal with a wide spectrum of repositories: CVSAnalY (Robles, Koch &
Gonzalez-Barahona, 2004), FLOSSMole (Howison, Conklin & Crowston, 2006), FOSSology
(Gobeille, 2008), SQO-OSS (Gousios, Kalliamvakou & Spinellis, 2008), to name just a few of
them. These tools showed how data retrieval, storage, and at least a part of the analysis
could be automated and made generic enough to support different kinds of studies;
were used to explore the limits to scalability, and the benefits of developing reusable tools;
and served to demonstrate different approaches to avoid harming the project hosting
systems, while at the same time being efficient in retrieving data (for example, by retrieving
data once, storing it in a database, and later analyzing that data as many times as needed).
After this “first wave” many other tools, developed during the last decade, were built
on these lessons, offering more sophisticated functionality, better performance and
scalability, and in some cases, more variety of data sources. Examples of this second-
generation tools are MetricsGrimoire (Gonzalez-Barahona, Robles & Izquierdo-Cortazar,
2015), Kibble (Apache, 2022), or Gitana (Cosentino, Izquierdo & Cabot, 2018).

In the specific case of GitHub, which currently hosts a vast majority of FOSS software
projects, and most of the public code available today, several tools are retrieving data
and source code from it. Some of them provide means to query that data, or to produce
some analysis and visualizations of it: GHTorrent (Gousios & Spinellis, 2012) and BOA
(Dyer et al., 2013a), GHArchive (Grigorik, 2022), and OpenHub (Farah, Tejada & Correal,
2014), to mention just some of the better known. Some tools have also been deployed
specifically to retrieve source code or data related to software development, and store it
for preservation, such as Software Heritage (Di Cosmo & Zacchiroli, 2017) and SARA
(SARA, 2022).

Despite the many benefits that all of these tools provide when a researcher or a
practitioner needs to deal with software development data retrieval and analysis, there is
still room for improvement in many areas. Most of the tools in these two generations are
focused on one, or in some cases, a small subset of kinds of data sources; use disparate
data formats and integration APIs, making it difficult to combine results for different kinds
of repositories; and in many cases are not easy to deploy and operate, or difficult to use
for large-scale, continuous data retrieval. Not all of these tools provide support for
retrieval, storage and analysis of the data, and when they do, usually the opportunities for
analysis are very limited. Only a few of them are extensible, and just a few are mature
enough for large-scale, industrial endeavors. During the last years, some new tools or
toolsets are emerging that try to address some of these issues, such as PyDriller

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 2/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

(Spadini, Aniche & Bacchelli, 2018) and SmartSHARK (Trautsch et al., 2017). GrimoireLab,
which we started to design and implement in 2016, is one of them.

Overview
GrimoireLab is a free, open source set of Python tools to retrieve, organize, analyze and
visualize software development data. It automatically collects, processes and stores data
from more than 30 kinds of repositories used in software development (source code
management, issue tracking, code review, messaging, continuous integration, etc).
GrimoireLab builds on previous experiences, paying special attention to recurrent issues
that miners face in their activities such as data loss or corruption due to connection
problems, data freshness and incremental retrieval, identities management, and
heterogeneous formats that come from different data sources. It has been designed and
built as a modular toolset suitable for its use by third parties, with the aim of satisfying the
needs of researchers, but also of commercial exploitation.

Miners can use the functionality provided by GrimoireLab as a black box, to efficiently
retrieve, analyze, store, and visualize data for a collection of projects. Or they can use
specific tools, maybe integrating them with their own mining applications. For example, it
provides modules for retrieving data from many kinds of data sources, with a common
API, and for integrating third party tools for code analysis that can be used standalone
from Python scripts. GrimoireLab also includes a module for identity management that
can be used in combination with custom code to merge or tag identities, something that
is fundamental to analyze activity of persons using several identities, to merge activity
from different data sources, and to annotate identities with affiliation information, for
example. There are also scheduling and orchestration modules that can be used or not,
depending on the complexity of the scenario. GrimoireLab also defines some data formats
for several steps in the usual analysis pipelines (raw retrieval formats, enriched formats)
that can be used for integration with other tools or for replication.

Contributions
The main contributions of the toolset presented in this paper are:

� Breadth. Support for activities in many areas related to the mining of software
repositories: data retrieval, storage, analysis, identity management, scheduling,
visualization, reporting, etc.

� Modularity. A modular and extensible design, including the identification of the
modules useful in common tasks in this domain, and common APIs for similar
functions.

� Data formats. Definition of data formats for the main stages of software development
analytics.

� Readiness. Implementation as a collection of easy-to-install, easy-to-use Python
packages, also available as Docker images.

� Maturity. Extensive testing and regular usage, both in academic and industrial
environments.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 3/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� Extra functionality. Built-in functionality for addressing common problems in real-
world data retrieval, storage and analysis: fault-tolerance, incremental retrieval,
extensibility, facilities for data curation, identity management (including tracking of
identities in different data sources), data persistence, traceability and uniform access to
the data.

Structure of the paper and definitions
This paper presents GrimoireLab, the main result of a “solution-seeking” research line
(Stol & Fitzgerald, 2018), aiming to improve the situation in solving the practical problem
of retrieving data from software development repositories, preparing it for further analysis,
and providing basic analysis and visualization tools that help in exploratory studies.
The approach used has been holistic, trying to first understand (by experience and by
study) the problems, and then providing a toolset that addresses many of them in
combination. We also show how GrimoireLab can be used in some research scenarios, and
how it was used in some real use cases, and discuss its main characteristics both in research
and industrial environments.

The rest of this paper is organized as follows: “The components” section describes the
different components of GrimoireLab; the “Combining the modules” section illustrates
how those components can be combined in several exemplary research scenarios, and in
some real use cases (presented with their main magnitudes and performance metrics);
the “Discussion” section summarizes and discusses the main features of the toolset, how its
use in research studies may affect researchers, some lessons learned from its use in
industry, and presents GrimoireLab in the context of other related work. Finally,
“Availability and usage” summarizes availability and usage of the toolset, and
“Conclusion” highlights some conclusions and future work.

Some definitions of terms that we will use through this paper are:

� data source: any system providing retrieval mechanisms (usually, an API) to access data
related to software development: source code management, issue tracking, code review,
synchronous or asynchronous communication, testing, collaborative documentation
writing, Q/A forums, etc. Examples of a data source are a Git server, a Bugzilla instance,
a Mailman archive, or some Slack instance.

� kind of data source: all data sources with the same retrieval API. Examples of kinds of
data sources are “Git”, “Bugzilla”, “Mailman”, or “Slack”.

� repository: a part of a data source, usually corresponding to the data managed for a
certain project. Examples of repositories are a Git repository, a Bugzilla issue tracker, a
mailing list archive in a Mailman instance, or a Slack channel.

� index: all data corresponding to a certain kind of data source, as it is stored in the
GrimoireLab database. Indexes may be raw, with data as similar as possible to the one
provided by the data sources, or enriched, which are tailored to easy visualization and
reporting.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 4/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� item: unity of data stored in an index, usually corresponding to what developers consider
as a unity of action a kind of data source. Examples of items are “commit” for Git, “issue”
for Bugzilla, “message” for Mailman, or “message” for Slack.

� GrimoireLab component: software module, maintained in a separate repository, and as a
separate Python package, which is a part of GrimoireLab.

THE COMPONENTS
GrimoireLab is structured in several components, which are outlined in this section.
Components can be composed in different ways, to support different use cases. Each
component can be installed as a Python package, which may need some other components
to work: in that case they are installed as dependencies. Most components are Python
modules that can be imported as libraries, but many of them also provide driver scripts to
provide a certain CLI (command line interface).

The overall structure ofGrimoireLab is sketched in Fig. 1. In it, components are grouped
in four areas: Data Retrieval, Analytics (including permanent storage), Identities
Management, and Visualization and Reporting. Additionally, there is also a module for
orchestration. This separation in areas is introduced to help in the process to understand
GrimoireLab components, and their role in the functionalities provided. At the same time,
it allows for the introduction of the main interfaces that allow for the relatively
independent development of the components presented in the rest of this section. These
interfaces are:

� Retrieval components always provide JSON documents: data retrieved for each item is
encoded as a JSON document resembling as much as possible the data structure
provided by the corresponding data source. However, it also includes some metadata
common for all kinds of data sources, which allows for a uniform data processing when
peculiarities of a data source are not relevant (for example, when storing the data in
permanent storage, or for temporal ordering of the items). When convenient, these
JSON documents are mapped to Python dictionaries to provide a Python API based on
Python generators.

� Identities Management components are accessed through a Python API, mapped to a
CLI (command line interface) when convenient. This API allows for the registration of
new identities found in data sources, for mapping them to unique identities identifying
persons, and for the retrieval of tags (such as affiliation) associated to identities.

� Analytics modules produce results that are stored in permanent storage (enriched
indexes in a database). Other components (Visualization and Reporting) using these
results access them via the database interface to these indexes. Enriched indexes are
composed by a flat JSON document per item. These documents are suitable to plug into
visualization tools, or to perform further processing (for example, mapping collections
of JSON documents to Python Pandas dataframes) towards specific reports. The
document for each item includes the most usual fields for the analysis of the

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 5/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

corresponding data source, and some others common to all data sources, thus enabling
cross-data source analysis (for example, “creation date” or “author” of the item).

The details of each of these areas, and their underlying components, are described in the
next sections. For help going through them, check Fig. 2.

Retrieval
GrimoireLab pipelines usually start by retrieving data from some software development
repository. This involves accessing the APIs of the services managing those repositories
(such as GitHub, Stack Overflow or Slack, San Francisco, California, USA), or using
external tools or libraries to directly access the artifacts (such as Git repositories or mailing
list archives). In the specific case of source code management repositories, some tools may
also be run to obtain metrics about the source code. For large-scale retrieval, work is
organized in jobs that have to be scheduled to minimize impact on the target platform, and
to maximize performance. GrimoireLab provides three components for dealing with these
issues:

� Perceval fetches data from the original data sources. Usually, it works as a library,
providing a uniform Python API to access software development repositories. Relevant
data in these repositories are produced as “items”, that can be managed as Python
dictionaries or JSON documents. Perceval provides access to the following data sources
(although for some of them, not all APIs are always supported):

-Version control systems: Git.
-Source code review systems: Gerrit, GitHub, GitLab.

...

Data sources

Retrieval

Identities
management

Visualization

Reporting
&

Orchestration

Analytics

Figure 1 Main structure of GrimoireLab. The four main areas that structure the toolset are presented,
showing the data flow between them and with data sources. Orchestration is also represented as man-
agingall components. •Twitter: https://www.iconfinder.com/icons/211920/twitter_83905social_icon ->
MIT; •GitHub: https://www.iconfinder.com/icons/298822/github_mark_icon -> MIT; •bugzilla: recre-
ated from https://commons.wikimedia.org/wiki/File:Buggie.svg -> MPL 1.1; Reddit: https://www.
iconfinder.com/icons/211911/reddit_social_icon -> MIT; •Slack: https://www.iconfinder.com/icons/
710268/slack_social_icon -> CC by 2.5; •Meetup: https://www.iconfinder.com/icons/306191/meetup_
icon -> CC by 2.5; •Telegram: https://www.iconfinder.com/icons/2644993/media_messenger_social_
telegram_icon -> -> CC by 3.0; •Stackoverflow: https://www.iconfinder.com/icons/394194/overflow_
stack_stackoverflow_icon -> Free commercial use. Use icon for commercial purpose, edit, share, etc.;
•Jira: from https://iconscout.com/icon/jira-1-> MIT. Full-size DOI: 10.7717/peerj-cs.601/fig-1

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 6/53

https://www.iconfinder.com/icons/211920/twitter_83905social_icon
https://www.iconfinder.com/icons/298822/github_mark_icon
https://commons.wikimedia.org/wiki/File:Buggie.svg
https://www.iconfinder.com/icons/211911/reddit_social_icon
https://www.iconfinder.com/icons/211911/reddit_social_icon
https://www.iconfinder.com/icons/710268/slack_social_icon
https://www.iconfinder.com/icons/710268/slack_social_icon
https://www.iconfinder.com/icons/306191/meetup_icon
https://www.iconfinder.com/icons/306191/meetup_icon
https://www.iconfinder.com/icons/2644993/media_messenger_social_telegram_icon
https://www.iconfinder.com/icons/2644993/media_messenger_social_telegram_icon
https://www.iconfinder.com/icons/394194/overflow_stack_stackoverflow_icon
https://www.iconfinder.com/icons/394194/overflow_stack_stackoverflow_icon
https://iconscout.com/icon/jira-1
http://dx.doi.org/10.7717/peerj-cs.601/fig-1
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

-Bugs/Ticketing tools: Bugzilla, GitHub, JIRA, Launchpad, Phabricator, Redmine,
GitLab.
-Asynchronous. communication: Hyperkitty, MBox archives, NNTP, Pipermail,
Groups.io
-Forums: RSS, NNTP
-Continuous integration: Jenkins
-Instant messaging: Slack, Mattermost, Gitter, RocketChat, Supybot archives (IRC),
Telegram
-Q/A: Askbot, Discourse, Stack Exchange
-Documentation: Confluence, Mediawiki
-Other: DockerHub, Meetup, Twitter

� Graal runs third party tools on Git repositories, to obtain source code analysis data, at
the file level, for each commit found. It uses Perceval to get the list of commits, and then
runs the tools selected on checkouts of those commits. Graal can run tools for
computing metrics in the areas of code complexity, code size, code quality, potential
vulnerabilities, and licensing. Graal captures the output of these tools, encoding the data
they produce in JSON items similar to those produced by Perceval.

� Arthur schedules and run Perceval and Graal jobs at scale through distributed queues1.

Therefore, Perceval and Graal are the two only components in GrimoireLab directly
performing data retrieval. Perceval has backends for dealing with the peculiarities of data
sources APIs, and Graal is specialized in the analysis of snapshots of code retrieved from a
source code management system (using Perceval just for getting the list of commit hashes,

Dashboards

Reports

Arthur
...

Data sources

GrimoireELK

SortingHat

Raw indexes

Kibiter

Enriched indexes

identities management

retrieval analytics

Mordred

orchestration

Perceval

Manuscripts

Sigils

al

Graal

HatStall

Cereslib KidashKid h

visualization
reporting&

Identities
Affiliations

Figure 2 Components of the GrimoireLab toolset, grouped in the same areas shown in Fig. 1.
Permanent storage used (an SQL database for identity data, on top, and Elasticsearch for raw anden-
riched indexes) is also shown. Arrows represent the flow of data from data sources to the componentsin
the different areas, between them, and with the databases. •Kidash: https://es.wikipedia.org/wiki/Archivo:
KI-hiragana.gif -> CC by 3.0; •Graal: https://icon-icons.com/es/icono/Santo-Grial-holy/39098-> CC
Attribution. Full-size DOI: 10.7717/peerj-cs.601/fig-2

1 At the moment of writing this paper,
support for Graal in Arthur is still not
completely integrated.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 7/53

https://es.wikipedia.org/wiki/Archivo:KI-hiragana.gif
https://es.wikipedia.org/wiki/Archivo:KI-hiragana.gif
https://icon-icons.com/es/icono/Santo-Grial-holy/39098
http://dx.doi.org/10.7717/peerj-cs.601/fig-2
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

in the case of Git). Arthur’s concern is to organize the work of Perceval and Graal when
retrieving large quantities of data, by providing a system supporting the scheduling of
parallel asynchronous jobs, in several nodes, and making all the details transparent to the
next component in the pipeline (usually, GrimoireELK, see below).

A common Perceval job consists of fetching a collection of homogeneous items from a
given data source: tickets extracted from Bugzilla or GitHub issue trackers, commits from a
Git repository, or code reviews from a Gerrit instance. Each item is extended with
related information (e.g., comments and authors of a GitHub issue) obtained from the data
source, and metadata useful for debugging and tracing (e.g., backend version and
timestamp of the execution). When a data source provides several types of items, Perceval
usually labels the resulting items in a way that can be identified by other components
processing them later. For example, the GitHub Issues API provides both issues and pull
requests for a repository: Perceval uses the field pull_request to let other components
know if the item is an issue or a pull request.

The output of the execution of Perceval is a list of Python dictionaries (or JSON
documents), one per item. All these dictionaries, for all data sources, follow the same
top-level schema: some fields with metainformation that can be used for traceability, for
incremental retrieval, and to simplify tasks by other components. Figure 3 shows an
example of the top level fields for an item corresponding to a GitHub pull request. The field
data is a dictionary with all the data produced by the data source API, with a structure as
similar as possible to the one produced by that API.

Perceval ’s design is shown in Figs. 4 and 5. For each data source, it includes a Client, a
Backend, and a CommandLine class. Backend organizes the gathering process for a specific
data source sharing common features, such as incrementally and caching, and defines
those specific to the data source. For instance, the GitHub backend requires an API token
and the names of the repository and owner, while the Stack Exchange backend needs an
API token plus the tag to filter questions. The complexities for querying the data source are
encapsulated in Client. Most of the code for each Client is specific for the kind of data
source it is dealing with. However, some code is shared, such as token management (for
those HTTP APIs that implement it), handling of interrupted connections (for APIs

{
"backend_name": "GitHub",
"backend_version": "0.2.2",
"data": {

...
},
"origin": "https://github.com/grimoirelab/perceval",
"perceval_version": "0.1.0",
"timestamp": 1476139775.852378,
"updated_on": 1451929343.0,
"uuid": "c403532b196ed4020cc86d001feb091c009d3d26"

}

Figure 3 Top-level fields for a certain item produced by Perceval (the example is for a GitHub
pullrequest). Origin refers to the repository of origin for the item. Timestamp refers to the moment
theitem was retrieved, updated on to the moment the item was last updated in the data source. uuid is a
unique identifier for the item. Full-size DOI: 10.7717/peerj-cs.601/fig-3

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 8/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-3
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

...

Data sources

CommandLine

BackendClient

JSON docs

Perceval

Figure 4 Overview of the structure of Perceval. Solid arrows show the flow of data from data sources
tothe JSON documents produced (one for each item in the data source). Dashed lines show the flow
ofinvocations, from the command line module to the data source API.

Full-size DOI: 10.7717/peerj-cs.601/fig-4

HttpClient

DEFAULT_HEADERS : dict
DEFAULT_METHOD_WHITELIST : bool
DEFAULT_RAISE_ON_REDIRECT : bool
...

fetch(url, payload,
 headers, method,
 stream, verify)
sanitize_for_archive(url, headers, payload)

RateLimitHandler

MAX_RATE_LIMIT : int
MIN_RATE_LIMIT : int
RATE_LIMIT_HEADER : str
...

calculate_time_to_reset()
...
sleep_for_rate_limit()
update_rate_limit(response)

GitLabClient

RATE_LIMIT_HEADER : str
RATE_LIMIT_RESET_HEADER : str
owner
rate_limit : NoneType
repository
sleep_for_rate : bool
token

calculate_time_to_reset()
fetch(url, payload, headers, method, stream)
fetch_items(path, payload, from_date)
issue_emojis(issue_id)
issue_notes(issue_id)
issues(from_date)
note_emojis(issue_id, note_id)
process_page_issues(raw_issues, from_date)
sanitize_for_archive(url, headers, payload)

GitHubClient

owner
repository
token

calculate_time_to_reset()
fetch(url, payload, headers,
 method, stream, verify)
fetch_items(path, payload)
issue_comment_reactions(comment_id)
issue_comments(issue_number)
issue_reactions(issue_number)
issues(from_date)
pull_commits(pr_number)
pull_requested_reviewers(pr_number)
pull_review_comment_reactions(comment_id)
pull_review_comments(pr_number)
pulls(from_date)
user(login)
user_orgs(login)

Backend

CATEGORIES : list
archive
archive : NoneType
categories
client
origin
tag
version : str

fetch(category)
fetch_from_archive()
fetch_items(category)
has_archiving(cls)
has_resuming(cls)
metadata(item)
metadata_category(item)
metadata_id(item)
metadata_updated_on(item)

BackendCommand

BACKEND : NoneType
archive_manager : NoneType
json_line
outfile
parsed_args

run()
setup_cmd_parser()

GitHubCommand

BACKEND

setup_cmd_parser()

GitLabCommand

BACKEND

setup_cmd_parser()

GitHub

CATEGORIES : list
api_token : NoneType
base_url : NoneType
client : NoneType
max_retries : int
min_rate_to_sleep : int
owner : NoneType
repository : NoneType
sleep_for_rate : bool
sleep_time : int
version : str

fetch(category, from_date)
fetch_items(category)
has_archiving(cls)
has_resuming(cls)
metadata_category(item)
metadata_id(item)
metadata_updated_on(item)

GitLab

CATEGORIES : list
api_token : NoneType
base_url : NoneType
client : NoneType
max_retries : int
min_rate_to_sleep : int
owner : NoneType
repository : NoneType
sleep_for_rate : bool
sleep_time : int
version : str

fetch(category, from_date)
fetch_items(category)
has_archiving(cls)
has_resuming(cls)
metadata_category(item)
metadata_id(item)
metadata_updated_on(item)

Figure 5 Simplified structure of Perceval, in UML. Only the main hierarchies of classes (Backend, BackendCommand, HttpClient and Rate-
LimitHandler are shown, and only for two backends (GitHub and GitLab)). Full-size DOI: 10.7717/peerj-cs.601/fig-5

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 9/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-4
http://dx.doi.org/10.7717/peerj-cs.601/fig-5
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

accessed via a TCP connection), and management of the retrieval cycle (provision of a
Python generator to consumers of data retrieved by Perceval). CommandLine is provided
to make parameters for each data source available via the command line. More details
about Perceval are described in (Dueñas et al., 2018).

Graal provides a mechanism to plug third party tools and libraries performing source
code analysis. It produces analysis in the areas of code complexity, quality, dependencies,
vulnerability and licensing. See an overview of the structure of Graal in Fig. 6. Graal
uses Perceval to clone the Git repository to analyze, and to get its list of commit hashes, via
the Graal Client module. Then, the Graal Analyzer module runs some of the third party
tools on each specified snapshots (by checking out the corresponding commits), and
transforms the data produced by the tools in a Python dictionary. This dictionary is fed to
the Backend component, which complements it with some data (such as Graal version,
date of the analysis, etc.), and produces the resulting JSON document. The structure and
functioning of Graal is described in more detail in (Cosentino et al., 2018).

Arthur provides an HTTP API (via its Server class), which allows for the management
(submit, delete, list) of Perceval jobs, defined as JSON documents specifying the details of
the job. These details include the category of the job, parameters to run Perceval, or
parameters to the scheduler, such as the maximum number of retries upon failures. Jobs
are sent to the Scheduler class, which maintains queues for first-time and incremental
retrievals, rescheduling in case of failures. These queues submit jobs toWorkers (which can
run in different machines), which are the key scalability element of Arthur. When jobs are
done, workers notify the scheduler, and in case of success, they send the JSON documents,
resulting from Perceval data retrieval, to a storage queue, where they are consumed by

Git repo

CommandLine

BackendClient

JSON docs

AnalyzerGraal

Cloc
Flake8

Jadolint
Reverse

Bandit
Lizard

Nomos

ScanCode
Linguist
Pylint

SCC

Tools

Figure 6 Overview of the structure of Graal. Solid arrows show the data flow from the Git repository
tothe final JSON documents produced by Graal, dashed arrows show the flow of invocation data.
The Analyzer module runs third party tools on the checkouts of the repository, produced by the Cli-
ent module, and passes the results, properly formatted, to the Backend module. The “tools” box shows
third party tools. Full-size DOI: 10.7717/peerj-cs.601/fig-6

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 10/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-6
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

writers, making it possible to live-stream data or serialize it to database management
systems. See an overview of the structure of Arthur in Fig. 7.

Perceval and Graal can be used on their own, usually from a Python script. Arthur
provides a HTTP API, to control its operation.

Analytics (and permanent storage)
The main aim of Analytics components is to process retrieved data to produce items more
suitable for visualization and reporting, in a process called enrichment. This allows for
separation of retrieval; preparation for the final visualization and reporting; and the actual
visualization and reporting. Components in this area also store both the retrieved and
the enriched data. This strategy of storing the data at two points is convenient for two
reasons: allowing the easy reproduction of the pipelines if needed, without the need to
retrieve the data once again from the original data sources, and the production of
visualization and analysis at any time, sparing the need to re-enrich raw data. Of course,
this is possible thanks to the identification of several actions needed for most visualizations
and reporting: flattening of the data, normalization of dates, identities management, etc.

The Analytics area is covered by two components, GrimoireELK and Cereslib. The first
one implements the core GrimoireLab pipeline: obtaining JSON items from the Data
Retrieval components, storing them with persistence in “raw indexes”, enriching those
indexes by producing items more suitable for visualization and reporting, and storing them
in persistent “enriched indexes”. In the process, GrimoireELK also uses SortingHat, in the
Identities Management area, for identifying new identities, and finding the corresponding
unique (merged) identities. Since both raw and enriched indexes are Elasticsearch indexes,
they are basically collections of JSON items (named “documents” in Elasticsearch). All
usual operations on noSQL databases are possible on those indexes: retrieving one or more
items given some constraints, aggregating values for certain fields for a certain selection of
items, updating items matching certain values, etc.

JSON docsRequests Server

Jobs

...

Scheduler
...

Workers

PercevalGraal

Create

Update

Items

Arthur

Figure 7 Overview of the structure of Arthur. Solid arrows show the jobs flow, since they arrive as
jobrequests (usually produced by GrimoireELK), to the moment they run as Perceval or Graal invoca-
tions inworkers. Dashed arrows show the data flow from Graal and Perceval (which access the data
sources) until it produces items ready to be uploaded to the database. •Redis: https://www.iconfinder.
com/icons/4691219/redis_icon -> CC by 3.0; •workers: https://icon-icons.com/icon/gear-hammer/
38299 -> CC Attribution. Full-size DOI: 10.7717/peerj-cs.601/fig-7

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 11/53

https://www.iconfinder.com/icons/4691219/redis_icon
https://www.iconfinder.com/icons/4691219/redis_icon
https://icon-icons.com/icon/gear-hammer/38299
https://icon-icons.com/icon/gear-hammer/38299
http://dx.doi.org/10.7717/peerj-cs.601/fig-7
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

The other component, Cereslib, is a library providing an API with useful functionality
for certain kinds of specialized functionality. The Cereslib API is invoked by GrimoireELK
to run “studies”, which produces some specific enriched indexes. Studies are specialized
preanalysis, producing items with a specific aim in mind. For example, one of them,
“Areas of code”, produces commit data at the file level (each item consists of commit
metadata for each revision of each file), which is useful to analyze how different areas of
code evolve.

GrimoireELK is the main actor of this area, interacting with the database. Its design is
shown in Fig. 8. A feeder collects JSON documents produced by the data retrieval, storing
them as the raw database (in an Elasticsearch index). Dumps of this raw data can be
easily created to make any analysis reproducible, or to analyze directly with third party
tools.

Raw data is then enriched, summarizing the information usually needed for analysis and
visualization, in some cases computing new fields. For example, pair programming
information is added to Git data, when it can be extracted from commit messages; or time
to solve an issue is added to GitHub data. The enriched data is stored in Elasticsearch as an
index with flat JSON documents, embedding references to the raw documents for
traceability.

Each of the items in enriched indexes stores data about a single commit, issue report,
code review, message, etc. For example, for a commit, 54 different fields are stored (see
Fig. 9 for a more complete description of some of them2), including, among others:
author_uuid (unique author identified, provided by SortingHat), author_date (author
date in the commit record), files (number of files touched by this commit),
lines_added (number of lines added), lines_removed (number of lines removed),
message (commit message), project (project to which the repository is assigned),
branches (list of branches in which the commit appears). Enriched items are not
normalized due to limitations of Elasticsearch, which does not support table (index) join.
This has some impact on the size of the indexes (some fields are repeated once and again,

JSON docs Feeder EnricherRaw indexes Enriched indexes

SortingHat

GrimoireELK

Figure 8 Overview of the structure of GrimoireELK. Arrows show the data flow from JSON
documents fed from Retrieval components to the enriched indexes. Retrieved data is received by
the Feeder, whichstores them in raw indexes. Then, the Enricher module produces enriched items,
submits new identities toSortingHat, and adds unique (merged) identities and related data to those items
before storing them. •feeder: https://thenounproject.com/term/pac-man/461024/ -> CC Attribution;
•enricher: https://icon-icons.com/icon/mine-wagon/39492 -> CC Attribution; •redis: https://www.
iconfinder.com/icons/4691219/redis_icon -> CC by 3.0. Full-size DOI: 10.7717/peerj-cs.601/fig-8

2 Full list of fields per item in the enriched
Git index: https://github.com/chaoss/
grimoirelab-elk/blob/master/schema/git.
csv

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 12/53

https://thenounproject.com/term/pac-man/461024/
https://icon-icons.com/icon/mine-wagon/39492
https://www.iconfinder.com/icons/4691219/redis_icon
https://www.iconfinder.com/icons/4691219/redis_icon
http://dx.doi.org/10.7717/peerj-cs.601/fig-8
https://github.com/chaoss/grimoirelab-elk/blob/master/schema/git.csv
https://github.com/chaoss/grimoirelab-elk/blob/master/schema/git.csv
https://github.com/chaoss/grimoirelab-elk/blob/master/schema/git.csv
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

when they could be in a separate table, with cross-references). However, the impact is not
large, since those fields tend to be relatively small compared with the whole size of the item.
The main impact of this lack of normalization is observed when one of those fields
changes, and all items with the old value have to be modified. For example, if the name of
an author was wrong, and is fixed, all the items authored for that person need to be fixed.

For each of the data sources supported, one or more enriched indexes are produced,
aimed to have useful data to produce the metrics that are finally visualized, or used to
produce reports. Therefore, aggregated metrics are not a part of the indexes stored in
Elasticsearch: they are computed either by the visualizations, or by the tools producing the
reports, by aggregating and filtering data present as fields in each of the items. A list of all
the fields of all the indexes is also available3.

Identities Management
Modules in the Identities Management area manage data about personal identities. This
allows analysis in which contributor identities and related information (tags), such as
team/organization affiliations, are needed. SortingHat and HatStall are the components in
this area. The first one deals with identities management itself, receiving new identities
found, grouping them in unique (merged) identities, etc. HatStall provides a web-based
interface so that users can manually mage identities when needed, thus complementing the
algorithmic procedures that SortingHat follows. HatStall does no management on its own:
for any operation on identities, it uses SortingHat services.

Figure 9 Description of some fields of the Git enriched indexes.
Full-size DOI: 10.7717/peerj-cs.601/fig-9

3 Full list of fields for all enriched indexes
produced by GrimoireLab: https://
github.com/chaoss/grimoirelab-elk/tree/
master/schema

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 13/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-9
https://github.com/chaoss/grimoirelab-elk/tree/master/schema
https://github.com/chaoss/grimoirelab-elk/tree/master/schema
https://github.com/chaoss/grimoirelab-elk/tree/master/schema
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

For understanding why identities management is convenient in GrimoireLab, it is
important to notice how personal identities are found in data sources. Depending on the
data source, identities come in different formats: commit signatures (e.g., full names and
email addresses) in Git repositories, email addresses, GitHub or Slack usernames, etc.
Any person may use several identities even in the same repository, and certainly in
different data sources. In some cases, an identity can be shared by several contributors
(e.g., support email addresses in forums). Finally, identities may need to be linked to other
information, in a process we call “tagging”, for certain analysis. For example, affiliation
data can be extracted from domains in email addresses, or from other sources, and used to
tag unique (merged) identities, so that affiliation information becomes available for
actions for the corresponding person even in data sources where the data was not
originally available.

In the usual pipeline, GrimoireELK feeds SortingHat with identities found in raw data,
which deals with merging and tagging according to its configuration, and sends them
back to be added to the enriched data. For doing its job, SortingHat maintains a
relational database with identities and related data, including the origin of each identity,
for traceability. SortingHat may also automatically read identities-related data in some
formats: Gitdm, MailMap, Stackalytics, and the formats used by Eclipse and Mozilla
projects. The overall design of SortingHat is summarized in Fig. 10. The conceptual
schema of the SortingHat database is shown in Fig. 11. More details are described in
(Moreno et al., 2019).

SortingHat uses a very conservative approach to merging identities: it uses algorithms
that are quite likely to only merge identities that really correspond with the same person.
This approach is used because in production environments, experience has shown
how erroneously merging identities causes much more problems than failing to merge
some identities, and because it can more easily be complemented with manual curation of
the data. For example, the naive algorithm of “merge two identities if the email address is
present in both, and it is exactly equal”, fails in large datasets for common cases such
as “root@localhost”, merging for example “John Smith <root@localhost>” with
“Mary Williams <root@localhost>”. SortingHat provides this algorithm, which can be

HatStall

Terminal

API Identities
Affiliations

Commands

SortingHat

Figure 10 Overview of the structure of SortingHat. Dashed arrows show the flow of new identities,
andsolid arrows, the flow of unique (merged) identities. The API can be accessed via a CLI (command
lineinterface), or HatStall. Usually, GrimoireLab plugs to it via the CLI. The API invokes commands
thatquery the database with identities, affiliation and other tags.

Full-size DOI: 10.7717/peerj-cs.601/fig-10

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 14/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-10
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

activated, but we had to include a deny list with common addresses such as this
“root@localhost” to make it useful.

SortingHat periodically merges identities using these conservative algorithms, that can
also be activated (or not) in its configuration. If more detail is needed, ingestion of
identities data from reliable sources (such as company records, or FOSS Foundation data
about its developers), or manual curation (usually via HatStall) can be used. However,
since SortingHat offers an API to manage the identities it stores, more aggressive automatic
algorithms for merging them could be easily implemented.

HatStall complements the automatic processes followed by SortingHat, by providing a
web interface that can be used to manually manage identities. That interface permits,
for example, manually merging, or adding affiliation data to identities.HatStall has proven
to be very useful to fix by hand some errors that automatic procedures may cause in
complex situations, or to manually complement data related to identities when there are
informal sources of knowledge.

Most identities found in software repositories can be considered as personal
information, therefore subject to laws protecting privacy, and to ethical guidelines on the
matter. Due to this circumstance, in some cases identity management can deemed
unethical, or unlawful (for example, under GDPR (European Parliament & Council of
the European Union, 2016), if there is no clear legitimate interest for the processing
of personal information, and it is considered that there is no informed consent from
identity holders). To have this situation into account, GrimoireLab allows for the
pseudoanonymization of identities as they are retrieved, via configuration switches in
Perceval and GrimoireELK. If those switches are activated, Perceval hashes identities found
in retrieved data, and GrimoireELK does not use SortingHat, producing raw and enriched
indexes with pseudoanonymized identities. When orchestration is used, switches are
activated with an option in the Mordred configuration file.

Domains_organizations
domain : String
is_top_domain : Boolean

Matching_blacklist

excluded : String

Countries
code : String
name : String
alpha3 : String

Organizations
name: String

Identities
name : String
email : String
username : String
source: String
last_modified: Date

Enrollments
start : Date
end: Date

Profiles

name: String
email : String
gender : String
gender_acc : Int
is_bot: Boolean

Uidentities
last_modified: Date

0..*

domains

1..1

organization

0..* enrollments

1..1 organization

0..1 countries

0..* profiles
enrollments
0..* 1..1

uuid
1..1

profile
1..1
uuid

1..1 uuid

1..* identities

Figure 11 Overview of the SortingHat schema, modeling identities and related information.
Full-size DOI: 10.7717/peerj-cs.601/fig-11

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 15/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-11
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Visualization and reporting
Visualization and reporting are usually the latest stages of any study performed with
GrimoireLab. They are usually performed by querying data in enriched indexes, and then
further processing it until the expected results are produced, or visualizing it. Although any
custom program can do this, GrimoireLab provides some components that may help in
this area:

� Manuscripts is a tool that queries enriched indexes, providing analytics results such as
summary tables, built from templates. Tables are produced in CSV format, thus they can
be imported into spreadsheets or other programs. It can also produce reports as PDF
documents, including a part of the information in those tables, with some textual
explanations. Manuscripts therefore produces a certain kind of report for a set of
repositories, but can also be used as a template to produce customized reports.

� For assisting in the creation and presentation of interactive visualizations, GrimoireLab
provides three components: Sigils, a set of predefined widgets (visualizations and
charts); Kidash, which loads Sigils widgets to Kibiter, and Kibiter, a soft-fork of Kibana4)
which provides web-based actionable dashboards (users can interact with the data
shown, by filtering, bucketing, drilling down, etc.).

The predefined widgets provided by Sigils are organized as a collection of Kibana
panels5, usually grouping several metrics in an interactive dashboard that can be used not
only to track their evolution over time, but also to drill down in case more details are
needed. Some example of those panels and the metrics that they provide are:

� Contributors growth (shown as illustration in Fig. 126): total number of contributors,
active contributors over time, contributors growth by repository, difference with average
of active contributors over time. This panel is offered for most of the data sources
(Git, GitHub issues, GitHub pull requests, Gerrit, Bugzilla, Jira, mailing lists, etc), and in
each case “contributor” is defined accordingly to the actions in that kind of repository
(for Git, it is commit authors, for Bugzilla it is issue reporters, for GitHub pull
requests is the pull requester, etc.).

� Bugzilla timing7: median and 80% percentile of open time, evolution of the status of
issues over time, issues by resolution and issues by severity, evolution of the number of
issue submitters over time, table with main submitters, table with latest issues, etc.
Similar panels are provided for other issue tracking systems and code review systems.

� Gerrit efficiency8: review efficiency index (number of closed divided by open
changesets), average and median time to merge, over time. Similar panels are provided
for other code review systems.

� Jenkins jobs9: total number of builds, jobs, active nodes; proportion of build results;
evolution of jobs over time: table with builds, durations, success status per job.

Almost all of the panels are actionable, in the sense that can be filtered by arbitrary
periods of time (including selecting time periods in the charts), by specific repositories, by
organizations (when this makes sense, such as commits performed by authors of a given

4 Kibana: https://www.elastic.co/products/
kibana

5 Full list of the descriptions of panels
provided by Sigils in https://chaoss.
github.io/grimoirelab-sigils/

6 Full description of the Contributors
growth panel: https://chaoss.github.io/
grimoirelab-sigils/panels/contributors-
growth/

7 Full description of the Bugzilla timing
panel: https://chaoss.github.io/
grimoirelab-sigils/panels/bugzilla-
timing/

8 Full description of the Gerrit efficiency
panel: https://chaoss.github.io/
grimoirelab-sigils/panels/gerrit-
efficiency/

9 Full description of the Jenkins jobs panel:
https://chaoss.github.io/grimoirelab-
sigils/panels/jenkins-jobs/

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 16/53

https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://chaoss.github.io/grimoirelab-sigils/
https://chaoss.github.io/grimoirelab-sigils/
https://chaoss.github.io/grimoirelab-sigils/panels/contributors-growth/
https://chaoss.github.io/grimoirelab-sigils/panels/contributors-growth/
https://chaoss.github.io/grimoirelab-sigils/panels/contributors-growth/
https://chaoss.github.io/grimoirelab-sigils/panels/bugzilla-timing/
https://chaoss.github.io/grimoirelab-sigils/panels/bugzilla-timing/
https://chaoss.github.io/grimoirelab-sigils/panels/bugzilla-timing/
https://chaoss.github.io/grimoirelab-sigils/panels/gerrit-efficiency/
https://chaoss.github.io/grimoirelab-sigils/panels/gerrit-efficiency/
https://chaoss.github.io/grimoirelab-sigils/panels/gerrit-efficiency/
https://chaoss.github.io/grimoirelab-sigils/panels/jenkins-jobs/
https://chaoss.github.io/grimoirelab-sigils/panels/jenkins-jobs/
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

organization), etc. For these features, Sigils panels use the facilities provided by Kibana,
which is querying in real time the enriched indexes stored in Elasticsearch. This setup
allows for a lot of flexibility. In addition, users can produce their own visualizations in
Kibana, if they have the right permissions.

Orchestration
Mordred can be used to orchestrate all the other components to retrieve data from a set of
repositories, produce raw and enriched data, load predefined widgets and generate
documents and web-based dashboards. It uses some configuration files, designed to keep
sensitive data separated from the one that can be publicly shared. These files include
the details for accessing all repositories, including addresses and credentials, and all the
servers (e.g., the SortingHat database manager). Repositories can be arranged
hierarchically in several levels (projects, sub-projects).

Mordred also takes care of continuous incremental retrieval. In general, GrimoireLab
does not use event streams and similar synchronous APIs, because they usually do not
allow for the retrieval of past items, which are already not available from them. Instead, it
uses timestamps and batch retrieval from APIs that provide all the items in the history
of a repository. For allowing this incremental retrieval, GrimoireELK includes some
metadata in raw and enriched indexes, based on the date when retrieved items were last
updated. This metadata can be used to query data sources for all items since last update,
and when processing the raw index, all items since the last processed. Even when these
techniques in some cases are more complex than those based on event streams, they ensure
complete retrieval of all items in the data source at the price of polling it frequently to
check if new items are available. Fortunately, most of the use cases allow for some minutes

Figure 12 Example of information about a Sigils panel: contributors growth. Full-size DOI: 10.7717/peerj-cs.601/fig-12

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 17/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-12
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

of delay in data processing, which means data sources are not polled too much.
Mordred instructs GrimoireELK about when to poll based on its configuration, and
GrimoireELK constructs the corresponding queries (to data sources, via Perceval, or to raw
indexes) using metadata (in raw indexes or in enriched indexes, respectively). When
Arthur is used, Mordred instructs it directly about polling frequencies.

COMBINING THE MODULES
Due to its structure as a toolset, rather than a monolithic application, GrimoireLab
modules can be used in many different combinations. In this section we describe some of
them, focusing on those that may be more relevant for researchers. First, we illustrate how
GrimoireLab can be used in some scenarios common in research: data retrieval for a
custom analysis; retrieval and storage of data for an exploratory study; and large-scale
continuously updated dataset suitable for different studies. Then, we describe in detail
three systems that were deployed to fulfill the requirements of specific use cases: a one-time
analysis of a large set of repositories, a deployment for continuously analyzing a large
software project, and a system providing software development metrics a service. These
cases do not intend to show insights on the analyzed data sources, but to show how
GrimoireLab can be used to collect and process data which could later be used for different
purposes, sparing the researcher or the practitioner of the burden and complexities
involved.

Research scenario: data retrieval for custom analysis
Description: Analysis of a relatively small number of repositories, retrieving all the data
available from the API they provide, using some scripts to answer the research questions.

Examples:

� Changes to the source code: activity and length of comments. Research objective: to
explore the relationship between activity of developers in modifying the source code,
and the details of their comments in those modifications. Example of RQ: Are more
active developers writing less detailed commits? Method: Extraction of all commit
records from a small set of Git repositories. For each of them, identification of author,
computation of some metrics which could be a proxy for detail (length, number of
distinct words, etc.) and estimation of correlations between aggregations of them (mean,
median) for each author, and their number of commits.

� Complexity of code and change requests. Research objective: to explore the relationship
between characteristics of code review and the complexity of the code change being
reviewed. Example of RQ: Are those changes with complexity to the code ore prone to
have longer code review processes? Method: Retrieval of accepted change requests
from a code review system (GitHub pull requests, Gerrit, etc.), and of complexity metrics
for the corresponding snapshots in the source code. For each change request,
identify the starting and end time of the code review process, and its duration. For each
snapshot, identify the added or removed complexity. Then, compute the correlation
between duration and added complexity to answer the RQ.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 18/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

GrimoireLab components and procedure: The main component in this scenario is
Perceval, which will retrieve data from the data sources API. If source code metrics are to
be obtained, Graal will also be involved. All of them will produce collections of JSON
documents that will be stored for further processing. Those JSON documents will be stored
and published for reproducibility of the study, and used as the data set for the analysis.

To illustrate how GrimoireLab can be used in this kind of scenario, let’s start with the
most most simple case: the retrieval of data from a single repository (in this example, a
GitHub repository), as of a file with one JSON document per line, that will be processed
later. Each document, in this case, will correspond to an issue or a pull request.

$ perceval github [owner] [repo] --json-line > file.json

Since the generated JSON documents include fields to identify the mined repository,
this operation can be repeated for as many repositories as needed, just adding items to the
file, so that all data for a multi-repository analysis can be contained in that file.

$ perceval github [owner2] [repo2] --json-line >> file.json

$ perceval github [owner3] [repo3] --json-line >> file.json

A similar approach can be used to obtain metrics about files in any checkout of a git
repository. In this case, we will use a single command to run Graal, which will use Perceval
(as library) in the background to clone the repository and get the list of commits. Then,
Graal will run third party tools to obtain complexity metrics for each source code file in
each commit, producing a single JSON document:

$ graal cocom [repo_url] --git-path [dir_for_clone] > file.json

Fig. 13 shows schemes for these three cases (retrieving metadata from a single git
repository, from several git repositories, and analyzing some source code metrics for all
files in a git repository).

Git repo

GraalPerceval Perceval

Git repo 1
Git repo 2

Git repo n

JSON docs JSON docs JSON docs

Git repo

Perceval

Figure 13 Using Perceval to retrieve data from a single repository (left), or from several (center),
andGraal to analyze a git repository (right). Arrows represent the data flow from data sources to the
JSON documents produced. Full-size DOI: 10.7717/peerj-cs.601/fig-13

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 19/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-13
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Instead of the command line version of Perceval and Graal we can also use them as
modules, from a Python script. The script can perform any analysis needed, benefiting
from the uniform structure of the dictionaries returned by Perceval and Graal generators,
that can be consumed in loops. Of course, these scripts can be written as Python
notebooks, and integrated with the usual Python data analytics tools. The general code
structure in this case is as follows (DataSource is a class provided by Perceval or Graal,
which implements fetch as a Python generator). For each item, origin allows to identify the
origin repository, and data is a dictionary with the retrieved data.

repos = [DataSource([repo1 args]),

DataSource([repo2 args]), …]

for repo in repos:

for item in repo.fetch():

process(item['origin'],
item['data'])

Following this code structure, see below an example program to obtain the number of
spelling errors in git comments per year for a collection of GitLab Git repositories. This
example assumes spell_errors returns the number of spelling errors for a certain string, and
get_year gets the year from a Git date.

repos = [Git(uri='https://gitlab.com/owner/repo1', …),

Git(uri='https://gitlab.com/owner/repo2’, …),

…

Git(uri='https://gitlab.com/owner/repon', …)]

terrors = { }

cerrors = { }

for repo in repos:

for item in repo.fetch():

print(f''Processing {item['data']['commit']} from {item['origin']}'')
errors = spell_errors(item['data']['message'])
if errors > 0:

year = get_year(item['data']['AuthorDate'])
terrors[year] = terrors.get(year, 0) + errors

cerrors[year] = cerrors.get(year, 0) + 1

for year in sorted(terrors):

c = cerrors[year]

t = terrors[year]

print(f''{year}: {c} commits with errors, {t} total errors'')

Research scenario: retrieval and storage for exploratory study
Description: Retrieval of data from a large collection of repositories to store it in a
database, so that it can be later analyzed as a part of an exploratory study.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 20/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Examples:

� Relationship between how bug reports are closed and developer retention. Research
objective: To explore how the timing, or other features, related to how bug reports are
closed, could influence core developer retention in a FOSS (free, open source
software) project. Example of RQ: Does a longer time-to-close for bug reports cause
developers to stop earlier contributing to the source code of a project?Method: Retrieve
data about the issues (including bug reports) for a large and diverse set of FOSS
projects, if possible with different issue tracking systems, so that specific features of it
don’t affect the results. Retrieve data from the source code management system of the
same projects. Once all the data retrieved is stored in a database, use it to explore
different proxies for time-to-close bug reports and for estimating periods of continuous
contribution. For estimating time-to-close, explore different strategies for telling bug
reports apart from other issues (machine learning on title and description, tags, etc). For
estimating periods of contribution explore different approaches (maximum period
without contributions, number of contributions over a certain period, etc.) to tell apart
frequent (likely core) contributors from casual contributors. Then, explore how to
estimate the period until stopping contributions (considering extending temporary
periods, such as vacation). Once the most reliable method is exactly defined, conduct the
study in as many repositories as possible.

� Personal trajectories in software development. Research objective: Explore ways to
track trajectories of developers, by analyzing their footprints in different kinds of
software development repositories. Example of RQ:Do core contributors usually follow
a path from messages in communication channels to issue submitters, to code review
submitters? Method: Retrieve data from mailing lists, GitHub issues and pull requests,
and GitHub Git repositories, for a large collection of projects. Merge identities using
email addresses for linking identities in email messages to identities in Git commits, and
the GitHub commit API to link email addresses to GitHub user IDs. If possible, improve
identities data by manually merging and de-merging identities using other data
sources (for example, public Internet profiles). Once the identities data is curated, use it
to identify contributions by persons in all data sources, and explore the different tracks
followed.

GrimoireLab components and procedure: For these kind of studies, GrimoireLab
enriched indexes would be convenient, and could be complemented, if needed, with
GrimoireLab raw indexes that will be produced anyway. Using GrimoireELK for the data
collection and enrichment ensures that the indexes will be properly stored in Elasticsearch
databases. SortingHat will be used when identity merging is important for the study
(as in the second example above). Kibana can be used to visualize the indexes in the
enriched database, which can be useful for the exploratory study. For example, Kibana can
easily show the activity of a single person in all data sources over time.

In this case (see Fig. 14), GrimoireELK will run Perceval to retrieve data from
repositories, and then store it in Elasticsearch raw indexes. Then, GrimoireELK processes

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 21/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

them, creating enriched indexes. Usually, researchers will write scripts to query enriched
indexes, since they are easier to query and process. But they can also query raw indexes
if they need some detail that is only available in them. Since there are Elasticsearch
modules for many programming languages, scripts can be written in any of them. Indexes
can also be dumped as JSON files, that can be consumed directly by scripts, or uploaded to
another Elasticsearch instance, where fellow researchers can work with exactly the
same data.

If identity management is needed (as in the second example), SortingHat will be used
(see Fig. 15). When processing raw indexes, GrimoireELK will extract identities found in
raw items, providing them to SortingHat. For each identity in a raw item, SortingHat

Browsers

Perceval GrimoireELK
Enriched indexes

Raw indexes

SortingHat

Known Ids

Identities
Affiliations

Data Source 1

Data Source 2

Data Source n

Kibiter

Figure 15 Using GrimoireELK and SortingHat. Data is consumed by Kibana.
Full-size DOI: 10.7717/peerj-cs.601/fig-15

Perceval GrimoireELK
Enriched indexes Scripts

{
}

Raw indexes

Data Source 1

Data Source 2

Data Source n

Figure 14 Using GrimoireELK to produce Elasticsearch raw and enriched indexes. Arrows show
thedata flow from data sources to database indexes and finally to scripts that query them.

Full-size DOI: 10.7717/peerj-cs.601/fig-14

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 22/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-15
http://dx.doi.org/10.7717/peerj-cs.601/fig-14
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

will return its corresponding unique (merged) identity, and tagging information for it,
that GrimoireELK will use when producing the enriched database. GrimoireELK can also
access the GitHub commit API to obtain relationships between email addresses and
GitHub user ids, and inject that data to SortingHat. SortingHat can run simple exact
email-address matching algorithms to merge identities. Via HatStall, researchers can
curate the resulting merged identities manually.

The introduction of the database allows for the massive collection of data, just by
running (sequentially or in parallel) GrimoireELK for the different repositories to be
mined. The database can easily include data for hundreds or even thousands of repositories
of different kinds of data sources. The availability of enriched indexes, which are
summarized, flat versions of the data obtained from the data source APIs, also allows for
easy import in data structures such as Python/Pandas or R data frames, and visualizations
using tools, such as Kibana or Graphana that can connect to Elasticsearch. Files
produced when dumping the data in the database are also the core of good reproduction
packages, and a simple way to exchange and archive data for other researchers.

Research scenario: large-scale, continuously updated dataset
Description: Production of a large-scale, continuously updated dataset, with data for
projects of interest using different kinds of data sources

Example:

� Dataset about all the projects hosted by the Apache Foundation Research objective: To
produce a dataset that may help to better understand software development processes
used in Apache projects. Example of RQ: Which ones are the different patterns of
joining and leaving Apache projects? Method: Obtain the description of all the Apache
projects, maintained by the Apache Foundation. Since this description includes links
to all data sources (and repositories) used by those projects, produce a comprehensive
list of all repositories that should be visited to maintain the dataset. Then, do a first
retrieval of data from all of them, update it by frequent periodic visits, and dump it in a
file that can be easily shared with researchers. Apache projects use, in different projects,
Git repositories, GitHub projects for issues and pull requests, Bugzilla for issues, and
change requests, mailing lists, and some other kinds of data sources, thus all of them
need to be mined.

GrimoireLab components and procedure: In this scenario, involving thousands,
maybe tens of thousands of repositories, from several different data sources, new problems
arise. It is no longer possible to just use a single script to call GrimoireELK. Configuration
and organization of the retrieval process becomes an issue, and for the continuous
update it is important to keep raw and enriched indexes in sync with updates in the
repositories, in presence of network or other infrastructure temporary failures. In these
cases, Mordred can be used to orchestrate the setting (see Fig. 16).

To configure this setting, once this system is deployed, the list of repositories to analyze
(their URLs) is written in a JSON file. Then, another file is used to configure Mordred

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 23/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

specifying the details of the deployment (such as polling periods, kind of identity
unification to perform, or specific processing to the data). For example in this file it is
specified how often data sources are visited for incremental retrieval.

In some cases it is convenient to schedule the retrieval as a collection of tasks that can
run in parallel. This happens for example when we can benefit from several nodes
analyzing different Git repositories in parallel, or when several nodes can consume a
certain API quicker than a single one. In these cases we can add Arthur, which will
schedule Perceval and Graal jobs taking into account aspects such as availability of tokens
to access data sources, or refresh periods (how often data will be retrieved incrementally
from repositories). Arthur uses a Redis database to manage jobs and batches of retrieved
items (see Fig. 17).

In this scenario, we can review the main interactions betweenGrimoireLab components:

� Perceval retrieves data from repositories.

� For Git repositories, Graal analyzes source code, by running third party tools with the
help of Perceval.

� Arthur schedules Perceval and Graal jobs in workers, to organize the retrieval.

� GrimoireELK receives retrieved items to produce raw indexes in Elasticsearch, to some
extent replicating data sources.

� GrimoireELK interacts with SortingHat to store new identities in its database and be
informed about merged identities and their tags.

Perceval GrimoireELK

Enriched indexesRaw indexes

SortingHat

Known Ids
Identities
Affiliations

Scripts

{
}

Mordred
Project
Config

Data Source 1

Data Source 2

Data Source n

Figure 16 Mordred driving GrimoireELK, SortingHat, and other components.
Full-size DOI: 10.7717/peerj-cs.601/fig-16

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 24/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-16
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� Using data from raw indexes and SortingHat, GrimoireELK produces enriched indexes
in Elasticsearch. These indexes (and raw indexes, when convenient) can be analyzed
with scripts.

� Mordred orchestrates all the process, according to the information in its configuration
files, deciding which repositories to retrieve, how enriched indexes are produced, when
data should be updated, etc.

In all the cases when Kibana is used for interactively visualizing data (see Fig. 15), Sigils
provides a set of ready-to-use visualizations and dashboards. See examples of a summary
dashboard provided by Sigils in Figs. 18 and 19. The use of Arthur is optional: users
can write their own schedulers, if they prefer.

The kind of studies that can be done in this setting is similar to those done on subsets of
repositories in GHTorrent, for example, but letting researchers decide both the kinds
of data sources they want, and the specific projects they target (be them in GitHub or not).
The drawback, of course, is that once the list of repositories is defined, researchers need to
deploy the system, configure it, and wait until the data is obtained from the different
data sources.

Use case: one-time analysis of a collection of repositories
Requirements: One-time retrieval of all the data from two kinds of data sources (Git and
GitHub) for a medium sized list of repositories, all of them related to IoT (Internet of
Things).

Magnitudes: See Table 1.
GrimoireLab setup: The setup corresponds to the description of the research scenario

“Large-scale, continuously updated dataset”, described in Subsection “Research scenario:
Large-scale, continuously updated dataset” (Fig. 16), although in this case the data

Items

Perceval GrimoireELK

Enriched indexesRaw indexes

SortingHat

Known Ids
Identities
Affiliations

Scripts

{
}

Mordred
Project
Config

Arthur

Graal

Data Source 1

Data Source 2

Data Source n

Figure 17 A GrimoireLab system including Mordred and Arthur.
Full-size DOI: 10.7717/peerj-cs.601/fig-17

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 25/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-17
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

retrieval was performed once, and not updated later. All data retrieval and analysis was
done in a single thread.

Everything was run by Mordred, which started with data retrieval in two threads: one
cloning and then extracting metadata from Git repositories (for all commits in all of them),
the other one accessing the GitHub API to retrieve issues and pull requests for all
repositories, using three API tokens. In each of the threads, once the retrieval for all
repositories is complete, with the production of the corresponding raw index, the analysis
of the retrieved data starts, until all the items (commits in the case of Git repositories, issues
and pull requests in the case of the GitHub API) are analyzed.

Table 2 shows when the most relevant stages of this case started and finished, and their
duration. The deployment was in a 2.5 GHz CPU with 4 cores, 8 GB of RAM, SSD storage.
In both tables, “git” refers to the analysis of Git repositories, “github” to the analysis of
GitHub issues and pull requests retrieved from the GitHub API. Data collection for “git”
includes cloning of Git repositories for GitHub, and production of the raw index by
analyzing those clones. Data collection for “github” includes waiting periods while the API
tokens are exhausted, and calls to the API to resolve identities, not only retrieval of issues
and pull requests. Two API tokens were used in this case.

Also in Table 2, it can be seen how the performance is close to the maximum allowed by
the GitHub API token rate: 5,000 calls per hour, or about 83 calls per minute. Using two
tokens, that maximumwould amount to 163 calls per minute. Processing of Git commits is
much faster, since it does not involve API rates, and is limited only by the Git server

Figure 18 Metrics summary dashboard, produced with GrimoireLab for the GrimoireLab project.
Full-size DOI: 10.7717/peerj-cs.601/fig-18

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 26/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-18
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Figure 19 Example of summary of metrics over time, produced with GrimoireLab, in this case
byvisualizing enriched indexes in Kibana (data for OPNFV project as of January 2020). Informa-
tion isretrieved from Git, Jira, Gerrit, mailing lists, IRC, Confluence and Jenkins repositories.

Full-size DOI: 10.7717/peerj-cs.601/fig-19

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 27/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-19
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

response time, download time, and git processing. Enrichment processes for git are much
faster than for GitHub because they are also lighter: in the GitHub case they include the
computing of some duration metrics, based on the data in the raw index, which is a bit
longer to retrieve.

Use case: continuous analysis of a large project
Requirements: Continuous analysis of all relevant repositories, from several data sources,
of a large project (all software promoted by Wikimedia Foundation).

Magnitudes: See Table 3.
GrimoireLab setup: The setup corresponds to the description of the research scenario

“Large-scale, continuously updated dataset”, described in Subsection “Research scenario:
Large-scale, continuously updated dataset” (Fig. 16), including continuous update and
identity management.

Since identity management is included in this use case, identities found during the
production of the enriched indexes are by GrimoireELK to SortingHat, to get the
corresponding merged identity. Therefore, enriched indexes include the identifier of the

Table 2 Main stages of data collection and enrichment for the IoT repositories case.

Elapsed time Event

00:00:00 Starting

00:00:14 Retrieval starts (git, github)

00:43:00 Retrieval finished (git)

00:43:10 Enrichment starts (git)

01:05:19 Enrichment finished (git)

10:09:18 Retrieval finished (github)

10:16:29 Enrichment starts (github)

10:51:37 Enrichment finished (github)

Action Duration Performance

Retrieval (git) 00:42:46 108 commits/s

Retrieval (github) 10:09:04 2.6 items/s

Enrichment (git) 00:22:09 208 commits/s

Enrichment (github) 00:35:08 45 items/s

Note:
Top: elapsed time for the main recorded events. Bottom: duration and performance. Elapsed time and duration are in
hours. Items are GitHub issues and pull requests. “Retrieval finished (git)”means all git repositories were cloned and their
metadata was stored in the raw index. “Retrieval finished (github)”, means all data was retrieved from the GitHub API
(issues and pull requests), and it was stored in the raw index.

Table 1 Magnitudes of the IoT repositories case.

Git repos: 54

GitHub repos: 48

Commits (items in raw index) 276,860

Issues & pull requests (items in raw index) 95,370

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 28/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

merged identity, which permits that persons with several identities are considered as a
single person (merged identity). Since continuous update is configured, after enrichment
threads sleep for a configurable amount of time (300 s by default), and then restart the
process, retrieving incrementally new data. In a separate process, run periodically (usually
between incremental retrieval phases), SortingHat processes its data finding new cases
of identities to merge, and enriched indexes are modified adding these new merged
identities to their items.

In the case of the Wikimedia Foundation Git is used for code management, Gerrit for
code review, Maniphest (issue tracker in the Phabricator forge) for issue tracking, mailing
lists for asynchronous communication, and Mediawiki for documentation. In Table 3
there is no repository count for Maniphest because issues in Phabricator are not organized
in repositories, and in Mediawiki because in that case data is organized in pages (61,301).
“Git AOC” is the enriched index for areas of code analysis, with Git data for each
version of each file. The deployment has been running continuously for more than 4 years,
retrieving data incrementally from repositories, except for downtime due to stopping and
restarting the system due to the deployment of a version. The dashboard showing
visualizations for main metrics, using standard Sigils visualizations, is available publicly
online10 (see screenshot of its entry page in Fig. 20).

This use case shows how GrimoireLab can be used in production, for continuously
analyzing large-scale projects, during long periods of time. We consider this use case,
which is representative of a number of others similar, as an illustration of the maturity, and
adaptation to real-world constraints, of the toolset.

Use case: metrics as a service
Requirements: Industrial-grade deployment, for retrieval of an arbitrary, potentially very
large (tens of thousands of repositories), and visualization of some of the main metrics of
arbitrary groups of repositories in it.

Magnitudes: See Table 4.
GrimoireLab setup: The setup corresponds to the description of the research scenario

“Large-scale, continuously updated dataset”, described in Subsection “Research
scenario: Large-scale, continuously updated dataset” (Fig. 16), not including identity
management (therefore SortingHat and HatStall are not used), and with a specialized

Table 3 Magnitudes of the GrimoireLab deployment for analyzing Wikimedia Foundation projects
(enriched data), as of January 10, 2020.

Data source Repos Items Items no. Size (GB)

Git 2,675 Commits 1,647,481 4.9

Git (AOC) File revisions 12,309,316 7.6

Gerrit 2,098 Patchsets 7,461,755 27.8

Maniphest Issues 231,833 0.44

Mailing lists 46 Messages 263,419 0.59

Mediawiki Pages 1,116,469 0.83

10 Dashboard for all Wikimedia projects:
https://wikimedia.biterg.io (last visited
on March 10 2021)

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 29/53

https://wikimedia.biterg.io
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

scheduling system for Mordred jobs, that are serviced by an arbitrary number of parallel
workers.

The system described in this use case is Cauldron11, which provides customized
dashboards with data obtained from FOSS software development repositories. Users can
order an analysis of as many repositories as they want, organized in projects (collections of

Figure 20 Entry page to the Wikimedia dashboard, produced with GrimoireLab.
Full-size DOI: 10.7717/peerj-cs.601/fig-20

11 Cauldron: https://cauldron.io

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 30/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-20
https://cauldron.io
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

repositories). Cauldron uses GrimoireLab to retrieve data, analyze it, and provide
visualizations. The system has been running for more than 14 months, allowing users to
select GitHub, GitLab (issues and change requests in both cases), and Git repositories to
analyze.

Data is retrieved by Perceval, by cloning repositories, and the analysis is performed by
GrimoireELK. For GitHub and GitLab, issues and pull requests (or merge requests) are
retrieved by Perceval from the GitHub API, using access tokens provided by users, and
then enriched indexes are produced by GrimoireELK. Several instances of Mordred run in
parallel (in different workers) driving the retrieval and analysis of some repositories each,
according to users’ demand. The system is designed to grow at least one order of
magnitude larger with no change. As of January 10, 2021, it served 732 users.

In addition to some of the visualization panels provided by Sigils, Cauldron offers also
more than 50 different Kibana visualizations, and a summary of more than 40 metrics
as charts produced with JavaScript, using data provided by a Django API that queries
directly the Elasticsearch enriched indexes produced by GrimoireLab. The main view for a
project in Cauldron (see Fig. 21) includes four of these visualizations, showing the
extensibility of GrimoireLab, in this case to interface to external visualization services.

Cauldron is one of the largest GrimoireLab deployments, by size of analyzed data.
Therefore, the numbers shown in Table 4 can be used to estimate a lower limit of the scale
(by number of repositories, by number of items in those repositories) that can be analyzed
with GrimoireLab.

For benchmarking Cauldron more precisely, and with it GrimoireLab, we set up a
specific instance of Cauldron running in a single machine (2.5 GHz CPU with 4 cores,
16 GB of RAM, SSD storage). We configured it to analyze the complete GNOME
organization in the GitLab instance maintained by the GNOME project12: a total of
564 GitLab repositories, each of them with the corresponding Git repository. We started
with an empty database, and we analyzed nothing else in parallel. We had 15 workers,
deployed as Docker containers with GrimoireLab installed in them. At any given time,
each worker runs at most a single job, corresponding to a certain repository, for which it
was producing either raw or the enriched data. A single GitLab token was used for the
experiment.

The main performance metrics of this experiment are detailed in Table 5. Several
different processes were measured: production of raw or enriched indexes for each type of

Table 4 Some magnitudes for Cauldron, as of March 10, 202.

Data source Index Repos Items Size (GB)

Git Raw 50,280 76,269,234 136.1

Git Enriched 50,280 76,134,443 135

GitHub Raw 40,907 9,089,137 38.1

GitHub Enriched 40,907 9,016,199 9.6

GitLab Raw 3,073 282,739 2.2

GitLab Enriched 3,073 282,598 0.3

12 GNOME GitLab instance: https://gitlab.
gnome.org/GNOME

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 31/53

https://gitlab.gnome.org/GNOME
https://gitlab.gnome.org/GNOME
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

item (commits, issues, merge requests), production of both indexes (“complete”) for each
type of item, and production of all the indexes (“all”). Timing for “all (complete)”
shows how long did the experiment need to complete (almost 19 h of clock time), and how
much processing time it needed from workers (about 58.5 h). With 19 h of clock time
and 15 workers, it is clear how most of the time workers were idle, usually waiting for the
token rate to be reset. In general, throughput (in items per time) numbers are similar

Figure 21 Main view provided by Cauldron for an analyzed project (January 2021). Full-size DOI: 10.7717/peerj-cs.601/fig-21

Table 5 Some metrics for the GNOME GitLab experiment.

Process Items Clock time Processing time Items/s (clock) Items/s (proc)

All (complete) 1,460,054 18:52:37.64 58:33:36.27 21.48 6.93

Commits (complete) 2,676,345 00:41:48.67 04:37:40.86 1066.84 160.64

Commits (raw) 1,369,386 00:38:13.50 02:46:13.62 597.07 137.30

Commits (enriched) 1,306,959 00:41:31.60 01:51:27.24 524.55 195.44

Issues (complete) 122,294 18:52:25.05 25:31:54.53 1.80 1.33

Issues (raw) 61,432 18:03:12.00 25:28:12.98 0.95 0.67

Issues (enriched) 60,862 18:52:11.13 00:03:41.56 0.90 274.70

Merges (complete) 58,311 18:52:27.07 28:24:00.87 0.86 0.57

Merges (raw) 29,236 18:52:00.07 28:20:52.28 0.43 0.29

Merges (enriched) 29,075 18:52:12.41 00:03:08.59 0.43 154.17

Note:
Processing time is the accumulated processing time of all the jobs in all the workers, for the specified process. Items/sec is
the number of items processed per second, either for clock time, or for processing time.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 32/53

http://dx.doi.org/10.7717/peerj-cs.601/fig-21
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

to those presented in Section “Use case: One-time analysis of a collection of repositories”.
As we already observed in that case, processing for Git is much faster than for GitLab
(or GitHub), because for them the API token rate is a strong limitation. The table also
shows how processing time for enriching processes is one or two orders of magnitude
shorter than clock time. The main cause of this loss of performance is the access to the
database, which is done frequently to ensure enriched data is soon in stable storage. In the
context of the total time elapsed for the retrieval and analysis, this decision does not
cause long delays. The access to the database could be improved by using caching,
Elasticsearch shards (which allow for parallel access), and by improving the hardware
setup, which was not designed in this case to optimize database access.

DISCUSSION
GrimoireLab is the result of many years of research and development in the area of tools
for software development analytics. A part of the people involved in building it had the
experience of building another, less ambitious toolset, MetricsGrimoire. This was
fundamental to identify problems and features for both the research and industrial
scenarios. In this section we discuss the main features of GrimoireLab along with their
rationale, provide some notes on its usage for research, and present some lessons learned
from its usage in industrial settings.

Main features and their rationale
Some of the most relevant features of GrimoireLab, and their rationale, are:

� Minimizing interactions with data sources. Accessing data sources causes stress to them,
which may lead to being banned. In addition, retrieving data from data sources is usually
slow, compared to just accessing it locally. GrimoireLab follows the strategy of
getting as much data as reasonably possible from the data source, and storing it to avoid
retrieving it again in the future. Raw indexes are used with this objective, and to
some extent, enriched indexes too: once an item is in the index, there is no need to
retrieve it again, with no loss of functionality. A consequence is that retrieval is
incremental whenever possible: when synchronizing with a data source, only changes
since the last retrieval will be requested.

� Support of non-uniform data sources. A data source may be implemented by different
versions of a software system. The code needs to detect the version of the data source
API, and access the data in slightly different ways (for example, using different
parameters in a call to the API) depending on the version detected13. GrimoireLab deals
with these problems by hiding all data source API details, providing a unified API to
data consumers, which can thus be written as modules independent from these details.

� Support of non-uniform data provided by data sources. Different versions of data
sources, or even deployments of the same version, may provide different data details.
For example, different instances of the same issue tracking system may configure
states or additional fields to tickets or comments. In some cases those changes are
significant for an analysis, but in some others they are not. GrimoireLab deals with this

13 For example, there are many versions of
Bugzilla, providing similar but not
exactly equal APIs. One of these differ-
ences is the name of the parameter to
order a list of issues by date: Last +
Changed (prior to the 3.4 branch) or
changeddate (starting with 3.4 branch).
The difference is minimum, but enough
to break the retrieval process if it uses
the wrong name.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 33/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

diversity by being agnostic with respect to the data provided by data sources: each
item will be a Python dictionary with any needed structure, that can be flattened as a
JSON document. If different versions of a data source produce different fields, they will
just be mapped to the corresponding parts of the dictionary. This means that the
code may be more generic, and more resilient to changes in data structure.

� Unified APIs and data formats. For building a toolbox, reusing code, and enabling users
to reuse code, is fundamental. It is key to identify points in the usual pipelines where a
single API can be provided, with independence of the data sources considered, and
data formats that are common, specially when the code dealing with them can be reused.
GrimoireLab does this in several areas. Perceval provides a common API to all data
sources. The data produced by Perceval is always a dictionary, with some common fields
useful for traceability (for example the data source, or when the item was retrieved),
and can be dumped in a JSON document, so that it can be easily consumed.
Elasticsearch provides a well known and documented API for storing and retrieving
both raw and enriched indexes, which consumers can query for the JSON documents
they need. SortingHat provides a common API for managing identities that can be
used from any component. Data formats for raw and enriched indexes are defined with
the same general structure, so that code for, for example, dealing with date formats or
identities, can be made generic. Finally, enriched indexes are designed so they can be
consumed directly by most visualization systems: we have tested them with Kibana,
Grafana, and several Python-based visualization libraries.

� Separation of raw indexes and enriched indexes. This separation has proven very useful
to isolate problems. Data retrieval problems are “encapsulated” in raw indexes. Once
they have been solved, and a correct raw index has been produced, there is no need to
come back to the original data source to compute anything: querying the raw index
is enough. Querying the raw index instead of retrieving from the data source is also
much more efficient, and does not cause stress in the infrastructure supporting the data
source. Then, enriched indexes are simpler, and more convenient for visualization tools.
Since they are flat, they can be queried more easily and efficiently than raw indexes,
which need to maintain a nested structure close to the data in the data source. Enriched
indexes are also enriched with summary metrics computed at the item level, but not
present directly in the original data source. For example, from the number of lines added
and removed by a commit to a file, the total number of added and removed lines
can be pre-computed, or from the submission and closing time of an issue report, the
time-open can be computed. Since these metrics are computed from data in the item,
they are invariant as long as the raw item does not change.

� Aggregated metrics are, in general, not stored in the indexes, but computed by
visualization or reporting tools when needed. This approach is the result of a tradeoff
between the convenience of having all data (including aggregated data) readily available
in the database, and the flexibility of allowing many different aggregations to be
performed, and the easy addition of new data, at any point, with little overhead. On the
one hand, having aggregated data readily available is convenient, because it can be

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 34/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

accessed and shown right away. However, we wanted a more flexible setup, where the
consumer of the data may decide how to aggregate it. This is common with actionable
visualization tools, where every time the user defines a different time period, or
filters data in a different way, aggregations change. In addition, we wanted to add data to
the database incrementally and frequently, as new data is available in the original data
sources. Having pre-computed aggregations in the database forces to re-compute
them every time new data is added, which means an overhead, especially large for large
databases with many different aggregations. Fortunately, when the consumer wants
some aggregation, it can usually be computed by adding it to the database query, which
makes the operation efficient and relatively simple.

� Data merging. Even when data is retrieved from different data sources, an analysis
may want to consider common aspects of all retrieved data. For example, a study on
onboarding in a project may be interested in knowing about contributors to all
repositories in all its data sources. Thus, including facilities for merging data is
fundamental, and GrimoireLab recognizes it. Date fields are all converted to the same
format, and have uniform names (eg, creation_date), so they are easily merged in,
for example, a Pandas data frame, and in “person fields” such as the author as well.
All items include fields to track the repository of origin, and fields for hierarchical
organization of repositories. SortingHat provides a unified view of all contributors, by
merging identities in different data sources, mapping all of them to the same uuid which
is used in enriched indexes. When data sources are similar, common fields are identified,
so that data can be merged and to some extent compared. For example, for issue trackers
there are fields with opening and closing dates. Finally, the fact that data is stored in
Elasticsearch may allow for merging directly when querying, such as “all data for all
projects from date A to date B, authored by person P”.

� Consumer-agnostic. It is very difficult to know how some person will exploit the data in
the future. Since our approach is “retrieve and store”, stored data may be useful even
long after it was retrieved, or by a different team. GrimoireLab makes as few
assumptions about analysis or visualization tools as possible. Enriched indexes are
usually flat because then they are easier to import in visualization and analysis tools
(for example, import into a Pandas data frame), but this is most of it. Thanks to this
approach, we have tested the exploitation of data with several visualization tools, and the
most common toolsets used for analysis. Anything that can consume JSON documents
from Elasticsearch can be easily used to visualize or further analyze data produced
by GrimoireLab.

� Performance and efficiency. When retrieving data from many repositories, performance
is an issue. From one point of view, data sources should be used efficiently to avoid
unnecessary stress. From another, we want the data as soon as possible. To address the
first approach, GrimoireLab builds on an extensive research of data source APIs and
retrieval options, to avoid those that could cause trouble. This is one of the reasons
for using a toolset like this if you are not familiar enough with the details of data
retrieval: avoiding causing unnecessary pain to the data source. Incremental access, and

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 35/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

storage of data in raw indexes to avoid recurrent retrievals are a consequence of this goal.
To address the second aspect, GrimoireLab can do data retrieval and enrichment in
parallel, with components such as Arthur and Mordred in charge of scheduling and
coordinating concurrent activities. For several data sources, GrimoireLab allows also for
the use of a pool of API rate tokens, when available and allowed, which may increase
data retrieval speed.

� Identity management. Dealing with personal identities is a key aspect of many studies
about software development. Even for studies as simple as counting contributors, you
need to find out the several identities that the same person may be using. SortingHat
deals with these issues, plus the problem of tagging people (for example, mapping them
to the company they work for). SortingHat is no silver bullet: it just uses some heuristics,
allows for the importing of identity data when it is available, and provides means
(via command line, or via the HatStall web application) to manually merge and tag
identities. Since SortingHat is integrated in the toolchain, changes reflected in its
identities database are later reflected in any enriched index. A related problem to
identities is privacy: in many cases, identities should not be provided to consumers of the
data, to respect privacy of the persons participating in projects. Currently, there is
on-going work in GrimoireLab to improve the situation in this area.

� Long-term performance. For dealing with the retrieval and analysis of large projects, the
system must run for extended periods of time. During that time, failures occur: token
rate exhaustion, network glitches, server reboots, even host shutdowns. GrimoireLab
recovers as nicely as possible by retrying, and by continuing after failure. Perceval,
Arthur and Mordred are designed to retry when the API rate provided by a token is
exhausted, or when some network failures happen. For dealing with continuation, new
runs of GrimoireELK andMordred can be configured to be incremental, checking in the
database the last items retrieved and enriched, and following from there.

� Data maintainability. Data retrieved and enriched should be easily inspected, so that
people using it can detect errors. Errors can happen, for example, when the wrong
repository is configured, or when timestamps are shifted due to misconfigured default
timezones, or when bugs in the code produce some field with errors. If detected, errors
should be fixed with minimum impact on the original data sources. GrimoireLab
components store data in databases, so that errors can be fixed directly on them. For
example, a bug due to incorrect parsing of a date format can be fixed by substituting
wrong dates in enriched indexes from data in raw indexes. Some fields are also included
in all items to assist traceability.

� Modularity. Since the kinds of consumption of data will be diverse, a toolset provides
more flexibility, with many of its components being able to work on their own, but also
in different combinations. Raw and enriched indexes provide good synchronization
points for components in pipelines, and information hiding (such as configuration data
inMordred or identities data in SortingHat) helps to keep each problem domain within
its own component, exposing only an API hiding unneeded details.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 36/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� Extensibility. In several aspects, GrimoireLab provides a vanilla system that can be easily
extended to fit specific needs. The most clear cases of extensibility are:

-New visualizations. Kibiter (or Kibana) allows for the creation of new visualizations,
and arrangement of them in dashboards. All the process can be done via the
graphical user interface, and only requires some knowledge about the data in
Elasticsearch indexes, and some training on the Kibana user interface. New
visualizations can be created from scratch, or by modifying those provided by Sigils.
Both new visualization and Sigils visualizations can be mixed in dashboards.
Once these visualizations and dashboards are created, they benefit from the data
produced by the rest of GrimoireLab.
-New indexes. GrimoireELK provides a simple mechanism for creating new enriched
indexes: studies. A GrimoireELK study is a Python script, with a certain structure,
that basically is fed with raw or enriched indexes, and produces a new index tailored
for some specific analysis. GrimoireLab provides some of these studies, for example
for analyzing the joining and leaving processes of a project (enrollment,
abandonment, experience, etc.). These studies can be used as templates for
producing new ones. Studies are run byMordred, so that they are easily integrated in
the data retrieval and analysis pipelines, and new visualizations can be produced for
the indexes they produce.
-New data sources. Supporting a new data source with GrimoireLab amounts to
building some modules which integrate with the rest of the system. The process
starts by building a new Perceval client, which will implement a Python generator
that will retrieve data from the intended source, and produce dictionaries with a
common structure. This client usually will automatically plug into the Perceval
backend, producing JSON documents that will be stored in Elasticsearch by Arthur
and GrimoireELK. Then, enrichment code has to be inserted in GrimoireELK so that
enriched indexes can be produced, usually by selecting which fields from raw
items should be copied, or transformed, into fields in the enriched index. If identities
are to be managed, the appropriate calls to SortingHat will be included in this
code too. Finally, new visualizations have to be produced in Kibiter to show the data
in these new enriched indexes.

GrimoireLab has been evolving for several years, improving incrementally in dealing
with all these issues. Unfortunately, many of them appeared while the system was already
in use and evolving, which means that they needed to be addressed on the go, leading in
some cases to not so clean solutions.

GrimoireLab for researchers
In the specific case of researchers, GrimoireLab can contribute to solve some usual
problems:

� Data retrieval software. For some kinds of data sources, writing some script to retrieve
data is not difficult, if only some casual data is wanted. But retrieving large datasets in an

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 37/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

efficient way, with minimal stress on the mined infrastructure, it is not that easy.
GrimoireLab provides a simple way of getting the data needed for a study in reasonable
time, just by deploying it with the right configuration.

� Reproducibility. GrimoireLab helps reproducibility in two different ways, depending on
the starting point of the reproduction study. To assist in full reproduction, starting by
retrieving the data from data sources (maybe with new data in them), researchers
can declare the version of GrimoireLab used, and its configuration files, in addition to
the processing scripts. That would be enough for anyone to get the same data again,
provided API of the data sources didn’t change. If they did, it is likely that new versions
of GrimoireLab adapted, so the retrieval can still be tried with those newer versions.
For improved reproducibility, the complete list of GrimoireLab versions and
dependencies can be provided, using common Python tools (for example, versions
freeze of a virtual environment), or versions of Docker images. To assist on
reproducibility from the retrieved dataset, raw and enriched indexes can be dumped, so
that other researchers use them as their starting point, or compare them with those they
get. This can be done at the Perceval level, producing mirrors of the relevant data
sources, or by dumping data from Elasticsearch with customary tools like
elasticdump.

� Collaboration in producing datasets. The use of GrimoireLab by different research
groups allows the production of collaborative collections of data, resulting frommerging
the datasets produced by each group. The groups producing the collection should
just use a common codification for repository identifiers, and GrimoireLab raw indexes
can just be put together to produce a raw index for the collection. A “common
codification” means using the same identifier for the same repository: for example, if
they are accessible via different URLs, ensuring a common one is decided. Since all items
in raw indexes have origin fields, with the identifier for the repository, if the same
repository is more than once in the datasets, its items will clash. A simple policy, such as
“if two items clash, use the most recent one” will allow for the production of a collection
with no duplicated items. Metastudies can then easily run on the aggregated dataset.

However, at least in some cases, new problems may appear:

� Bugs. Researchers using GrimoireLab become dependent on it producing data correctly.
This makes their studies subject to bugs or errors in GrimoireLab or its configuration.
Experience shows that it is more likely that a single researcher writing code makes
mistakes causing bugs, than a software used in many different scenarios by many
different people. GrimoireLab uses unit testing to prevent new bugs and regressions,
with relatively high test coverage (Graal: 99%, Perceval: 98%, SortingHat: 93%,
GrimoireELK: 82%,Mordred: 63%). But still, if there are bugs in some component, those
could cause wrong data to entire datasets. Therefore, data checking should still be an
important part of any research using GrimoireLab.

� Adaptability. If a study is designed as a function of what can be done with GrimoireLab,
or what can be done easily with it, there is a risk of focusing on what the toolset can

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 38/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

do, and being limited by it. Researchers should confront the GrimoireLab model,
designing new components when needed, or realizing when it is not well suited for a
certain kind of study.

� Evolution and poor documentation. Even when GrimoireLab features extensive
documentation, including a tutorial, and specific documentation for modules, it is not
always easy to know what it can do, or how to tailor it to specific needs. This,
together with the fact that GrimoireLab is for now a moving target, continuously
evolving, may make it complex to use in some cases. Its community is already working
on improving documentation, and keeping it updated, but still this may be an issue.

Industrial use
GrimoireLab has been used for more than 5 years by a company to provide metrics as a
service (with deployments tailored to the needs of customers) and consulting services
based on software development metrics. To know about the main lessons learned after this
experience, we conducted some conversations with key persons in the company (some of
them co-authors of this paper). These are the main takeaways obtained from those
conversations (some are specifically related to the tools, some other are more general of
using metrics to track software development):

� Importance of automation and configuration. Since the deployment of GrimoireLab
requires a relatively small effort, and is fully automated once configuration files are
ready, most of the effort for running systems is in maintenance. And most of the
maintenance tasks can be traced to external events (such as recovery from failures) or
configuration changes (due to changes in the data sources to track, for example).
When both cases are covered, maintenance of continuously working instances of
GrimoireLab are negligible. To cover those cases, the company built scripts to react to
common events and changes in configuration (most of them already a part of Mordred
and other GrimoireLab components).

� Traceability of data items. In some cases, when specific items are checked, some error in
them can be found. This could be tracked to errors in data collection, or more usually,
in data enrichment. In any case, in those cases it is fundamental to be able to trace
as much as possible how the item was produced, so that it can be linked to specific
versions of the software, and to the corresponding log files. This is one of the reasons to
keep detailed information in every item about the version of GrimoireLab used to
produce it, and about the exact date when it was produced.

� Importance of details. Some details that in other environments could be considered as
minor are not minor when people invested in the analyzed projects have access to the
data. For example, the name of a person should be correct, even if during some time
it was wrong in some repository. For example, all contributions of a person, or of all
persons working of a company, in different data sources, have to be found in the final
reports. Even if the impact in the final numbers is minor, errors in these cases diminishes
the trust on the number provided in the reports, in general.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 39/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� Capturing complexity with metrics. Real software development is complex, and that
complexity has to be captured when producing useful metrics about it. For example,
even apparently simple metrics, such as number of bug reports still open are difficult to
present at a given time spot, as a metric suitable for comparison with previous time
spots, to learn if the situation is improving or not. First of all, bug reports have to be
identified among all issues, which usually requires careful work with developers who
label them. Then, important details need to be taken into account: impact of duplicates,
impact of bots closing old bug reports, policies of closing bug reports without actually
fixing them (for example, for difficult to reproduce cases), etc. If a certain project
has less bug reports today than 1 month ago, it is important to know if the reason is a
bot, running yesterday, and closing all issues older than six months. This kind of
complexity happens everywhere: pair-programming makes many metrics based on code
changes and code review difficult to apply; which Git branches to take into account
may cause big differences, etc. Many of these cases can be dealt with options on how
retrieval or enrichment works (for example, selection of branches, detection of bots
closing issues, different metrics if pair-programming is used). Therefore, letting users
filter the data the way they need, or configure the retrieval and analysis processes, has to
be supported by the tools.

� No single metric characterizes software development. There is not a single metric, not
even a small set of metrics, that can characterize software development in a given
project. Depending on the goals, relevant metrics are different, depending on the project,
how to compute those metrics is different. Therefore, every stakeholder in every project
needs the flexibility to select what metrics to track, and to tune them to their needs.
Tools, again, need to provide as much flexibility as possible for this.

� Explanation of metrics matter. In some cases, a specific set of metrics can capture the
fundamental aspects of some process. But still, it is important to explain well why
and how those metrics are a good characterization, and what happens when they
change. For example, time-to-close, measured over the issues closed during the last
month tells a different story than time-to-close, measured for the issues opened during
the last month. Both are important, but both are radically different. Quite usually, when
one of them goes up, the other may go down, and both things could be positive or
negative depending on the goals of the project. If people are to engage with the metrics
they need some training, or at least some explanation, of how they can use and
understand the metrics in a way that helps them to understand the underlying trends
and processes.

� The problem of gaming. If some metrics are used as a proxy for individual or collective
performance, it is important to find incentives to avoid that gaming. And one of the best
incentives comes from transparency: when anyone can see how your metrics are
composed, and how are your individual (or corporate) contributions, it is much easier to
have collective control over them. For this, the tool needs to be able to show not only
aggregated metrics, but also to allow for drilling down, showing how aggregated metrics
are composed.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 40/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

RELATED WORK
The idea of providing analytics for software development, which would help to track
performance, and improve processes, is not new (see summaries of past experiences in
(Buse & Zimmermann, 2010; Menzies & Zimmermann, 2013; Zhang et al., 2013)). Many
companies also realized early the benefits of building their internal systems for performing
software development analytics on the software they produced, as is shown for
example in (Czerwonka et al., 2013). During the last decade, these ideas have been explored
mainly in two areas: the creation (and in some cases, maintenance) of large datasets for
researchers and practitioners, and the tools designed to assist in the creation and
analysis of datasets about specific software repositories. In this section we discuss related
work in both areas. As a brief summary of this discussion Table 6 provides a briefing about
some features of some of the systems most comparable to GrimoireLab.

Large datasets about software development
Among the large datasets about software development with their own software used to
create and maintain them, we can differentiate two kinds: those specialized in source code,
and those focused on other data related to software development (including metadata
about source code changes, but usually not source code itself). The keystone systems of the
second kind are:

Table 6 Feature analysis of some related work.

GrimoireLab GHTorrent GitHub
Archive

Boa Gitana PyDriller Metrics
Grimoire

Kibble SmartSHARK

Kind Toolset Dataset Dataset Dataset Toolset Toolset Toolset Toolset Toolset

Data sources 34 2 1 1 8 1 15 13 8

Storage Elastic,
MySQL

MongoDB,
MySQL

BigQuery Hadoop MySQL None MySQL Elastic MongoDB

Scope Selected
repos

GitHub
complete

Complete
gitHub

GitHub
subset

Selected
repos

Selected
repos

Selected repos Selected
repos

Selected repos

Visualization Yes No No No No No Yes Yes Yes

Reporting Yes No No No No No Yes Yes No

Continuous Yes Yes Yes No No No Yes Yes Yes

Raw Yes Yes Yes No No Yes No No No

Processed Yes Yes No Yes Yes No Yes Yes Yes

Identities Manual
heurist

GitHub GitHub No Manual No Manual
heurist,

No Heurist

Note:
The analysis is based on published literature, and in some cases, direct experience with the system. Kind shows if the system is specifically targeted at producing a dataset
(“Dataset”), or intended as a generic toolset (“Toolset”). InData sourceswe have considered different GitHub or GitLab APIs as different data sources, and code analysis as
a single data source. In Storagewe have considered the main storage systems, “Elastic” stands for Elasticsearch. In Scope “Selected repos”means that the user can select any
collection of repositories for retrieval and storage (if applicable) from the set of supported data sources, “GitHub Complete” means that all of GitHub is retrieved and
stored, “GitHub Subset” means that a pre-defined subset of GitHub repositories is retrieved and stored. Visualization and Reporting show if there are visualization and
reporting components in the system. “Continuous” shows if the system can perform continuous retrieval. Raw and Processed shows if raw data (as obtained from the data
source) and processed data (data with some processing more suitable for analysis) are available, stored, for further analysis. Identities show if identity management is
included: “Manual” stands for “support for manual management”, “Heurist.” stands for “components performing heuristics for identity management”, “GitHub” stands
for “uses GitHub users API only”.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 41/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� The SourceForge Research Data Archive (SRDA) (Van Antwerp & Madey, 2008) was the
first dataset organized and maintained to allow researchers to have metadata about a
large number of software development repositories. It provided reduced dumps of
SourceForge, which was during most of the 2000s decade the preferred hosting site
(software forge) for FOSS projects. At about the same time, FLOSSmole (Howison,
Conklin & Crowston, 2006) retrieved data from SourceForge, and later other software
development hosting sites, via their APIs, offering a wealth of metadata for researchers.
FLOSSmole was to our knowledge the first system to perform a method, large-scale
data retrieval via their API from large forges, making its data available to third parties.
The kind of metadata they provide for each project include project description, project
status, programming language, developers, license, programming language, and some
general statistics about it.

� FLOSSMetrics (Herraiz et al., 2009) and SQO-OSS (“Software quality observatory for
open source software” (Gousios et al., 2007)) had similar aims: to collect not only
metadata about the projects, but as much data as possible about software development
(the complete list of commits or issues, for example), via the APIs provided by software
forges. Both produced their own software to that aim (MetricsGrimoire and Alitheia
Core, mentioned below), which they used to collect data from hundreds of software
repositories (commit records, issue reports, code review discussions, asynchronous
communication via mailing lists, etc.), being some of the first demonstrators of how
massive retrieval of data from software forges could be performed. Both worked with a
diverse collection of data sources. FLOSSMetrics and SQO-OSS started the path towards
automated collection of many different data kinds about software development,
which is also the goal of GrimoireLab. Many of the features provided by GrimoireLab
were first demonstrated, or at least set as a long-term goal, by those systems: retrieval of
data from many different data sources; automated retrieval, storage, and analysis;
fault-tolerance; massive collection and analysis; etc. The tools provided by GrimoireLab
could be composed to produce systems similar to FLOSSMetrics and SQO-OSS, and
GrimoireLab owes these systems the architecture based on storing data for further
analysis (instead of having to retrieve it once and again from the original data sources),
and the idea of incremental retrieval, fundamental for efficient retrieval of data from
repositories already visited. In all of them, the basic idea was to interfere as little as
possible with the infrastructure provided by the original data sources.

� GHTorrent (Gousios & Spinellis, 2012) and GHArchive (Grigorik, 2022) were developed
later, focusing on the GitHub platform. Both work by querying the GitHub API to
produce a complete dataset including most of the events noticeable in it (code commit
records, issue reports, pull requests, changes in repository metadata). Both developed
their own software for the retrieval and curation of the data. In the case of GHTorrent,
curation includes linking actors of events to GitHub users, and adding metainformation
provided by the GitHub repositories API (such as number of stars or programming
languages used), that make the dataset more valuable. Given that both are focused on

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 42/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

GitHub, both have specialized components tailored to optimize the retrieval of data
from the GitHub events channel.

In this respect, the GitHub backend of Perceval in GrimoireLab offers a similar
functionality, but using the API for projects. In the end, both APIs (the projects API and
the events channel) offer similar data, but with different perspectives. The former provides
a log with all the data “as it is today”: all issues and pull requests, with details about
all comments, timing, etc, for example. The latter provides similar data “as it happens”: as
an issue or pull request is modified, a new event is received through the channel. The
events API is therefore designed to be consumed as time passes (although it has some
memory, of 300 events per end-point and not more than 3 months in the past). This means
that the events channel needs to be parsed for all the projects of interest, and the
information you cannot consume at a certain point, cannot be retrieved again. It also does
not permit to retrieve data since the beginning of the activity for each project. The projects
API, on the contrary, can be queried at any time, allowing to get most of the history
pertaining to that repository at any point in time. GrimoireLab uses the projects API
approach to be able to selectively retrieve data from any repository, at any point in time,
since the project started. In addition, the Perceval backend for Git directly clones Git
repositories, instead of relying on commit events produced by GitHub. Again, this allows it
to get at any point in time most of the history of any given repository.

With respect to systems massively retrieving and archiving source code, and in some
cases doing some kind of analysis on it, we can mention:

� Sourcerer (Bajracharya et al., 2006) was designed to be a search engine for source code. It
retrieved code from source code repositories, analyzed it, and produced a database
designed to be queried. In some sense, it can be considered the ancestor of systems
massively archiving source code and allowing queries on it.

� Boa is a system to massively collect source code, analyze it, and store some of its
characteristics in a database, allowing researchers to query on them. Boa also provides a
programming language (also named Boa), supported by an infrastructure, to ease
queries and studies about large quantities of source code repositories. In its first
incarnation (Dyer et al., 2013b, Dyer et al., 2015) it extracted metadata and source code
from SourceForge (a popular software development forge at that time), storing it in
mirrored Subversion repositories and a Hadoop cluster, which is where the queries were
actually run. It was later complemented with a massive number of repositories from
GitHub and other sources. Boa was designed to let users create simple programs that
allowed for a quick and comprehensive exploration of all the data.

� Debsources (Caneill, Germán & Zacchiroli, 2017), Software Heritage (Pietri, Spinellis &
Zacchiroli, 2019) and World of Code (Ma et al., 2019) are aimed to retrieve and archive
source code, for different purposes. Debsources maintains a dataset with all the
source code from Debian packages, including some metadata about it. Software Heritage
retrieves data from source code management systems, with the goal of preserving it and
making it available in the long term. Their goal is to store all publicly available

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 43/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

source code. World of code is specifically targeted at maintaining a database with all
FOSS code, which researchers can use to investigate the global properties of FOSS. All of
them are designed to be updated with new data, incrementally and automatically.

GrimoireLab allows source code retrieval and analysis, via Graal. But instead of being
designed for archiving all the source code, its approach is to analyze it, computing the
desired metrics of each version of each file found, and storing them in a database, which
can later be queried. In this respect, this is in part similar to what Sourcerer or Boa do,
but the focus of Graal is not to produce a specific kind of analysis, but to allow any third
party tool, run via a simple plugin module, to produce data that will be stored in the
database. Both Software Heritage and World of Code can also be queried via a database,
but in the case of Software Heritage this is only for finding specific source code, while in the
case of World of Code, the approach is to provide data about the interdependence of
projects. Both are very different from the modular approach used in GrimoireLab, which
allows for studies at many scales (from the single repository to the many tens of thousands
of them), and for many different purposes.

MetricMiner (Sokol, Aniche & Gerosa, 2013), SeCold (Keivanloo et al., 2012), and
OpenHub (Farah, Tejada & Correal, 2014) are systems that offered a mix of source code
analysis and data about software development. In that respect, their goals are more similar
to those of GrimoireLab, although their structure and implementation are aimed to
produce specific outcomes, very different from the flexible toolbox approach of
GrimoireLab.

Tools for analyzing software repositories
With respect to tools capable of retrieving and analyzing software repositories, there are
many of them:

� SoftChange (German & Mockus, 2003) and GlueTheos (Robles, González-Barahona &
Ghosh, 2004) were some of the first tools that were designed to retrieve data from source
code repositories (CVS, and later Subversion), with the aim of being generic enough to
be useful in more than a single study.

� gitdm (Corbet, 2008) and PyDriller (Spadini, Aniche & Bacchelli, 2018) are good
examples of more modern reimplementations of these tools. Both are focused on the
analysis of Git repositories. gitdm was developed to analyze the Linux kernel Git
repository, and produce some simple stats for it. It has been later adapted to produce
other metrics of interest to other projects. PyDriller is a recent framework for retrieving
and analyzing Git repositories. It allows for sophisticated options to decide which parts
of a repository to analyze, and is easily extensible to produce different kinds of metrics.

� MetricsGrimoire (Gonzalez-Barahona, Robles & Izquierdo-Cortazar, 2015) was to our
knowledge the first toolset for retrieval of data from several kinds of software
development repositories (source code management, issue tracking, code review,
mailing lists discussions, etc.) conceived to be reusable outside the team producing them.
MetricsGrimoire in fact included in its maintenance team some volunteers external to

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 44/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

the original research team that produced them, and were maintained over a period
of about a decade, being used by many different research teams. GrimoireLab owes to it
the design as a toolset capable of retrieving data from several kinds of repositories, with
tools that can work alone or in combination. However, the coordination of tools in
MetricsGrimoire was very shallow, not even using compatible formats for the same
information. GrimoireLab went further in this approach, allowing for a much complete
integration of data coming from different data sources, with for example same fields
for actors in the database, and a single system (SortingHat, which was originally built as
a part ofMetricsGrimoire) for managing identities in exactly the same way. GrimoireLab
also learned from these systems the problems of trying to define a specific schema
for all incoming data, avoiding these problems by using flexible, nested JSON-based
formats in the data-retrieval stage, while enforcing flat, uniform formats for enriched
data.

� Alitheia Core (Gousios & Spinellis, 2009) was built to support SQO-OSS, and was one of
the first systems designed to continuously retrieve data from different kinds of software
repositories, via their APIs. It was also a system composed as a toolset, although
tools were specifically designed to work together, not in isolation. One of its features was
its continuous operation, well suited for automatic retrieval and update, which was
also one of the design goals of GrimoireLab, although in this case via a specific
component, Mordred, that orchestrates the rest of the tools.

� Some other tools that allowed for the retrieval and relatively simple analysis of software
development repositories are: CODEMINE (Czerwonka et al., 2013), BuCo Reporter
(Ligu, Chaikalis & Chatzigeorgiou, 2013), Gitana (Cosentino, Izquierdo & Cabot, 2018),
and Candoia (Tiwari, Upadhyaya & Rajan, 2016).

� PROM (Rubin et al., 2007), FOSSology (Gobeille, 2008), Qualipso (Del Bianco et al.,
2009), FRASR (Poncin, Serebrenik & Van Den Brand, 2011), and Q-Rapids
(Martinez-Fernández et al., 2018) are systems or tools designed to produce some specific
higher level metrics (e.g., processes and quality metrics), which require more data
processing. For this, they had their own components that allowed for the retrieval and
analysis of data (MetricsGrimoire in the case of Qualipso), and in general, stored the
resulting metrics in a queryable database.

� There are many other tools providing different kinds of comprehensive views of
software development. Some of them are: Complicity (Neu et al., 2011), RepoGrams
(Rozenberg et al., 2016), CROSSMINER (Bagnato et al., 2017), Kibble (Apache, 2022),
SmartSHARK (Trautsch et al., 2017), Augur (Goggins, 2022), etc.

When compared to these tools, GrimoireLab is in general more diverse in terms of data
sources supported with a common interface: all of them can be retrieved using the
Perceval API. For all of them raw and enriched indexes are produced with a similar
structure, all of them can be retrieved and analyzed automatically with the same Mordred
configuration. Most of the tools mentioned above support one, or a small number, of
different data sources, and in general are not designed to produce uniform data that can be

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 45/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

later queried for further analysis in a uniform way. GrimoireLab also provides identity
management for all of these data sources, and a common way of visualizing and reporting
data. However, the main difference is probably the fact that GrimoireLab tools can be
used, if needed, in isolation, and that the data is stored in a way that allows for many
different kinds of further analysis.

AVAILABILITY AND USAGE
GrimoireLab is a free, open source software toolset, hosted in GitHub, as a part of the
CHAOSS project. Each tool is maintained in a separate repository, using Git for source
code management. This guarantees future availability, via the Software Heritage
repository14, or GitHub itself. The version described in this paper corresponds to the
current latest commits for each repository, as of March 1st 2021 (see a detailed list in the
companion package).

The system can be installed as a collection of coordinated Python packages, from Pypi,
by running a single command which pulls as dependencies all GrimoireLab modules:

pip install grimoirelab

Modules which can be used on their own (Perceval, Graal, SortingHat, GrimoireELK,
Mordred, Kidash) provide a driver program that can be run directly. Some of them may
need some services to work (Elasticsearch, Kibana, MariaDB, Redis), which can be
deployed locally or somewhere on the Internet.

Several Docker container images are also provided to run pre-configured versions of
GrimoireLab, with all services already pre-installed. They can produce complete
dashboards, with raw and enriched data for all repositories, just by running the container
with the appropriate configuration data. They can also be used with official container
images for services, via docker-compose (see the companion dataset, described in Section
“A companion package and other information”, for an example of running the toolset
this way, including configuration files). Docker images for GrimoireLab are stored in
DockerHub, so that they can be recovered later (for any GrimoireLab release). They are
also produced from Dockerfile configuration files, publicly available from GrimoireLab
repositories.

Extensive documentation is provided with each of the components, a tutorial is also
available with step by step details for running the system as a whole, and with many
specific scenarios.

An active community of developers is collaborating in the maintenance and extension
of the system, led by a company which is using it for its core services. The toolset is being
used by several groups, FOSS foundations, companies and individuals not related to
their authors. Some of these uses have lead to research publications, most of them by other
groups (Zhao et al., 2017; Claes et al., 2017; Mens, Adams & Marsan, 2017; Robles et al.,
2017; Devanbu et al., 2017; Claes et al., 2018a; Claes et al., 2018b; Kuutila et al., 2018;
Claes, Mantyla & Farooq, 2018; Izquierdo et al., 2019a; Izquierdo et al., 2019b; Robles,
Gamalielsson & Lundell, 2019; Sulun, Tuzun & Dogrusoz, 2019; Itkin, Novikov &
Yavorskiy, 2019; Orviz Fernandez et al., 2020; Butler et al., 2020; Ashraf et al., 2020; Claes &

14 Software Heritage: https://
softwareheritage.org

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 46/53

https://softwareheritage.org
https://softwareheritage.org
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Mantyla, 2020; Kuutila, Mantyla & Claes, 2020; Sulun, Tuzun & Dogrusoz, 2021).
GrimoireLab deployments include Cauldron, a SaaS platform which allows users to select
repositories to be analyzed via a web interface, producing data in Elasticsearch which is
shown in custom Kibana dashboards.

CONCLUSIONS
In this paper we have presented GrimoireLab, an extensible and modular open source
toolset which offers (i) automatic and incremental data gathering from a large set of tools
used in software development, (ii) storage and enrichment of the retrieved data, (iii)
identities management, and (iv) data visualization and reporting to allow inspecting
specific aspects of software development. GrimoireLab relies on different components that
can be used together or standalone. It also may help researchers to enhance reproducibility
of their studies, and traceability of their data. GrimoireLab reimplements and extends
previous approaches to create a mature platform, currently used in commercial and
academic settings.

The main characteristics of GrimoireLab which make it unique when compared to other
tools to analyze software development repositories are:

� Support of many different data sources (close to 30).

� Flexibility and configurability of the tool, even for large-scale analysis (10,000 s of
repositories).

� The storage model, with raw data mimicking the original API, kept for further analysis,
and enriched, identity-merged data for visualization.

� Identity merging is unique (or at least at the level of the best of other tools).

� Easy deployment as a complete system using Docker or docker-compose, with a single
command, but at the same time can be custom-installed using pypi packages.

� It can be used as a complete toolset, but most of its tools can be also used by themselves,
as modules, integrated with user-implemented software.

� Tested in real-world (both industrial and research) cases, including systems running
continuously for months, retrieving data from thousands of repositories.

GrimoireLab is managed as an open free, open source software project, with a public
roadmap, and all contributions managed through pull requests in GitHub. The project
documents how to contribute to it, and in fact some important contributions (such as
partial support for some data sources) have been received by the core team of developers.
Researchers and developers of any kind are welcome to propose their patches fixing errors
or providing new features.

To improve the usability in different scenarios, we are working in community
repositories to share configuration files and widgets tailored to specific analysis. We also
intend to extend GrimoireLab in different directions. First, we plan to support graph data
storage to allow the user to answer questions that cannot be easily addressed with a
document-based database (Kaur & Rani, 2013). Second, we will speed up the data
enrichment using in-memory data processing libraries (McKinney, 2011). Finally, we

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 47/53

http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

would like to improve the retrieval of data buried in source code (Cosentino et al., 2018),
helping researchers to perform cross-cutting analysis over a wider spectrum of software
development data.

COMPANION PACKAGE AND OTHER INFORMATION
A companion package for this paper is available15. It includes data, logs, and configuration
files for the IoT and the GNOME GitLab cases, and a list of Software Heritage identifiers
for the software components presented in this paper. The full source code of GrimoireLab,
tutorials about it, and other information is also available16.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by Ministerio de Ciencia y Tecnología of Spain under Project
BugBirth, RTI2018-101963-B-I00 (Retos) and Grimoire as a Service, RTC-2017-6554-7
(Retos Colaboracion), and by Ministerio de Economia y Competitividad of Spain under
Grant PTQ-15-07709 (Torres Quevedo). There was no additional external funding
received for this study. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministerio de Ciencia y Tecnología of Spain: RTI2018-101963-B-I00, RTC-2017-6554-7.
Ministerio de Economia y Competitividad of Spain: PTQ-15-07709.

Competing Interests
Santiago Dueñas, Daniel Izquierdo-Cortazar, Luis Cañas and Alberto Pérez García-Plaza
are employees of Bitergia, the main contributor to GrimoireLab.

Author Contributions
� Santiago Dueñas performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

� Valerio Cosentino conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Jesus M. Gonzalez-Barahona conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Alvaro del Castillo San Felix conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

� Daniel Izquierdo-Cortazar performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

15 Companion package for this paper:
https://doi.org/10.5281/zenodo.4656469

16 GrimoireLab main website: https://
grimoirelab.github.io

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 48/53

https://doi.org/10.5281/zenodo.4656469
https://grimoirelab.github.io
https://grimoirelab.github.io
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

� Luis Cañas-Díaz performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

� Alberto Pérez García-Plaza performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The companion package is available at Zenodo: “Companion package for GrimorieLab:
A toolset for software development analytics” https://doi.org/10.5281/zenodo.4656469

The source code for GrimoireLab is available at GitHub, in several repositories, linked
from https://chaoss.github.io/grimoirelab/#components.

REFERENCES
Apache. 2022. Kibble. Available at https://kibble.apache.org/ (accessed 18 October 2020).

Ashraf U, Mayr-Dorn C, Egyed A, Panichella S. 2020. A mixed graph-relational dataset of socio-
technical interactions in open source systems. In: Proceedings of the 17th International
Conference on Mining Software Repositories. 538–542.

Bagnato A, Barmpis K, Bessis N, Cabrera-Diego LA, Di Rocco J, Di Roscio D, Gergely T,
Hansen S, Kolovos D, Krief P, Korkontzelos I, Laurie`re S, Lopez de la Fuente JM, Malo P,
Paige RF, Spinellis D, Thomas C, Vinju J. 2017. Developer-centric knowledge mining from
large open-source software repositories (CROSSMINER). In: Federation of International
Conferences on Software Technologies: Applications and Foundations. Springer, 375–384.

Bajracharya S, Ngo T, Linstead E, Dou Y, Rigor P, Baldi P, Lopes C. 2006. Sourcerer: a search
engine for open source code supporting structure-based search. In: Companion to the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications.
New York: ACM, 681–682.

Buse RP, Zimmermann T. 2010. Analytics for software development. In: Proceedings of the FSE/
SDP Workshop on Future of Software Engineering Research. 77–80.

Butler S, Gamalielsson J, Lundell B, Brax C, Mattsson A, Gustavsson T, Feist J, Lonroth E. 2020.
Maintaining interoperability in open source software: a case study of the Apache PDFBox
project. Journal of Systems and Software 159:110452.

Caneill M, Germán DM, Zacchiroli S. 2017. The Debsources dataset: two decades of free and open
source software. Empirical Software Engineering 22(3):1405–1437
DOI 10.1007/s10664-016-9461-5.

Claes M, Mantyla M, Farooq U. 2018. On the use of emoticons in open source software
development. In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM’18. New York: Association for Computing
Machinery.

Claes M, Mantyla M, Kuutila M, Farooq U. 2018a. Towards automatically identifying paid open
source developers. In: Proceedings of the 15th International Conference on Mining Software
Repositories. New York: ACM, 437–441.

Claes M, Mantyla MV. 2020. 20-MAD: 20 years of issues and commits of Mozilla and Apache
development. In: Proceedings of the 17th International Conference on Mining Software
Repositories. 503–507.

Claes M, Mantyla MV, Kuutila M, Adams B. 2018b.Do programmers work at night or during the
weekend? In: Proceedings of the 40th International Conference on Software Engineering. 705–715.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 49/53

https://doi.org/10.5281/zenodo.4656469
https://chaoss.github.io/grimoirelab/#components
https://kibble.apache.org/
http://dx.doi.org/10.1007/s10664-016-9461-5
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Claes M, Mantyla M, Kuutila M, Adams B. 2017. Abnormal working hours: effect of rapid releases
and implications to work content. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). Piscataway: IEEE, 243–247.

Corbet J. 2008. gitdm v0.10 available. Available at https://lwn.net/Articles/290957/ (accessed 27
October 2020).

Cosentino V, Dueñas S, Zerouali A, Robles G, Gonzalez-Barahona JM. 2018. Graal: The quest
for source code knowledge. In: SCAM. 123–128.

Cosentino V, Izquierdo JLC, Cabot J. 2017. A systematic mapping study of software development
with GitHub. IEEE Access 5:7173–7192 DOI 10.1109/ACCESS.2017.2682323.

Cosentino V, Izquierdo JLC, Cabot J. 2018. Gitana: a software project inspector. Science of
Computer Programming 153:30–33 DOI 10.1016/j.scico.2017.12.002.

Czerwonka J, Nagappan N, Schulte W, Murphy B. 2013. CODEMINE: building a software
development data analytics platform at Microsoft. IEEE Software 30(4):64–71
DOI 10.1109/MS.2013.68.

Dabbish L, Stuart C, Tsay J, Herbsleb J. 2012. Social coding in GitHub: transparency and
collaboration in an open software repository. In: CSCW. 1277–1286.

Del Bianco V, Lavazza L, Morasca S, Taibi D. 2009.Quality of open source software: the QualiPSo
trustworthiness model. In: Boldyreff C, Crowston K, Lundell B, Wasserman AI, eds.Open Source
Ecosystems: Diverse Communities Interacting. OSS 2009. IFIP Advances in Information and
Communication Technology. Vol. 299. Berlin: Springer.

Devanbu P, Kudigrama P, Rubio-Gonzalez C, Vasilescu B. 2017. Timezone and time-of day
variance in GitHub teams: an empirical method and study. In: Proceedings of the 3rd ACM
SIGSOFT International Workshop on Software Analytics, SWAN 2017. New York: Association
for Computing Machinery, 19–22.

Di Cosmo R, Zacchiroli S. 2017. Software heritage: why and how to preserve software source code.
In: iPRES 2017: 14th International Conference on Digital Preservation.

Dueñas S, Cosentino V, Robles G, Gonzalez-Barahona JM. 2018. Perceval: software project data
at your will. In: ICSE. 1–4.

Dyer R, Nguyen HA, Rajan H, Nguyen TN. 2013a. Boa: a language and infrastructure for
analyzing ultra-large-scale software repositories. In: MSR. 422–431.

Dyer R, Nguyen HA, Rajan H, Nguyen TN. 2013b. Boa: a language and infrastructure for
analyzing ultra-large-scale software repositories. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE-13. Piscataway: IEEE, 422–431.

Dyer R, Nguyen HA, Rajan H, Nguyen TN. 2015. Boa: ultra-large-scale software repository and
source-code mining. ACM Transactions on Software Engineering and Methodology 25(1):1–34
DOI 10.1145/2803171.

European Parliament and Council of the European Union. 2016. Regulation on the protection of
natural persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (Data Protection Directive). Official Journal of the
European Union, EUR-Lex Document 32016R0679, May 2016 1–88.

Farah G, Tejada JS, Correal D. 2014. OpenHub: a scalable architecture for the analysis of software
quality attributes. In: Proceedings of the 11th Working Conference on Mining Software
Repositories. 420–423.

German D, Mockus A. 2003. Automating the measurement of open source projects. In:
Proceedings of the 3rd Workshop on Open Source Software Engineering. Cork Ireland: University
College Cork, 63–67.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 50/53

https://lwn.net/Articles/290957/
http://dx.doi.org/10.1109/ACCESS.2017.2682323
http://dx.doi.org/10.1016/j.scico.2017.12.002
http://dx.doi.org/10.1109/MS.2013.68
http://dx.doi.org/10.1145/2803171
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Gobeille R. 2008. The FOSSology project. In: MSR 2008. 47–50.

Goggins SP. 2022. AugurLabs. Available at http://www.augurlabs.io/ (accessed 18 October 2020).

Gonzalez-Barahona JM, Robles G, Izquierdo-Cortazar D. 2015. The MetricsGrimoire database
collection. In: MSR 2015. 478–481.

Gousios G, Kalliamvakou E, Spinellis D. 2008. Measuring developer contribution from software
repository data. In: MSR. 129–132.

Gousios G, Karakoidas V, Stroggylos K, Louridas P, Vlachos V, Spinellis D. 2007. Software
quality assessment of open source software. In: Proceedings of the 11th Panhellenic Conference on
Informatics.

Gousios G, Spinellis D. 2009. Alitheia core: an extensible software quality monitoring platform. In:
2009 IEEE 31st International Conference on Software Engineering. Piscataway: IEEE, 579–582.

Gousios G, Spinellis D. 2012. GHTorrent: GitHub’s data from a firehose. In: MSR 2012. 12–21.

Grigorik I. 2022. GHArchive. Available at https://www.gharchive.org/ (accessed 18 October 2020).

Hemmati H, Nadi S, Baysal O, Kononenko O, Wang W, Holmes R, Godfrey MW. 2013. The
MSR cookbook: mining a decade of research. In: MSR 2013. 343–352.

Herraiz I, Izquierdo-Cortazar D, Rivas-Hernández F, Gonzalez-Barahona JM, Robles G,
Duenas-Dominguez S, Garcia-Campos C, Gato JF, Tovar L. 2009. FlossMetrics: free/libre/
open source software metrics. In: 13th European Conference on Software Maintenance and
Reengineering (CSMR 2009). 281–284.

Howison J, Conklin M, Crowston K. 2006. FLOSSmole: a collaborative repository for FLOSS
research data and analyses. International Journal of Information Technology and Web
Engineering (IJITWE) 1(3):17–26 DOI 10.4018/IJITWE.

Itkin I, Novikov A, Yavorskiy R. 2019. Development of intelligent virtual assistant for software
testing team. In: 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C). Piscataway: IEEE, 126–129.

Izquierdo D, Gonzalez-Barahona JM, Kurth L, Robles G. 2019a. Software development analytics
for Xen: why and how. IEEE Software 36(3):28–32.

Izquierdo D, Huesman N, Serebrenik A, Robles G. 2019b. OpenStack gender diversity report.
IEEE Software 36(1):28–33.

Kaur K, Rani R. 2013. Modeling and querying data in NoSQL databases. In: IEEE BigData. 1–7.

Keivanloo I, Forbes C, Hmood A, Erfani M, Neal C, Peristerakis G, Rilling J. 2012. A linked data
platform for mining software repositories. In: 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR). Piscataway: IEEE, 32–35.

Kuutila M, Mantyla MV, Claes M. 2020. Chat activity is a better predictor than chat sentiment on
software developers productivity. In: Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops. Piscataway: IEEE, 553–556.

Kuutila M, Mantyla MV, Claes M, Elovainio M, Adams B. 2018. Using experience sampling to
link software repositories with emotions and work well-being. In: Proceedings of the 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM ’18. Oulu, Finland: Association for Computing Machinery.

Lanubile F, Ebert C, Prikladnicki R, Vizcano A. 2010. Collaboration tools for global software
engineering. IEEE Software 27(2):52–55 DOI 10.1109/MS.2010.39.

Ligu E, Chaikalis T, Chatzigeorgiou A. 2013. BuCo reporter: mining software and bug
repositories. In: Georgiadis CK, Kefalas P, Stamatis D, eds. Local Proceedings of the Sixth Balkan
Conference in Informatics, CEUR Workshop Proceedings. Vol. 1036.Thessaloniki, Greece. 121.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 51/53

http://www.augurlabs.io/
https://www.gharchive.org/
http://dx.doi.org/10.4018/IJITWE
http://dx.doi.org/10.1109/MS.2010.39
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Ma Y, Bogart C, Amreen S, Zaretzki R, Mockus A. 2019. World of Code: An infrastructure for
mining the universe of open source VCS data. In: Proceedings of the 16th International
Conference on Mining Software Repositories, MSR’19. Piscataway: IEEE, 143–154.

Martinez-Fernández S, Jedlitschka A, Guzmán L, Vollmer AM. 2018. A quality model for
actionable analytics in rapid software development. In: 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 370–377.

McKinney W. 2011. Pandas: a foundational Python library for data analysis and statistics. In:
PyHPC. 1–9.

Mens T, Adams B, Marsan J. 2017. Towards an interdisciplinary, socio-technical analysis of
software ecosystem health. arXiv preprint. Available at https://arxiv.org/abs/1711.04532.

Menzies T, Zimmermann T. 2013. Software analytics: so what? IEEE Software 30(4):31–37
DOI 10.1109/MS.2013.86.

Moreno D, Dueñas S, Cosentino V, Fernandez MA, Zerouali A, Robles G, Gonzalez-Barahona
JM. 2019. Sortinghat: wizardry on software project members. In: Proceedings of the 41st
International Conference on Software Engineering: Companion Proceedings (ICSE’19). 51–54.

Neu S, Lanza M, Hattori L, D’Ambros M. 2011. Telling stories about GNOME with complicity.
In: 2011 6th International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT). Piscataway: IEEE, 1–8.

Orviz Fernandez P, David M, Duma DC, Ronchieri E, Gomes J, Salomoni D. 2020. Software
quality assurance in INDIGO-DataCloud project: a converging evolution of software
engineering practices to support European research e-infrastructures. Journal of Grid Computing
18:81–98.

Pietri A, Spinellis D, Zacchiroli S. 2019. The Software heritage graph dataset: public software
development under one roof. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). Piscataway: IEEE, 138–142.

Poncin W, Serebrenik A, Van Den Brand M. 2011. Process mining software repositories. In: 2011
15th European Conference on Software Maintenance and Reengineering. Piscataway: IEEE, 5–14.

Robles G, Gamalielsson J, Lundell B. 2019. Setting up government 3.0 solutions based on open
source software: the case of X-road. In: Proceedings of the International Conference on Electronic
Government. Springer, 69–81.

Robles G, González-Barahona JM, Ghosh RA. 2004. Glutheos: Automating the retrieval and
analysis of data from publicly available software repositories. In: MSR. Vol. 4. IET, 28–31.

Robles G, Ho-Quang T, Hebig R, Chaudron MR, Fernandez MA. 2017. An extensive dataset of
UML models in GitHub. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). Piscataway: IEEE, 519–522.

Robles G, Koch S, Gonzalez-Barahona JM. 2004. Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool. In: 2nd Workshop on Remote Analysis and
Measurement of Software Systems. 51–56.

Rozenberg D, Beschastnikh I, Kosmale F, Poser V, Becker H, Palyart M, Murphy GC. 2016.
Comparing repositories visually with repograms. In: Proceedings of the 13th International
Conference on Mining Software Repositories. 109–120.

Rubin V, Günther CW, Van Ger Aalst WM, Kindler E, Van Dongen BF, Schäfer W. 2007.
Process mining framework for software processes. In: Wang Q, Pfahl D, Raffo DM, eds. Software
Process Dynamics and Agility. ICSP 2007. Lecture Notes in Computer Science. Vol. 4470. Berlin:
Springer.

SARA. 2022. SARA: software archiving of research artefacts. Available at https://www.sara-service.
org/ (accessed 16 January 2020).

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 52/53

https://arxiv.org/abs/1711.04532
http://dx.doi.org/10.1109/MS.2013.86
https://www.sara-service.org/
https://www.sara-service.org/
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

Sokol FZ, Aniche MF, Gerosa MA. 2013.MetricMiner: Supporting researchers in mining software
repositories. In: 2013 IEEE 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM). Piscataway: IEEE, 142–146.

Spadini D, Aniche M, Bacchelli A. 2018. PyDriller: python framework for mining software
repositories. In: The 26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE). New York: ACM, 908–911.

Stol K-J, Fitzgerald B. 2018. The ABC of software engineering research. ACM Transactions on
Software Engineering and Methodology 27(3):1–51 DOI 10.1145/3241743.

Storey M-A, Treude C, van Deursen A, Cheng L-T. 2010. The impact of social media on software
engineering practices and tools. In: FSE. ACM, 359–364.

Sulun E, Tuzun E, Dogrusoz U. 2019. Reviewer recommendation using software artifact
traceability graphs. In: Proceedings of the Fifteenth International Conference on Predictive Models
and Data Analytics in Software Engineering. 66–75.

Sulun E, Tuzun E, Dogrusoz U. 2021. RSTrace+: reviewer suggestion using software
artifacttraceability graphs. Information and Software Technology 130:106455.

Tiwari NM, Upadhyaya G, Rajan H. 2016. Candoia: a platform and ecosystem for mining software
repositories tools. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). Piscataway: IEEE, 759–761.

Trautsch F, Herbold S, Makedonski P, Grabowski J. 2017. Addressing problems with replicability
and validity of repository mining studies through a smart data platform. Empirical Software
Engineering 23(2):1036–1083 DOI 10.1007/s10664-017-9537-x.

Van Antwerp M, Madey G. 2008. Advances in the sourceforge research data archive. In:Workshop
on Public Data about Software Development (WoPDaSD) at the 4th International Conference on
Open Source Systems. Milan, Italy. 1–6.

Zhang D, Han S, Dang Y, Lou J-G, Zhang H, Xie T. 2013. Software analytics in practice. IEEE
Software 30(5):30–37 DOI 10.1109/MS.2013.94.

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B. 2017. The impact of continuous integration
on other software development practices: a large-scale empirical study. In: Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017.
Piscataway: IEEE, 60–71.

Dueñas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.601 53/53

http://dx.doi.org/10.1145/3241743
http://dx.doi.org/10.1007/s10664-017-9537-x
http://dx.doi.org/10.1109/MS.2013.94
http://dx.doi.org/10.7717/peerj-cs.601
https://peerj.com/computer-science/

	GrimoireLab: A toolset for software development analytics
	Introduction
	The components
	Combining the modules
	Discussion
	Related work
	Availability and usage
	Conclusions
	Companion package and other information
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

