
The external and data loose coupling for
the integration of software units: a
systematic mapping study
Juan Antonio Ruiz Ceniceros1, José Alfonso Aguilar-Calderón2, Roberto
Espinosa3 and Carolina Tripp-Barba4

1 Posgrado en Ciencias de la Información, Universidad Autónoma de Sinaloa, Culiacán,
Sinaloa, Mexico

2Cuerpo Académico Tecnología Educativa I+D+i, Facultad de Informática Mazatlán, Universidad
Autónoma de Sinaloa, Mazatlán, Sinaloa, Mexico

3Departamento de Ingeniería en Computación e Informática, Facultad de Ingeniería, Universidad
de Tarapacá, Arica, Chile

4 Facultad de Informática Mazatlán, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, Mexico

ABSTRACT
Integration of legacy and third-party software systems is almost mandatory for
enterprises. This fact is based mainly on exchanging information with other
entities (banks, suppliers, customers, partners, etc.). That is why it is necessary to
guarantee the integrity of the data and keep these integration’s up-to-date due to the
different global business changes is facing today to reduce the risk in transactions
and avoid losing information. This article presents a Systematic Mapping Study
(SMS) about integrating software units at the component level. Systematic mapping
is a methodology that has been widely used in medical research and has recently
begun to be used in Software Engineering to classify and structure the research results
that have been published to know the advances in a topic and identify research
gaps. This work aims to organize the existing evidence in the current scientific
literature on integrating software units for external and data loose coupling. This
information can establish lines of research and work that must be addressed to
improve the integration of low-level systems.

Subjects Computer Architecture, Emerging Technologies, Software Engineering
Keywords Loose coupling, Software units integration, Enterprise application integration,
Systematic mapping study, Data coupling

INTRODUCTION
Enterprises are typically made up of hundreds of home-made (in-house development)
applications, purchased from third parties, legacy systems, or a combination of all of them,
operating in multiple layers on different operating systems. Currently, the integration of
systems acquired from third parties and legacies has become a major concern in companies.
As a result, most of the applications used in the enterprise are heterogeneous, autonomous,
and operate in a distributed environment. Heterogeneity has been considered one of the
most severe problems to solve because it tends to cause interoperability problems. In
particular, semantic conflicts, which occur when applications use different meanings for the
same information item. The challenges are integration is not an easy job; the real challenges
are made up of several business and technical issues (Hohpe & Woolf, 2004).

How to cite this article Ruiz Ceniceros JA, Aguilar-Calderón JA, Espinosa R, Tripp-Barba C. 2021. The external and data loose coupling for
the integration of software units: a systematic mapping study. PeerJ Comput. Sci. 7:e796 DOI 10.7717/peerj-cs.796

Submitted 1 July 2021
Accepted 4 November 2021
Published 7 December 2021

Corresponding author
José Alfonso Aguilar-Calderón,
ja.aguilar@uas.edu.mx

Academic editor
Andrea Omicini

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.796

Copyright
2021 Ruiz Ceniceros et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.796
mailto:ja.�aguilar@�uas.�edu.�mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.796
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

In the context of SE, this area is known as Enterprise Application Integration (EAI)
(Irani, Themistocleous & Love, 2003). EAI deals with integrating a heterogeneous set of
applications and systems in any organization to integrate them and communicate
information between the systems facilitating interoperability. According to this, enterprise
integration is achieved using different sets of integration tools, technologies, and
methodologies to ensure that transformation, translation, and communication of
information items are accomplished efficiently. So, advances in integration technology,
mainly concerning middleware, provide new ways to design more agile and responsive
business architectures.

The integration of systems acquired by third parties is a real problem, mainly due to
the lack of information exchange between entities such as banks, suppliers, customers,
among others. Continual changes in the information systems environment have become
the most important challenge in enterprises. The applications to be integrated are usually
developed by different teams that often do not focus on the integration as a relevant
issue for them. Aiming at eliminating the integration challenges, EAI is proposed as a
solution. Faced with this situation, the need arises for new architectures for EAI,
particularly, those with which to improve loose coupling in integrating software units.

There are hardly any research work with regard to EAI in scientific literature such as
Soomro & Awan (2012) and Gorkhali & Xu (2016). Soomro & Awan (2012) reviewed
industrial challenges and problems in a general form only with which the limitations and
research lines are not deep enough. In addition, in the field of the EAI the technological
platforms evolve rapidly as a consequence since the year of the publication of this
article is more than 9 years it is required to update the research to the current time. Under
other conditions, Gorkhali & Xu (2016) performed a systematic literature review focused
on categorizing EAI on the basis of industries. Regrettably, the primary studies were
limited to those one published in Science Citation Index (SCI) and Social Science Citation
Index (SSCI) database. Therefore, this study does not include publications in other
recognized sources as Elsevier’s, PeerJ, IEEE or Scopus. There is a SMS described by
Banaeianjahromi & Smolander (2014) to survey and analyse the available literature on
determining the role of enterprise architecture in enterprise integration and also to identify
gaps and state-of-the-art in research. This is a very limited area study since search
exclusively for methodologies and trends change over time. Another research studies
focused on a particular technique to process integration such as the proposal from
Cerqueira et al. (2016) which presents a SMS that investigated the use of ontologies to deal
with semantics in integration at process layer level. In this regard, the work from Fusco &
Aversano (2020) is about an ontology-based approach for semantic integration of
heterogeneous data sources named DIF (Data Integration Framework); this work is not
particularly of the field of EAI itself. These papers allow us to go deeper into related topics
but specifically none of them has addressed the specific issue regarding to resolve the
external and data loose coupling for the integration at software units level. Therefore, a
review is needed since it is conducted based on a scientific search strategy such as SMS. To
the best of our knowledge, no systematic mapping study has been conducted in this
particular topic.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 2/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

The goal of this study is to provide the state-of-the-art as well as a map of existing
literature in this area. Furthermore, its evolution over time is shown to enable
improvement of the practice with the known research results and to identify gaps for
future research. For this purpose, this review aims to present a comprehensive summary
of the studies in this field during the span of 2008–2021. The contributions of this
review are:

� This SMS includes quality literature from pre-defined resources and based on
pre-defined inclusion/exclusion criteria. Therefore, out of the 3,178 full-text articles
studied, 39 articles were included.

� The proposals found in the primary studies for loose coupling software unit integration
are based in an environment conformed by Service-Oriented Architecture (SOA),
Web Services, and Microservices. Usually there are implemented by a pre-defined
data types structure at design time, leaving an immovable structure at runtime.

� A comprehensive discussion on the existing proposals and the research gaps in this area.
Furthermore, some suggestions for new research directions are suggested.

The intended audience of this research work refers but not limited to software
engineers, information technology managers, business integration practitioners,
researchers related to the area of EAI at software unit level as well as novice student
researchers.

This article is organized as follows: in “Enterprise Application Integration
Fundamentals” the relevant concepts to the context of this work are presented. “Survey
Methodology” introduces the research and conduction protocol applied. In “Mapping
Results”, are presented the mapping results. “Discussion” introduces a discussion of the
findings arising from research. Finally, “Conclusions” presents the final considerations and
future work.

ENTERPRISE APPLICATION INTEGRATION
FUNDAMENTALS
This section introduces fundamental concepts necessary for a correct understanding of
the rest of the article. The concepts addressed are Enterprise Application Integration,
Middleware, Software Unit, External Coupling, Data Model, Loose Coupling, PUB/SUB
Architecture, Federated Database System, Belief-Desire-Intention Architecture, Hub-
and-Spoke, Apache Camel, Message-Oriented Middleware, Service Component
Architecture, Grid Computing, Microservices REST, Service-Oriented Architecture and
Model-Driven Architecture. These concepts are used thorough this SMS for the sake of
understandability and completeness.

Enterprise application integration
Enterprise Application Integration (EAI) is a discipline that dates to the beginnings of
software engineering and is mainly responsible for software systems interacting with each
other without any problem, understanding that this interaction refers mainly to the
exchange of information between systems. Basically, it must allow software systems to be

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 3/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

able to share data and functions between them, allowing the connection between
heterogeneous data sources and applications. All this must be achieved thanks to the
implementation of a middleware between the two. There is no limitation between the type
of software systems that must share information. These can be open source, in-house
developments, or commercial license software systems. The problem in EAI lies mainly in
the fact that originally the software systems were not designed to interact with each
other or together, which implies a series of situations to be solved to achieve that
communication. The scope of the EAI is located mainly in the integration of software
systems in business-to-business environment (B2B) (Wong (2009)). Enterprise application
integration can realize an effective combination of various independent systems, as data
exchange and data sharing between all processes of an enterprise. Thus it is ensured
for all units of a corporation to operate over a database system together with the suppliers
and customers to improve enterprises’ productivity and efficiency (Zhigang & Huiping,
2009).

Middleware
A middleware is software located between an operating system and the applications that
run on it. Middleware enables communication and data interchange in distributed
software systems. The term middleware first appeared in a 1968 NATO (North Atlantic
Alliance) conference report, which aimed to define the field of software engineering and
included software design, production, and distribution. The goal of that report was the
interconnectivity between software systems, particularly those considered older can be
connected with the new software in organizations. Using middleware allows users to make
requests such as submitting forms in a web browser or allowing a web server to return
dynamic web pages based on a user’s profile.

Examples of middleware can be found in database, application server and message-
oriented middleware. Each of these programs generally provide messaging services and the
different applications communicate through messaging frameworks. There are several
messaging frameworks: Simple Object Access Protocol (SOAP), Web Services,
Representational State Transfer (REST) and JavaScript Object Notation (JSON), those
one is explained in this section for a better comprehension of this research. The decision of
which one to use depends on the requirements of the enterprise: service to be used or type
of information to be communicated.

The middleware can also be used for distributed processing with actions that occur in
real time simplifying the development and maintenance of complex distributed software
(Astley, Sturman & Agha, 2001).

Software units
According to Hong & Wen-yue (2010), a software unit is a modular component of a
program with well-defined interfaces and dependencies that enable offering or requesting a
set of services or functions. It can even be a piece that performs some task, a function, a
method, a class, a library (library), an application, a component, among others (Chen,

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 4/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

2009). These often interact with data collections to save, update, delete, and present
information.

The elements defining a software component has been widely discussed for more than
20 years (see Broy et al. (1998)). The most commonly adopted definition of a software
component is that issued in Szyperski, Gruntz & Murer (2002), where it was defined
as a unit of composition with contractually specified interfaces and explicit context
dependencies only. This can be deployed independently and is subject to the design by
third parties.

External coupling
An External Coupling (EC) occurs when a two or more Software Unit (SU) share an
external enforced data format, interface or communication protocol. SU can be an
artifact, platform, application or an API (Application Programming Interface) that uses
technology based on an XSD (XML Schema Definition) or (JavaScript Object Notation).
Usually, the structure using as communication protocol HTTP (Hypertext Transfer
Protocol) or HTTPS (Hypertext Transfer Protocol Secure) to connect bi-directionally.
This effect creates an External Coupling as a result of the structure (XSD, JSON). In
addition, when this effect occurs at data level is called Data Coupling.

Data model
According to Brodie (1982), a database model is the logical structure that the database
adopts, including the relationships and constraints that determine how data is stored
and organized, and how data is accessed. Likewise, a database model also defines what type
of operations can be performed with the data, that is, it also determines how it is
manipulated, also providing the basis on which the query language is designed. It is
composed of a collection of mathematically theory to assist one to express the static and
dynamic properties of data-intensive applications. Those properties can be static such as
objects with their attributes and the relationships between objects or sometimes called
associations. They also have dynamic properties that occur between objects, these
operations have their attributes and relationships that allow transactions to be carried out.
In general, virtually all database models can be represented by a database diagram. The
most common is the entity-relationship (ER) model.

Loose coupling
According to Orton & Weick (1990), loose coupling is the product of many years of effort
by organization theorists to combine the contradictory concepts of connection and
autonomy. In computing and systems design (Kaye, 2003), a loosely coupled system is one
in which each of its components has or makes use of the definitions of other separate
components. The coupling of classes, interfaces, data and services are sub-areas that are
included. It promotes four types of autonomy, and these are reference autonomy, time
autonomy, format autonomy, and platform autonomy. In this respect, loose coupling is the
opposite of tight coupling.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 5/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Loose coupling is applied in the design and development of distributed systems through
transaction, queues provided by message-oriented middleware and interoperability
standards. Hence, it is even used as an architectural principle and design goal in SOA
(Pautasso & Wilde, 2009).

PUB/SUB architecture
Publish/subscribe messaging, or PUB/SUB messaging is an architectural design pattern
that allows a framework to exchange messages between publishers and subscribers as a
mean for disseminating information (also called events) through distributed systems
on wide-area networks. Particularly, PUB/SUB asynchronous service-to-service
communication used in serverless and microservices architectures. It involves the
publisher and subscriber relying on a message broker that relays messages from the
publisher to the subscribers (Wadhwa et al., 2015). According to Baldoni, Contenti &
Virgillito (2003), the participants to the communication are the publishers, they submit the
information to the software distributed system, and as subscribers, that express their
interest in specific types of information. In this kind of architectural pattern, either
message published to a topic is rapidly received by all of the subscribers to the topic.
Pub/sub messaging is used to enable event-driven architectures, or to modularize
applications in to increase the software system performance, specially reliability and
scalability software system quality attributes.

Federated database system
The interoperability between different information systems is one of the most critical
aspects in the daily operation of many organizations. This concern has been increased with
the proliferation of different databases, with different data models, which run on different
platforms. The federated databases systems answer this problem by allowing available
information from different sources of information, which can be heterogeneous,
distributed, and autonomous. The diversity of programming languages and queries, data
models, methods of integration, among others, determine different architectures of the
federated database, which vary from strongly coupled to loose coupled. Federated
Database System is conformed of autonomous components participating in a federation to
allow partial and controlled sharing of data. Such architecture differs based on levels of
integration with the component database systems and the extent of services offered by the
federation (Muñoz & José, 2009).

Belief-desire-intention architecture
This architecture, abbreviated as BDI is a reasoning model based on mental constructs
used by intelligent agents. It allows the modeling of agents behaviors in an intuitive
manner that complements the human intellect. BDI is based on the human reasoning
pattern, known as practical reasoning. First, decide what to achieve (deliberation) and
then how to do it (reasoning). The agent using this model intends to show a legitimate
reasoning to achieve his goals by using his beliefs about the environment (Puica & Florea,
2013).

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 6/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Hub-and-spoke
Hub-and-Spoke is an architecture applied as middleware, which uses a central message
broker. In this architecture, communication is made between each application (spoke) and
the central hub. The broker functionalities include routing and message transformation to
the receiver spoke. Hub-and-Spoke additionally can routing based on content, using
information from the message header or some elements of the message body. The hub
from the message content can determine the receiver spokes, through rules (An, Zhang &
Zeng, 2015).

Apache camel
Apache Camel is an open source Java framework that aims to make software integration
easy and accessible, it is used as middleware. Implement EAI business integration
patterns using an API to configure routing and mediation rules. It was developed by
the Apache Software Foundation and acts as a tool for rule-based data routing and
processing. In addition, it has connectivity with a wide variety of transport protocols and
supports DSL (Domain Specific Language) to facilitate its implementation by defining
classes with the concepts of the domain. Its architect is divided into three modules, the first
one is the integration and routing module, in which the processes and components are
connected through messages based on criteria defined by the user, these can be defined in
Java, Scala, XML or Groovy. The second is the process module is used to manage and
mediate messages between endpoints. Business Integration Patterns are implemented in
this module. Finally, the third one is the component module provides an interface to
communicate with the external world through endpoints that are specified as URI
(Uniform Resource Identifier) (Gosewehr et al., 2018).

Message-oriented middleware
Message-oriented Middleware (MOM) is a concept that involves the passing of data
between applications using a communication channel that carries autonomous units of
information called messages. Basically, it is a software infrastructure that supports the
sending and receiving of messages between the information systems of a company. In a
MOM-based communication environment, messages are normally sent and received
asynchronously. Through message-based communications, applications are abstractly
decoupled; senders and receivers never know each other. Instead, they send and receive
messages to and from the messaging system. To achieve this, it is necessary to process the
messages in a controlled way in an environment with a client/server architecture. The
processing is carried out by means of a program that works as an intermediary between the
messages, which is designed to manage several messages from different clients and
once forward them to the corresponding server program. The middleware builds a
communications blanket that avoids developers from dealing with different operating
systems and network protocols. The middleware creates a communications layer that
isolates developers from the complexity of different operating systems and network
protocols. This middleware is commonly used in scenarios where problems related to
interoperability can occur if the network is constantly changing.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 7/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

MOM is commonly used in IoT (Internet of Things) applications as centralized message
brokers facilitate device-to-device communication. This performance is achieved because
MOM has special capabilities such as dynamic scaling, secure communication, and
facilitates its integration with other tools. Additionally, this architecture provides several
features such as (i) asynchronous and synchronous messages transmission; (ii) the ability
to convert the data format according to the data contained in the messages to be
compatible with the application who will receive it; (iii) loose coupling among applications;
(iv) parallel processing of messages; (v) management of message preference levels (Albano
et al., 2015). According to Yongguo et al. (2019), the advantages provided by MOM
regarding asynchronous and multi-point interaction and loosely coupling among
members is accepted as the most promising solution for communication-interaction
between different systems.

Service component architecture
Service Component Architecture (SCA) is a software technology designed to provide a
model for applications that follow service-oriented architecture principles. The main
concern of this architecture is to provide an open specification allowing multiple vendors
to implement support for SCA in their development tools and runtimes. This is why it
offers specific support for various component implementation and interface types such
as Web Services Description Language (WSDL) interfaces and Java classes with
corresponding interfaces (Fiadeiro, Lopes & Bocchi, 2006).

Grid computing
Grid computing is a computer system that coordinates different computers with a
hardware and software infrastructure to solve large-scale problems. Generally, a grid is
responsible for performing several tasks within a network, however, it can also work in
specialized applications. The term used to define grid computing originates from an
analogy with the electric power grid: we can connect to the grid to obtain computing power
without worrying about where it comes from. Just like we do when we plug in an electrical
device (Jacob et al., 2005).

Grid computing is designed to solve problems that are too big for a supercomputer
while maintaining the ability to process many small problems. Basically, it is based on
virtualization between technologies, platforms and organizations, that is, a distributed
computing infrastructure that is evolving in support of the application between
organizations and the sharing of resources through the use of open standards. Within
the grid computing hardware and software infrastructure there is a variety of resources,
such as programming languages, either on a network or through the use of open standards
with specific guidelines to achieve a common goal. Grid computing operations are divided
into two:

1. Data Grid: This is a set of services that provides individuals or groups of users with the
ability to access, modify and transfer large amounts of geographically distributed data
for research purposes.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 8/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

2. CPU Scavenging Grid: Is a technique that uses instruction cycles in computers to
avoid wasted during the time the device waits for input from the user or other slower
devices.

Microservices REST
The microservice architecture emerged as a new paradigm for programming
applications employing the composition of small services, each running its processes
and communicating via lightweight mechanisms. The term microservices was first
introduced in 2011 at an architectural workshop to describe the participants’ common
ideas in software architecture patterns; it is a fresh concept in software architecture,
highlighting the design and development of deeply maintainable and scalable software.
Microservices manage growing complexity by functionally decomposing large systems into
a set of independent services (Dragoni et al., 2017b). A microservice is a small, single
service offered by a company. It derives from the distributed computing architecture that
connects many small services rather than having one large service. The Microservice can
then be delivered through a Representational State Transfer (REST) API. REST is a
software architectural style that defines the set of rules to be used for creating web services.
It allows requesting systems to access and manipulate web resources by using a uniform
and predefined set of rules. Interaction in REST-based systems happens through the
Internet’s HTTP (Webber, Parastatidis & Robinson, 2010).

Service-oriented architecture
The formal definition of the term Service-Oriented Architecture (SOA) was given by the
SOA Working Group which is member of The Open Group. It remarks that SOA is an
architectural style that created for a special form of thinking in terms of services and
service-based development and the outcomes of services called service orientation. In this
regard, an architectural style is a set of design decisions that can be applied to a recurring
design problem and that can be parameterized for different contexts where that design
problem appears and a service is considered a logical representation of a repetitive
operation from the business logic, e.g., check order, review expired products. One of the
main characteristics of a service is that is self-contained but can be constituted by
several services. The SOA architectural style has a set of special features that must be
applied such as (i) it is based on the commercial activities of the company, those used in the
real world, that is, it reflects the business processes of the company with the client or with
other companies, (ii) services are named and represented as business processes or
company rules that represent a description of the company. Services are implemented
through service orchestration, and (iii) it must be implemented through standards that
allow maintaining interoperability of services (The Open Group, 2009).

Model-driven architecture
Model-Driven Architecture (MDA) (https://www.omg.org/mda/) standard is an approach
to software design, development and implementation supported by the OMG (Object

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 9/33

https://www.omg.org/mda/
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Management Group). MDA provides guidelines for structuring software specifications
that are expressed as models.

MDA is a three-layer architecture where in the first one, the Computational
Independent Model (CIM) specifies the project requirements and through a series of
model-to-model transformations (M2M) the models of the second level of the three-layer
architecture are obtained. These are the Platform Independent Models (PIM), which lack
specifications on the implementation technology, normally are represented using class
diagrams. Finally, the PIMs become Platform Specific Models (PSM), which are obtained
through M2M transformations. PSM models are converted to source code as specified in
the tool that implements it. The difference among PIM and PSM models is that PSM
models are represented using the platform implementation technology, e.g., the
programming language and data-base management system to use (Aguilar et al., 2010).

SURVEY METHODOLOGY
To know different proposals to improve the loose coupling in the integration of software
units around this topic, a Systematic Mapping Study (SMS) was conducted. SMS is a
methodology widely used in research in the medical area. Recently, it has begun to be
applied to the field of SE to classify and structure the research results published. To learn
about advances in a topic and identify gaps in research, there is also the methodology
known as Systematic Literature Review (SLR). It seeks to identify best practices (based on
empirical evidence) by conducting an in-depth exploration of the studies, describing their
methods and results.

The difference from SMS is that it seeks to provide a more general vision, and SLR is
focused on gathering and synthesizing evidence (Petersen et al., 2008). The main goal
of SMS is to provide an overview of the research area and identify the amount and type of
research and the available results. It is also essential to map published frequencies over
time to understand trends and identify forums where research in the area has been
presented (Kitchenham et al., 2010).

In this work, the methodology for SLR described in Petersen et al. (2008) was used.
However, the adaptation proposed in Kitchenham et al. (2010) is applied to adjust to the
SMS.

The review procedure to follow is composed of five stages: (1) Definition of research
questions, (2) Search for primary studies, (3) Selection of documents for inclusion and
exclusion, (4) Classification schema, and (5) Data extraction and systematic mapping.
Each stage is detailed next concerning how it was carried out for this research.

Definition of research questions
To bring out the SMS, a total of three research questions (RQs) were designed. These
questions allow us to categorize and summarize the current knowledge concerning
loose coupling of software units within Enterprise Application Integration. The goal is to
identify gaps in current research to suggest areas for further investigation and to provide
useful knowledge for software architects practitioners. The RQs are described next.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 10/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

RQ-1. Which are the main proposals to improve the loose coupling in the integration of
software units? It is intended to know the technological contribution that the primary
studies make in the challenge of software units integration. The contributions would be,
i.e., architecture proposal, framework, architectural pattern, a tool, etc.

RQ-2. Which technology architectures have been considered to improve loose coupling
in software unit integrations? The question tried to analyze the technological architectures
proposed until now to improve loose coupling in software unit integrations.

RQ-3. Which technology or frameworks have been developed for loose coupling in
software unit integration? This question includes libraries, and its goal is to determine
whether there is a lack of tools to assist developers in the loose coupling of software unit
integrations.

The scope of the review was defined as recommended by Kitchenham (2007) as follows:
Population: researchers, professionals, and entrepreneurs who should improve the
integration of software units. Intervention: any study that contains the description of a
software unit integration solution at the software unit (component) level. Study design:
applications in industry or academic examples. Result: evolution over time of the use of
software unit integration technologies at the component level.

Search of primary studies
Primary studies were identified using search strings in scientific databases. The Springer,
IEEE, CONRICYT1, Google Scholar, arXiv, and DOAJ databases were used to select
the primary studies in this work. It is important to point out that CONRICYT is a resource
supported by the Mexican government that allows researchers to search for scientific
articles in databases/editorials such as Web of Science and Elsevier, among others.

To search for the scientific production associated with the concept of Loose Coupling
and Enterprise Application Integration, the keywords were defined to construct the
search strings to be consulted. To do this, keywording was performed (Petersen et al.,
2008). In the first place, the main concepts of the research were identified such as
keywords. Then, similar terms (synonyms) or phrases that might also be used to describe
these concepts were defined. Next, a thesaurus was consulted to find synonyms. After
that, the search terms were combined using Boolean operators. It is essential to mention
that a recommended manner to create a search string is structuring them in terms of
population, intervention, comparison, and result (Kitchenham, 2007).

The selected search period is from the years 2008 to 2021. The restriction with respect to
the time period is to achieve a focused approach, the search was narrowed down to
published journal articles from 2008 to 2021. Moreover, since the field of EAI and
especially at the data level integration, is relatively old and it has been during the last
decade where these ideas have been most developed with the emergence of web services
and cloud computing. Likewise, this period of time has been validated during the
development of the systematic mapping, since all the studies in this area are located within
that period of time. In this sense, generic search expressions were considered considering
the structure of each research question, the essential terms, and identified synonyms.

1 Consorcio Nacional de Recursos de
Informacióon Científica y Tecnolóogica
of Mexico.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 11/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

The expressions were constructed using logical operators for searches (AND and OR).
Table 1 shows how the search string was generated concerning the research questions.

Based on the defined search strings detailed in Table 1, a bibliometric analysis was
performed using Vosviewer (https://www.vosviewer.com) software. To identify the
tendencies of the literature on loose coupling in the integration of software units, an initial
analysis of co-occurrences of keywords was conducted based on articles with at least five
occurrences. The research resulted in six clusters (see Fig. 1) involving eighty-one
keywords. The clusters are (1) loose coupling, (2) enterprise application integration, (3)
management, (4) performance, (5) model and (6) impact.

Selection of documents for inclusion and exclusion
An initial step was completed to remove duplicates. Hence, it was structured in such a way
that the name of the technology and all the references of the main study in which it
was found were listed using a set of tags with which an initial verification of the
information could be performed. In case of tags reporting unreliable information, the
primary studies were revised again to solve inconsistencies.

Inclusion and exclusion criteria were established to determine the relevance of the
selection process of primary studies.

The defined inclusion criteria consist of (i) the search terms appearing at the working
title or abstract considering the publication date from 2008 to 2021, (ii) research articles
written in English language, (iii) articles with the full text available in the bibliographic
source, and (iv) articles with potential to answer some of the RQs from Section “Definition
of Research Questions”. Likewise, the abstract refers to the problem covered by the
corresponding research question.

Concerning the exclusion criteria, it was decided to exclude publications written in
non-English languages, panel discussions, presentation slides, and tutorials. All articles

Table 1 Structuring search strings.

Most important terms Synonyms, terms
and, topics

Search expression

RQ-1

“Loose Coupling”, “Enterprise Application Integration”,
“Software Integration Proposal”, “Coupling”, “Integration”

“EAI”, “Software
Unit Integration”

Loose Coupling OR Enterprise Application Integration OR
Software Integration Proposal OR (Coupling AND
Integration)

RQ-2

“Loose Coupling”, “Enterprise Application Integration”,
“Software Integration Proposal”, “Coupling”, “Integration”,
“Technological architectures”

“EAI”, “Software
Unit Integration”

(Loose Coupling AND Technological architectures) OR
(Enterprise Application Integration AND Technological
architectures) OR (Software Integration Proposal AND
Technological architectures) OR ((Coupling) AND
(Integration) AND (Technological architectures))

RQ-3

“Loose Coupling”, “Enterprise Application Integration”,
“Software Integration Proposal”, “Coupling”, “Integration”,
“Framework”

“EAI”, “Software
Unit
Integration”,
“Library”

(Loose Coupling AND Framework) OR (Enterprise Application
Integration AND Framework) OR (Software Integration
Proposal AND Framework) OR ((Coupling) AND
(Integration) AND (Framework))

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 12/33

https://www.vosviewer.com
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

retrieved unrelated to the topic explored were also excluded, as well as duplicate
documents of the same study. Articles that highlight the initial draft of work in progress
type articles were also excluded. To assess the relevance of each primary study to our topic,
an iterative procedure was followed: all primary studies were analyzed on the basis of
their title, abstract, and their full text.

The selection process consists of three stages conducted sequentially by three reviewers
(two researchers and one collaborator). In the first stage, each reviewer applied the
inclusion and exclusion criteria for the title, abstract, and keywords from the articles found.
In the next stage, each reviewer applied the same criteria to a set of articles assigned to him,
which now includes the introduction and conclusion. Afterwards, a set of candidate
articles (see the second row of Table 2) were obtained. In the third stage, the candidate
articles were analyzed. In this form, out of a total of 3,095 articles, a total of 39 primary
studies were selected for mapping (see the third row of Table 2).

Classification scheme
For the SMS, a systematic process was followed, which is shown in Fig. 2. It is a way to
reduce the time necessary to develop the classification scheme and guarantee that it
considers the existing studies. It was performed in two steps: (1) reading the summaries of

Figure 1 Network visualization. Full-size DOI: 10.7717/peerj-cs.796/fig-1

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 13/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-1
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

the articles found and (2) searching keywords and concepts that reflected the article’s
contribution to identifying the research context. It caused the combination of a set of
different keywords of the research articles reviewed, allowing the development of a
high-level understanding of the nature and contribution of the study, which allowed to
find a group of representative categories of the underlying population. In relation to, if
abstracts are of lower quality to allow choosing meaningful keywords, you may select to
study the introduction or conclusion sections of the article. If a final set of keywords has
been chosen, they can be grouped and used to form the map categories (Irani,
Themistocleous & Love, 2003).

Businesses must be agile and flexible, and IT managers are being asked to deliver
improved functionality while leveraging existing IT investment. Mostly of business
organizations nowadays are using packaged software for their key business processes and
goals (legacy business applications). Some of them are those who attend activities with
respect to Enterprise Resource Planning (ERP), Supply Chain Management (SCM),
Customer Relationship Management (CRM), and Electronic Commerce (EC). These
systems assist business organizations in supporting their operational and financial goals.
Bearing this considerations in mind, the classification scheme is divided in: Proposals,
Architectures and Technologies/Libraries.

The first classification scheme (Proposals) refers to loose coupling software unit
integration proposed to integrate these packaged software applications with each other
regardless of its conformation. This scheme can include a framework, an architecture, a full
computer package, or software abstractions that facilitate the development of loos coupling
software unit integration, i.e. systems where elements can be easily added, removed, or
replaced without needing widespread changes across the system. The second classification
scheme refers to architectures that have been considered to improve loose coupling in

Table 2 Search result and filtering divided by source.

Search engine Springer IEEE CONRICYT Schoolar Google arXiv DOAJ Total

Search results 593 889 319 900 293 184 3,178

Candidates 583 864 306 881 278 171 2,912

Primary studies 4 13 4 8 5 5 39

Figure 2 Building the classification scheme. Full-size DOI: 10.7717/peerj-cs.796/fig-2

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 14/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-2
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

software unit integration. The goal is to analyze the technological architectures proposed at
loose level components until now, as well as the emerging architectural styles for
developing and integrating enterprise applications. The third classification scheme refers
to technologies and libraries that have been developed for loose coupling in software unit
integration. In this concern, the organizational and technical framework to enable an
enterprise to deliver self-describing and platform independent business functionality is
considered.

The classification scheme used can be consulted at the cloud (https://figshare.com/s/
a65784c26931b96570fb), where it is possible to see the classification according to
proposals, architectures and technologies.

Data extraction and systematic mapping
Once defined the classification scheme in “Classification Scheme”, the relevant articles
were then classified in order to perform the data extraction. As shown in Fig. 2, the
classification scheme works while extracting data, such as adding new categories or
merging and splitting existing them. In this step, a spreadsheet is used to document the
data extraction process which contains each category in the classification scheme
(proposals, architectures and technologies). When data is entered into the schema, a brief
explanation was provided, detailing why the article should be in a particular category
(Irani, Themistocleous & Love, 2003).

MAPPING RESULTS
This section presents and analyzes the results obtained after conducting the data extraction
process from the primary studies. Several articles were found in the literature focused
on different aspects of EAI. The selected studies provided relevant knowledge on the
research questions. It is important to remark that the 39 primary studies found provide an
answer to more than one research question. These are answered below:

RQ-1. Which are the main proposals to improve the loose coupling in the integration of
software units?

The main proposals obtained from the publications were those based on SOA, Web
Services and Microservices. These proposals implemented different forms to perform the
loose coupling between the software units, using techniques based on asynchronous
messages through middleware queues and topics. Some of them used to make this task
standardized service contracts such as WSDL (Web Services Description Language) for
Web Services and Microservices. This is done by the implementations of protocols such as
SOAP (Simple Object Access Protocol), HTTP, REST with the help of the data schema
standard such as XSD (XML Schema Definition). For XSD, the data travels in an XML
format (eXtensible Markup Language); in the case of REST the format used is JSON.
Another alternative that arises is through the construction and development of
Frameworks, Constraints, and Models of Metadata. The use of Federated Database
Systems is another way to establish loose coupling at the data level using the creation of
Data Models where information is exchanged based on predefined schemes called
Canonical Data Models (CDM). Most recently, SOA implements an orchestration of Web

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 15/33

https://figshare.com/s/a65784c26931b96570fb
https://figshare.com/s/a65784c26931b96570fb
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Services and Microservices for loose coupling between the software units. Next, Table 3
summarizes the main proposals collected from primary studies.

From the proposals found in the publications, 34.5% were implemented with SOA,
24.1% through Web Services, and 17.2% using Microservices, representing approximately
76% of the proposals as shown in Fig. 3. The rest is composed of several technologies of

Table 3 Main proposals for the improvement of the loose coupling between software units.

RQ-1 Proposals
based on

Quantity References

SOA 10 Green (2013), Voican (2012), Cuadrado et al. (2008), Herrera Quintero et al. (2010), Devi et al. (2014), Kim
(2009), Hong & Wen-yue (2010), Chen (2009), Coronado-García et al. (2011), Deng et al. (2008)

Web Services 7 Risimic (2016), Beer & Hassan (2018), González & Ortiz (2013),Monfort & Hammoudi (2009),Huang & Zhang
(2010), Ji (2009)

Microservices 5 Dragoni et al. (2017a, 2017b), Parizi (2018), Shadija, Rezai & Hill (2017), Gómez (2018)

Middleware 3 Antipov, Antipov & Pylkin, 2016, Cranefield & Ranathunga (2013), de los Ríos (2016)

Models of Metadata 2 García & Montoya (2011), Muñoz & José (2009)

Library and Framework 2 Weyns & Georgeff (2009), Ma, Tang & Wang (2009)

Figure 3 Percentage of distribution for the main proposals found in the primary studies.
Full-size DOI: 10.7717/peerj-cs.796/fig-3

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 16/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-3
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

which stand out the use if Middleware, Federated Databases Systems, and Frameworks (see
Section “Enterprise Application Integration Fundamentals”).

RQ-2. Which technology architectures have been considered to improve loose coupling
in software unit integration’s?

From the review made to the primary studies, it was found that a series of architectures
were applied in the integration of software units to improve the loose coupling in the
mentioned integration’s. The architectures most implemented for this purpose were
SOA and Microservices REST. SOA comes to be an orchestration of technologies
supported by existing communication protocols such as SOAP and HTTP. Microservices
based on REST is the second most used architecture for this purpose. Table 4 presents
each one of these proposals found in the primary studies. As shown in Fig. 4, SOA
architecture represents 50% of the implementations found in the primary studies,
Microservices represents 15.6%, the 6.3% the PUB/SUB architecture; these, are as a whole
72%. However, there are other architectures that have been implemented such as
PUB/SUB (Green, 2013; Antipov, Antipov & Pylkin, 2016), Hub & Spoke (Krishna Mohan
et al., 2013), Camel Apache (Cranefield & Ranathunga, 2013), MOM (Message-Oriented
Middleware) (Gutiérrez, Garca-Castro & Mihindukulasooriya, 2013), Federated Database
Systems (Muñoz & José, 2009), BDI (Belief Desire Intention) (Weyns & Georgeff,
2009), Intermediate Layer (Lehsten, Gladisch & Tavangarian, 2011), SCA (Service
Component Architecture) (Ma, Tang & Wang, 2009) and Grid Computing (García &
Montoya, 2011), which is not widely used. This corresponds to the rest 28% of the total of
primary studies.

In the case of the implemented architectures, Fig. 4 shows that the SOA architecture
represents 50% of the implementations found in the primary studies, Microservices
represents 17.6%, the 11.8% through Web Services; these are as a whole approximately

Table 4 Main architectures used to improve loose coupling in software units integration.

RQ-2 Proposals Quantity References

SOA 16 Voican (2012), Cuadrado et al. (2008),Herrera Quintero et al. (2010),Devi et al. (2014), Kim (2009),
Hong & Wen-yue (2010), Chen (2009), Coronado-García et al. (2011), Risimic (2016), Beer &
Hassan (2018), González & Ortiz (2013), Monfort & Hammoudi (2009), Martins et al. (2007),
Martnez & Pérez (2010), Qu, Chen & Yang (2009)

Microservices REST 5 Dragoni et al. (2017a, 2017b), Parizi (2018), Shadija, Rezai & Hill, 2017, Gómez (2018)

PUB/SUB 2 Green (2013), Antipov, Antipov & Pylkin (2016)

Hub and Spoke 1 Mohan et al. (2013)

Camel Apache Architecture 1 Cranefield & Ranathunga (2013)

Reference Architecture 1 de los Ríos (2016)

Message Oriented Middleware 1 Gutiérrez, Garca-Castro & Mihindukulasooriya (2013)

Federated DataBase Architecture 1 Muñoz & José (2009)

BDI Architecture 1 Weyns & Georgeff (2009)

Intermediate Layer Architecture 1 Lehsten, Gladisch & Tavangarian (2011)

SCA Architecture 1 Ma, Tang & Wang (2009)

GRID Computing Architecture 1 García & Montoya (2011)

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 17/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

80%. The rest 20% a series of diverse architectures such as PUB/SUB, Camel Apache,
Federated Database Systems (Muñoz & José, 2009), BDI (Weyns & Georgeff, 2009),
Intermediate Layer and SCA (Ma, Tang & Wang, 2009).

RQ-3. Which technology or frameworks (including libraries) have been developed for
loose coupling in software unit integration?

Several technologies were found in primary studies to address loose coupled in software
unit integration, most of them being applied to architectures already validated such as
those based on architectural patterns or archetypes. These are SOA, SOAP, WSDL,
XSLT, ESB (Enterprise Service Bus), XML, XSD, BPEL (Business Process Execution
Language), JMS (Java Message Service). For this reason, another set of technologies found
for these purposes are the Microservices REST, and JSON. The primary studies also
reported the application of Web Services with WSDL, SOAP, XML and XSD for
integration’s. Furthermore, technologies such as PUB/SUB, JMS, Queue, Topics, MDB
(Message Driver Bean) were used to for software unit integration. Additionally, a set of
technologies with fewer implementations with regard to software units integration were
found, these are Apache Camel which is an open-source integration framework for
data production or consumption, HL7 (Health Level Seven) (García & Montoya, 2011),
Dublin Core, CORBA (Common Object Request Broker Architecture), RMI (Java
RemoteMethod Invocation), CanonicalModel, ODBC/JDBC (Open Database Connectivity/
Java Database Connectivity) (Muñoz & José, 2009), Self Adaptive, AI (Artificial Intelligence),

Figure 4 Percentage by architecture found that has been implemented according to the primary
studies obtained. From RQ–2. Full-size DOI: 10.7717/peerj-cs.796/fig-4

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 18/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-4
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

KQML (Knowledge Query Manipulation Language), Neuronal Network (Weyns & Georgeff,
2009) and Service Component Architecture (Ma, Tang & Wang, 2009). Next, Table 5
summarizes the technologies extracted from the primary studies according to technology/
frameworks implemented for loose coupling in software units integration.

Relating to applied technologies, as shown in Fig. 5, the most implemented technologies
are those based on SOA, Microservices REST, and Web Services. At glance, SOA
represents 50%, in second place are Microservices with 17% and Web Services at last with
12% of technological implementations. The rest 21% of the technology/frameworks
represent a diversity of scientific and technical knowledge implemented, which includes
standards, frameworks, libraries, technological patterns and communication protocols.

Entirely, 79% of the 39 primary studies give a solution in the loose coupling in software
units integration through these technologies. It is important to mention that, since these
were selected from the primary studies reviewed, these technologies represent a large
percentage of the results obtained in the review. Likewise, their application and publication
in scientific articles highlight the fact that they are considered as the main technologies
used today for the integration of loose coupling software units.

To provide a solution in the loose coupling in software integration’s, the scientific
community made a prominent effort to solve this problem from 2008 to 2011. Regrettably,
this attempt began to decline in the period 2012 to 2017. Nevertheless, it gained
momentum again in the year of 2018. It is possible to see that in these periods from
2008 to 2021; SOA, Web Services, and Microservices were the technologies primarily
implemented for this purpose leaving aside technologies such as XML (eXtensible Markup
Language). The analysis presented in Section “Mapping Results” shows a trend towards
the investigation of approaches and architectures to increase connectivity since this is the
most significant issue for EAI. The classification by year of publication concerning the
different proposed research questions are shown in Fig. 6.

Table 5 Main technologies used to improve loose coupling.

PI-3 Proposals Quantity Primary studies

SOA, SOAP, WSDL, XSLT, ESB, XML, XSD,
BPEL, JMS

17 Green (2013), Voican (2012), Cuadrado et al. (2008), Herrera Quintero et al. (2010), Devi
et al. (2014), Kim (2009), Hong & Wen-yue (2010), Chen (2009), Coronado-García et al.
(2011), Deng et al. (2008), Beer & Hassan (2018),Monfort & Hammoudi (2009), Qu, Chen
& Yang (2009), Sánchez, Aguilar & Exposito (2018), Nazih & Alaa (2011), Ruiz, Dueñas &
Cuadrado (2008)

Microservices REST, JSON 6 Dragoni et al. (2017a, 2017b), Parizi (2018), Shadija, Rezai & Hill (2017), Lendak et al.
(2010), Gómez (2018)

Web Services, WSDL, SOAP, XML, XSD 4 Risimic (2016), González & Ortiz (2013), Huang & Zhang (2010), Ji (2009)

PUB/SUB, JMS, Queue, MDB 2 Antipov, Antipov & Pylkin, 2016, Patri et al. (2014)

Apache Camel Tech 1 Cranefield & Ranathunga (2013)

HL7-Dublin Core Tech 1 García & Montoya (2011)

CORBA-CanonicalModel 1 Muñoz & José (2009)

Self-Adaptive Tech 1 Weyns & Georgeff (2009)

SCA Tech 1 Ma, Tang & Wang (2009)

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 19/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Most of the proposals found in the primary studies for loose coupling software unit
integration are based in an environment conformed by SOA, Web Services, and
Microservices. In this environment, the nodes of the network make their resources
available to other participants in the network as independent services to which they have
access in a standardized way, most of the definitions identify the use of Web Services using
SOAP and WSDL in its implementation; however, it can be implemented using any
service-based technology.

Figure 5 Most implemented technologies. RQ-3. Full-size DOI: 10.7717/peerj-cs.796/fig-5

Figure 6 Year of publication per research question. Full-size DOI: 10.7717/peerj-cs.796/fig-6

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 20/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-5
http://dx.doi.org/10.7717/peerj-cs.796/fig-6
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

To clarify the limitations found on these most implemented proposals, a WSDL
structure for analysis is introduced in Fig. 7. This exemplifies how data types are defined at
design time, leaving an immovable structure at runtime. In this concern, a WSDL
document defines a set of services as collections of network endpoints or ports. The
abstract definition of endpoints and messages is separated from their concrete network
deployment or data format bindings. This separation enables the reuse of abstract
definitions such as messages and types of ports. The messages are structured in such a
way that they represent a description of the data that is exchanged that includes the ports
as collections of operations to be performed. In that sense, the reusable link is made up of a
protocol and contains the data format specifications for a particular type of port and a
collection of ports defines a service.

The definition of network services in the structure of a WSDL document is made up of a
series of elements, these are: Types, Message, Operation, Port Type, Binding, Port, and
Service. These are detailed below:

1. Types: these are the data types of a system and are commonly defined in XSD structure.

2. Message: it is the structure that contains the data that is exchanged in a connection.

3. Operation: describe the actions supported by the service.

4. Port Type: are the operations supported by various endpoints.

5. Binding: this permits to specify the data format for a particular type of port.

6. Port, it is a combination of a link and a network address, it is a defined end point.

7. Service: is defined as a collection of related points.

Figure 7 XML code fragment definition of <message> element in WSDL document for analysis
purposes. Full-size DOI: 10.7717/peerj-cs.796/fig-7

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 21/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-7
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

These elements are divided in two parts, the Concrete part, which defines the “how”
and “where” and the Abstract for the definition of what the service does through the
messages it sends and receives. Analyzing this structure, there is a deficiency in the high
external and data level coupling in the integration of applications or software units because
it is created before being used. According to Fig. 7, the element highlighted in yellow
corresponds to the node (element) <message>, this element generates this coupling issue
because it is created under a predefined fixed structure XSD before being used.

Analyzing the structure of the XSD showed in Figs. 7 and 8, if it is considered a
change in the element highlighted <TradePrice>, this contract would impact all the
applications or software units that are integrated into this structure. This which will cause
a close coupling between them, consequently a high cost of maintenance and time.
This is due to Fig. 7 exemplifies how data types are defined at design time, leaving an
immovable structure at runtime. In Fig. 8, the label of the <TradePrice> element is
observed, where the tags highlighted in yellow in the code represents the data and the
properties of the structure called <price> and the type of this property <float>marking the
strict way of receiving the exchange of information between software units. Therefore, if a
change in the element <TradePrice> is considered, this contract would impact all the
applications or software units that are integrated into this structure.

Clarifying this, let us assume this scenario, a Web Service or Microservice is consumed
by a hundred clients where each one of them uses the same service contract (or WSDL
document) to access to perform an operation. At once, if a change in the type of data is
requested by some of those clients it will be necessary to create another new contract or
WSDL document for each client that has changed. Furthermore, this scenario can be
present if a client wants to integrate a new data type making it necessary to send one more
data. This is important, since this entails having control and maintenance for each contract
created, which implies that it is mandatory to create a hundred contracts in order to
maintain the integration. This would represent a high cost in resources such as time, effort
occasioning and increment in the project budget.

Figure 8 Fragment XML code definition of element <xsd1: TradePrice> in WSDL document for
analysis purposes. Full-size DOI: 10.7717/peerj-cs.796/fig-8

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 22/33

http://dx.doi.org/10.7717/peerj-cs.796/fig-8
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

DISCUSSION
This SMS has brought several perceptions into the research trends in EAI at the software
unit level. These discernment’s are discussed in this section.

Throughout the years, the main problem of EAI has been the communication and
exchange of data between heterogeneous systems. In recent years, particularly in the period
covered by this systematic mapping study, new technologies have emerged to develop
software systems. Moreover, some existing technologies have been used in combination to
provide robust frameworks for applications development that satisfy the needs of
enterprises.

An issue that has been left behind over the years is the one related to considering an EAI
project as an independent project reflecting its unique characteristics. No research was
found on primary studies with regard to proposals for a step-by-step guide for EAI project
definition and implementation. This is a critical issue to be studied since a software
development project with a distributed architecture optimized for the data exchange is not
the same as an EAI project. The SE guidelines allow obtaining a product that satisfies
the customer’s needs in a software development project, but this is not the case in EAI
projects. There is no generic methodological approach for enterprises to implement it. This
kind of project is considered one more component of a traditional software development
process that implies a delay in its completion. Therefore, it is not considered an
independent project that must be defined within a methodological approach only for EAI.
In this sense, enterprises do not prioritize questions such as how to measure the value
that an EAI project brings to them in the near future and how it could help significantly
reduce maintenance costs. When they decide on an EAI project, they lack ad-hoc planning
guided through a methodology for it.

Through the constant evolution of technological platforms for the development of
software systems, many proposals for EAI have emerged in the scientific literature
according to primary studies found. Most of them are based on SOA and microservices
(see Fig. 4).

As shown in Fig. 6, the evolution of technology has been such that it has overcome the
proposals that should exist to solve problems that the EAI has dragged on from the
time when its early years. Furthermore, the scene is complicated again, as novel
technologies appear to develop software systems, and as a result, new integration
essentials are born with it. In this regard, research has dedicated much attention to
succeeding simple data exchange among software units. Therefore, data privacy and
security concerns have increased. Even though this area is out of the scope of this SMS, it is
well-thought-out that research to date has overlooked the data security and privacy
problems that emerged due to technological platforms and thus have not been adequately
studied.

Over time the research in EAI does not provide a general framework for integration
projects, nor at the level of data exchange, databases, or interfaces. In this regard, some
efforts have been made, integration proposals have been industrialized, and scientific
articles have even been published presenting solutions. The proposals help along with

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 23/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

being universal for EAI because they are based on MDA (see Section “Microservices
REST”). The advantage proposed by MDA approaches to solve the EAI problem is that the
same models created can be converted to the source code of the user’s preference. This
provides an advantage to EAI projects because by reusing the models, it is possible to
generate the exact solution for different technological platforms (Alahmari, De Roure &
Zaluska, 2010) and to build help along with new integrations in models to obtain the
source-code for the integration. The advantage of this idea regards to improve a vital
deficiency that is the re-configuration of business systems and not only the integration.
Regardless of the importance of an approach like MDA, there has been not enough
research in this field, as have many other topics at EAI.

The scientific literature emphasizes that current EAI solutions face a heterogeneity
problem. Therefore, EAI solutions lack a robust and consistent integration approach
supported by a methodology designed for that labor. Particularly, dedicated to the
integration of heterogeneous enterprise applications that consider Requirements
Engineering (RE) activities (Aguilar et al., 2010). Which can be modeled according to the
necessities of the integration bearing in mind important software quality attributes such as
security and privacy. Even that permits the requirements to be explicitly modeled
on-demand as planned integration can be improved in execution. Nonetheless, it is
predictable that the research will be uniformly concentrated through all activities of RE
with emphasis within different research categories that provide supports to validated
solutions such as experience reports, frameworks, and empirical studies that assist their
decision-making. Nowadays, this is unaccomplished in EAI at the software unit level.

As mentioned above, enterprise applications are growing in number in different sectors
of society. Almost all the business processes they handle have their software systems. These
systems are based on different platforms and recent technologies. For this reason, they
include multiple sources that lack interoperability, so dynamic EAI solutions are needed to
solve integration problems. Dynamic EAI solutions can be achieved using SOA web
services and with recent technology such as REST microservices. An advantage of these
new technologies is the ease of integration at a low level that improves data exchange
among applications. This enables interoperability through a controlled flow of data.

As new technologies evolve, it is important that EAI solutions adapt to these new
technologies, but it is mandatory to increase the research in this area because the evolution
is so fast that the problems that exist today will continue to exist tomorrow along with
others more formed as a result of: (i) new implementation technologies, (ii) the growing
demand of the telecommunications market, and (iii) a rapid change of the enterprise
IT department as well as their technological environment. In addition, meanwhile, the
main application of the EAI is the collaboration among systems of different enterprises
(e.g., banks for payments in sales, shipping services, as well as product providers). They
dedicate a considerable amount of their budget more than human resources to maintain
the exchange of data between the enterprises with which they interact in their business
processes operating efficiently. Therefore, by creating interfaces at the software unit level
that can integrate their applications, reducing the resources dedicated to maintenance will
be possible. According to primary studies, SOA, as described by various authors as an

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 24/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

architecture that can help solve not only the integration problem but also optimize
integration techniques.

Finally, today, the EAI faces two significant challenges: syntactic and semantic
integrations among enterprise applications at the level of software or data units. One
reason for this is because each department/area built its software systems, making
interoperability difficult. Primary studies show that it is essential to have a coherent
semantic integration approach due to analysis. For this, the proposals continue to use a
declarative definition for the data types and formats of the field that will facilitate the
exchange of information in the integration configuration.

Table 6 Primary studies selected for mapping (1/2).

Author(s) Year Title

Stephen Cranefield, Surangika Ranathunga 2013 Embedding agents in business applications using enterprise integration
patterns

Reza M. Parizi 2018 Microservices as an Evolutionary Architecture of Component-Based
Development: A Think-aloud Study

Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen, Manuel
Mazzara

2017 Microservices: Migration of a Mission Critical System

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente,
Manuel Mazzara Fabrizio Montesi, Ruslan Mustafin, Larisa
Safina

2017 Microservices: yesterday, today, and tomorrow

Dharmendra Shadija, Mo Rezai, Richard Hill 2017 Towards an Understanding of Microservices

C. Punitha Devi, V. Prasanna Venkatesan, S. Diwahar, G.
Shanmugasundaram

2014 A Model for Information Integration Using Service Oriented Architecture

Jongyeop Kim 2009 Mini-SOA/ESB Design Guidelines and Simulation for Wireless Sensor
Networks

Danny Weyns, Michael Georgeff 2010 Self-Adaptation Using Multiagent Systems

António Martins, Pedro Carrilho, Miguel Mira da Silva, Carlos
Alves

2007 Using a SOA Paradigm to Integrate with ERP Systems

K. K. Mohan, A. Verma, A. Srividya, G. Ravi Kumar 2013 A Practical Perspective on the Design and Implementation of Enterprise
Integration Solution to improve QoS using SAP NetWeaver Platform

Stewart John Green 2013 An evaluation of four patterns of interaction for integrating disparate ESBs
effectively and easily

Dejan Risimic 2016 An integration strategy for large enterprises

Vladimir Antipov, Oleg Antipov, Aleksander Pylkin 2016 Mobility support in publish/subscribe systems

Cristiana Voican 2012 Service Orientation in Distributed Automation and Control Service

Félix Cuadrado, Boni García, Juan C. Dueñas, Hugo A. Parada 2008 A Case Study on Software Evolution towards Service-Oriented
Architecture

Elena Albertos Gómez 2018 Arquitecturas software para microservicios: una revisión sistemática de la
literatura

Miguel Esteban-Gutierrez, Raúl García-Castro, Nandana
Mihindukulasooriya

2013 A Coreference Service for Enterprise Application Integration using Linked
Data

José Acosta Cano de los Ros 2016 Esquema de Referencia para Acoplamiento Débil entre Sistema
Informático y Equipo de Producción

Edwin Montoya Múnera, Bernardo Augusto García Loaiza 2011 Integración de Repositorios Digitales en salud

Manuel Sánchez, Jose Aguilar, Ernesto Exposito 2018 Integrating SOA and MAS in Intelligent Environments

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 25/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

CONCLUSIONS
This work presents the results obtained after conducting an SMS. This research creates a
synthesis of the current state of the art concerning loose coupling in software unit
integrations in EAI. The goal is to provide scholars and practitioners with a comprehensive
summary of recent research on this topic. Unfortunately, the literature lacks studies
that report research work summarizing recent trends in this area.

For this, a total of 3,178 articles published in the literature were considered. These were
extracted from scientific sources such as Springer, IEEE, CONRICYT, World Wide
Web through Google Scholar, arXiv, and DOAJ. In the end, 39 primary studies
(see Tables 6 and 7) were analyzed in-depth because they fulfilled the research questions
proposed according to our inclusion and exclusion criteria detailed in Section “Selection of
Documents for Inclusion and Exclusion”.

Table 7 Primary studies selected for mapping (2/2).

Author(s) Year Title

Ana Muñoz, José Aguilar 2009 Modelo Ontológico para la Integración de Bases de Datos Federadas

Luis Felipe Herrera-Quintero, Francisco Maciá-Pérez, Diego Marcos-
Jorquera, Virgilio Gilart-Iglesias

2010 SOA-based Model for the IT Integration into the Intelligent
Transportation Systems

Jose Luis Ruiz, Juan Carlos Dueñas, Felix Cuadrado 2008 A Service Component Deployment Architecture for e-Banking

Xiaogang Ji 2009 A Web-based Enterprise Application Integration solution

Luis Carlos Coronado-García, Jesús Alejandro González-Fuentes,
Pedro Josué Hernández-Torres, Carlos Pérez-Leguízamo

2011 An Autonomous Decentralized Service Oriented Architecture for High
Reliable Service Provision

Marina Nazih, Ghada Alaa 2011 Generic service patterns for web enabled public healthcare systems

José Vicente Berná Martínez, Francisco Maciá Pérez 2010 Model of integration and management for robotic functional
components inspired by the human neuroregulatory system

Shiqi Ma, Jiangtao Tang, Dong Wang 2009 Process Based Application Level Architecture for RFID System

Mengjian Chen 2009 Research and Implementation on Enterprise Application Integration
Platform

Imre Lendak, Ervin Varga, Aleksandar Erdeljan, Milan Gavrić 2010 RESTful web services and the Common Information Model (CIM)

Om P. Patri, Anand V. Panangadan, Vikrambhai S. Sorathia, Viktor K.
Prasanna

2014 Semantic management of Enterprise Integration Patterns: A use case
in Smart Grids

Wu Deng, Xinhua Yang, Huimin Zhao, Dan Lei, Hua Li 2008 Study on EAI Based on Web Services and SOA

Dongbing Huang, Wen Zhang 2010 Study on Enterprise Informationization Models

Hong Chen, Wen-yue Guo 2010 Study on enterprise Order Processing System based on SOA

Lili Qu, Yan Chen, Ming Yang 2009 The Coordination and Integration of Agile Supply Chain Based on
Service-oriented Technology

Mohamed Ibrahim Beer, Mohd Fadzil Hassan 2017 Adaptive security architecture for protecting RESTful web services in
enterprise computing environment

Laura GonzÁlez, Guadalupe Ortiz 2013 An ESB-Based Infrastructure for Event-Driven Context-Aware Web
Services

Philipp Lehsten, Alexander Gladisch, Djamshid Tavangarian 2011 Context-Aware Integration of Smart Environments in Legacy
Applications

Valérie Monfort, Slimane Hammoudi 2009 Towards Adaptable SOA: Model Driven Development, Context and
Aspect

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 26/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

SMS results shows that, in 13 years period, from 2008 to 2021, the same architectures or
architectural patterns and technologies are still being used. Among them are SOA, Web
Services, and in recent years Microservices. However, the technology used is limited
because they continue using a WSDL data structure or service contract. Therefore, the
coupling at the data level becomes a tight coupling. Additionally, this work remarks that
EAI, particularly at loose coupling in software unit integration, has distinct requirements
for e-commerce, banking, manufacturing, energy, and healthcare industries. Hence, to
perform successful integration, various frameworks, architectures, and approaches are
obligatorily needed. Thus, it is necessary to provide solutions within the architectures that
offer us the goodness of decoupling the software units when they are integrated.

EAI at the software unit level is more than a technological trend. It is a form to
consider structuring the information system to leverage the existing IT investments more
effectively when developing new applications. Although the EAI has existed since the
beginning of IS, it has constantly been evolving. As a result, integration has become more
important than development in creating new applications for enterprises to deal with this
problem.

The paper concludes that, as is well-known, EAI is a technology that helps an
enterprise to achieve integration to inter and external software systems for data exchange.
However, the integration technology solutions are often brand-named, which present
interoperability issues because vendors restrict access to the code level, the complexity of
services, and connectivity issues. Nevertheless, the distributed environment of enterprise
applications outcomes in a complicated integration system. Consequently, new
methodologies, platforms, protocols, technologies, and frameworks are still necessary
to accomplish an all-inclusive EAI. In this regard, the future of EAI is based on
platform-independent based solutions such as MDA, but lack of standards, robust
frameworks for model-to-model (M2M) and model-to-text (M2T) transformations,
problems related to tool support lacking usability with a poor user experience. This must
be reviewed in terms of security and performance. Model-Driven technologies have
been there since the 2000 year, and there are still the same issues. Likewise, changing
dynamics of the application development process and usage pose a further challenge to
achieve the desired result from EAI. Some of the current research suggests that much of
EAI research is concentrated on developing a framework for EAI that can be used in
different applications domains such as e-commerce, healthcare, and enterprise resource
management systems. Additionally, the research on EAI is insufficient. There is an urgent
demand to conduct more in-depth and significant research in developing new and
enhanced frameworks and methodologies for EAI for cloud computing and IoT because
these are technologies that are growing worldwide.

Some directions that future research from this SMS are suggested next:

1. The growing demand of the telecommunications market requires new implementation
technologies, especially the development of robust frameworks considering cloud
computing because enterprises applications drive their systems to this technology.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 27/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

2. The emergence of new technologies, particularly technological platforms, demands
more research at the EAI focused on the heterogeneity problem. The migration of old
systems to new platforms such as cloud computing requires methodological guides and
trained human resources who can direct the migration and integration with new
technologies within the company.

3. The lack of research in the Requirements Engineering area within a methodological
approach to implement an EAI project from the scratch. The idea to consider an EAI
project as a different software development project must be adopted in enterprises
because both have their particular characteristics. However, most of the time, they are
considered the same or part of the main development software project because EAI’s
development cost is higher than a traditional approach. Furthermore, implementation
takes more time and consumes more resources.

4. EAI is for data exchange among different technological platforms. Until now,
microservices and SOAP are the most used technological platforms for that goal,
according to Table 3. It is well known that microservices are distributed above
several data centers, cloud providers, and host servers. Therefore, constructing an
infrastructure through many cloud locations increases the probability of losing control
and visibility of the application components. In this regard, data security and privacy
issues must be of greater importance to researchers.

5. Consider to make more effort in Model-Driven based solutions. Considering MDA for
framework development since their advantages are notorious and can be perfectly
implemented in EAI ate software unit level. The solution for EAI can be generated in
several programming languages just executing the M2M or M2T transformation over
the same definition models.

As future work, we propose an architecture or pattern using a Dynamic Data Canonical
Model (Mork et al., 2014) through the management of Agnostic Messages (Celar, Mudnic
& Seremet, 2017). The messages will create a low external and data level coupling
established in the service contracts that help integrate software units.

ACKNOWLEDGEMENTS
The assistance provided by members of Cuerpo Académico Consolidado (Research
Group) Tecnologa Educativa I+D+i (UAS-CA-303) from Universidad Autónoma de
Sinaloa (Mazatlán, Mexico) was greatly appreciated.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was partially funded by the Project UTAMayor No. 8729-20 of the Universidad
de Tarapaca, Arica, Chile.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 28/33

http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
Universidad de Tarapaca, Arica, Chile: 8729-20.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Juan Antonio Ruiz Ceniceros conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� José Alfonso Aguilar-Calderón conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

� Roberto Espinosa conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

� Carolina Tripp-Barba conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Figshare: Aguilar-Calderón, Jose Alfonso (2021): Data Set for
Systematic Mapping Study. figshare. Dataset. DOI 10.6084/m9.figshare.14888217.v2.

REFERENCES
Aguilar JA, Garrigós I, Mazón J-N, Trujillo J. 2010. An MDA approach for goal-oriented

requirement analysis in web engineering. Journal of Universal Computer Science
16(17):2475–2494 DOI 10.3217/jucs-016-17-2475.

Alahmari S, De Roure D, Zaluska E. 2010. A model-driven architecture approach to the efficient
identification of services on service-oriented enterprise architecture. In: 2010 14th IEEE
International Enterprise Distributed Object Computing Conference Workshops. Piscataway: IEEE,
165–172.

Albano M, Ferreira LL, Pinho LM, Alkhawaja AR. 2015.Message-oriented middleware for smart
grids. Computer Standards & Interfaces 38(6):133–143 DOI 10.1016/j.csi.2014.08.002.

An Y, Zhang Y, Zeng B. 2015. The reliable hub-and-spoke design problem: models and
algorithms. Transportation Research Part B: Methodological 77:103–122
DOI 10.1016/j.trb.2015.02.006.

Antipov V, Antipov O, Pylkin A. 2016. Mobility support in publish/subscribe systems. In: ITM
Web of Conferences. 6: Les Ulis: EDP Sciences, 03001.

Astley M, Sturman DC, Agha GA. 2001. Middleware. Communications of the ACM 44(5):99
DOI 10.1145/374308.374365.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 29/33

https://doi.org/10.6084/m9.figshare.14888217.v2
http://dx.doi.org/10.3217/jucs-016-17-2475
http://dx.doi.org/10.1016/j.csi.2014.08.002
http://dx.doi.org/10.1016/j.trb.2015.02.006
http://dx.doi.org/10.1145/374308.374365
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Baldoni R, Contenti M, Virgillito A. 2003. The evolution of publish/subscribe communication
systems. In: Schiper A, Shvartsman AA, Weatherspoon H, Zhao BY, eds. Future Directions in
Distributed Computing. Berlin: Springer, 137–141.

Banaeianjahromi N, Smolander K. 2014. The role of enterprise architecture in enterprise
integration-a systematic mapping study. In: European, Mediterranean & Middle Eastern
Conference on Information Systems 2014 (EMCIS2014) Doha, Qatar.

Beer MI, Hassan MF. 2018. Adaptive security architecture for protecting restful web services in
enterprise computing environment. Service Oriented Computing and Applications
12(2):111–121 DOI 10.1007/s11761-017-0221-1.

Brodie ML. 1982. On the development of data models. In: On Conceptual Modelling.

Broy M, Deimel A, Henn J, Koskimies K, Plasil F, Pomberger G, Pree W, Stal M, Szyperski C.
1998. What characterizes a (software) component? Software. Concepts & Tools 19(1):49–56
DOI 10.1007/s003780050007.

Celar S, Mudnic E, Seremet Z. 2017. State-of-the-art of messaging for distributed computing
systems. International Journal Vallis Aurea 3(2):5–18 DOI 10.2507/IJVA.3.2.1.34.

Cerqueira LD, Nardi JC, Barcellos MP, de Almeida Falbo R. 2016. Process integration in
semantic enterprise application integration: a systematic mapping. In: Brazilian Ontology
Research Seminar (Ontobras 2016). Curitiba-Brazil, 95–106.

Chen M. 2009. Research and implementation on enterprise application integration platform. In:
2009 International Forum on Information Technology and Applications. Vol. 2. Piscataway:
IEEE, 93–96.

Coronado-García LC, González-Fuentes JA, Hernández-Torres PJ, Pérez-Leguzamo C. 2011.
An autonomous decentralized service oriented architecture for high reliable service provision.
In: 2011 Tenth International Symposium on Autonomous Decentralized Systems. Piscataway:
IEEE, 327–330.

Cranefield S, Ranathunga S. 2013. Embedding agents in business processes using enterprise
integration patterns. In: Cossentino M, El Fallah Seghrouchni A, Winikoff M, eds. Engineering
Multi-Agent Systems. Berlin: Springer, 97–116.

Cuadrado F, Garca B, Dueñas JC, Parada HA. 2008. A case study on software evolution towards
service-oriented architecture. In: 22nd International Conference on Advanced Information
Networking and Applications-Workshops (aina workshops 2008). Piscataway: IEEE, 1399–1404.

de los Ríos JAC. 2016. Esquema de referencia para acoplamiento débil entre sistema informático y
equipo de producción. PhD thesis, Universidad Politécnica de Madrid.

DengW, Yang X, Zhao H, Lei D, Li H. 2008. Study on EAI based on web services and soa. In: 2008
International Symposium on Electronic Commerce and Security. Piscataway: IEEE, 95–98.

Devi CP, Venkatesan VP, Diwahar S, Shanmugasundaram G. 2014. A model for information
integration using service oriented architecture. International Journal of Information Engineering
and Electronic Business 6(3):34–43 DOI 10.5815/ijieeb.2014.03.06.

Dragoni N, Dustdar S, Larsen ST, Mazzara M. 2017a. Microservices: migration of a mission
critical system. Available at http://arxiv.org/abs/1704.04173.

Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L. 2017b.
Microservices: yesterday, today, and tomorrow. In: Mazzara M, Meyer B, eds. Present and
Ulterior Software Engineering. Cham: Springer, 195–216.

Fiadeiro JL, Lopes A, Bocchi L. 2006. A formal approach to service component architecture. In:
International Workshop on Web Services and Formal Methods. Berlin: Springer, 193–213.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 30/33

http://dx.doi.org/10.1007/s11761-017-0221-1
http://dx.doi.org/10.1007/s003780050007
http://dx.doi.org/10.2507/IJVA.3.2.1.34
http://dx.doi.org/10.5815/ijieeb.2014.03.06
http://arxiv.org/abs/1704.04173
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Fusco G, Aversano L. 2020. An approach for semantic integration of heterogeneous data sources.
PeerJ Computer Science 6(02):e254 DOI 10.7717/peerj-cs.254.

García B, Montoya M. 2011. Integración de repositorios digitales en salud, desafíos y alternativas
de interoperabilidad. In: Bibliotecas y Repositorios Digitales: Gestión del Conocimiento, Acceso
Abierto y Visibilidad Latinoamericana (BIREDIAL). 50–55.

Gómez EA. 2018. Arquitecturas software para microservicios: una revisión sistemática de la
literatura. PhD thesis, Departamento de Sistemas Informráticos, Universidad Politécnica de
Madrid.

González L, Ortiz G. 2013. An ESB-based infrastructure for event-driven context-aware web
services. In: European Conference on Service-Oriented and Cloud Computing. Berlin: Springer,
360–369.

Gorkhali A, Xu LD. 2016. Enterprise application integration in industrial integration: a literature
review. Journal of Industrial Integration and Management 1(4):1650014
DOI 10.1142/S2424862216500147.

Gosewehr F, Wermann J, Borsych W, Colombo AW. 2018. Apache camel based implementation
of an industrial middleware solution. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS).
Piscataway: IEEE, 523–528.

Green SJ. 2013. An evaluation of four patterns of interaction for integrating disparate ESBS
effectively and easily. Journal of Systems Integration 4(3):3–19 DOI 10.20470/jsi.v4i3.164.

Gutiérrez M, Garca-Castro R, Mihindukulasooriya N. 2013. A coreference service for enterprise
application integration using linked data. In: Informatik angepasst an Mensch, Organisation und
Umwelt (NFORMATIK 2013).

Herrera Quintero LF, Maciá Pérez F, Marcos-Jorquera D, Gilart V. 2010. Soa-based model for
the it integration into the intelligent transportation systems. In: IEEE ITSC2010 Workshop on
Emergent Cooperative Technologies in Intelligent Transportation Systems. Piscataway: IEEE.

Hohpe G, Woolf B. 2004. Enterprise integration patterns: designing, building, and deploying
messaging solutions. Boston: Addison-Wesley Professional.

Hong Chen, Wen-yue Guo. 2010. Study on enterprise order processing system based on soa. In:
2010 International Conference On Computer Design and Applications. Vol. 2. V2-48–V2-50.

Huang D, Zhang W. 2010. Study on enterprise informationization models. In: 2010 International
Conference on E-Business and E-Government. Piscataway: IEEE, 2553–2556.

Irani Z, Themistocleous M, Love PE. 2003. The impact of enterprise application integration on
information system lifecycles. Information & Management 41(2):177–187
DOI 10.1016/S0378-7206(03)00046-6.

Jacob B, Brown M, Fukui K, Trivedi N. 2005. Introduction to grid computing. New York: IBM
Redbooks Publication, 3–6.

Ji X. 2009. A web-based enterprise application integration solution. In: 2009 2nd IEEE
International Conference on Computer Science and Information Technology. Piscataway: IEEE,
135–138.

Kaye D. 2003. Loosely coupled: the missing pieces of Web services. Kentfield: RDS Strategies LLC.

Kim J. 2009. Mini-SOA/ESB design guidelines and simulation for wireless sensor networks. PhD
thesis, Oklahoma State University.

Kitchenham B. 2007. Guidelines for performing systematic literature reviews in software
engineering. Technical Report EBSE-2007-01. Staffordshire: Software Engineering Group,
School of Computer Science and Mathematics, Keele University.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 31/33

http://dx.doi.org/10.7717/peerj-cs.254
http://dx.doi.org/10.1142/S2424862216500147
http://dx.doi.org/10.20470/jsi.v4i3.164
http://dx.doi.org/10.1016/S0378-7206(03)00046-6
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Kitchenham B, Pretorius R, Budgen D, Brereton OP, Turner M, Niazi M, Linkman S. 2010.
Systematic literature reviews in software engineering—a tertiary study. Information and
Software Technology 52(8):792–805 DOI 10.1016/j.infsof.2010.03.006.

Krishna Mohan K, Verma AK, Srividya AS, Ravi Kumar G. 2013. A practical perspective on the
design and implementation of enterprise integration solution to improve QoS using SAP
netWeaver platform. Journal of Systemics, Cybernetics and Informatics 8(3):29–30.

Lehsten P, Gladisch A, Tavangarian D. 2011. Context-aware integration of smart environments in
legacy applications. In: International Joint Conference on Ambient Intelligence. Berlin: Springer,
126–135.

Lendak I, Varga E, Erdeljan A, Gavrić M. 2010. Restful web services and the common
information model (CIM). In: 2010 IEEE International Energy Conference. Piscataway: IEEE,
716–721.

Ma S, Tang J, Wang D. 2009. Process based application level architecture for RFID system. In:
2009 5th International Conference on Wireless Communications, Networking and Mobile
Computing. Piscataway: IEEE, 1–5.

Martnez JVB, Pérez FM. 2010. Model of integration and management for robotic functional
components inspired by the human neuroregulatory system. In: 2010 IEEE 15th Conference on
Emerging Technologies & Factory Automation (ETFA 2010). Piscataway: IEEE, 1–4.

Martins A, Carrilho P, da Silva MM, Alves C. 2007. Using a Soa paradigm to integrate with ERP
systems. In: Advances in Information Systems Development. Berlin: Springer, 179–190.

Monfort V, Hammoudi S. 2009. Towards adaptable Soa: model driven development, context and
aspect. In: Service-Oriented Computing. Berlin: Springer, 175–189.

Mork P, Melo W, Dutcher S, Curtis C, Scroggs M. 2014. Cost estimation for model-driven
interoperability: a canonical data modeling approach. In: 2014 14th International Conference on
Quality Software. 145–153.

Muñoz A, José A. 2009. Modelo ontológico para bases de datos multimedia. Journal of Ciencia e
Ingeniería 30(2):149–159.

Nazih M, Alaa G. 2011. Generic service patterns for web enabled public healthcare systems. In:
2011 7th International Conference on Next Generation Web Services Practices. Piscataway: IEEE,
274–279.

Orton JD, Weick KE. 1990. Loosely coupled systems: a reconceptualization. Academy of
Management Review 15(2):203–223 DOI 10.2307/258154.

Parizi RM. 2018.Microservices as an evolutionary architecture of component-based development:
a think-aloud study. Available at http://arxiv.org/abs/1805.11757.

Patri OP, Panangadan AV, Sorathia VS, Prasanna VK. 2014. Semantic management of
enterprise integration patterns: a use case in smart grids. In: 2014 IEEE 30th International
Conference on Data Engineering Workshops. Piscataway: IEEE, 50–55.

Pautasso C, Wilde E. 2009. Why is the web loosely coupled? A multi-faceted metric for service
design. In: Proceedings of the 18th International Conference on World Wide Web. 911–920.

Petersen K, Feldt R, Mujtaba S, Mattsson M. 2008. Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE). 12:1–10.

Puica MA, Florea AM. 2013. Emotional belief-desire-intention agent model: previous work and
proposed architecture. International Journal of Advanced Research in Artificial Intelligence
2(2):1–8 DOI 10.14569/IJARAI.2013.020201.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 32/33

http://dx.doi.org/10.1016/j.infsof.2010.03.006
http://dx.doi.org/10.2307/258154
http://arxiv.org/abs/1805.11757
http://dx.doi.org/10.14569/IJARAI.2013.020201
http://dx.doi.org/10.7717/peerj-cs.796
https://peerj.com/computer-science/

Qu L, Chen Y, Yang M. 2009. The coordination and integration of agile supply chain based on
service-oriented technology. In: 2009 Third International Symposium on Intelligent Information
Technology Application. Vol. 1. 351–354, Piscataway: IEEE.

Risimic D. 2016. An integration strategy for large enterprises. Yugoslav Journal of Operations
Research 17(2):209–222 DOI 10.2298/YJOR0702209R.

Ruiz JL, Dueñas JC, Cuadrado F. 2008. A service component deployment architecture for
e-banking. In: 22nd International Conference on Advanced Information Networking and
Applications-Workshops (AINA workshops 2008). Piscataway: IEEE, 1369–1374.

Sánchez M, Aguilar J, Exposito E. 2018. Integración SOA-MAS en ambientes inteligentes. Dyna
85(2016):268–282 DOI 10.15446/dyna.v85n206.68671.

Shadija D, Rezai M, Hill R. 2017. Towards an understanding of microservices. In: 2017 23rd
International Conference on Automation and Computing (ICAC). Piscataway: IEEE, 1–6.

Soomro TR, Awan AH. 2012. Challenges and future of enterprise application integration.
International Journal of Computer Applications 42(7):42–45 DOI 10.5120/5707-7762.

Szyperski C, Gruntz D, Murer S. 2002. Component software: beyond object-oriented programming.
London: Pearson Education.

The Open Group. 2009. SOA source book. Hertogenbosch: Van Haren Publishing.

Voican C. 2012. Servie orientation in distributed automation and control service. Braşov: Editura
Lux Libris.

Wadhwa R, Mehra A, Singh P, Singh M. 2015. A pub/sub based architecture to support public
healthcare data exchange. In: 2015 7th International Conference on Communication Systems and
Networks (COMSNETS). Piscataway: IEEE, 1–6.

Webber J, Parastatidis S, Robinson I. 2010. REST in practice: hypermedia and systems
architecture. Newton: O’Reilly Media, Inc.

Weyns D, Georgeff M. 2009. Self-adaptation using multiagent systems. IEEE Software 27(1):86–91
DOI 10.1109/MS.2010.18.

Wong J. 2009. Enterprise application integration. Boston: Springer US, 991–997.

Yongguo J, Qiang L, Changshuai Q, Jian S, Qianqian L. 2019. Message-oriented middleware: a
review. In: 2019 5th International Conference on Big Data Computing and Communications
(BIGCOM). Piscataway: IEEE, 88–97.

Zhigang C, Huiping C. 2009. Research on enterprise application integration categories and
strategies. 2009 International Forum on Computer Science-Technology and Applications
2:372–375 DOI 10.1109/IFCSTA.2009.213.

Ruiz Ceniceros et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.796 33/33

http://dx.doi.org/10.2298/YJOR0702209R
http://dx.doi.org/10.15446/dyna.v85n206.68671
http://dx.doi.org/10.5120/5707-7762
http://dx.doi.org/10.1109/MS.2010.18
http://dx.doi.org/10.1109/IFCSTA.2009.213
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.796

	The external and data loose coupling for the integration of software units: a systematic mapping study
	Introduction
	Enterprise application integration fundamentals
	Survey methodology
	Mapping results
	Discussion
	Conclusions
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

