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Towards a standard model for research in agent-based

modeling and simulation

Nuno Fachada, Vitor V Lopes, Rui C Martins, Agostinho C Rosa

Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the

system being modeled is uniquely represented as an independent decision-making agent.

ABMs are very sensitive to implementation details. Thus, it is very easy to inadvertently

introduce changes which modify model dynamics. Such problems usually arise due to the

lack of transparency in model descriptions, which constrains how models are assessed,

implemented and replicated. In this paper, we present PPHPC, a model which aims to serve

as a standard in agent based modeling research, namely, but not limited to, conceptual

model specification, statistical analysis of simulation output, model comparison and

parallelization studies. This paper focuses on the first two aspects (conceptual model

specification and statistical analysis of simulation output), also providing a canonical

implementation of PPHPC. The paper serves as a complete reference to the presented

model, and can be used as a tutorial for simulation practitioners who wish to improve the

way they communicate their ABMs.
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ABSTRACT9

Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being

modeled is uniquely represented as an independent decision-making agent. ABMs are very sensitive

to implementation details. Thus, it is very easy to inadvertently introduce changes which modify model

dynamics. Such problems usually arise due to the lack of transparency in model descriptions, which

constrains how models are assessed, implemented and replicated. In this paper, we present PPHPC,

a model which aims to serve as a standard in agent based modeling research, namely, but not limited

to, conceptual model specification, statistical analysis of simulation output, model comparison and

parallelization studies. This paper focuses on the first two aspects (conceptual model specification and

statistical analysis of simulation output), also providing a canonical implementation of PPHPC. The paper

serves as a complete reference to the presented model, and can be used as a tutorial for simulation

practitioners who wish to improve the way they communicate their ABMs.
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INTRODUCTION12

Agent-based modeling (ABM) is a bottom-up modeling approach, where each entity of the system being13

modeled is uniquely represented as an independent decision-making agent. When prompted to act,14

each agent analyzes its current situation (e.g. what resources are available, what other agents are in the15

neighborhood), and acts appropriately, based on a set of rules. These rules express knowledge or theories16

about the respective low-level components. The global behavior of the system is the result from the17

simple, self-organized local relationships between the agents (Fachada, 2008). As such, ABM is a useful18

tool in simulating and exploring systems that can be modeled in terms of interactions between individual19

entities, e.g., biological cell cultures, ants foraging for food or military units in a battlefield (Macal and20

North, 2008). In practice, ABM can be considered a variation of discrete-event simulation, since state21

changes occur at specific points in time (Law, 2015).22

Spatial agent-based models (SABMs) are a subset of ABMs in which a spatial topology defines how23

agents interact (Shook et al., 2013). For example, an agent may be limited to interact with agents located24

within a specific radius, or may only move to a near physical or geographical location (Macal and North,25

2010). SABMs have been extensively used to study a range of phenomena in the biological and social26

sciences (Isaac, 2011; Shook et al., 2013).27

ABMs are very sensitive to implementation details: the impact that seemingly unimportant aspects28

such as data structures, algorithms, discrete time representation, floating point arithmetic or order of events29

can have on results is tremendous (Wilensky and Rand, 2007; Merlone et al., 2008). As such, it is very30

easy to inadvertently introduce changes which will alter model dynamics. These type of issues usually31

derive from a lack of transparency in model descriptions, which constrains how models are assessed and32

implemented (Müller et al., 2014). Conceptual models should be well specified and adequately described33

in order to be properly implemented and replicated (Edmonds and Hales, 2003; Wilensky and Rand,34

2007).35
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The ODD protocol (Overview, Design concepts, Details) is currently one of the most widely used36

templates for making model descriptions more understandable and complete, providing a comprehensive37

checklist that covers virtually all the key features that can define a model (Grimm et al., 2010). It allows38

modelers to communicate their models using a natural language description within a prescriptive and39

hierarchical structure, aiding in model design and fostering in-depth model comprehension (Müller et al.,40

2014). It is the recommended approach for documenting models in the CoMSES Net Computational41

Model Library (Rollins et al., 2014). However, Müller et al. (2014) argue that no single model description42

standard can completely and throughly characterize a model by itself, suggesting that besides a structured43

natural language description such as ODD, the availability of a model’s source code should be part of a44

minimum standard for model communication. Furthermore, the ODD protocol does not deal with models45

from a results or simulation output perspective, which means that an additional section for statistical46

analysis of results is often required. In practice, however, the situation is very different. While many47

ABMs have been published and simulation output analysis is a widely discussed subject matter (Sargent,48

1976; Kelton, 1997; Law, 2007; Nakayama, 2008; Law, 2015), comprehensive inquiries concerning the49

output of ABM simulations are hard to find in the scientific literature.50

In this paper, we present PPHPC (Predator-Prey for High-Performance Computing), a conceptual51

model which captures important characteristics of SABMs, such as agent movement and local agent52

interactions. It aims to serve as a standard in agent based modeling research, and was designed with53

several goals in mind:54

1. Provide a basis for a tutorial on complete model specification and thorough simulation output55

analysis.56

2. Investigate statistical comparison strategies for model replication (Fachada et al., 2015a).57

3. Compare different implementations from a performance point of view, using different frameworks,58

programming languages, hardware and/or parallelization strategies, while maintaining statistical59

equivalence among implementations (Fachada et al., 2015b).60

4. Test the influence of different pseudo-random number generators (PRNGs) on the statistical accuracy61

of simulation output.62

This paper aims to fulfill the first of these goals, and is organized as follows. First, in ‘Background’, we63

review several paradigmatic ABMs, as well as model description and analysis. Next, the ‘Methodology’64

section is divided into five subsections, in which we: a) formalize the conceptual model using the ODD65

protocol; b) describe the canonical PPHPC realization implemented with the NetLogo ABM toolkit66

(Wilensky, 1999); c) discuss how to select output focal measures; d) explain how to collect and prepare67

data for statistical analysis; and, e) propose how to analyze focal measures from a statistical point-of-view.68

In ‘Results’, statistical analysis of output of the NetLogo implementation is performed. A discussion on69

how these results can be utilized in additional investigations is undertaken in ‘Discussion’. ‘Conclusions’70

provides a global outline of what was accomplished in this paper.71

BACKGROUND72

Several ABMs have been used for the purpose of modeling tutorials and/or model analysis and replication.73

Probably, the most well known standard ABM is the “StupidModel”, which consists of a series of 1674

pseudo-models of increasing complexity, ranging from simple moving agents to a full predator-prey-like75

model. It was developed by Railsback et al. (2005) as a teaching tool and template for real applications,76

as it includes a set of features commonly used in ABMs of real systems. It has been used to address a77

number of questions, including the comparison of ABM platforms (Railsback et al., 2006; Lytinen and78

Railsback, 2012), model parallelization (Lysenko and D’Souza, 2008; Tang and Wang, 2009), analysis of79

toolkit feasibility (Standish, 2008) and/or creating models as compositions of micro-behaviors (Kahn,80

2007). The “StupidModel” series has been criticized for having some atypical elements and ambiguities81

(Lytinen and Railsback, 2012), reasons which lead Isaac (2011) to propose a reformulation to address82

these and other issues. However, its multiple versions and user-interface/visualization goals limit the83

series appeal as a pure computational model for the goals described in the introduction.84

Other paradigmatic models which have been recurrently used, studied and replicated include Sug-85

arscape (Epstein and Axtell, 1996; Axtell et al., 1996; Bigbee et al., 2007; D’Souza et al., 2007; Lysenko86
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and D’Souza, 2008), Heatbugs (Wilensky, 2004; Sallach and Mellarkod, 2005; Goldsby and Pancerella,87

2013), Boids (Reynolds, 1987, 2006; Goldsby and Pancerella, 2013) and several interpretations of88

prototypical predator-prey models (Smith, 1991; Hiebeler, 1994; Wilensky, 1997; Tatara et al., 2006;89

Ottino-Loffler et al., 2007; Ginovart, 2014). Nonetheless, there is a lack of formalization and in-depth sta-90

tistical analysis of simulation output in most of these implementations, often leading to model assessment91

and replication difficulties (Edmonds and Hales, 2003; Wilensky and Rand, 2007). This might not come92

as a surprise, as most models are not implemented with replication in mind.93

Many models are not adequately analyzed with respect to their output data, often due to improper94

design of simulation experiments. Consequently, authors of such models can be at risk of making95

incorrect inferences about the system being studied (Law, 2007). A number of papers and books have96

been published concerning the challenges, pitfalls and opportunities of using simulation models and97

adequately analyzing simulation output data. In one of the earliest articles on the subject, Sargent (1976)98

demonstrates how to obtain point estimates and confidence intervals for steady state means of simulation99

output data using a number of different methodologies. Later, Law (1983) presented a state-of-the-art100

survey on statistical analyses for simulation output data, addressing issues such as start-up bias and101

determination of estimator accuracy. This survey was updated several times over the years, e.g. (Law,102

2007), where Law discusses the duration of transient periods before steady state settles, as well as the103

number of replications required for achieving a specific level of estimator confidence. In (Kelton, 1997),104

the author describes methods to help design the runs for simulation models and interpreting their output105

using statistical methods, also dealing with related problems such as model comparison, variance reduction106

or sensitivity estimation. A comprehensive exposition of these and other important topics of simulation107

research is presented in the several editions of “Simulation Modeling and Analysis” by Law and Kelton,108

and its latest edition (Law, 2015) is used as a starting point for the analysis described in ‘Methodology’109

and conducted in ‘Results’.110

METHODOLOGY111

Overview, design concepts and details of PPHPC112

Here we describe the PPHPC model using the ODD protocol (Grimm et al., 2010). Time-dependent state113

variables are represented with uppercase letters, while constant state variables and parameters are denoted114

by lowercase letters. The U(a,b) expression equates to a random integer within the closed interval [a,b]115

taken from the uniform distribution.116

Purpose117

The purpose of PPHPC is to serve as a standard model for studying and evaluating SABM implementation118

strategies. It is a realization of a predator-prey dynamic system, and captures important characteristics119

of SABMs, such as agent movement and local agent interactions. The model can be implemented using120

substantially different approaches that ensure statistically equivalent qualitative results. Implementations121

may differ in aspects such as the selected system architecture, choice of programming language and/or122

agent-based modeling framework, parallelization strategy, random number generator, and so forth. By123

comparing distinct PPHPC implementations, valuable insights can be obtained on the computational and124

algorithmical design of SABMs in general.125

Entities, state variables, scales126

The PPHPC model is composed of three entity classes: agents, grid cells and environment. Each of these127

entity classes is defined by a set of state variables, as shown in Table 1. All state variables explicitly assume128

integer values to avoid issues with the handling of floating-point arithmetic on different programming129

languages and/or processor architectures.130

The t state variable defines the agent type, either s (sheep, i.e. prey) or w (wolf, i.e. predator). The131

only behavioral difference between the two types is in the feeding pattern: while prey consume passive132

cell-bound food, predators consume prey. Other than that, prey and predators may have different values133

for other state variables, as denoted by the superscripts s and w. Agents have an energy state variable,134

E, which increases by gs or gw when feeding, decreases by ls or lw when moving, and decreases by half135

when reproducing. When energy reaches zero, the agent is removed from the simulation. Agents with136

energy higher than rs
T or rw

T may reproduce with probability given by rs
P or rw

P . The grid position state137

variables, X and Y , indicate which cell the agent is located in. There is no conceptual limit on the number138

of agents that can exist during the course of a simulation run.139
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Entity State variable Symbol Range

Agents

Type t w,s
Energy E 1,2, . . .
Horizontal position in grid X 0,1, . . . ,xenv−1

Vertical position in grid Y 0,1, . . . ,yenv−1

Energy gain from food gs, gw 0,1, . . .
Energy loss per turn ls, lw 0,1, . . .
Reproduction threshold rs

T , rw
T 1,2, . . .

Reproduction probability rs
P, rw

P 0,1, . . . ,100

Grid cells

Horizontal position in grid x 0,1, . . . ,xenv−1

Vertical position in grid y 0,1, . . . ,yenv−1

Countdown C 0,1, . . . ,cr

Environment

Horizontal size xenv 1,2, . . .
Vertical size yenv 1,2, . . .
Restart cr 1,2, . . .

Table 1. Model state variables by entity. Where applicable, the s and w designations correspond to prey

(sheep) and predator (wolf ) agent types, respectively.

Instances of the grid cell entity class can be thought of the place or neighborhood where agents act,140

namely where they try to feed and reproduce. Agents can only interact with other agents and resources141

located in the same grid cell. Grid cells have a fixed grid position, (x,y), and contain only one resource,142

cell-bound food (grass), which can be consumed by prey, and is represented by the countdown state143

variable C. The C state variable specifies the number of iterations left for the cell-bound food to become144

available. Food becomes available when C = 0, and when a prey consumes it, C is set to cr.145

The set of all grid cells forms the environment entity, a toroidal square grid where the simulation takes146

place. The environment is defined by its size, (xenv,yenv), and by the restart parameter, cr.147

Spatial extent is represented by the aforementioned square grid, of size (xenv,yenv), where xenv and148

yenv are positive integers. Temporal extent is represented by a positive integer m, which represents the149

number of discrete simulation steps or iterations. Spatial and temporal scales are merely virtual, i.e. they150

do not represent any real measure.151

Process overview and scheduling152

Algorithm 1 describes the simulation schedule and its associated processes. Execution starts with an153

initialization process, Init(), where a predetermined number of agents are randomly placed in the154

simulation environment. Cell-bound food is also initialized at this stage.155

After initialization, and to get the simulation state at iteration zero, outputs are gathered by the156

GetStats() process. The scheduler then enters the main simulation loop, where each iteration is157

sub-divided into four steps: 1) agent movement ; 2) food growth in grid cells ; 3) agent actions ; and, 4)158

gathering of simulation outputs.159

State variables are asynchronously updated, i.e. they are assigned a new value as soon as this value is160

calculated by a process (e.g. when an agent gains energy by feeding).161

Design concepts162

Basic principles The general concepts of this model are based on well studied predator-prey dynamics,163

initially through analytical approaches (Lotka, 1925; Volterra, 1926), and later using agent-based models164

(Smith, 1991). However, PPHPC is designed so that it can be correctly implemented using diverse165

computational approaches. Realizations of this model can provide valuable information on how to better166

implement SABMs on different computing architectures, namely parallel ones. In particular, they may167

shown the impact of different parallelization strategies on simulation performance.168

Emergence The model is characterized by oscillations in the population of both prey and predator,169

as well as in the available quantity of cell-bound food. Typically, a peak of predator population occurs170

slightly after a peak in prey population size, while quantity of cell-bound food is approximately in “phase171
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Algorithm 1 Main simulation algorithm. for loops can be processed in any order or in random order. In

terms of expected dynamic behavior, the former means the order is not relevant, while the latter specifies

loop iterations should be explicitly shuffled.

1: INIT()

2: GETSTATS()

3: i← 1

4: for i <= m do

5: for each agent do . Any order

6: MOVE()

7: end for

8: for each grid cell do . Any order

9: GROWFOOD()

10: end for

11: for each agent do . Random order

12: ACT()

13: end for

14: GETSTATS()

15: i← i+1

16: end for

opposition” with the prey’s population size.172

Sensing Agents can sense the presence of food in the grid cell in which they are currently located. This173

means different thing for prey and predators. Prey agents can read the local grid cell C state variable,174

which if zero, means there is food available. Predator agents can determine the presence of prey agents.175

Interaction Agents interact with sources of food present in the grid cell they are located in.176

Stochasticity The following processes are random: a) initialization of specific state variables ; b) agent177

movement ; c) the order in which agents act ; and, d) agent reproduction.178

Observation The following vector is collected in the GetStats() process, where i refers to the179

current iteration:180

Oi = (Ps
i ,P

w
i ,P

c
i ,E

s
i ,E

w
i ,Ci)

Ps
i and Pw

i refer to the total prey and predator population counts, respectively, while Pc
i holds the181

quantity of available cell-bound food. E
s
i and E

w
i contain the mean energy of prey and predator populations.182

Finally, Ci refers to the mean value of the C state variable in all grid cells.183

Initialization184

The initialization process begins by instantiating the environment entity, a toroidal square grid, and filling185

it with xenv× yenv grid cells. The initial value of the countdown state variable in each grid cell, C0, is set186

according to Eq. 1,187

C0 =

{

U(1,cr), if c0 = 0

0, if c0 = 1
, with c0 =U(0,1) (1)

In other words, cell-bound food is initially available with 50% probability. If not available, the188

countdown state variable is set to a random value between 1 and cr.189

The initial value of the state variables for each agent is determined according to Eqs. 2 and 3.190

E0 =U(1,2g), with g ∈ {gs,gw} (2)

(X0,Y0) =
(

U(0,xenv−1),U(0,yenv−1)
)

(3)
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Submodels191

As stated in Process overview and scheduling , each iteration of the main simulation loop is sub-divided192

into four steps, described in the following paragraphs.193

Move() In step 1, agents Move(), in any order, within a Von Neumann neighborhood, i.e. up, down,194

left, right or stay in the same cell, with equal probability. Agents lose ls or lw units of energy when they195

move, even if they stay in the same cell; if energy reaches zero, the agent dies and is removed from the196

simulation.197

GrowFood() In step 2, during the GrowFood() process, each grid cell checks if C = 0 (meaning there198

is food available). If C > 0 it is decremented by one unit. Eq. 4 summarizes this process.199

Ci = max(Ci−1−1,0) (4)

Act() In step 3, agents Act() in explicitly random order, i.e. the agent list should be shuffled before200

the agents have a chance to act. The Act() process is composed of two sub-actions: TryEat()201

and TryReproduce(). The Act() process is atomic, i.e. once called, both TryEat() and202

TryReproduce() must be performed; this implies that prey agents may be killed by predators before203

or after they have a chance of calling Act(), but not during the call.204

TryEat() Agents can only interact with sources of food present in the grid cell they are located in.205

Predator agents can kill and consume prey agents, removing them from the simulation. Prey agents can206

consume cell-bound food, resetting the local grid cell C state variable to cr. A predator can consume one207

prey per iteration, and a prey can only be consumed by one predator. Agents who act first claim the food208

resources available in the local grid cell. Feeding is automatic: if the resource is there and no other agent209

has yet claimed it, the agent will consume it. Moreover, only one prey can consume the local cell-bound210

food if available (i.e. if C = 0). When an agent successfully feeds, its energy E is incremented by gs or211

gw, depending on whether the agent is a prey or a predator, respectively.212

TryReproduce() If the agent’s energy, E, is above its species reproduction threshold, rs
T or rw

T , then213

reproduction will occur with probability given by the species reproduction probability, rs
P or rw

P , as shown214

in Algorithm 2. When an agent successfully reproduces, its energy is divided (using integer division)215

with its offspring. The offspring is placed in the same grid cell as his parent, but can only take part in the216

simulation in the next iteration. More specifically, newly born agents cannot Act(), nor be acted upon.217

The latter implies that newly born prey cannot be consumed by predators in the current iteration. Agents218

immediately update their energy if they successfully feed and/or reproduce.219

Algorithm 2 Agent reproduction.

function TRYREPRODUCE()

if E > rT then

if U(0,99)< rP then

Echild← E/2 . Integer division

E← E−Echild

NEWAGENT(t,Echild,X ,Y )

end if

end if

end function

Parameterization Model parameters can be qualitatively separated into size-related and dynamics-220

related parameters, as shown in Table 2. Although size-related parameters also influence model dynamics,221

this separation is useful for parameterizing simulations.222

Concerning size-related parameters, more specifically, the grid size, we propose a base value of223

100×100, associated with 400 prey and 200 predators. Different grid sizes should have proportionally224

assigned agent population sizes, as shown in Table 3. In other words, there are no changes in the agent225

density nor the ratio between prey and predators.226
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Type Parameter Symbol

Size

Environment size xenv,yenv

Initial agent count Ps
0 ,P

w
0

Number of iterations m

Dynamics

Energy gain from food gs, gw

Energy loss per turn ls, lw

Reproduction threshold rs
T , rw

T

Reproduction probability rs
P, rw

P

Cell food restart cr

Table 2. Size-related and dynamics-related model parameters.

Size xenv× yenv Ps
0 Pw

0

100 100×100 400 200

200 200×200 1600 800

400 400×400 6400 3200

800 800×800 25600 12800

1600 1600×1600 102400 51200
...

...
...

...

Table 3. A selection of initial model sizes.

For the dynamics-related parameters, we propose two sets of parameters, Table 4, which generate227

two distinct dynamics. The second parameter set typically yields more than twice the number of agents228

than the first parameter set. Matching results with runs based on distinct parameters is necessary in order229

to have a high degree of confidence in the similarity of different implementations (Edmonds and Hales,230

2003). While many more combinations of parameters can be experimented with this model, these two231

sets are the basis for testing and comparing PPHPC implementations. We will refer to a combination of232

model size and parameter set as “size@set”, e.g. 400@1 for model size 400, parameter set 1.233

Parameter Symbol Set 1 Set 2

Prey energy gain from food gs 4 30

Prey energy loss p/ turn ls 1 1

Prey reprod. threshold rs
T 2 2

Prey reprod. probability rs
P 4 10

Predator energy gain from food gw 20 10

Predator energy loss p/ turn lw 1 1

Predator reprod. threshold rw
T 2 2

Predator reprod. probability rw
P 5 5

Cell food restart cr 10 15

Table 4. Dynamics-related parameter sets.

While simulations of the PPHPC model are essentially non-terminating1, the number of iterations, m,234

is set to 4000, as it allows to analyze steady-state behavior for all the parameter combinations discussed235

here.236

A NetLogo implementation237

NetLogo is a well-documented programming language and modeling environment for ABMs, focused on238

both research and education. It is written in Scala and Java and runs on the Java Virtual Machine (JVM). It239

1A non-terminating simulation is one for which there is no natural event to specify the length of a run (Law, 2015).
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uses a hybrid interpreter and compiler that partially compiles ABM code to JVM bytecode (Sondahl et al.,240

2006). It comes with powerful built-in procedures and is relatively easy to learn, making ABMs more241

accessible to researchers without programming experience (Martin et al., 2012). Advantages of having242

a NetLogo version include real-time visualization of simulation, pseudo-code like model descriptions,243

simplicity in changing and testing different model aspects and parameters, and command-line access for244

batch runs and cycling through different parameter sets, even allowing for multithreaded simultaneous245

execution of multiple runs. A NetLogo reference implementation is also particularly important as a point246

of comparison with other ABM platforms (Isaac, 2011).247

The NetLogo implementation of PPHPC, Figure 1, is based on NetLogo’s own Wolf Sheep Predation248

model (Wilensky, 1997), considerably modified to follow the ODD discussed in the previous section.249

Most NetLogo models will have at least a setup procedure, to set up the initial state of the simulation, and250

a go procedure to make the model run continuously (Wilensky, 2014). The Init() and GetStats()251

processes (lines 1 and 2 of algorithm 1) are defined in the setup procedure, while the main simulation252

loop is implemented in the go procedure. The latter has an almost one-to-one relation with its pseudo-253

code counterpart in Algorithm 1. By default, NetLogo shuffles agents before issuing them orders,254

which fits naturally into the model ODD. The implementation is available at https://github.com/255

FakenMC/pphpc/tree/netlogo.256

Figure 1. NetLogo implementation of the PPHPC model.

Selection of focal measures257

In order to analyze the output of a simulation model from a statistical point-of-view, we should first258

select a set of focal measures (f.m.’s) which summarize each output. Wilensky and Rand (2007) use259

this approach in the context of statistical comparison of replicated models. Typically, f.m.’s consist of260

long-term or steady-state means. However, being limited to analyze average system behavior can lead to261

incorrect conclusions (Law, 2015). Consequently, other measures such as proportions or extreme values262

can be used to assess model behavior. In any case, the selection of f.m.’s is an empirical exercise and is263

always dependent of the model under study. A few initial runs are usually required in order to perform264

this selection.265

For the PPHPC model, the typical output of a simulation run is shown in Figure 2 for size 400 and266

both parameter sets. In both cases, all outputs undergo a transient stage and tend to stabilize after a certain267

number of iterations, entering steady-state. For other sizes, the situation is similar apart from a vertical268

scaling factor. Outputs display pronounced extreme values in the transient stage, while circling around a269

long-term mean and approximately constant standard deviation in the steady-state phase. This standard270

deviation is an important feature of the outputs, as it marks the overall variability of the predator-prey271

cycles. Having this under consideration, six statistics, described in Table 5, where selected for each output.272

Considering there are six outputs, a total of 36 f.m.’s are analyzed for the PPHPC model.273
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Figure 2. Typical model output for model size 400. Other model sizes have outputs which are similar,

apart from a vertical scaling factor. Pi refers to total population, E i to mean energy and Ci to mean value

of the countdown state variable, C. Superscript s relates to prey, w to predators, and c to cell-bound food.

Pc
i and Ci are scaled for presentation purposes. (A) Population, param. set 1. (B) Energy, param. set 1.

(C) Population, param. set 2. (D) Energy, param. set 2.

Collecting and preparing data for statistical analysis274

Let X j0,X j1,X j2, ...,X jm be an output from the jth simulation run (rows under ‘Iterations’ in Table 6). The275

X ji’s are random variables that will, in general, be neither independent nor identically distributed (Law,276

2015), and as such, are not adequate to be used directly in many formulas from classical statistics (which277

are discussed in the next section). On the other hand, let X1i,X2i, ...,Xni be the observations of an output at278

iteration i for n runs (columns under ‘Iterations’ in Table 6), where each run begins with the same initial279

conditions but uses a different stream of random numbers as a source of stochasticity. The X ji’s will now280

be independent and identically distributed (i.i.d.) random variables, to which classical statistical analysis281

can be applied. However, individual values of the output X at some iteration i are not representative of X282

as a whole. Thus, we use the selected f.m.’s as representative summaries of an output, as shown in Table 6,283

under ‘Focal measures’. Taken column-wise, the observations of the f.m.’s are i.i.d. (because they are284

obtained from i.i.d. replications), constituting a sample prone to statistical analysis.285

Regarding steady-state measures, X
ss

and Sss, care must be taken with initialization bias, which may286

cause substantial overestimation or underestimation of the long-term performance (Sanchez, 1999). Such287

problems can be avoided by discarding data obtained during the initial transient period, before the system288

reaches steady-state conditions. The simplest way of achieving this is to use a fixed truncation point, l, for289

9/20

PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1440v1 | CC-BY 4.0 Open Access | rec: 20 Oct 2015, publ: 20 Oct 2015



Statistic Description

max
0≤i≤m

Xi Maximum value.

argmax
0≤i≤m

Xi Iteration where maximum value occurs.

min
0≤i≤m

Xi Minimum value.

argmin
0≤i≤m

Xi Iteration where minimum value occurs.

X
ss
= ∑

m
i=l+1 Xi/(m− l) Steady-state mean.

Sss =

√

∑
m
i=l+1(Xi−X ss)

2

m− l−1
Steady-state sample standard deviation.

Table 5. Statistical summaries for each output X , where Xi is the value of X at iteration i, m denotes the

last iteration, and l corresponds to the iteration separating the transient and steady-state stages.

Rep. Iterations Focal measures

1 X10 X11 . . . X1,m−1 X1,m maxX1 argmaxX1 minX1 argminX1 X
ss
1 Sss

1

2 X20 X21 . . . X2,m−1 X2,m maxX2 argmaxX2 minX2 argminX2 X
ss
2 Sss

2
...

...
...

...
...

...
...

...
...

...

n Xn0 Xn1 . . . Xn,m−1 Xn,m maxXn argmaxXn minXn argminXn X
ss
n Sss

n

Table 6. Values of a generic simulation output (under ‘Iterations’) for n replications of m iterations each

(plus iteration 0, i.e. the initial state), and the respective f.m.’s (under ‘Focal measures’). Values along

columns are i.i.d..

all runs with the same initial conditions, selected such that: a) it systematically occurs after the transient290

state; and, b) it is associated with a round and clear value, which is easier to communicate (Sanchez, 1999).291

Law (2015) suggests the use of Welch’s procedure (Welch, 1981) in order to empirically determine l. Let292

X0, X1, X2, . . ., Xm be the averaged process taken column-wise from Table 6 (columns under ‘Iterations’),293

such that X i = ∑
n
j=1 X ji/n for i = 0,1, . . . ,m. The averaged process has the same transient mean curve as294

the original process, but its variance is reduced by a factor of n. A low-pass filter can be used to remove295

short-term fluctuations, leaving the long-term trend of interest, allowing us to visually determine a value296

of l for which the averaged process seems to have converged. A moving average approach can be used for297

filtering:298

X i(w) =



















∑
w
s=−w X i+s

2w+1
if i = w+1, . . . ,m−w

∑
i−1
s=−(i−1)

X i+s

2i−1
if i = 1, . . . ,w

(5)

where w, the window, is a positive integer such that w 6 bm/4c. This value should be large enough299

such that the plot of X i(w) is moderately smooth, but not any larger. A more in-depth discussion of this300

procedure is available in (Welch, 1981; Law, 2015).301

Statistical analysis of focal measures302

Let Y1,Y2, ...,Yn be i.i.d. observations of some f.m. with finite population mean µ and finite population303

variance σ2 (i.e. any column under ‘Focal measures’ in Table 6). Then, as described by Law (2007, 2015),304

unbiased point estimators for µ and σ2 are given by305

Y (n) =

n

∑
j=1

Yj

n
(6)
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and306

S2(n) =

n

∑
j=1

[Yj−Y (n)]2

n−1
(7)

respectively.307

Another common statistic usually determined for a given f.m. is the confidence interval (c.i.) for Y (n),308

which can be defined in several different ways. The t-distribution c.i. is commonly used for this purpose309

(Law, 2007, 2015), although it has best coverage for normally distributed samples, which is often not the310

case for simulation models in general (Sargent, 1976; Law, 2015) and agent-based models in particular311

(Helbing and Balietti, 2012). If samples are drawn from populations with multimodal, discrete or strongly312

skewed distributions, the usefulness of t-distribution c.i.’s is further reduced. While there is not much to313

do in the case of multimodal distributions, Law (2015) proposes the use of the c.i. developed by Willink314

(2005), which takes distribution skewness into account. Furthermore, c.i.’s for discrete distributions315

are less studied and usually assume data follows a binomial distribution, presenting some issues of its316

own (Brown et al., 2001). As suggested by Radax and Rengs (2010), we focus on providing a detailed317

assessment of the distributional properties of the different f.m.’s, namely whether they are sufficiently318

“normal” such that normality-assuming (parametric) statistical techniques can be applied, not only for c.i.319

estimation, but also for model comparison purposes.320

The normality of a data set can be assessed graphically or numerically (Park, 2008). The former321

approach is intuitive, lending itself to empirical interpretation by providing a way to visualize how random322

variables are distributed. The latter approach is a more objective and quantitative form of assessing323

normality, providing summary statistics and/or statistics tests of normality. In both approaches, specific324

methods can be either descriptive or theory-driven, as shown in Table 7.325

Graphical methods Numerical methods

Descriptive Histogram, Box plot,

Dot plot

Skewness, Kurtosis

Theory-driven Q-Q plot, P-P plot Shapiro-Wilk, Anderson-Darling,

Cramer-von Mises, Kolmogorov-

Smirnov, Jarque-Bera and other tests

Table 7. Methods for assessing the normality of a data set, adapted from Park (2008). Boldface methods

are used in this study.

For this study we chose one method of each type, as shown in boldface in Table 7. This approach not326

only provides a broad overview of the distribution under study, but is also important because no single327

method can provide a complete picture of the distribution.328

Under the graphical methods umbrella, a histogram shows the approximate distribution of a data set,329

and is built by dividing the range of values into a sequence of intervals (bins), and counting how many330

values fall in each interval. A Q-Q plot compares the distribution of a data set with a specific theoretical331

distribution (e.g., the normal distribution) by plotting their quantiles against each other (thus “Q-Q”).332

If the two distributions match, the points on the plot will approximately lie on the y = x line. While a333

histogram gives an approximate idea of the overall distribution, the Q-Q plot is more adequate to see how334

well a theoretical distribution fits the data set.335

Concerning numerical methods, Skewness measures the degree of symmetry of a probability distribu-336

tion about its mean, and is a commonly used metric in the analysis of simulation output data (Sargent,337

1976; Nakayama, 2008; Law, 2015). If skewness is positive, the distribution is skewed to the right, and if338

negative, the distribution is skewed to the left. Symmetric distributions have zero skewness, however, the339

converse is not necessarily true, e.g. skewness will also be zero if both tails of an asymmetric distribution340

account for half the total area underneath the probability density function. In the case of theory-driven341

numerical approaches, we select the Shapiro-Wilk (SW) test (Shapiro and Wilk, 1965), as it has been342

shown to be more effective when compared to several other normality tests (Razali and Wah, 2011). We343

focus on the p-value of this test (instead of the test’s own W statistic), as it is an easily interpretable344
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measure. The null-hypothesis of this test is that the data set, or sample, was obtained from a normally345

distributed population. If the p-value is greater than a predetermined significance level α , usually 0.01 or346

0.05, then the null hypothesis cannot be rejected. Conversely, a p-value less than α implies the rejection347

of the null hypothesis, i.e. that the sample was not obtained from a normally distributed population.348

RESULTS349

A total of 30 replications, r = 1, . . . ,30, were performed with NetLogo 5.1.0 for each combination of350

model sizes (Table 3) and parameters sets (Table 4). Each replication r was performed with a PRNG seed351

obtained by taking the MD5 checksum of r and converting the resulting hexadecimal string to a 32-bit352

integer (the maximum precision accepted by NetLogo), guaranteeing some independence between seeds,353

and consequently, between replications. The list of seeds is provided in Table S1.354

Determining the steady-state truncation point355

Using Welch’s method, we smoothed the averaged outputs using a moving average filter with w = 10.356

Having experimented with other values, w = 10 seemed to be a good compromise between rough and357

overly smooth plots. Figure 3 shows results for model size 400 and both parameter sets. Following the358

recommendations described in section ‘Methodology’, we select the steady-state truncation point to be359

l = 1000 for parameter set 1, and l = 2000 for parameter set 2. These are round values which appear to360

occur after the transient stage. Other model sizes produce similar results, apart from a vertical scaling361

factor, which means that these values of l are also applicable in those cases.362

Analyzing the distributions of focal measures363

The six statistic summaries for each f.m., namely mean, sample variance, p-value of the SW test, skewness,364

histogram and Q-Q plot, are shown in Tables S2.1 to S2.10 (available as supplemental information) for all365

model size and parameter set combinations. The number of bins in the histograms is set to the minimum366

between 10 (an appropriate value for a sample size of 30) and the number of unique values in the data set.367

Much of the information provided in Tables S2.1 to S2.10, namely the p-value of the SW test, the368

skewness, and the Q-Q plots, is geared towards continuous distributions. However, f.m.’s taken from arg369

max and arg min operators only yield integer (discrete) values, which correspond to specific iterations. The370

same is true for max and min of population outputs, namely Ps
i , Pw

i , and Pc
i . This can be problematic for371

statistic summaries taken from integer-valued f.m.’s with a small number of unique values. For example,372

the SW test will not be very informative in such cases, and cannot even be performed if all observations373

yield the same value (e.g. arg max of Pc
i for 800@1, Table S2.4). Nonetheless, distributional properties of374

a f.m. can dramatically change for different model size and parameter set combinations. For example,375

for parameter set 2, observations of the arg max of Pc
i span many different values for model size 200376

(Table S2.7), while for size 1600 (Table S2.10) they are limited to only three different values. Summary377

statistics appropriate for continuous distributions could be used in the former case, but do not provide378

overly useful information in the latter. In order to maintain a consistent approach, our discussion will379

continue mainly from a continuous distribution perspective, more specifically by analyzing how closely380

a given f.m. follows the normal distribution, though we superficially examine its discrete nature when381

relevant.382

Distribution of focal measures over the several size@set combinations383

In the next paragraphs we describe the distributional behavior of each f.m., and when useful, repeat in a384

compact fashion some of the information provided in Tables S2.1 to S2.10.385

maxPs
i : The SW p-value is consistently above the 5% significance level, skewness is usually low and386

with an undefined trend, and the Q-Q plots are mostly follow the y = x line. Although there are borderline387

cases, such as 800@1 and 1600@2, the summary statistics show that the maximum prey population f.m.388

generally follows an approximately normal distribution.389

argmaxPs
i : This f.m. follows an approximately normal distribution for smaller sizes of parameter set 1,390

but as model size grows larger, the discrete nature of the data clearly stands out. This behavior is more391

pronounced for parameter set 2 (which yields simulations inherently larger than parameter set 1), such392

that, for 1600@2, all observations yield the same value (i.e. 70). Table 8 shows, using histograms, how393

the distribution qualitatively evolves over the several size@set combinations.394
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Figure 3. Moving average of outputs for model size 400 with w = 10. Other model sizes produce

similar results, apart from a vertical scaling factor. The dashed vertical line corresponds to iteration l after

which the output is considered to be in steady-state. (A) Population moving average, param. set 1. (B)

Energy moving average, param. set 1. (C) Population moving average, param. set 2. (D) Energy moving

average, param. set 2.

minPs
i : Two very different behaviors are observed for the two parameter sets. In the case of parameter set395

1, this f.m. has a slightly negatively skewed distribution, with some p-values below the 0.05 significance396

threshold, but is otherwise not very far from normality (this is quite visible in some histograms). However,397

for parameter set 2, the data is more concentrated on a single value, more so for larger sizes. Note that398

this single value is the initial number of prey, which means that, in most cases, the minimum number of399

prey never drops below its initial value.400

argminPs
i : This f.m. follows a similar pattern to the previous one, but more pronounced in terms of401

discreteness, namely for parameter set 1. For parameter set 2, sizes 100 and 200, the distribution is402

bimodal, with the minimum prey population occurring at iteration zero (i.e. initial state) or around403

iteration 200, while for larger sizes, the minimum always occurs at iteration zero.404

Ps
i

ss
: The prey population steady-state mean seems to generally follow a normal distribution, the only405

exception being 400@2, in which some departure from normality is observed, as denoted by a SW p-value406

below 0.05 and a few outliers in the Q-Q plot.407

Sss(Ps
i ) : For most size@set combinations this f.m. does not present large departures from normality.408

However, skewness is always positive.409
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Set

Size
100 200 400 800 1600

1

2

Table 8. Histograms for the several size@set combinations of the argmaxPs
i f.m..

maxPw
i : This f.m. presents distributions which are either considerably skewed or relatively normal. The410

former tend to occur for smaller model sizes, while the latter for larger sizes, although this trend is not411

totally clear. The 800@2 sample is a notable case, as it closely follows a normal distribution, with a412

symmetric histogram, approximately linear Q-Q plot, and a SW p-value of 0.987.413

argmaxPw
i : Interestingly, for parameter set 1, this f.m. seems to follow a uniform distribution. This414

is more or less visible in the histograms, but also in the Q-Q plots, because when we plot uniform data415

points against a theoretical normal distribution in a Q-Q plot we get the “stretched-S” pattern which is416

visible in this case (Table 9). For parameter set 2, the distribution seems to be more normal, or even417

binomial as the discreteness of the data starts to stand-out for larger model sizes; the only exception is for418

size 100, which presents a multimodal distribution.419

Set

Size
100 200 400 800 1600

1

2

Table 9. Q-Q plots for the several size@set combinations of the argmaxPw
i f.m..

minPw
i : The minimum predator population seems to follow an approximately normal distribution, albeit420

with a slight positive skewness, except for 800@1, which has negative skewness.421

argminPw
i : This f.m. displays an approximately normal distribution. However, for larger simulations422

(i.e. mainly for parameter set 2) the discrete nature of the data becomes more apparent.423

Pw
i

ss
: The steady-state mean of predator population apparently follows a normal distributions. This424

is confirmed by all summary statistics, such as the SW p-value, which is above 0.05 for all size@set425

combinations.426

Sss(Pw
i ) : Departure from normality is not large in most cases (200@2 and 800@2 are exceptions,427

although the former due to a single outlier), but the trend of positive skewness is again observed for this428

statistic.429

maxPc
i : The maximum available cell-bound food seems to have a normal distribution, although 400@2430

has a few outliers which affect the result of the SW p-value (which, nonetheless, is above 0.05).431

argmaxPc
i : The behavior of this f.m. is again quite different between parameter sets. For the first432

parameter set, the discrete nature of the underlying distribution stands out, with no more than three unique433

values for size 100, down to a single value for larger sizes, always centered around the value 12 (i.e.434

the maximum available cell-bound food tends to occur at iteration 12). For the second parameter set,435

distribution is almost normal for sizes above 200, centered around iteration 218, although its discreteness436

shows for larger sizes, namely for size 1600, which only presents three distinct values. For size 100, most437

values fall in iteration 346, although two outliers push the mean up to 369.5.438
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minPc
i : This f.m. displays an apparently normal distribution for all model sizes and parameter sets, with439

the exception of 800@1, which has a few outliers at both tails of the distribution, bringing down the SW440

p-value barely above the 5% significance level.441

argminPc
i : In this case, the trend is similar for both parameter sets, i.e. the distribution seems almost442

normal, but for larger sizes the underlying discreteness becomes apparent. This is quite clear for parameter443

set 2, as shown in Table 10, where the SW test p-value decreases as the discreteness becomes more visible444

in the histograms and Q-Q plots .445

Stat.

Size
100 200 400 800 1600

SW 0.437 0.071 0.062 0.011 < 0.001

Hist.

Q-Q

Table 10. Three statistical summaries for the several sizes of the argminPc
i f.m. for parameter set 2.

Row ‘SW’ contains the SW test p-values, while the corresponding histograms and Q-Q plots are in rows

‘Hist.’ and ‘Q-Q’, respectively.

Pc
i

ss
: For this f.m. there is not a significant departure from normality. The only exception is for 800@1,446

but only due to a single outlier.447

Sss(Pc
i ) : Like in previous cases, the steady-state sample standard deviation does not stray too far from448

normality, but consistently shows a positive skewness.449

maxE
s
i : For sizes 100 and 200 of both parameter sets, the maximum of the mean prey energy presents a450

positively skewed, lognormal-like distribution. For larger sizes, distributions tend to be more normal-like.451

This trend is clear when analyzing how the p-value of the SW test and the skewness vary for the several452

size@set combinations, as shown in Table 11, namely for sizes 100 and 200, where the former is smaller453

while the absolute value of the latter is larger.454

Set Stat.
Size

100 200 400 800 1600

1
SW 0.159 0.012 0.625 0.672 0.555

Skew. 0.679 0.961 0.521 −0.123 0.196

2
SW < 0.001 0.038 0.515 0.702 0.337

Skew. 1.80 1.07 −0.327 −0.216 0.389

Table 11. p-values for the SW test (row ‘SW’) and skewness (row ‘Skew.’) for the several size@set

combinations of the maxE
s
i f.m..

argmaxE
s
i : For parameter set 1, the distribution is approximately normal for smaller sizes, with the455

underlying discreteness becoming apparent for larger sizes, centering around iteration 49. For parameter456

set 2, the data set revolves around a limited set of unique values (centered at iteration 16), following a457

poisson-like distribution, except for size 100, which displays a bimodal behavior.458

minE
s
i : This f.m. seems to follow an approximately normal distribution.459

argminE
s
i In the case of parameter set 1, this f.m. has distributions with a single value: zero. This460

means that the minimum mean prey energy occurs at the initial state of the simulation. From there461

onwards, mean prey energy is always higher. The situation is notably different for the second parameter462

set, where minimum mean prey energy can occur at several different iterations centered around iteration463

88. Distribution seems to be binomial or Poisson-like.464
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E
s
i

ss
: Although the histograms are not very clear, the Q-Q plots and the p-values from the SW test465

suggest that this f.m. follows a normal distribution.466

Sss(E
s
i ) : This f.m. does not seem to stray much from normality, except in the case of 1600@1 and 200@2,467

which are affected by outliers. The tendency for the steady-state sample standard deviation statistic to468

show positive skewness is again confirmed with these observations (800@1 being the exception).469

maxE
w
i : The maximum of mean predator energy follows an approximately normal distribution, though470

for 100@1 there are a few replications which produce unexpected results.471

argmaxE
w
i : In most cases, this f.m. approximately follows a normal distribution. There are several472

exceptions though. For the second parameter set and sizes above 400, the f.m. starts to display its discrete473

behavior, following a Poisson-like distribution. Less critically, an outlier “ruins” normality for 100@1.474

minE
w
i : Apart from a few outliers with some parameter combinations, this f.m. generally seems to475

follow a normal distribution.476

argminE
w
i : Perhaps with the exception of 100@1 and 200@1, the iteration where the minimum of mean477

predator energy occurs seems best described with a discrete, Poisson-like distribution.478

E
w
i

ss
: This f.m. generally follows a normal distribution. However, 1600@1 shows a salient second peak479

(to the right of the histogram, also visible in the Q-Q plot), affecting the resulting SW p-value, which is480

below the 1% significance threshold.481

Sss(E
w
i ) : This f.m. follows a positively skewed unimodal distribution, in the same line as the steady-state482

sample standard deviation of other outputs. Note the outlier in 200@2, also observed for the Sss(Pw
i ) f.m.,483

which is to be excepted as both f.m.’s are related to predator dynamics.484

maxCi : The samples representing the maximum of the mean C state variable are most likely drawn from485

a normal distribution. Most histograms are fairly symmetric (which is corroborated by the low skewness486

values), the Q-Q plots are generally linear, and the SW p-value never drops below 0.05 significance.487

argmaxCi : For smaller model sizes this f.m. follows a mostly normal distribution, but as with other488

iteration-based f.m.’s, the underlying discreteness of the distribution starts to show at larger model sizes,489

especially for the second parameter set.490

minCi : For most size@set combinations, the minimum of the mean C state variable seems to be491

normally distributed. Nonetheless, a number of observations for 400@2 yield unexpected values, making492

the respective distribution bimodal and distorting its normality (though the respective SW p-value does493

not drop below 0.05).494

argminCi : Like in some previous cases, this f.m. displays different behavior depending on the parameter495

set. For the first parameter set, practically all observations have the same value, 10, which means the496

minimum of the mean C state variable is obtained at iteration 10. Only model sizes 100 and 200 have497

some observations representing iterations 11 and/or 12. Parameter set 2 yields a different dynamic, with498

an average iteration of 216 approximately (except for size 100, which has an average iteration of 373.3499

due to a few very distant outliers). While sizes 200 and 400 follow an approximately normal distribution,500

larger sizes seem to be more fit to be analyzed using discrete distributions such as Poisson or binomial.501

Ci

ss
: This f.m. follows an approximately normal distribution. While most size/parameter combinations502

have a few outliers, only for 800@1 is the existing outlier capable of making the SW test produce a503

p-value below the 5% significance threshold.504

Sss(Ci) : Although passing the SW normality test (p-value > 0.05) in most cases, we again note the505

positive skewness of the steady-state sample standard deviation samples, suggesting that distributions506

such as Weibull or Lognormal maybe a better fit.507

Statistics-wise distribution trends508

Table 12 summarizes the descriptions given in the previous section. It was built by assigning an empirical509

classification from 0 to 5 to each f.m. according to how close it follows the normal distribution for the510

tested size@set combinations. More specifically, individual classifications were determined by analyzing511
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the information provided in Tables S2.1 to S2.10, prioritizing the SW test result (i.e. if the p-value is512

above 0.01 and/or 0.05) and distributional discreteness (observable in the Q-Q plots). This classification513

can be used as a guide to whether parametric or non-parametric statistical methods should be used to514

further analyze the f.m.’s or to compare f.m.’s of different PPHPC implementations. The last row shows515

the average classification of individual outputs for a given statistic, outlining its overall normality.516

Xi

Stat.
max

0≤i≤m
Xi argmax

0≤i≤m

Xi min
0≤i≤m

Xi argmin
0≤i≤m

Xi X
ss

Sss

Ps
i        ###   G### #####          G#

Pw
i     #  G####         ##          G#

Pc
i      G#####         ##          G#

E
s
i     #  ####      G#####          G#

E
w
i         ##      G#####          #

Ci        G###      #####          G#

Stat. wise     G#   ###     G#  ####          G#

Table 12. Empirical classification (from 0 to 5) of each f.m. according to how close it follows the

normal distribution for the tested size@set combinations. The last row outlines the overall normality of

each statistic.

The max and min statistics yield mostly normal distributions, although care should be taken when the517

maximum or minimum systematically converge to the same value, e.g. when they occur at iteration zero.518

Nonetheless, parametric methods seem adequate for f.m.’s drawn from these statistics. The same does519

not apply to the arg max and arg min statistics, which show a large variety of distributional behaviors520

(including normality in some cases). Thus, these statistics are better handled with non-parametric521

techniques. The steady-state mean typically displays distributions very close to normal, probably due522

to central-limit-theorem type effects, as described by Law (2007) for mean or average-based f.m.’s.523

Consequently, parametric methods will most likely be suitable for this statistic. Finally, f.m.’s based on524

the steady-state sample standard deviation display normal-like behavior, albeit with consistently positive525

skewness; in fact, they are probably better represented by a Weibull or Lognormal distribution. While526

parametric methods may be used for this statistic, results should be interpreted cautiously.527

DISCUSSION528

In this paper, the PPHPC model is completely specified, and an exhaustive analysis of the respective529

simulation outputs is performed. Regarding the latter, after determining the mean and variance of the530

several f.m.’s, we opted to study their distributional properties instead of proceeding with the classical531

analysis suggested by simulation output analysis literature (i.e. the establishment of c.i.’s.). This approach532

has a number of practical uses. For example, if we were to estimate c.i.’s for f.m.’s drawn from the steady-533

state mean, we could use t-distribution c.i.’s with some confidence, as these f.m.’s display an approximately534

normal distribution. If we did the same for f.m.’s drawn from the steady-state sample standard deviation,535

the Willink (2005) c.i. would be preferable, as it accounts for the skewness displayed by these f.m.’s.536

Estimating c.i.’s without a good understanding of the underlying distribution can be misleading, especially537

if the distribution is multimodal. The approach taken here is also useful for comparing different PPHPC538

implementations. If we were to compare max or min-based f.m.’s, which seem to follow approximately539

normal distributions, parametric tests such as the t-test would most likely produce valid conclusions.540

On the other hand, if we compare arg max or arg min-based f.m.’s, non-parametric tests, such as the541

Mann-Whitney U test (Gibbons and Chakraborti, 2011), would be more adequate, as these f.m.’s do not542

usually follow a normal distribution.543

However, the scope of the PPHPC model is significantly broader. For example, in (Fachada et al.,544

2015b), PPHPC is reimplemented in Java with several user-selectable parallelization strategies. The goal545

is to clarify which are the best parallelization approaches for SABMs in general. A n-sample statistical546

test is applied to each f.m., for all implementations and strategies simultaneously, in order to verify that547

these do not yield dissimilar results. In (Fachada et al., 2015a), PPHPC is used for presenting a novel548
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model-independent comparison technique which directly uses simulation outputs, bypassing the need of549

selecting model-specific f.m.’s.550

The PPHPC model is made available to other researchers via the source code, in addition to the551

specification presented here. All the data analyzed in this paper is also available as supplemental data.552

PPHPC can be used as a pure computational model without worrying with aspects like visualization and553

user interfaces, allowing for direct performance comparison of different implementations.554

CONCLUSION555

In this paper, we presented PPHPC, a conceptual model which captures important characteristics of556

SABMs. The model was comprehensively described using the ODD protocol, a NetLogo canonical557

implementation was reported, and simulation outputs were thoroughly studied from a statistical perspective558

for two parameter sets and several model sizes. While many ABMs have been published, proper model559

description and analysis is lacking in the scientific literature, and thus this paper can be seen as a guideline560

or methodology to improve model specification and communication in the field. Furthermore, PPHPC561

aims to be a standard model for research in agent-based modeling and simulation, such as, but not limited562

to, statistical model comparison techniques, performance comparison of parallel implementations, and563

testing the influence of different PRNGs on the statistical accuracy of simulation output.564
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1

NetLogo implementation of the PPHPC model.

Figure 1. NetLogo implementation of the PPHPC model.
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Figure 2(on next page)

Moving average of outputs for model size 400 with $w=10$

Moving average of outputs for model size 400 with $w=10$. Other model sizes produce

similar results, apart from a vertical scaling factor. The dashed vertical line corresponds to

iteration $l$ after which the output is considered to be in steady-state. (A) Population moving

average, param. set 1. (B) Energy moving average, param. set 1. (C) Population moving

average, param. set 2. (D) Energy moving average, param. set 2.
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Figure 3(on next page)

Typical model output for model size 400

Figure 2. Typical model output for model size 400. Other model sizes have outputs which are

similar, apart from a vertical scaling factor. $P_i$ refers to total population, $\mean{E}_i$ to

mean energy and $\mean{C}_i$ to mean value of the countdown state variable, $C$.

Superscript $s$ relates to prey, $w$ to predators, and $c$ to cell-bound food. $P_i^c$ and

$\mean{C}_i$ are scaled for presentation purposes. (A) Population, param. set 1. (B) Energy,

param. set 1. (C) Population, param. set 2. (D) Energy, param. set 2.
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