113 Times Tomecat: a dataset

Giuseppe Destefanis!, Mahir Arzoky? Steve Counsell?, Stephen Swift?, Marco
Ortu®, Roberto Tonelli®, and Michele Marchesi®

! University of Hertfordshire,
g.destefanis@herts.ac.uk
2 DIEE, University of Cagliari,
|marco.ortul|michele|roberto.tonelli|@diee.unica.it
3 Brunel University, Uxbridge, UK
Imahir.arzoky|steve.counsell|stephen.swift|@brunel.ac.uk

Abstract. Measuring software to get information about its properties
and quality is one of the main issues in modern software engineering. The
aim of this paper is to present a dataset of metrics associated to 113 ver-
sions of Tomcat. We describe the dataset along with the adopted criteria
and the opportunities of research, providing preliminary results. This
dataset can enhance the reliability of empirical studies, enabling their
reproducibility, reducing their cost, and it can foster further research on
software quality and software metrics.

Key words: tomcat, software metrics, software quality

1 Introduction

Software metrics were created in order to improve the software development
process, with the goal of measuring and controlling its essential parameters.
Even if the meaning is (or was) used in a broad sense, software metrics generally
refer to: product, process, resource, or project measurements.

We restrict our attention to the first meaning, dealing with product metrics
alone which may be distinguished in size metrics, complexity metrics and quality
metrics, generally related to each other. A milestone in the definition of a useful
set of software metrics was the work of Chidamber and Kemerer [2], the first
trial in addressing the problem of implementing a new suite of metrics for Object
Oriented (OO) design.

Measurement is fundamental during each step of software development, and
having the possibility to perform analysis on a well-defined corpus of systems is
definitely an added value. Reproducibility, reliability and applicability of results
or findings can be significantly improved by the use of datasets of software sys-
tems. In general, it is possible to find several source of datasets. The International
Conference on Predictive Models and Data Analytics in Software Engineering
(Promise)lﬂ strongly encourages researchers “to publicly share their data in order

! http://promisedata.org

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

g.destefanis
|marco.ortu|michele|roberto.tonelli|
|mahir.arzoky|steve.counsell|stephen.swift|
http://promisedata.org

2 G.Destefanis et. al

to provide interdisciplinary research between the software engineering and data
mining communities”, while the Working conference on Mining Software Repos-
itories (MSR)EL hosts a data-showcase session in which researchers are called on
to illustrate and share their datasets.

Modern software systems are made by thousands of classes linked by thou-
sands of dependency relationships and by millions of lines of code. The implica-
tions of measurement for the software industry can be very large and can range
from software maintainability costs, to defect detection strategies, to resources
allocation.

In this work, we present a dataset of 53 metrics taken from 113 versions
of Tomca‘ﬂ an open source Java Servlet Container developed by the Apache
Software Foundation (from version 3.3.2 to version 8.0.9) and heavily used in
software engineering research [I4].

The dataset is openly available at the following link https: //bitbucket.
org/ giuseppedestefanis/tomcatdataset| and contains a SQL file, two SQL
views, the source code of all the 113 versions of Tomcat considered and a manual
which contains examples on how to use the dataset.

This paper is structured as follows. In Section 2, we illustrate the process
of construction and the content of the dataset. In Section 3, we propose several
examples on how to use the dataset (along with some of the research opportu-
nities) and present preliminary analysis obtained from it. We then discuss the
related work in Section 4 and finally we draw some conclusions (Section 5).

2 Dataset

The goal of this work is to provide a large longitudinal dataset containing soft-
ware metrics calculated for 113 versions of Tomcat to allow other researchers to
perform empirical and predictive studies using a well known and often analyzed
system.

Other datasets provided in the past [I2, [I6] have not contained test classes;
they have been considered as outside the system. In this dataset, we voluntarily
decided to maintain test classes, since the role that these classes play in the
development process and the inextricable relationship they have with production
code is an area that has been largely neglected in recent years [15} [17]. Often, the
number of test classes is comparable to that (or even exceed that) of production,
so the question why they receive such poor attention is highly relevant to industry
4.

The first column of the database contains information about the entities for
which metrics are provided. Depending on which kind of metric is considered, it
is possible to obtain information about the dimension of a given release of the
system, its complexity and OO properties. To calculate these metrics, we used
Understand 3.1 (build 766)@ We computed all the software metrics available in

2 http://msrconf .org
3 http://tomcat.apache.org
4 Understand. Scitools.com: https://scitools.com

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

https://bitbucket.org/giuseppedestefanis/tomcatdataset
https://bitbucket.org/giuseppedestefanis/tomcatdataset
http://msrconf.org
http://tomcat.apache.org
https://scitools.com

113 Times Tomcat 3

Understand which are categorized in the following groups: Complexity Metrics
(e.g., McCabe Cyclomatic)ﬂ Volume Metrics (e.g, Lines of Code)ﬂ 00 (e.g.,
Coupling Between Object Classes)m For each system, we provided metrics for 3
different levels of granularity: system, file and class level, considering a total of
61 categories. For example, in the 113 releases of Tomcat, there are a total of 202
Abstract Classes, 153656 Files (which can contain one or more classes), 122276
Public Classes, 150 Generic Interfaces, etc.. Table 1 shows some statistics about
the different type of classes considered (and found in the 113 versions of Tomcat)
by the tool. Table 2 shows statistics about the different type of interfaces, while
Table 3 about the different type of methods. Column 1 shows the name of the
category, while column 2 the number of instances of that specific category found
in our dataset.

Kind #
Package 295
File 153656
Abstract Class 202
Class 26319
Generic Class 2
Private Abstract Class 351
Private Class 5877
Private Generic Class 13
Private Static Abstract Class 103
Private Static Abstract Generic Class 188
Private Static Class 9593
Private Static Generic Class 122
Protected Class 5943
Protected Generic Class 175
Protected Static Abstract Class 97
Protected Static Abstract Generic Class| 79
Protected Static Class 4070
Protected Static Generic Class 124
Public Abstract Class 7947
Public Abstract Generic Class 370
Public Class 122276
Public Generic Class 634
Public Static Abstract Class 207
Public Static Abstract Generic Class 30
Public Static Class 14887
Public Static Generic Class 12
Static Class 2260

Table 1: Class level

5 https://scitools.com/support/metrics_list/?metricGroup=complex
5 https://scitools.com/support/metrics_list/?metricGroup=count
" https://scitools.com/support/metrics_list/?metricGroup=oo

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

https://scitools.com/support/metrics_list/?metricGroup=complex
https://scitools.com/support/metrics_list/?metricGroup=count
https://scitools.com/support/metrics_list/?metricGroup=oo

4 G.Destefanis et. al

Kind #
Interface 180
Generic Interface 150
Public Interface 18702

Public Generic Interface | 53
Private Generic Interface| 15
Private Interface 57
Protected Interface 63

Table 2: Interface level

Kind #
Method 16848
Public Generic Method 1252
Public Implicit Method 1
Public Method 1267971
Abstract Generic Method 76
Abstract Method 15184
Private Method 87604
Private Static Generic Method 214
Private Static Method 14238
Public Static Generic Method 41
Public Static Method 80377
Static Method 7326
Protected Method 130711
Protected Static Method 5765
Protected Abstract Method 4285
Public Abstract Generic Method| 193
Public Abstract Method 146569

Table 3: Method level
The dataset contains also information about 295 Packages, 12466 Construc-

tors, 253 Enum Type, 918 Public Enum Type, 582 Private Enum Type, 4150
Private Constructor, 2663 Protected Constructor, 188 Protected Enum Type,
1997 Public Annotation, 117417 Public Constructor and 4354 Type Variable.
We decided to maintain all categories provided by Understand in the generic
database and to provide a set of sql views to facilitate the use of the dataset.
Namely: TomcatView: contains an additional column, called Version, which in-
dicates the version the entity belongs to, and publicClasses, view which contains
only Public Classes from the 113 versions of Tomcat.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

113 Times Tomcat 5
3 Querying the Dataset

The SQL query in Figure 1 provides the number of Public Classes per version.
The figure has been plotted using Rﬂ It is a very simple query which illustrates
what kind of information is possible to obtain from the dataset. The figure shows
that the number of public classes over time presents a crescent linear trend
(diagonal line), and it is also possible to localise points in which the number of
public classes drops. Those points could indicate possible major refactoring or
restructuring of the system.

In order to better understand the drop of the number of public classes in cer-
tain releases, as shown in Figure 1, and to investigate if refactoring has occurred,
it could be useful to study the average dimension of the classes per release. Fig-
ure 2 shows the results of a SQL query which provides the average dimension (in
terms of LOC) of the public classes, per release. It is possible to notice that it is
immediately possible to compare the graph in Figure 1 and the graph in Figure
2, and that when the number of public classes decreases, the average dimension
of a class increases (and vice-versa).

SELECT Version, count(kind) as Number0fPC
FROM TomcatView

where kind=’Public Class’

group by Version

Number of Public Classes per release

1200 1600

800

400

0 20 40 60 80 100

Fig. 1: Number of Public Class per release

This fact reinforces the hypothesis of major refactoring in which several
classes are restructured (moving methods for example), and therefore the in-

8 https://www.r-project.org

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

https://www.r-project.org

6 G.Destefanis et. al

creased average of LOC per class can find justification in this sense. However,
these are only hypotheses which have to (and can) be deeply analysed and con-
firmed using our dataset. The average does not provide precise information, but
in this case it has been used to present the potential of our dataset.

SELECT Version, avg(CountLineCode) as AvgLOC
FROM TomcatView

where kind=’Public Class’

group by Version

Avg LOC Public Classes per release

150
|

130
|

0 20 40 60 80 100

Fig. 2: Average LOC per Public Class per release

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

113 Times Tomcat 7

SELECT Version, count(Name) as NumberOfPC

FROM TomcatView

where kind=’Public Class’ and Name like ’%test’’
group by Version

Number of Test Classes per release

of Test Class
150 250 350

50

release

Fig. 3: Number of Test Class per release

The SQL query in Figure 3 provides the number of Public Classes, identified
as such if they contained the word test in the class name. Another fact which
is possible to observe analyzing the dataset and investigating test classes is the
alarming difference in number of comment lines between the sets of test and
production classes.

Table 4 illustrates the difference in ratios of comment lines between the two
types of class, showing mean, median and standard deviation (Std. Dev.) values
for the classes in each set. Clearly, from the table, the mean and median values
differ significantly. Production classes have a propensity for higher numbers of
comment lines than that of test classes, with a mean of over 4 times as great.
The median of 0.08 for test classes is dwarfed by the value of 0.39 for production
classes. The highest ratio in the set of production classes was 11.50 and, for the
set of test classes, just 1.5 (illustrating the gulf).

Class Type |[Mean|Median|Std. Dev. #
Test classes | 0.14 | 0.08 0.21
Prod. classes| 0.61 | 0.39 0.79

Table 4: Summary comment ratio statistics

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

8 G.Destefanis et. al

In theory, we might expect both test and production classes to show similar
comment line characteristics since they have a synergistic relationship; this does
not seem to be the case at first. One suggestion for the discrepancy might be
that production classes were simply larger than test classes and that this factor
accounts for the higher number of comment lines and higher comment ratio in
the former found in Table 4.

Table 5 shows the same values as in Table 4, but for lines of executable
code. While the mean values in Table 4 show a relatively large difference, the
median values for both sets of classes are not too dissimilar (53 lines of code
for test classes versus 60 lines of code for production classes). The difference in
the mean values (of 97.76 and 119.36) can be accounted for by a small number
of very large production classes skewing the means accordingly. For example,
16 production classes exceeded 1000 lines of code, compared with just 3 for the
set of test classes. Clearly, the disparity between the numbers of comment lines
(between test and production classes) is not evident from, or explained by, the
size of class. Further analysis could be made considering metrics for coupling,
cohesion and code nesting.

Class Type | Mean |Median|Std. Dev. #
Test classes | 97.76 53 143.59
Prod. classes|{119.36| 60 179.27

Table 5: Summary lines of code statistics
The metrics can be compared with other measurements of different nature
taken from the associated repositories, for example social metrics (as the dataset
provided by Ortu et al. [I3]) or the corresponding Issue Tracking Systems (e.g.
number of issues, defects, etc.), or for patterns detection[bl [3]. Additionally, it
could be interesting to investigate if and how metrics change among different
components of the same system.

4 Related Work

Reproducibility, reliability and applicability of results or findings can be signif-
icantly improved by the use of datasets of software systems. Tomcat has been
largely used for empirical software engineering studies [6], 10} [7], [8] [0, 14} 18] 20].
For example, Okutan et al. [II] built a Bayesian network among metrics and
defectiveness, to measure which metrics were more important in terms of their
effect on defectiveness and to explore the influential relationships among them.
The authors used 9 datasets from the teraPromise data repositoryﬂ consider-
ing Tomcat among other systems, and showed that RFC, LOC, and LOCQ are
more effective on defect proneness. Canfora et al.[l] proposed a multi-objective
approach for cross-project defect prediction evaluating 10 datasets, from the ter-
aPromise data repository and considering Tomcat, based on a multi-objective

 http://openscience.us/repo/

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

http://openscience.us/

113 Times Tomcat 9

logistic regression model built using a genetic algorithm. The proposed approach
allows software engineers to choose predictors achieving a compromise between
number of likely defect-prone artifacts and LOC to be analyzed/tested.

Weissgerber et al. [I9] used Tomcat, among other systems, to describe three
visualization techniques which help to examine how programmers work together,
providing very interesting insights on what happens during the development
process of a system.

As already stated, few studies have investigated the test-production features
of a system’s code and the need to explore systems that have evolved is greater
than ever and with this longitudinal dataset we encourage works in this direction.

5 Conclusion

In this work, we presented a dataset of 53 metrics associated with 113 versions
of Tomcat (from version 3.3.2 to version 8.0.9) along with the source code of
all the versions, describing the motivation that led us to build the corpus and
providing a description of the dataset and preliminary results obtained querying
it. The main goal of the dataset is to provide a benchmark for empirical and
predictive longitudinal studies that allows reproducibility of results and lowers
the cost of experiments.

References

1. G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella.
Multi-objective cross-project defect prediction. In Software Testing, Verification
and Validation (ICST), 2013 IEEE Sixth International Conference on, pages 252
261. IEEE, 2013.

2. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476-493, 1994.

3. G. Concas, G. Destefanis, M. Marchesi, M. Ortu, and R. Tonelli. Micro patterns in
agile software. In International Conference on Agile Software Development, pages
210-222. Springer Berlin Heidelberg, 2013.

4. S. Counsell, G. Destefanis, X. Liu, S. Eldh, A. Ermedahl, and K. Andersson. Com-
paring test and production code quality in a large commercial multicore system. In
Software Engineering and Advanced Applications (SEAA), 2016 42th Euromicro
Conference on, pages 86-91. IEEE, 2016.

5. G. Destefanis, R. Tonelli, E. Tempero, G. Concas, and M. Marchesi. Micro pattern
fault-proneness. In Software engineering and advanced applications (SEAA), 2012
38th EUROMICRO conference on, pages 302-306. IEEE, 2012.

6. S. Hussain, J. Keung, A. A. Khan, and K. E. Bennin. Performance evaluation of
ensemble methods for software fault prediction: An experiment. In Proceedings
of the ASWEC 2015 24th Australasian Software Engineering Conference, pages
91-95. ACM, 2015.

7. L. W. B. X. G. Kaiser and R. Passonneau. Bugminer: Software reliability analysis
via data mining of bug reports. delta, 12(10):09-0500, 2011.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

10 G.Destefanis et. al

8. S. Lal and A. Sureka. Logopt: Static feature extraction from source code for
automated catch block logging prediction. In Proceedings of the 9th India Software
Engineering Conference, pages 151-155. ACM, 2016.

9. P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam. Empirical evaluation
of defect projection models for widely-deployed production software systems. In
ACM SIGSOFT Software Engineering Notes, volume 29, pages 263-272. ACM,
2004.

10. M. Monperrus and M. Martinez. Cvs-vintage: A dataset of 14 cvs repositories of
java software. 2012.

11. A. Okutan and O. T. Yildiz. Software defect prediction using bayesian networks.
Empirical Software Engineering, 19(1):154-181, 2014.

12. M. Orrd, E. Tempero, M. Marchesi, R. Tonelli, and G. Destefanis. A curated
benchmark collection of python systems for empirical studies on software engi-
neering. In Proceedings of the 11th International Conference on Predictive Models
and Data Analytics in Software Engineering, page 2. ACM, 2015.

13. M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, and
B. Adams. The emotional side of software developers in jira. 2016.

14. B. Robinson and P. Francis. Improving industrial adoption of software engineering
research: a comparison of open and closed source software. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, page 21. ACM, 2010.

15. S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @ tcomment: Testing
javadoc comments to detect comment-code inconsistencies. In Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on,
pages 260-269. IEEE, 2012.

16. E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. The qualitas corpus: A curated collection of java code for empirical
studies. In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 336-345. IEEE, 2010.

17. A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring test code.
In Proceedings of the 2nd international conference on extreme programming and
flexible processes in software engineering (XP2001), pages 92-95, 2001.

18. F. Van Rysselberghe and S. Demeyer. Mining version control systems for facs
(frequently applied changes). In 26th International Conference on Software
Engineering, Edinburgh, Scotland, pages 48-52, 2004.

19. P. Weissgerber, M. Pohl, and M. Burch. Visual data mining in software archives
to detect how developers work together. In Mining Software Repositories, 2007.
ICSE Workshops MSR’07. Fourth International Workshop on, pages 9-9. IEEE,
2007.

20. T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 91-100. ACM, 2009.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.26491v1 | CC BY 4.0 Open Access | rec: 8 Feb 2018, publ: 8 Feb 2018

	113 Times Tomcat
	Authors' Instructions
	Introduction
	Dataset
	Querying the Dataset
	Related Work
	Conclusion
	References

