
Model design and parameter optimization
of CNN for side-channel cryptanalysis
Yun Lin Liu, Yan Kai Chen, Wei Xiong Li and Yang Zhang

Center of Equipment Simulation Training, Shijiazhuang Campus of the Army Engineering
University, Shijiazhuang, Hebei, China

ABSTRACT
Background: The side-channel cryptanalysis method based on convolutional neural
network (CNNSCA) can effectively carry out cryptographic attacks. The CNNSCA
network models that achieve cryptanalysis mainly include CNNSCA based on the
VGG variant (VGG-CNNSCA) and CNNSCA based on the Alexnet variant
(Alex-CNNSCA). The learning ability and cryptanalysis performance of these
CNNSCA models are not optimal, and the trained model has low accuracy, too long
training time, and takes up more computing resources. In order to improve the
overall performance of CNNSCA, the paper will improve CNNSCA model design
and hyperparameter optimization.
Methods: The paper first studied the CNN architecture composition in the SCA
application scenario, and derives the calculation process of the CNN core algorithm
for side-channel leakage of one-dimensional data. Secondly, a new basic model of
CNNSCA was designed by comprehensively using the advantages of VGG-CNNSCA
model classification and fitting efficiency and Alex-CNNSCA model occupying less
computing resources, in order to better reduce the gradient dispersion problem of
error back propagation in deep networks, the SE (Squeeze-and-Excitation) module is
newly embedded in this basic model, this module is used for the first time in the
CNNSCA model, which forms a new idea for the design of the CNNSCA model.
Then apply this basic model to a known first-order masked dataset from the
side-channel leak public database (ASCAD). In this application scenario, according
to the model design rules and actual experimental results, exclude non-essential
experimental parameters. Optimize the various hyperparameters of the basic model
in the most objective experimental parameter interval to improve its cryptanalysis
performance, which results in a hyper-parameter optimization scheme and a final
benchmark for the determination of hyper-parameters.
Results: Finally, a new CNNSCA model optimized architecture for attacking
unprotected encryption devices is obtained—CNNSCAnew. Through comparative
experiments, CNNSCAnew’s guessing entropy evaluation results converged to 61.
From model training to successful recovery of the key, the total time spent was
shortened to about 30 min, and we obtained better performance than other CNNSCA
models.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Cryptography, Data
Mining and Machine Learning
Keywords Side-channel analysis, CNN, VGG, Alexnet, SEnet, Hyperparameter

How to cite this article Liu YL, Chen YK, Li WX, Zhang Y. 2022. Model design and parameter optimization of CNN for side-channel
cryptanalysis. PeerJ Comput. Sci. 8:e829 DOI 10.7717/peerj-cs.829

Submitted 16 September 2021
Accepted 6 December 2021
Published 5 January 2022

Corresponding author
Yun Lin Liu, llyun324@163.com

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 34

DOI 10.7717/peerj-cs.829

Copyright
2022 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.829
mailto:llyun324@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.829
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Side Channel Analysis (SCA) (Mangard, Oswald & Popp, 2010) refers to bypassing the
tedious analysis of encryption algorithms, by using the information (such as execution
time, power consumption, electromagnetic radiation, etc.) leaked by the hardware device
embedded in the encryption algorithm during the calculation process, combined
with statistical analysis methods to attack cryptographic systems. The side-channel
cryptanalysis method is divided into profiling methods and non-profiling methods:
non-profiling methods include differential power attack (DPA) (Kocher, Jaffe & Jun, 1999),
correlation power attack (CPA) (Brier, Clavier & Olivier, 2004) and mutual information
attack (MIA) (Gierlichs et al., 2008); profiling methods include template attack (TA)
(Chari, Rao & Rohatgi, 2002), side-channel cryptography attack based on multi-layer
perceptron (MLPSCA), and side-channel cryptography attack based on convolutional
neural networks (CNNSCA). Although the attack method of the non-profiling method is
simple and direct, weak side-channel signal or excessive environmental noise can cause the
attack to fail. The profiling method can effectively analyze the characteristics of the
side-channel signal when the encryption knowledge of the attacking device is obtained
in advance, so it is easier to crack the cryptogramme. In the case of an encrypted
implementation copy, the best cryptanalysis attack in the traditional SCA method is TA
(Chari, Rao & Rohatgi, 2002; Lerman, Bontempi & Markowitch, 2014; Picek, Heuser &
Guilley, 2017; Choudary & Kuhn, 2013), but TA has difficulties in statistical analysis when
processing high-dimensional side-channel signals, and cannot attack the implementation
of protected encryption. With the rapid development of supervised machine learning
algorithms, it can effectively analyze one-dimensional data with similar power
consumption traces in other fields, and side-channel cryptanalysis based on machine
learning (MLSCA) (Lerman et al., 2015; Lerman, Bontempi & Markowitch, 2015; Picek
et al., 2017) has begun to emerge. The new profiling method MLPSCA surpasses the
traditional profiling method in attack performance (Picek et al., 2017; Benadjila et al., 2018;
Maghrebi, Portigliatti & Prouff, 2016), and overcomes the shortcomings of template
attacks that cannot handle high-dimensional side-channel signals, but it also loses
effectiveness when attacking encryption with protection. Nowadays, with the development
of machine learning, deep learning techniques with excellent performance in image
classification and target recognition have become popular. Studies have shown that the
application of convolutional neural network algorithms under deep learning can produce
better encryption performance in side-channel analysis (Benadjila et al., 2018; Maghrebi,
Portigliatti & Prouff, 2016; Picek et al., 2018; Cagli, Dumas & Prouff, 2017; Dongxin
et al., 2018). The deep network helps to mine the deep features in the data, which can make
the neural network have more powerful performance, which makes CNNSCA can also
attack the encryption implementation with protection. In the side-channel analysis
application scenario, deep learning eliminates the step of manually extracting features
from the workflow of model construction. For example, in the traditional bypass attack
method, the TA with better attack effect only selects five strong feature points, while the
deep learning model can select hundreds to thousands of feature points, select more

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 2/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

features to construct a template, it is extremely beneficial to the generalization and
robustness of the side-channel analysis model.

Analyze the above domestic and foreign documents, there are two main types of
CNN structures that have successfully used CNNSCA to achieve cryptanalysis, which are
based on two variants of Alexnet and VGGnet network structures (Benadjila et al.,
2018; Dongxin et al., 2018; Dongxin et al., 2019; Kim et al., 2019). Among them, the 2012
ILSVRC (ImageNet Large Scale Visual Recognition Challenge) champion structure
Alexnet (Krizhevsky, Sutskever & Hinton, 2017), although successful in the SCA
application, but in fact, the training accuracy of CNNSCA based on this network variant is
not high, moreover, the Alex-CNNSCA network model in the literature (Dongxin et al.,
2018) has a large amount of training parameters and a long calculation time, which means
that there is still room for optimization of this network structure. The 2013 ILSVRC
champion network ZFNet (Zeiler & Fergus, 2014) has not changed much from the
2012 first ILSVRC champion network Alexnet. The 2014 ILSVRC runner-up structure
VGGnet (Simonyan & Zisserman, 2014) also succeeded in breaking secrets in the SCA
application. In the literature (Benadjila et al., 2018; Dongxin et al., 2019; Kim et al., 2019),
VGG-CNNSCA models with different parameters were proposed. Among them, the
best cryptanalysis performance is in the literature (Benadjila et al., 2018) proposed
VGG-CNNSCA, but its training accuracy is still not high. Obviously, there is still room for
improvement in the cryptanalysis performance. The 2014 ILSVRC champion network
GoogLeNet (Szegedy et al., 2015) and the 2015 ILSVRC champion network ResNet (He
et al., 2016) have also been used in SCA, but the effect is average. This conclusion has
been confirmed in the literature (Benadjila et al., 2018). The last ILSVRC champion
network in 2017 was the SEnet (Jie et al., 2017) proposed by Momenta and Oxford
University. There is currently little literature on applying this network to SCA scenarios.

Although CNNSCA overcomes the shortcomings of the previous profiling methods
and improves the cryptanalysis performance, the existing CNNSCA model learning
ability and cryptanalysis performance are not optimal. The disadvantages of these
models are: low training accuracy and excessive training time long, taking up too much
computing resources, etc. The reason is mainly affected by CNNSCA model design and
hyperparameter optimization. In order to improve the overall performance of CNNSCA,
the paper will improve CNNSCAmodel design and hyperparameter optimization, and has
done the following work:

1. The composition of the CNN architecture in the SCA application scenario is studied,
and the calculation process of the CNN core algorithm for side-channel leakage of
one-dimensional data is deduced.

2. Taking advantage of the high efficiency of classification and fitting of the
VGG-CNNSCA model and the advantages of the Alex-CNNSCA model occupying
less computing resources, a new basic model of CNNSCA is designed to better reduce
the gradient dispersion of error back propagation in the deep network. The problem
is that the SE module is newly embedded in this basic model, so that the model basically

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 3/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

achieves the purpose of breaking the secrets, thereby solving the problem of constructing
the CNNSCA model.

3. Apply the above basic model to a known first-order mask data set of the side-channel
leak public database (ASCAD). In this application scenario, according to the model
design rules and actual experimental results, unnecessary experiments are maximized
parameter, optimize the various hyperparameters of the model in the most objective
experimental parameter interval to improve the breaking performance of the new
CNNSCA, which solves the problem of hyperparameter optimization, and gives the final
determination benchmark for hyperparameters. Finally, a new CNNSCA model
optimized architecture for attacking unprotected encryption devices-CNNSCAnew is
obtained.

4. The performance verified on public data sets exceeds other profiling SCA methods.

The algorithms involved in the paper experiments are all programmed in the Python
language, and use the deep learning architecture Keras library (Eldeeb et al., 2015) (version
2.4.3) or directly use the GPU version of the Tensorflow library (Abadi et al., 2015)
(version 2.2.0). The experiment was carried out on an ordinary computer equipped with
16 GB RAM and 8G GPU (Nvidia GF RTX 2060). All experiments use side-channel
leaking public data sets-known first-order mask data sets in the ASCAD database, use
50,000 pieces of data from its training set to train the model, and randomly select
1,000 pieces of data from its test set for testing. When testing the cryptanalysis
performance of the CNNSCA model, the guessing entropy index is used to evaluate the
cryptanalysis performance.

MATERIALS AND METHODS
Materials
CNN
Convolutional Neural Network (CNN) is one of the most successful algorithms of artificial
intelligence, and it is a multi-layer neural network with a new structure. Its design is
inspired by the research on the optic nerve receptive field (Hubel & Wiesel, 1968; Lecun &
Bengio, 1998). The core component of CNN, the convolution kernel, is the structural
embodiment of the local receptive field. It belongs to the deep network of back propagation
training. It uses the two-dimensional spatial relationship of the data to reduce the number
of parameters that need to be learned, and improves the training performance of the
BP algorithm (Error Back Propagation, which is used to calculate the gradient of the loss
function with respect to the parameters of the neural network) to a certain extent. The
main difference between CNN and MLP is the addition of the convolution block structure.
In the convolution block, a small part of the input data is used as the original input of
the network structure, and the data information is forwarded layer by layer in the network,
and each layer uses several convolution cores to extract features of the input data.
Convolutional neural networks have been successfully applied in computer vision, natural
language processing, disaster climate prediction and other fields, especially shine on
ILSVRC (Russakovsky et al., 2015). ILSVRC is one of the most popular and authoritative

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 4/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

academic competitions in the field of machine vision in recent years, representing the
highest level in the field of imaging. The introduction of outstanding CNNs in the
image classification and target positioning projects of the ILSVRC competition over the
years is shown in Table 1 (CNN with outstanding performance in previous ILSVRC
competitions).

Table 1 sorts out the champion networks and individual runner-up networks of the last
ILSVRC classification task from 2012 to 2017, and briefly introduces their names,
rankings, classification results under the top1 and top5 indicators, and some remarks.
Top1 refers to the largest probability vector as the prediction result, if the classification is
correct, it is correct. Top5 is correct as long as there is a correct classification in the top
five of the largest probability vectors. Among them, the error rate of the classification
results of the last champion network SEnet (2017) under the top5 index is obviously the
lowest, reaching 2.25%. Deep convolutional networks have greatly promoted the
development of various fields of deep learning.

CNNSCA model hyperparameters
Hyperparameters of neural network models are a concept often used in machine learning
or deep learning, including the structural parameters and training parameters of the
network model. To design a CNN model in SCA application scenarios, all the parameters
that need to be set are as follows:

(1) Structural parameters
Define all the parameters of the neural network architecture, including the regular

parameter network layer activation function, classification function, loss function, and
optimizer. In the convolutional neural network, the network layer is subdivided into
convolutional blocks (a combination of different numbers of convolutional layers and
pooling layers), convolutional layers, full link layers, pooling layers, the number of
convolution kernels, convolution kernel size and fill.

The convolution block, convolution layer, pooling layer, number of convolution kernels,
convolution kernel size and padding in these parameters mainly control the scale and
performance of feature extraction in the feature extraction stage of the CNNSCA model.
Full link layer, activation function, classification function and loss function, these

Table 1 CNN with outstanding performance in previous ILSVRC competitions.

Year Network/Ranking val top-1 (%) val top-5 (%) test top-5 (%) Remarks

2012 Alexnet (Champion) 36.7 15.4 15.32 7CNNs, Used data from 2011

2013 ZFnet (Champion) – – 13.51 The result on the ZFNet paper is 14.8

2014 VGG (Runner-up) 23.7 6.8 6.8 Post-race, 2 nets

2014 Googlenet v4 (Champion) 16.5 3.1 3.08 Post-race, v4+Inception-Res-v2

2015 Resnet (Champion) – – 3.57 6 models

2016 Trimps-Soushen (Champion) – – 2.99 Public Security III (additional data)

2017 SEnet (Champion) – – 2.25 Momenta and Oxford University

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 5/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

parameters constitute the main body of the CNNSCA network, and perform feature
learning and fitting classification on side-channel leakage data.

(2) Training parameters
Control the parameters of the network model training phase, including the number of

iterations, batch learning volume, and learning rate. When training a network model, a
complete training set is processed at one time, which is called complete batch learning.
If a single training sample is processed at a time, it is called random learning. In practice, in
order to improve efficiency, a compromise method is usually adopted, called small-batch
learning, that is, small batches of training samples are processed at one time during
the model learning process. The batch size depends on environmental factors (Kim, Lee &
Nam, 2018) (such as network architecture, computer GPU performance, the trade-off
between network regularization effect and stability, etc.). The number of iterations is an
important parameter to be adjusted. A small value will cause the network model to underfit
(the model is too poor to capture the feature trend in the training data set), while a
higher value will cause the network model to overfit (the model is too Complex, perfectly
fits the training data set, but cannot generalize its prediction to other data sets). In
addition, the variable that optimizes the training effect of the network model-the learning
rate (also called the step size), aims to promote the gradient (i.e., the error gradient) drop
during the training process.

The number of iterations and the amount of batch learning affect the degree of model
training, and the optimizer and learning rate are used to control the gradient of the
error. These parameters all have an important impact on CNNSCA’s cryptanalysis
performance and need to be adjusted according to specific attack scenarios.

CORE ALGORITHM AND NETWORK STRUCTURE OF
CNNSCA
CNN network structure for SCA
Combined with the side-channel cryptanalysis scenario, the CNN applied to the side-
channel attack mainly has six network layers stacked layer by layer and an embeddable SE
module:

a) Convolutional layers (Conv for short) are linear layers. The incomplete connection
between layers can avoid the two shortcomings of a fully connected network: training
weights requires a huge amount of calculation and model overfitting. The weights of
the same convolution kernel (also known as filters) in the same layer are shared,
allowing the convolution layer to extract constant displacement features while reducing
parameters. The convolutional layer can also use multiple convolution kernels. Each
convolution kernel extracts different abstract features from the input vector. These
abstract features are arranged side by side in an additional dimension (the so-called
depth), making the CNN resistant to time-domain distortion Vector features (Choi
et al., 2016). The convolutional layer usually needs to set the padding mode, one is valid
padding, so that the dimension of the feature vector after convolution is smaller than the

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 6/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

original vector; the other is the same padding, so that the convolutional The feature
vector dimension is the same as the original vector.

b) Batch Normalization layers (Ioffe & Szegedy, 2015) (BN for short), whose role is to
reduce the deviation of covariates in the two stages of training and prediction, which is
conducive to the use of a higher learning rate for the network model (Goodfellow, Bengio
& Courville, 2016).

c) Activation layers (ACT for short) are non-linear layers and consist of a single real
function, which acts on each coordinate of the input vector. The ReLU function is
currently the first choice in deep learning.

d) Pooling layers (POOL for short) are non-linear layers. Use the pooling window to slide
on the input vector to extract salient feature points to reduce the feature dimension.
There is no weight in the pooling layer, which will not cause distortion of the input
signal.

e) Fully-Connected layers (FC for short), the neurons between the layers are completely
connected, and these layers need to train a lot of weights. This layer is expressed by
an affine function as: D-dimensional x vector is the input, and Ax+B is the output.
Among them, A∈RC×D is the weight matrix and B∈RC is the deviation vector. These
weights and deviations are the training parameters of the FC layer.

f) Softmax layer (SOFT for short). In multi-classification tasks, softmax is usually used as
the activation function of the output layer. Here, softmax is used to represent the output
layer. This layer classifies the input, obtains the predicted value of each label, and
takes the label corresponding to the maximum value as the global classification result.

g) SE module, SEnet is a classic attention model structure, and it is also a required
basic network structure for fine-grained classification tasks. SEnet proposed the
Squeeze-and-Excitation (SE) module, which did not introduce a new spatial dimension,
and improved the representation ability of the model by displaying the channel
correlation between the features of the convolutional layer. The feature recalibration
mechanism: by using global information to selectively enhance informatized features
and compress those useless features at the same time. In deep network training, this
mechanism can effectively overcome the gradient dispersion problem in error back
propagation. The SE module is universal. Even if it is embedded in an existing model, its
parameters do not increase significantly. It is a relatively successful attention module (Jie
et al., 2017). The structure of the SE module is shown in Fig. 1 (SE module).

In Fig. 1, the SE module uses global pooling as a squeeze operation, and then uses
two FC layers to form an excitation structure to profile the correlation between channels,
and output and input the same number of feature channels weights. The advantages of this
are: (1) it has more nonlinearity and can better fit the complex correlation between
channels; (2) the amount of parameters and the amount of calculation are greatly reduced.
Then obtain the normalized weight between 0 and 1 through a sigmoid function, and
then use a scale operation to weight the normalized weight to the features of each channel

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 7/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

(Jie et al., 2017). Finally, the output of scale is superimposed on the input x before the SE
module to generate a new vector ~x.

Core algorithm of CNN for SCA

(1) Convolution calculation

Usually convolution operations in the field of computer vision are numerical operations on
two-dimensional image data. In the SCA application scenario, the dimensionality of the
convolution operation is adjusted, which is to slide the convolution kernel on the
one-dimensional energy trace data. The number of steps moved each time is called the step
length, and the convolution calculation is performed on each sliding to obtain a value.
After one round of calculation is completed, a feature vector representing the vector
feature is obtained. The rule of numerical operation is to multiply a one-dimensional
convolution kernel with a value at the corresponding position of a one-dimensional vector,
and then sum. For example, there is a 1 × 3 convolution kernel, which convolves a 1 × 6
one-dimensional vector with a step size of 1. The calculation process is shown in Fig. 2
(Convolution calculation process).

In Fig. 2A, the convolution kernel slides from the left side of the input vector. The first
numerical calculation is: 1 × 1 + 0 × 0 + 1 × 1 = 2, and the first value 2 of the new feature

Figure 1 SEnet module. Full-size DOI: 10.7717/peerj-cs.829/fig-1

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 8/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-1
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

vector is obtained. Then, the convolution kernel slides one step to the right to continue
the numerical calculation: 1 × 0 + 0 × 1 + 1 × 0 = 0, to get the second value 0 of the new
feature vector, as shown in Fig. 2B. Repeat this process until the convolution kernel slides
to the far right of the input vector, and the convolution calculation is complete.

(2) Pooling calculation

There are three ways of pooling: Max-Pooling, Mean-Pooling and Stochastic Pooling.
Maximum pooling is to extract the maximum value of the value in the pooling window,
average pooling is to extract the average value of the value in the pooling window, and
random pooling is to randomly extract the value in the pooling window. The original
pooling operation of CNN is also a numerical operation on two-dimensional image data.
In the SCA application scenario, the pooling calculation has also been dimensionally
adjusted, and a pooling mode is selected for calculation on the one-dimensional energy
trace data. For example, the pooling window size is 1 × 2, and the maximum or average
pooling operation is performed on a 1 × 6 one-dimensional vector with a step size of 2. The
pooling calculation is shown in Fig. 3 (Pooling calculation process).

In Fig. 3A, the maximum pooling starts from the left side of the input vector. Every two
steps of the pooling window, the maximum value of the two values in the window is
selected as a value of the new feature vector. The average pooling is shown in Fig. 3B. For
every two sliding steps of the pooling window, the average of the two values of the window

Figure 2 Convolution Calculation Process. Full-size DOI: 10.7717/peerj-cs.829/fig-2

Figure 3 Pooling Calculation Process. Full-size DOI: 10.7717/peerj-cs.829/fig-3

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 9/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-2
http://dx.doi.org/10.7717/peerj-cs.829/fig-3
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

class is calculated as a value of the new feature vector. The pooling window slides to the
right until the rightmost of the input vector, and the pooling calculation is complete.

(3) softmax function

This function normalizes the output value and converts all output values into
probabilities. The sum of the probabilities is 1. The formula of softmax is:

softmax xið Þ ¼ exp xið Þ
P

jexp xj
� � (1)

Here xi represents the input of the i-th neuron in the softmax layer, xj represents the
input of the j-th neurons in the softmax layer, and

P
j is the sum of calculations for xj.

The result of the function is used as the fitting probability of the i-th neuron label.

(4) Principle of weight adjustment

Using the cost function and gradient descent algorithm (Liqun & Qian, 2005), each time
the network model is trained, the weights are automatically adjusted in the direction of
error reduction, so that the training parameters are repeated until all iterations are over,
and the weight adjustment is completed.

(5) Evaluation of Cryptanalysis Performance

Generally, security officers consider two indicators when evaluating CNNSCA’s
cryptanalysis performance: one is the training accuracy of the neural network model
during modeling, the Acc indicator (Hawkins, 2004), and the other is the security indicator
guessing entropy of the key obtained in the attack phase (Standaert, Malkin & Yung,
2009; Masure, Dumas & Prouff, 2020). The guessing entropy index is commonly used to
evaluate the SCA cryptanalysis performance, and the guessing entropy is used to measure
the efficiency of decrypt. Guessing Entropy (GE) is obtained through a custom rank
function Rank(·), which is defined as:

Rank ĝ;Dtrain;Dtest; nð Þ ¼ k 2 K dn k½ � � dn k
�½ �jf gj j (2)

The adversary uses the modeling data set Dtrain to establish a bypass analysis model g,
and uses n energy trace samples in the attack data set Dtest to perform n attacks during
the attack phase. After each attack, the logarithm value of the distribution probability
of 256 types of hypothetical cryptograms is obtained, compose a vector di = [di [1],
di [2], L, di [k]], whose indexes are arranged in the positive order of the hypothetical
cryptogramme’s key space (the index counts from zero), where i∈n, k∈K, and K is the key
space of the hypothetical cryptogramme. The results of each attack are accumulated.
Then, the rank function Rank(·) sorts all the elements of the vector di in reverse order by
value, and keeps the position of the corresponding index of each element in the vector
before and after sorting consistent with the position of the element, and obtains a new
ranking vector Di = [Di [1], Di [2], L, Di [k]], where each the element Di[k] contains two

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 10/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

values k and d[k], and finally the index of the logarithmic element of the known
cryptogramme k� probability in Di is output, that is, the guessing entropy GE(d[k�]).
At the i-th attack, the higher the matching rate of the energy trace model of the real
cryptogramme, the higher the index ranking of its GE(d[k�]). Guessing entropy is the
GE(d[k�]) index ranking output of each attack—rank. In n attacks, the better the
performance of the cryptanalysis method and the higher the efficiency, the faster the
ranking of GE(d[k�]) converge to zero. It shows that in the i-th attack, the guessing entropy
converges to zero and continues to converge in subsequent attacks. The adversary only
needs i attacks to crack the cryptogramme, that is, only i power consumption traces are
needed to break the secret. Eq. (2) can be rewritten as (3):

GEn ĝð Þ ¼ Every Rank ĝ;Dtrain;Dtest; nð Þ½ � (3)

(4) Side-channel leaking public data sets
The newly published ASCAD database (Benadjila et al., 2018) aims to achieve

AES-128 with first-order mask protection, namely 8-bit AVR microcontroller
(ATmega8515), in which the energy trace is the data signal converted by the collected
electromagnetic radiation. The adversary outputs the collected signal for the third S-box of
the first round of AES encryption, and launches an attack against the first AES key byte.
The database follows the MNIST database (Lecun & Cortes, 2010) rules and provides a
total of four data sets, each with 60,000 entries power consumption traces, of which 50,000
power consumption traces are used for analysis/training, and 10,000 power consumption
traces are used for testing/attack. The first three ASCAD data sets respectively
represent the encryption realization leakage with three different random delay protection
countermeasures. The signal offsets desync=0, desync=50, and desync=100 are used to
represent these three data sets with two strategies of mask and delay. All power
consumption traces in the first three types of data sets contain 700 feature points.
These feature points are selected from the original energy trace containing 100,000 feature
points, and the selection basis is the position of the largest signal peak. When the mask
is known, the maximum signal-to-noise ratio of the data set can reach 0.8, but it is almost
0 when the mask is unknown. The last ASCAD data set stores the original energy trace.

METHODS

1 Design of CNNSCA base model

With reference to the advantages of the VGG-CNNSCAmodel with high classification and
fitting efficiency and the Alex-CNNSCA model occupying less computing resources, the
paper selects the same structural parameters from these two models, and some of the
factors that promote the high fitting efficiency of the two types of models parameter.
These parameters construct a new CNN simple model specifically for SCA scenarios,
which is used to test the impact of different hyperparameters on model performance. The
convolution block of this simple model consists of the Conv layer, BN layer, and ACT
layer. After the block, a POOL layer is usually added to reduce the feature dimension.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 11/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

The new convolution block is repeated n times in the network model until it is reasonable.
Until the output of the size. Then, introduce n FC layers, use the softmax function in
the last FC layer, and finally output the classification prediction results. In addition, in
order to improve the classification and recognition performance of the CNNSCA model,
the SE module is newly embedded in the simple model. Its main function is to reduce the
gradient dispersion problem in error back propagation. This is the first use in the
CNNSCA model. The SE module will be embedded between the convolutional layer and
the pooling layer of the convolutional block of the simple model, and the simple model
containing the SE module will be renamed to the CNNSCA base model-CNNSCAbase.
The newly designed CNNSCAbase structure is shown in Fig. 4 (Convolutional network
structure in a side-channel attack scenario).

The initial configuration basis and selection of CNNSCAbase are as follows: Find out
the two prototypes of Alex-CNNSCA and VGG-CNNSCA to set the same parameters, set
these parameters in CNNSCAbase in the same way, these parameters are as follows: 5
convolutional blocks, 3 full connections, the padding modes of the convolutional layers are
SAME, and the activation functions of all layers before the last layer of the network select
ReLU. In addition, in most classification tasks, convolutional networks use softmax,
crossentropy, and RMSprop as the model’s classification function, loss function, and
optimizer (Krizhevsky, Sutskever & Hinton, 2017; Zeiler & Fergus, 2014; Simonyan &
Zisserman, 2014; Szegedy et al., 2015; He et al., 2016). Here, CNNSCAbase also chooses to
use these three activation functions. Since the side-channel leakage data belongs to one-
dimensional data, the processing complexity is less than that of two-dimensional data.
Here, the convolution layer of each convolution block is initialized to 1, and the number of
convolution kernels in the first convolution layer is 64 (choose the smaller number of

Figure 4 Convolutional network structure in a side-channel attack scenario. Full-size DOI: 10.7717/peerj-cs.829/fig-4

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 12/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-4
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Alexnet or VGGnet), the size of the convolution kernel is 3 × 3, the step size is 1, the
pooling mode is tentatively averaged pooling mode, the pooling window size is 2, and the
step size is 2. In addition, in the initial setting of CNNSCAbase, a new SE module is
embedded in the last four convolution blocks. All initial structure parameters of
CNNSCAbase are shown in Table 2 (CNNSCAbase Configuration).

Here we first verify and analyze the model training effect of CNNSCAbase with and
without SE module. Remove the SE module from the CNNSCAbase model, all other
parameters remain unchanged, and name this model CNNSCAnoSE. Train the models
CNNSCAnoSE and CNNSCAbase on the training set of the ASCAD dataset with known
masks. The training results of the two models are shown in Fig. 5 (Training effect of
CNNSCAnoSE model and CNNSCAbase model).

As shown in Fig. 5, when the training iteration reaches 28 times, the accuracy of
CNNSCAbase is significantly higher than that of CNNSCAnoSE, which is about 96%.
Continue to train the CNNSCAnoSE model, and when the training iteration reaches 70
times, its accuracy rate rises to about 90%. In addition, when the training accuracy of the
two models is close, the training time of the 28-iteration CNNSCAbase model is about
1,393 s, which is significantly less than the training time of the 70-iteration CNNSCAnoSE
model, the training time of the latter is about 2,240 s. This proves that the SE module
can promote the improvement of the classification performance of the CNNSCAbase
model and can reduce the model training time.

Table 2 CNNSCAbase configuration.

ConvNet configuration

Input(1x700 vector)

Block1 (Conv3-64)x1 Same\ReLU AveragePool (2,2)

Block2 (Conv3-128)x1 SE Same\ReLU AveragePool (2,2)

Block3 (Conv3-256)x1 SE Same\ReLU AveragePool (2,2)

Block4 (Conv3-512)x1 SE Same\ReLU AveragePool (2,2)

Block5 (Conv3-1024)x1 SE Same\ReLU AveragePool (2,2)

(FC-4096)x2, ReLU

(FC-256)x1, Soft-max

Model compile (crossentropy, RMSprop)

Figure 5 Training Effect of CNNSCAnoSE Model and CNNSCAbase model. Full-size DOI: 10.7717/peerj-cs.829/fig-5

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 13/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-5
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Next, we discuss the hyperparameter optimization of the CNNSCA model. Model
structure parameters and training parameters are hyperparameters and need to be set in
advance. Later, we will design a set of experimental procedures to optimize these
hyperparameters in specific application scenarios. For example, we choose to determine
the model parameters first rather than the global training parameters, first determine the
number of Conv layers, rather than first determine the kernel size or the number of filters.
The reason for this design is: currently, Python’s deep learning architecture library
(Eldeeb et al., 2015; Abadi et al., 2015) is mainly used to program the CNN network. When
using these library methods, the CNN network structure is usually programmed first.
The order in which these parameters appear in the program code will be affected by the
library methods, and then the training parameters are designed according to the size of the
network and the size of the training set. It is precisely in consideration of the order in
which the parameters appear during programming, we have designed the order of the
following experimental procedures.

2 Selection and optimization of CNN structure parameters for side-channel cryptanalysis

2.1 Structural parameter selection rules

In section Methods 1, the base model CNNSCAbase is set, and the best model after
parameter optimization will be named CNNSCAnew later. In CNNSCAbase, in addition
to the specific set of structural parameters, the remaining structural parameters need to be
customized. These structural parameters include classification function, loss function,
optimizer, the number of convolutional layers in each convolution block, the number of
convolution kernels in the convolution layer, convolution kernel size, pooling layer
pooling mode. When choosing these custom structure parameters, you need to follow the
classic rules of building a deep learning network structure (Zeiler & Fergus, 2014; Szegedy
et al., 2015), which can reduce the number of unnecessary test parameters. The rules are as
follows:

Rule 1: Set the same parameters for the convolutional layers in the same convolutional
block to keep the amount of data generated by different layers unchanged.

Rule 2: The dimensionality of each pooling window is 2, and the window sliding step is
also 2, each operation reduces the dimensionality of the input data to half.

Rule 3: In the convolutional layer of the i-th block (starting from i = 1), the number of
convolution kernels is n: ni ¼ n1 � 2i�1, i ≥ 2. This rule keeps the amount of data
processed by different convolution blocks as constant as possible. The network structure
characteristics of VGG-16 in this reference (Simonyan & Zisserman, 2014) are formulated.

Rule 4: The size of the convolution kernel of all convolution layers is the same.

2.2 Structural parameter optimization

Among the custom structure parameters, the structure parameters that need to be
further adjusted through experimental analysis are: the number of convolution layers in
each convolution block, the number of convolution kernels in the convolution layer, the

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 14/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

size of the convolution kernel, the pooling mode of the pooling layer, SE module. The
experimental process of structural parameter optimization is as follows:

(1) Number of convolutional layers

In Section Methods 1, in the initial CNNSCAbase structure, the number of
convolutional layers for each convolution block is 1, and the convolutional structure is
named Cnov1. Refer to the number of convolutional layers of different convolutional
blocks of the Alexnet and VGGnet16 prototypes. It is found that the minimum number is 1
and the maximum is 3, and the small number is distributed in the front convolution
block, and the large number is at the back. This is also to build deep learning The common
habit of the Internet. Therefore, the upper limit of the number of convolutional layers of
the CNNSCAbase convolution block is set to 3, and the baseline is Cnov1, and a
certain convolutional layer parameter configuration can be obtained through two sets of
necessary experiments. When training the CNNSCAbase model, the training iteration
and batch parameters of the current optimal CNNSCA model (Benadjila et al., 2018) are
used, which are 75 and 200 (in all experiments in section Methods 2.2, unless otherwise
specified, the iteration and batch parameters are used. experiment).

Experiment 1: Set up a model in which the number of convolutional layers in 5
convolutional blocks is 2, and other parameters are consistent with CNNSCAbase, and the
structure is named Cnov2. Then set the number of convolutional layers of the first 4
convolutional blocks to 2, and the convolutional layer of the last convolutional block to 3.
Other parameters are consistent with CNNSCAbase, and the structure is named Cnov3.
The specific settings of the number of convolutional layers of each convolution block of
Cnov1~3 are shown in Table 3 (CNNSCAbase.Conv1–7 Configuration). The three
structures constructed are trained and tested, and the results of experiment 1 are shown in
Fig. 6 (Convergence of guessing entropy of Cnov1~3).

From the results in Fig. 6, it is found that when Cnov2 and Cnov1 attack the 750th
energy trace, their guessing entropy basically converges to 0, while Cnov3 cannot converge
in a finite number of (1,000) attacks. When doing further analysis, if you set two or more
convolutional blocks with 3 convolutional layers in the 5 convolutional blocks of the

Table 3 CNNSCAbase.Conv1-7 configuration.

Conv configuration

Block Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

Block1 (Conv3-64)x1 (Conv3-64)x2 (Conv3-64)x2 (Conv3-64)x1 (Conv3-64)x1 (Conv3-64)x1 (Conv3-64)x1

Block2 (Conv3-128)x1 SE (Conv3-128)x2 SE (Conv3-128)x2 SE (Conv3-128)x2 SE (Conv3-128)x1 SE (Conv3-128)x1 SE (Conv3-128)x1 SE

Block3 (Conv3-256)x1 SE (Conv3-256)x2 SE (Conv3-256)x2 SE (Conv3-256)x2 SE (Conv3-256)x2 SE (Conv3-256)x1 SE (Conv3-256)x1 SE

Block4 (Conv3-512)x1 SE (Conv3-512)x2 SE (Conv3-512)x2 SE (Conv3-512)x2 SE (Conv3-512)x2 SE (Conv3-512)x2 SE (Conv3-512)x1 SE

Block5 (Conv3-1024)x1
SE

(Conv3-1024)x2
SE

(Conv3-1024)x3
SE

(Conv3-1024)x2
SE

(Conv3-1024)x2
SE

(Conv3-1024)x2
SE

(Conv3-1024)x2
SE

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 15/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

model, the calculation amount and parameter amount of model training will increase by
several times, and the 8G GPU memory used in the experiment will be directly exhausted,
unable to run the code, then this parameter setting method will have no practical
significance. Therefore, the upper limit of the number of convolutional layers for each
convolutional block is determined to be 2.

Experiment 2: On the basis of the conclusion of Experiment 1, the convolutional layer
parameter setting of each convolution block is further accurate. As shown in Fig. 6, the
convergence of the orange line representing the entropy of Cnov2’s guess is more
stable than that of Cnov1, but it is obvious that there are more convolutional layers, which
means that the amount of model calculations and parameters are relatively large, which
affects the overall performance of the model. Therefore, four structures of Cnov4~7 are set,
and each structure sequentially reduces the number of convolutional layers in each
convolution block of Cnov2 by one. The specific settings of the number of convolutional
layers of each convolution block of Cnov4~7 are shown in Table 3 (CNNSCAbase.
Conv1–7 Configuration). Train and test these constructed structures, and the results of
experiment 2 are shown in Fig. 7 (Convergence of guessing entropy of Cnov1~2,4~7).

The red curve representing the entropy of Cnov5 guessing in Fig. 7 converges optimally.
Finally, the number of convolutional layers of the Cnov5 structure is determined, and the
benchmark is set for the number of convolutional layers of CNNSCAnew.

Figure 6 Convergence of guessing entropy of Cnov1~3. Each curve represents the convergence trend of guessing entropy under the six model
structures of Cnov1~3. The abscissa represents the number of energy traces used in the attack, and the ordinate represents the ranking of the
guessing entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-6

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 16/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-6
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

1. The number of convolution kernels in the convolution layer

It is known that the number of convolution kernels of each convolutional layer of
CNNSCAbase is initially set according to Rule 3. The number of convolution kernels of the
first convolutional layer is 64. Usually increasing the number of convolution kernels means
that more dimensional feature extraction is performed on the input data, thereby
improving the classification efficiency of the convolutional network. But it will inevitably
lead to an increase in the amount of calculation and storage of the attack device, which
will lead to an increase in the training time of the model. Therefore, under the condition
that the efficiency loss of the guarantee model is not large, the model training time
can be reduced by reducing the number of convolution kernels. Since the number of
convolution kernels in the later layer increases by a factor of 2 of the number of
convolution kernels in the first convolution layer, to determine the number of convolution
kernels as a benchmark, it is only necessary to test the number of convolution kernels
in the first convolution layer. At the same time, the CNNSCA model in reference
(Benadjila et al., 2018), the upper limit of the number of convolution kernels in the
convolution layer is 512, which can achieve the effect of breaking the density, so the paper
also adjusts the upper limit of the number of convolution kernels to 512.

Figure 7 Convergence of guessing entropy of Cnov1~2,4~7. Each curve represents the convergence trend of guessing entropy under the six model
structures of Cnov1~2,4~7. The abscissa represents the number of energy traces used in the attack, and the ordinate represents the ranking of the
guessing entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-7

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 17/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-7
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Experiment 3: Name the four structures tested as filter1, filter2, filter3, and filter4. The
convolution kernel values of the first convolution layer are 8, 16, 32, 64, and the number
of convolution kernels of the remaining four convolution blocks is also increased by a
factor of 2 respectively. The upper limit of the number of convolution kernels is always
512. Other structural parameters are the parameters of the current CNNSCAnew. Train
and test the filter1~4 structure, and the result of experiment 3 is shown in Fig. 8
(Convergence of guessing entropy of filter1~4 (epochs=75)).

Figure 8 shows that after 75 iterations of training, the guessing entropy of the filter4
structure cannot converge. Although the guessing entropy of the filter1~3 structure
converges, it fluctuates all the time. When checking the training accuracy of the filter1~3
structure, it is found that the accuracy of the three structures has reached more than 99%,
or even reached 1. Obviously, the model has an overfitting phenomenon, which is the
most common problem in neural networks. Therefore, the number of training iterations of
the filter1~3 structure is reduced to 40, the three structures are retrained, and then the
test set is attacked again, and the result shown in Fig. 9 (Convergence of guessing entropy
of filter1~3 (epochs=40)) is obtained. The guessing entropy of the filter1~3 structure in
Fig. 9 all converge to rank 0, and filter3 converges to the position of rank 0 earliest. In
summary, the benchmark for selecting convolution kernel parameters is the filter3
structure, and the convolution kernel parameters of the CNNSCAnew structure are
updated synchronously.

Figure 8 Convergence of guessing entropy of filter1~4 (epochs=75). Each curve represents the model guessing entropy of the four convolution
kernel sizes. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-8

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 18/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-8
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

(3) Pooling mode of pooling layer

It is known that the initial setting mode of the pooling layer of CNNSCAbase is
AveragePool, and another common pooling mode is MaxPooling. According to rule 3,
both the pooling window and the pooling step size are still selected here.

Experiment 4: Will test the impact of two pooling modes AveragePool and MaxPooling
on the current CNNSCAnew structure. The result of experiment 4 is shown in Fig. 10
(Convergence of guessing entropy of AveragePool and MaxPool structure).

In Fig. 10, it is obvious that the guessing entropy convergence of the average pooling
structure is better than the maximum pooling structure, so the benchmark of the pooling
layer pooling mode is average pooling, and the pooling mode of the CNNSCAnew
structure is set to average pooling.

(4) Convolution kernel size

The size of the convolution kernel of each convolution layer in CNNSCAbase is initially
set to 1 × 3, or 3 for short. In deep learning, people often reduce the size of the convolution
kernel by increasing the depth of the network, thereby reducing the computational
complexity of the network. In the VGG-CNNSCA structure, the convolution kernel uses a
larger size of 11, and in the Alex-CNNSCA structure, a small size of 3 is used.

Figure 9 Convergence of guessing entropy of filter1~3 (epochs=40). Each curve represents the model guessing entropy of the three convolution
kernel sizes. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-9

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 19/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-9
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Experiment 5: Test the attack effects of the models with the convolution kernel sizes of
3, 5, 7, 9, and 11, and name these five structures as kernel3, kernel5, kernel7, kernel9, and
kernel11. The other parameters of these structures are compared with The current
CNNSCAnew is the same. The result of experiment 5 is shown in Fig. 11 (Convergence of
guessing entropy of different convolution kernel size structures).

In Fig. 11, the convolution kernel size of the structure kernel3 is 3, which guesses that
the entropy convergence is better than other structures, so the size 3 is used as the setting
reference for the convolution kernel size. At the same time, the size of the convolution
kernel of the CNNSCAnew structure is set to 3.

(5) SE module

The attention mechanism in deep learning is essentially similar to the selective visual
attention mechanism of humans, and the core role is to select information that is more
critical to the current task goal from a large number of information (Jie et al., 2017).
The paper has initially added an SE fixed module to the last four convolution blocks of
CNNSCAbase. The initial setting of the dimensional change ratio of the first full link layer
of the SE module is 1/16, but this conventional setting is in the SCA scene The suitability of
the medium requires further verification.

Experiment 6: Test the SE module of the model. The rate of the dimensional change of
the first full link layer is 1/4, 1/8, 1/16, and 1/32 respectively. The other parameters of the

Figure 10 Convergence of guessing entropy of average pool and MaxPool structure. Each curve represents the model guessing entropy of two
pooling methods. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing
entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-10

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 20/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-10
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

test model are the same as CNNSCAnew. Experiment 7: Test the attack effect of the SE
module used 1, 2, and 3 times for the last four convolutional blocks in the current
CNNSCAnew structure. The results of experiment 6 are shown in Fig. 12 (Convergence of
guessing entropy for different SE dimension ratios).

As shown in Fig. 12, when the dimensional ratio of the SE module is 1/8, the
guessing entropy convergence of the overall structure of the CNN is the best. On the basis
of this dimensional ratio, the result of Experiment 7 is shown in Fig. 13 (Convergence of
guessing entropy for different number of SE cycles). It is found that when the last four
convolution blocks of CNNSCAnew use the SE module twice, the guessing entropy
converges fastest. Therefore, the dimensional ratio of the SE module is 1/8 and the SE
module is looped twice as a new benchmark for the parameters of the SE module in the
CNNSCAnew structure.

(6) Number of channels at the full link layer

The CNNSCAmodel in literature (Benadjila et al., 2018;Dongxin et al., 2018) uses 4,096
channels in the fully connected layer, which is similar to the number of channels in the
fully connected layer of the original VGGnet and Alexnet structures. Considering that the
classification task of the ImageNet competition is 1,000 classifications, and only 256
classifications are needed in the SCA scene, the number of channels can be adjusted
appropriately to reduce the training complexity of the model.

Figure 11 Convergence of guessing entropy of different convolution kernel size structures. Each curve represents the model guessing entropy of
five convolution kernel sizes structures. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the
order of guessing entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-11

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 21/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-11
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Experiment 8: Will test the model attack effect of the four cases where the number of
channels in the fully connected layer is 4,096, 3,072, 2,048, and 1,024. The other
parameters of these test models are the same as CNNSCAnew. The reason why the number
of channels is not set lower than 1,024 is that from the convolutional layer to the fully
connected layer, if the vector dimension changes sharply, the feature points of the vector
are greatly reduced, which will affect the training effect of the model. The result of
experiment 8 is shown in Fig. 14 (Convergence of guessing entropy of the four channel
number structure of FC layer).

It is found from Fig. 14 that when the number of channels of the FC layer is 1,024, the
guessing entropy of its structure converges fastest and continues to be stable. Therefore,
1,024 is selected as the reference for the number of channels in the FC layer of the
CNNSCAnew structure.

In summary, the parameter benchmark of the CNNSCAnew structure has been
optimized. The new structure parameters are shown in Table 4 (CNNSCAnew
Configuration).

Three Selection and optimization of CNN training parameters for side-channel
cryptanalysis

Almost all experiments in the Methods 2.2 use the three parameters of 75 iterations, 200
batches of learning, and 1 × 10−4 learning rate for experiments. These training parameters

Figure 12 Convergence of guessing entropy for different SE dimension ratios. Each curve represents the model guessing entropy of the four SE
dimension ratios. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing
entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-12

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 22/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-12
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

have little effect on the experimental effects of optimizing various structural parameters,
but It is not the optimal setting. The convolutional network of deep learning is applied to
the side-channel attack, and these training parameters should also be tuned according to
the actual processed side-channel signal data. The order of training parameter tuning is
usually learning rate, batch learning amount, and number of iterations (Smith et al., 2017;
Soltanolkotabi, Javanmard & Lee, 2017). In the experiment of training parameter
optimization, the current CNNSCAnew structure is used. The training parameter
optimization experiment process is as follows:

(1) Learning rate

The learning rate is a hyperparameter that is artificially set. The learning rate is used to
adjust the size of the weight change, thereby adjusting the speed of model training. The
learning rate is generally between 0–1. The learning rate is too large, and the learning will be
accelerated in the early stage of model training, making it easier for the model to approach
the local or global optimal solution, but there will be large fluctuations in the later stage
of the training, and even the value of the loss function may hover around the minimum
value, which is always difficult to reach Optimal solution; the learning rate is too small, the
model weight adjustment is too slow, and the number of iterations is too much.

Experiment 9: Will test the impact of five commonly used learning rates on the model’s
cryptanalysis effect, namely lr1 = 1 × 10−2, lr2 = 1 × 10−3, lr3 = 1 × 10−4, lr4 = 1 × 10−5,

Figure 13 Convergence of guessing entropy for different number of SE cycles. Each curve represents the model guessing entropy of the three SE
cycles. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-13

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 23/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-13
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

lr5 = 1 × 10−6. The result of experiment 9 is shown in Fig. 15 (Convergence of model
guessing entropy under five learning rates).

Figure 15 reflects that when the learning rate is lr2, the guessing entropy of
CNNSCAnew converges fastest and is the most stable. Therefore, 1 × 10−3 is selected as the
learning rate benchmark of the CNNSCAnew structure.

Figure 14 Convergence of guessing entropy of the four channel number structure of FC layer. Each curve represents the model guessing entropy
of the four FC layer structures. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of
guessing entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-14

Table 4 CNNSCAnew configuration.

ConvNet configuration

Input(1x700 vector)

Block1 (Conv3-32)x1 Same\ReLU AveragePool (2,2)

Block2 (Conv3-64)x1 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block3 (Conv3-128)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block4 (Conv3-256)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block5 (Conv3-512)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

(FC-1024)x2, ReLU

(FC-256)x1, Soft-max

Model compile (crossentropy, RMSprop)

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 24/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-14
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

(2) Batch size

The appropriate batch size is more important for the optimization of the model.
This parameter does not need to be fine-tuned, just take a rough number, usually 2n (GPU
can play a better performance for batches of the power of 2). A batch size that is too large
will be limited by the GPU memory, the calculation speed will be slow, and it cannot
increase indefinitely (the training set has 50,000 data); it cannot be too small, which may
cause the algorithm to fail to converge.

Experiment 10: According to the size of the ASCAD data set in Section Materials 4,
this experiment selects the batch size values: 32, 64, 128, and 256 for the experiment. The
result of experiment 10 is shown in Fig. 16 (Convergence of model guessing entropy under
four batches).

It can be seen from Fig. 16 that when the batch learning amount is 128, the guessing
entropy of CNNSCAnew converges fastest and is the most stable. Therefore, 128 is selected
as the batch size benchmark of CNNSCAnew structure.

(3) Number of iterations (epoch)

The number of iterations is related to the fitting performance of the CNNSCA
model. The model has been fitted (the accuracy rate reaches 1), and there is no need to
continue training; on the contrary, if all epochs have been calculated, but the loss value of

Figure 15 Convergence of model guessing entropy under five learning rates. Each curve represents the model guessing entropy of five learning
rates. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-15

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 25/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-15
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

the model is still declining, and the model is still optimizing, then the epoch is too small.
Should increase. At the same time, the number of iterations of model training also refers to
the actual cryptanalysis effect of the model, which is measured by guessing entropy.

Experiment 11: In experiments 1–10, almost all use iteration number 75 to train the
CNNSCA model. This experiment will center on iteration number 75, and train the
CNNSCAnew model at 10 intervals in the upper and lower intervals to further optimize
the model parameter epoch. The interval number of 10 is chosen because the step interval
is too small, and the error loss of model training is not much different, so the setting is
meaningless; the interval is too large, and repeated experiments may be required to
determine an appropriate number of iterations. Therefore, Experiment 11 will test 8
iteration parameters epoch1=15, epoch2=25, epoch3=35, epoch4=45, epoch5=55,
epoch6=65, epoch7=75, epoch8=85. The current CNNSCAnew structure has achieved
higher training accuracy and breaking performance, in order to reduce model calculation
pressure and calculation time, lower iteration parameters are usually selected when the
model performs better. Therefore, the upper limit of the epoch test parameter is set to 85.
The result of experiment 11 is shown in Fig. 17 (Convergence of model guessing entropy
under eight epochs).

From the results in Fig. 17, it is found that the model of epoch1~4 guesses that the
entropy does not converge. Separately recalculate the graph of epoch5~8 model. The result
is shown in Fig. 18 (Convergence of model guessing entropy under four epochs). It can be

Figure 16 Convergence of model guessing entropy under four batches. Each curve represents the model guessing entropy of the four training
batches. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-16

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 26/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-16
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

clearly seen that the epoch5–8 model has a convergence trend. Among them, the
epoch5 curve is closest to the position of ranking 0, and the epoch8 curve first converges to
ranking 0, but afterwards it fluctuates more widely, and it is obviously over-fitting. The
convergence of epoch6 and 7 is similar, the curve begins to fluctuate greatly, and it is close
to ranking 0 in the later period.

Experiment 12: Continue to debug the epoch parameters in a smaller range, and test the
other two iterations with an interval of only 5: epoch60=60, epoch70=70. The trained
epoch60 and epoch70 models and the previously trained epoch5, epoch6, and epoch7
models are simultaneously attacked on the target set. The results of Experiment 12 are
shown in Fig. 19 (Convergence of model guessing entropy under five epochs).

Figure 19 shows that the guessed entropy of the epoch70 model converges best, and its
guessed entropy converges fastest and is the most stable. Therefore, 70 is selected as the
training iteration benchmark of the CNNSCAnew structure.

RESULTS

1 Get a new model CNNSCAnew for attacking ASCAD data set with known first-order
mask protection.

According to the 12 sets of experiments in Section Methods 2 and Section Methods 3, the
best benchmarks for CNNSCAnew structure parameters and training parameters are

Figure 17 Convergence of model guessing entropy under eight epochs. Each curve represents the model guessing entropy of eight training
epochs. The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-17

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 27/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-17
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

demonstrated. The CNNSCAnew model contains 5 convolutional blocks, 8
convolutional layers, and 3 fully connected layers. The size of the convolution kernel of
each convolution layer is 3, the activation function is ReLU, and the padding is Same. Each
convolutional block is equipped with a pooling layer, the pooling layer selects the average
pooling mode, and the pooling window is (2,2). The number of output channels of the
convolution layer in the convolution block 1–5 starts from 32 and increases by a
multiple of 2 in turn. Two SE modules are added after the convolution layer of each
convolution block in the convolution block 2–4, and the dimension ratio of the SE is set to
1/8. In the first two fully connected layers, set the number of output channels to 1,024
and the activation function to ReLU. The output channel number of the third fully
connected layer is the target classification number 256, and the classification function is
Soft-max. The global configuration loss function is crossentropy, the optimization method
is RMSprop, the number of training iterations is 70, the learning rate is 1 × 10−3, and
the batch learning volume is 128. All parameters of the newly obtained CNNSCAnew are
shown in Table 5 (CNNSCAnew Configuration).

2 The CNNSCA model design method and the convolutional network hyperparameter
optimization scheme for side-channel attack are refined.

The CNNSCA model design method is refined: comprehensively utilize the advantages
of VGG-CNNSCA model classification and fitting efficiency and Alex-CNNSCA model

Figure 18 Convergence of model guessing entropy under four epochs. Each curve represents the model guessing entropy of four training epochs.
The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-18

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 28/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-18
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

occupy less computing resources, while using SEnet’s SE module to reduce the gradient
dispersion problem of error back propagation in deep neural networks to save calculation
time, a new basic model of CNNSCA was designed, named CNNSCAbase.

At the same time, the hyperparameter optimization scheme of the convolutional
network used for side-channel attacks is refined: design the structural parameter
optimization experiment and the training parameter optimization experiment, and use

Table 5 CNNSCAnew configuration.

ConvNet configuration

Input(1x700 vector)

Block1 (Conv3-32)x1 Same\ReLU AveragePool (2,2)

Block2 (Conv3-64)x1 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block3 (Conv3-128)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block4 (Conv3-256)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

Block5 (Conv3-512)x2 SEx2(1/8) Same\ReLU AveragePool (2,2)

(FC-1024)x2, ReLU

(FC-256)x1, Soft-max

Model compile (crossentropy, RMSprop)

Training parameters (1 × 10−3, 128, 70)

Figure 19 Convergence of model guessing entropy under five epochs. Each curve represents the model guessing entropy of five training epochs.
The abscissa represents the number of energy trajectories used in the attack, and the ordinate represents the order of guessing entropy.

Full-size DOI: 10.7717/peerj-cs.829/fig-19

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 29/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-19
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

CNNSCAbase to implement the attack training. According to parameter selection rules,
common sense of parameter optimization of CNNmodel, and data characteristics of actual
application scenarios, the test parameters of each experiment are designed, and
unnecessary test parameters are excluded. Each time, according to the cryptanalysis results
of the experiment, the parameters that make CNNSCAbase’s cryptanalysis effect better are
selected. Relying on two sets of experimental processes, a hyperparameter optimization
scheme is formed, and the hyperparameters finally determined by the experiment are used
as the parameters of the new model CNNSCAnew.

DISCUSSION
Comparative analysis of CNNSCAnew and other profiling side-channel attack methods

1 Comparative analysis of CNNSCAnew, classic template attack and MLPSCA

Experiment 13: Compare the cryptanalysis’s performance of CNNSCAnew with the
HW-based TA (Mangard, Oswald & Popp, 2010) and MLPSCA method proposed by
Benadjila et al. (2018). TA and MLPSCA are the profiling methods that performed
better in the early traditional profiling methods and the later new profiling methods,
respectively. Experiment 13 carried out an attack on the ASCAD data set with a known
mask, which represents the realization of the encryption in an unprotected state. The result
of experiment 13 is shown in Fig. 20 (TA, MLPSCA, CNNSCAnew guessing entropy
convergence).

Figure 20 TA, MLPSCA, CNNSCAnew guessing entropy convergence. Each curve represents the
model guessing entropy of TA, MLPSCA, and CNNSCAnew respectively. The abscissa represents the
number of energy trajectories used in the attack, and the ordinate represents the order of guessing
entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-20

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 30/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-20
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

It can be seen from Fig. 20 that CNNSCAnew’s guessing entropy convergence is
significantly better than TA and MLPSCA.

2 Comparative analysis with other existing CNNSCA

Experiment 14: Compare the breaking performance of CNNSCAnew model with
VGG-CNNSCA (Benadjila et al., 2018) and Alex-CNNSCA (Dongxin et al., 2018). The
latter two methods are the profiling methods with better performance among the latest
profiling methods. Among them, VGG-CNNSCA in Benadjila et al. (2018) uses the
ASCAD public data set, and Alex-CNNSCA in Dongxin et al. (2018) uses a self-collected
data set. Experiment 14 carried out an attack on the ASCAD data set with a known
mask, which represents the realization of the encryption in an unprotected state. The result
of experiment 14 is shown in Fig. 21 (CNNSCAnew, VGG-CNNSCA, Alex-CNNSCA
guessing entropy convergence).

Figure 21 CNNSCAnew, VGG-CNNSCA, Alex-CNNSCA guessing entropy convergence. Each curve
represents the model guessing entropy of CNNSCAnew, VGG-CNNSCA and Alex-CNNSCA respec-
tively. The abscissa represents the number of energy trajectories used in the attack, and the ordinate
represents the order of guessing entropy. Full-size DOI: 10.7717/peerj-cs.829/fig-21

Figure 22 CNNSCAnew and VGG-CNNSCA training time.
Full-size DOI: 10.7717/peerj-cs.829/fig-22

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 31/37

http://dx.doi.org/10.7717/peerj-cs.829/fig-21
http://dx.doi.org/10.7717/peerj-cs.829/fig-22
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

It can be seen from Fig. 21 that the CNNSCAnew proposed in this paper has a better
guessing entropy convergence than other CNNSCAs. In Benadjila et al. (2018), the
guessing entropy of VGG-CNNSCA requires at least 650 power consumption traces to
converge to rank zero, and the model training time takes 37 min. The CNNSCAnew
method constructed in this paper only requires 61 power consumption traces, and the
model training time only needs about 28 min. The training time of CNNSCAnew and
VGG-CNNSCA in this paper are shown in Fig. 22 (CNNSCAnew and VGG-CNNSCA
training time).

After comparing CNNSCAnew with VGG-CNNSCA and Alex-CNNSCA, the model
comparison analysis and the cryptanalysis performance comparison analysis, the results
are summarized in Table 6 (Comparative analysis of CNNSCAnew, VGG-CNNSCA and
Alex-CNNSCA) to show.

CONCLUSIONS
Among the profiling side-channel cryptography attack methods, the most popular one is
CNNSCA, a side-channel attack method combined with deep learning convolutional

Table 6 Comparative analysis of CNNSCAnew, VGG-CNNSCA and Alex-CNNSCA.

Three CNNSCA CNNSCAnew VGG-CNNSCA Alex-CNNSCA

CNNSCA Configuration Convol block1 (Conv3-32)x1
Same\ReLU
AveragePool (2,2)

(Conv11-64)x1
Same\ReLU
AveragePool (2,2)

(Conv11-96)x1
Same\ReLU
MaxPool (2,2)

Convol block2 (Conv3-64)x1
SEx2(1/8)
Same\ReLU
AveragePool (2,2)

(Conv11-128)x1
Same\ReLU
AveragePool (2,2)

(Conv5-256)x1
Same\ReLU
MaxPool (2,2)

Convol block3 (Conv3-128)x2
SEx2(1/8)
Same\ReLU
AveragePool (2,2)

(Conv11-256)x1
Same\ReLU
AveragePool (2,2)

(Conv3-384)x1
Same\ReLU

Convol block4 (Conv3-256)x2
SEx2(1/8)
Same\ReLU
AveragePool (2,2)

(Conv11-512)x1
Same\ReLU
AveragePool (2,2)

(Conv3-384)x1
Same\ReLU

Convol block5 (Conv3-512)x2
SEx2(1/8)
Same\ReLU
AveragePool (2,2)

(Conv11-512)x1
Same\ReLU
AveragePool (2,2)

(Conv3-256)x1
Same\ReLU
MaxPool (3,3)

dense layer (FC-1024)x2, ReLU
(FC-256)x1, Soft-max

(FC-4096)x2, ReLU
(FC-256)x1, Soft-max

(FC-4096)x2, ReLU
(FC-256)x1, Soft-max

Learning rate 1 × 10−3 10-5 10−2

Batch size 128 200 10

epoch 70 75 20

CNNSCA Performance calculating time 28 min 37 min 2 h

Guess entropy 61 650 Did not converge

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 32/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

neural network algorithms. Its cryptanalysis performance is significantly better than
traditional profiling methods. Among the existing CNNSCA methods, the CNNSCA
network models that achieve cryptanalysis mainly include CNNSCA based on the VGG
variant (VGG-CNNSCA) and CNNSCA based on the Alexnet variant (Alex-CNNSCA).
The learning capabilities and cryptanalysis performance of these CNNSCA models it is
not optimal. The paper aims to explore effective methods to obtain the performance gains
of the new side-channel attack method CNNSCA.

After studying the related knowledge, necessary structure and core algorithm of
CNNSCA, the paper found that CNNSCAmodel design and hyperparameter optimization
can be used to improve the overall performance of CNNSCA. In terms of CNNSCA
model design, the advantages of the VGG-CNNSCA model classification and fitting
efficiency and the Alex-CNNSCA model occupying less computing resources can be used
to design a new CNNSCA basic model. In order to better reduce the gradient dispersion
problem of error back propagation in the deep network, it is a very effective method to
embed the SE module in this basic model; in terms of the hyperparameter optimization of
the CNNSCA model, the above basic model is applied to side-channel leakage A known
first-order mask data set in the public database (ASCAD). In this specific application
scenario, according to the model design rules and actual experimental results, unnecessary
experimental parameters can be excluded to the greatest extent. Various hyperparameters
of the model are optimized within the parameter interval to improve the performance
of the new CNNSCA, and the final determination benchmark for each hyperparameter is
given. Finally, a new CNNSCA model optimized architecture for attacking unprotected
encryption devices is obtained—CNNSCAnew. The paper also verified through
experimental comparison that CNNSCAnew’s cryptanalysis effect is completely superior
to traditional profiling methods and the new profiling methods in literature (Benadjila
et al., 2018; Dongxin et al., 2018). In the literature (Benadjila et al., 2018; Dongxin et al.,
2018), the results of CNNSCA’s guessing entropy are: convergence to 650 and oscillation.
The result of CNNSCAnew’s guessing entropy proposed in this paper is to converge
to a minimum of 61. Under the same experimental environment and experimental
equipment conditions, literature (Benadjila et al., 2018) took 40 min from model training
to attacking the key, while the total calculation time of CNNSCAnew was shortened to
30 min.

It should be noted that, in practice, the results of each training of the CNNSCAnew
model will have a slight deviation. This is a normal phenomenon during neural network
training and will not affect the average performance of the model. While proposing the
new CNNSCAmethod, the paper also provides a more comprehensive and detailed design
plan and optimization method for the side-channel cryptanalysis researchers who need
to design the CNNSCA model. In the future, we can use these design schemes and
optimization methods to continue to explore the CNNSCA model that is more suitable for
attacking protected equipment to achieve efficient attacks on encrypted equipment with
protection, which is of great significance to information security and encryption
protection.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 33/37

http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
In the paper, from the topic selection of the paper, the structure of the chapter to the
scrutiny of words, I got the careful guidance of my tutor, professor Chen Kaiyan; in life, my
teacher is very concerned and caring for me. In addition, I sincerely thank professor Li
Xiongwei and Zhang Yang. They put forward many opinions and suggestions on my
paper, which greatly inspired the students and opened up a lot of thinking. Thanks to the
classmates and friends around me. They gave me encouragement and assistance, and let
me feel the warmth of this big family. May our friendship last forever. Thanks to the
university for providing me with a good learning platform, which gave me a new start.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Yun Lin Liu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Yan Kai Chen analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Wei Xiong Li analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Yang Zhang analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The power consumption data set representing the unprotected encryption device in the
ASCAD database and the main code of the CNN model of side-channel cryptanalysis
proposed in the article are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.829#supplemental-information.

REFERENCES
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,

Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R,
Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C,
Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V,

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 34/37

http://dx.doi.org/10.7717/peerj-cs.829#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.829#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.829#supplemental-information
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.829

Vasudevan V, ViégasF, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X.
2015. TensorFlow: large-scale machine learning on heterogeneous systems. Available at
https://www.tensorflow.org/.

Benadjila R, Prouff E, Strullu R, Cagli E, Dumas C. 2018. Study of deep learning techniques for
side-channel analysis and introduction to ASCAD database. ANSSI, France & CEA,LETI,
MINATEC Campus, France 22:2018 DOI 10.1007/s13389-019-00220-8.

Brier E, Clavier C, Olivier F. 2004. Correlation power analysis with a leakage model. In:
International Workshop on Cryptographic Hardware and Embedded Systems. Berlin, Heidelberg:
Springer, 16–29.

Cagli E, Dumas C, Prouff E. 2017. Convolutional neural networks with data augmentation against
jitter-based countermeasures. In: International Conference on Cryptographic Hardware and
Embedded Systems. Cham: Springer, 45–68.

Chari S, Rao JR, Rohatgi P. 2002. Template attacks. In: International Workshop on Cryptographic
Hardware and Embedded Systems. Berlin, Heidelberg: Springer, 13–28.

Choi K, Fazekas G, Sandler M, Cho K. 2016. Convolutional recurrent neural networks for music
classification. Available at https://arxiv.org/abs/1609.04243.

Choudary O, Kuhn MG. 2013. Efficient template attacks, revised selected papers. In: Francillon A,
Rohatgi P, eds. Smart Card Research and Advanced Applications - 12th International Conference,
CARDIS 2013, Berlin, Germany, November 27–29, 2013. Revised Selected Papers. Volume 8419 of
LNCS. Berlin, Germany: Springer, 253–270.

Dongxin G, Kaiyan C, Yang Z, Xiaoyang H, Yanhai W. 2018. A new method for attacking
encrypted chip templates based on Alexnet convolutional neural network. Computer
Measurement and Control 26(10):246–249+254 DOI 10.16526/j.cnki.11-4762/tp.2018.10.053.

Dongxin G, Kaiyan C, Yang Z, Xiaoyu Z, Jianlong L. 2019. A new method of attacking encrypted
chip templates based on VGGNet convolutional neural network. Computer Application Research
36(9):2809–2812+2855 DOI 10.19734/j.issn.1001-3695.2018.04.0255.

Eldeeb A, Bursztein E, Chollet F, Jin H, Scott Q, Zhu S. 2015. Keras. Available at https://github.
com/fchollet/keras.

Gierlichs B, Batina L, Tuyls P, Preneel B. 2008. Mutual information analysis. In: International
Workshop on Cryptographic Hardware and Embedded Systems. Berlin, Heidelberg: Springer,
426–442.

Goodfellow IJ, Bengio Y, Courville AC. 2016. Deep learning.adaptive computation and machine
learning. Cambridge: MIT Press.

Hawkins DM. 2004. The problem of overfitting. Journal of Chemical Information and Computer
Sciences 44(1):1–12 DOI 10.1021/ci0342472.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778.

Hubel DH, Wiesel TN. 1968.Wiesel receptive fields and functional aechitecture of monkey striate
cortex. The Journal of Physiology 195(1):215–243 DOI 10.1113/jphysiol.1968.sp008455.

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing
internal covariate shift. Available at https://arxiv.org/abs/1502.03167v2.

Jie H, Li S, Gang S, Albanie S. 2017. Squeeze-and-excitation networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence 42(8):2011–2023
DOI 10.1109/TPAMI.2019.2913372.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 35/37

https://www.tensorflow.org/
http://dx.doi.org/10.1007/s13389-019-00220-8
https://arxiv.org/abs/1609.04243
http://dx.doi.org/10.16526/j.cnki.11-4762/tp.2018.10.053
http://dx.doi.org/10.19734/j.issn.1001-3695.2018.04.0255
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.1021/ci0342472
http://dx.doi.org/10.1113/jphysiol.1968.sp008455
https://arxiv.org/abs/1502.03167v2
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Kim T, Lee J, Nam J. 2018. Sample-level CNN architectures for music auto-tagging using raw
waveforms. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2018. Calgary, AB, Canada, 366–370.

Kim J, Picek S, Heuser A, Bhasin S, Hanjalic A. 2019.Make some noise. unleashing the power of
convolutional neural networks for profiled side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems 148–179 DOI 10.46586/tches.v2019.i3.148-179.

Kocher P, Jaffe J, Jun B. 1999. Differential power analysis. In: Annual International Cryptology
Conference. Berlin, Heidelberg: Springer, 388–397.

Krizhevsky A, Sutskever I, Hinton GE. 2017. Imagenet classification with deep convolutional
neural networks. Communications of the ACM 60(6):84–90 DOI 10.1145/3065386.

Lecun Y, Bengio Y. 1998. Convolutional networks for images, speech, and time series. Available at
http://www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf.

Lecun Y, Cortes C. 2010. The mnist database of handwritten digits. Available at http://www.
research.att.com/.

Lerman L, Bontempi G, Markowitch O. 2014. Power analysis attack: an approachbased on
machine learning. International Journal of Applied Cryptography 3(2):97–115
DOI 10.1504/IJACT.2014.062722.

Lerman L, Bontempi G, Markowitch O. 2015. A machine learning approach against a masked
AES - reaching the limit of side-channel attacks with a learning model. Journal of Cryptographic
Engineering 5(2):123–139 DOI 10.1007/s13389-014-0089-3.

Lerman L, Poussier R, Bontempi G, Markowitch O, Standaert F. 2015. Template attacks vs.
machine learning revisited (and the curse of dimensionality in side-channel analysis). In:
COSADE 2015. Berlin, Germany, 20–33.

Liqun H, Qian K. 2005. Artificial neural network theory, design and application—nerve cells,
neural networks and neural system. Journal of Beijing Technology and Business University:
Natural Science Edition 23:52.

Maghrebi H, Portigliatti T, Prouff E. 2016. Breaking cryptographic implementations using deep
learning techniques. In: Proceedings of the Security, Privacy, and Applied Cryptography
Engineering 6th International Conference, SPACE 2016. Hyderabad, India, 3–26.

Mangard S, Oswald E, Popp T. 2010. Energy analysis attack. Beijing: Science Press.

Masure L, Dumas C, Prouff E. 2020. A comprehensive study of deep learning for side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems 348–375
DOI 10.13154/tches.v2020.i1.348-375.

Picek S, Heuser A, Guilley S. 2017. Template attack versus Bayes classifier. Journal of
Cryptographic Engineering 7(4):343–351 DOI 10.1007/s13389-017-0172-7.

Picek S, Heuser A, Jovic A, Legay A. 2017. Climbing down the hierarchy: hierarchical
classification for machine learning side-channel attacks. In: Joye M, Nitaj A, eds. Progress in
Cryptology - AFRICACRYPT 2017: 9th International Conference on Cryptology in Africa, Dakar,
Senegal. Cham: Springer International Publishing, 61–78.

Picek S, Samiotis IP, Heuser A, Kim J, Bhasin S, Legay A. 2018. On the performance of
convolutional neural networks for side-channel analysis. In: SPACE 2018 - International
Conference on Security, Privacy, and Applied Cryptography Engineering. Kanpur, India, 157–176.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M. 2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115(3):211–252 DOI 10.1007/s11263-015-0816-y.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 36/37

http://dx.doi.org/10.46586/tches.v2019.i3.148-179
http://dx.doi.org/10.1145/3065386
http://www.iro.umontreal.ca/~lisa/pointeurs/handbook-convo.pdf
http://www.research.att.com/
http://www.research.att.com/
http://dx.doi.org/10.1504/IJACT.2014.062722
http://dx.doi.org/10.1007/s13389-014-0089-3
http://dx.doi.org/10.13154/tches.v2020.i1.348-375
http://dx.doi.org/10.1007/s13389-017-0172-7
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. Available at https://arxiv.org/abs/1409.1556.

Smith SL, Kindermans PJ, Ying C, Le QV. 2017. Don’t decay the learning rate, increase the batch
size. In: ICLR 2018.

Soltanolkotabi M, Javanmard A, Lee JD. 2017. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. IEEE Transactions on Information
Theory PP(2):742–769.

Standaert FX, Malkin TG, Yung M. 2009. A unified framework for the analysis of side-channel
key recovery attacks. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Berlin, Heidelberg: Springer, 443–461.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V,
Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 1–9.

Zeiler MD, Fergus R. 2014. Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision. Berlin: Springer, 818–833.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.829 37/37

https://arxiv.org/abs/1409.1556
http://dx.doi.org/10.7717/peerj-cs.829
https://peerj.com/computer-science/

	Model design and parameter optimization of CNN for side-channel cryptanalysis
	Introduction
	Materials and methods
	Core algorithm and network structure of cnnsca
	Methods
	Results
	Discussion
	Conclusions
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

