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Abstract

While privacy preservation of data mining approaches
has been an important topic for a number of years, privacy
of social network data is a relatively new area of interest.
Previous research has shown that anonymization alone may
not be sufficient for hiding identity information on certain
real world data sets. In this paper, we focus on understand-
ing the impact of network topology and node substructure
on the level of anonymity present in the network. We present
a new measure, topological anonymity, that quantifies the
amount of privacy preserved in different topological struc-
tures. The measure uses a combination of known social net-
work metrics and attempts to identify when node and edge
inference SMPCes arise in these graphs.

1 Introduction

Social network analysis has emerged as a key analysis
technique for sociologists, anthropologists, biologists and
economists. Typically when we consider social network
data, we view it as data that is available to the public. How-
ever, many social networks are now being automatically ex-
tracted from private data sources. Examples include social
networks derived from corporate email servers, customer
referral databases, personal medical records, and disease
population databases. Assuming only a simple network
with a single node type and a single edge type, we are inter-
ested in knowing the level of privacy preserved for different
network topologies. Are nodes obscured more in a network
containing a large number of triangles or stars? Are rela-
tionships between nodes more apparent when local neigh-
borhoods have certain topological structures? Can we use
the topological structure to measure the level of anonymity
in the network? Finally, what measures are reasonable for
quantifying privacy in different topologies? To study some
of the behaviors associated with social networks, how ac-
curate do the network measures need to be for data mining

applications, e.g. clustering, community discovery, promi-
nent node identification, etc.? While we anticipate many
of these topics will be explored over the next few years,
the goal of this paper is to begin the conversation by ana-
lyzing known network topologies in the context of privacy
preservation and proposing a measure for quantifying the
privacy level of the network. This measure can also be used
to evaluate the effectiveness of different perturbation strate-
gies, i.e. does the removal of a particular edge decrease the
level of anonymity for a particular group of nodes?

This paper is organized as follows. The next section
overviews some of the related literature. We then define
privacy breaches for both nodes and edges in section 3 and
discuss graph topology measures in that context. In sec-
tion 4 we introduce our topological anonymity measure and
describe it using a simple example. Section 5 presents ex-
periments where we evaluate topological anonymity on two
synthetic data sets and one real world data set. Finally, con-
clusions and future directions are presented in section 6.

2 Related Literature

Very little has been written on privacy preservation of
social network data. Research in this area began using an
interactive approach, where the user submits a question to
a database and receives a noisy version of the actual result
[4]. Two recent papers focusing on non-interactive privacy
preservation of social networks investigate different types
of privacy breaches [3, 6]. Backstrom et. al. show that
naive anonymization (replacing actual values of identifying
attributes with synthetic ones) of both passive and active
attacks can lead to significant breaches, where an active at-
tack involves a malicious adversary who ’plants’ nodes into
the network prior to anonymization. Hay et. al. also show
that naive anonymization does not always prevent inference
related privacy breaches [6]. In that paper, they use ran-
dom perturbation to delete and insert edges. While these
papers discuss the general impact of topology on privacy,
they do not analyze the ’obscuring’ ability of different topo-
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logical structures. By understanding this relationship, users
can gain insight into the level of privacy anonymity alone
can provide for social networks.

K-anonymity was introduced for privacy preservation of
independent, unlinked data records. Each individual should
not be distinguishable fromk − 1 other individuals [7].
We mention this line of work since others have described
network privacy in terms of k-anonymity. However, be-
cause our nodes are not independent and are linked together,
we believe k-anonymity as identified in [7] is difficult to
achieve in graphs where dependencies exist in the data. Two
nodes that are indistinguishable across some node structural
metrics, does not guarantee that they are across other ones,
particularly path related measures across the network. How-
ever, if we limit anonymity to local neighborhood structure
of a node, k-anonymity can be an important approximation.

3 Measuring privacy breaches in social net-
works

In this paper, we consider a basic uni-mode social net-
work G containing a set of nodesV of a single type and
a set of edgesE of a single type. Formally,G = (V, E),
whereV = {v1, v2...vn} andE = {(vi, vj) | vi,vj ∈ V, i 6=
j, 1 ≤ i, j ≤ n}. Examples include people connected by
friendship, email, co-membership on a team, or colleagues
at work.

3.1 Local neighborhood privacy breaches

We begin by describing two local neighborhood privacy
breaches, a node identity breach and an edge inference
breach. Since we are interested in breaches based on topo-
logical structure, our focus is on passive adversaries that do
not have access to the data before it is released. The adver-
sary knows who he is connected to, but is not certain if his
neighbors know each other.

A node identity breach occurs if the label of a known
network participant is determined after the graph has been
anonymized and privatized. In Figure 1, if an adversary
can label any of the nodes with complete certainty, the node
position in the network is then known and a node identity
breach has occurred.

Suppose that participantvx is determined to be one of
p possible actors. Apartial node identity breach occurs
if p < ε, whereε is a threshold for the required level of
anonymity for every node in the network. Here, the level of
anonymity refers to the position of the node in the graph. If
a node has a unique structural location in the graph, then the
likelihood of labelling the node increases. For our example
in Figure 1, if a connection exists between nodesB andC,
nodesA andD are indistinguishable after anonymization.

They both maintain the same position in the graph. There-
fore, if the adversary is searching for nodeA, i.e. a node
connected to two other nodes, he can narrow it down to one
of two nodes based on the graph structure. Ifε = 2, a node
identity breach does not occur. Ifε is greater than two, a
partial node identity breach has occurred. Determining the
threshold or the level of anonymity that is reasonable is de-
pendent on the needs of those releasing the data set.

An edge inference breachoccurs if an adversary is able
to determine whether or not two of its neighbors have an
edge between them. For example, nodeA is connected to
nodesB andC in Figure 1. An edge inference breach oc-
curs ifA determines whether or not an edge exists between
nodesB andC.

Figure 1. Social network example 1

3.2 Using social network metrics to indi-
cate privacy

There are a number of measures we can use to locate
node and edge position in the network based on graph the-
ory [5]. Sociologists have also proposed tangential met-
rics that can be used to characterize and understand social
networks. A common set of measures used for social net-
work analysis are node centrality and neighborhood mea-
sures. For a detailed discussion of these measures, we refer
you to [8]. In this paper, we will use a combination of two
node and edge position metrics as the basis for evaluating
the ’hiding ability’ of a network’s topology - degree and
clustering coefficient:

• Degreedeg(vi) - The number of nodes directly con-
nected tovi. A node with high degree represents a
well-connected individual in the network, i.e., one that
has many direct relationships with other individuals.
In Figure 1,deg(A) = 2.

• Clustering coefficientCC(vi) - The clustering coef-
ficient of nodevi is a measure of the likelihood that
vi’s neighbors know each other. It is the fraction of
edges that exists betweenvi’s immediate neighbors di-
vided by the possible number of edges that could exist
[9]. The higher the clustering coefficient of a node, the
more densely connected, e.g. ’clique-like’, the local
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neighborhood of the node. In Figure 1,CC(A) = 1
if an edge exists between nodesB andC. If no edge
exists,CC(A) = 0.

We will use these two network metrics to determine the
’position’ of each node in the graph. We say that a nodevi

is hiddenif there are at leastε other nodes in the network
with the same degree,deg(vi). However, even if a node is
hidden, an edge inference breach may occur. We say that
an edge inference isavoidedif nodes with the same degree
have different immediate neighborhood structures, i.e. clus-
tering coefficients.

In Figure 2, nodesA andD both have a degree of 2. Be-
cause the degree is greater than one, some node anonymity
exists. Suppose the adversary is nodeA and he is trying to
determine ifB andC know each other. In an unlabelled
graph, the adversary may have one of two positions (A’s or
D’s) in Figure 2. Because the neighbors have an edge be-
tween them in one case (nodeB is connected to nodeC)
and not the other (nodeC is not connected to nodeE), the
adversaryA cannot be certain if nodesB andC are con-
nected. A network that has a topology containing this type
of node overlap and edge structure diversity throughout is
more private than one that does not. Using this substructure
information, we now propose a measure that quantifies the
amount of anonymity in the structure of the network.

Figure 2. Social network example 2

4 Topology anonymity

When defining the level of anonymity associated with a
social network, we consider variations of degree and clus-
tering coefficient. We defineDa to be the set of nodes with
degreea.

Da = {vi | deg(vi) = a ∀ vi ∈ V }

This degree setcontains all the nodes with a distinct de-
gree values in the network. In Figure 2,D1 = {E},
D2 = {A,B,D}, andD3 = {C}. |Da| represents the
number of nodes in the set. For our example,|D1| = 1,

|D2| = 3, and |D3| = 1. As the number of nodes in
Da increases, node anonymity also increases. We useD
to represent the list of degree sets in the network,D =
{D1, D2, D3, ...Dmax(deg(G))}. Here,Dmax(deg(G)) is the
set of nodes with the maximum degree in the networkG.

To compare the local neighborhood of nodes with the
same degree, we introduce a boolean measure,CC dif that
assigns a value based on the variance in the clustering coef-
ficients of nodes in a degree set.

CC difa =
0 if var(CC(Da)) = 0
1 if var(CC(Da)) > 0

If the variancevar of the clustering coefficients for nodes
of degreea in degree setDa is zero, thenCC difa is
zero. Otherwise, it is one. To keep our measure simple,
we do not consider the level of the variance in the degree
set. One could change the threshold, e.g.,CC difa = 0 if
var(CC(Da)) < δ whereδ represents a small, unallowable
variance. While this may be useful, we leave that for future
work. If there is only one node inDa, the variance is un-
defined and cannot be calculated. In those cases, the node
and edges in question are not hidden from the adversary and
CC difa = 0. For the network in Figure 2,CC dif1 = 0,
CC dif2 = 1, andCC dif3 = 0.

We now integrate the degree set node information and
the local neighborhood variance of a degree set into a single
network privacy measure that enables the user to determine
whether or not the topological structure of the network suf-
ficiently obscures local node and edge positions.

Definition 1 Topological anonymity (ta) represents the
level of obscurity in the structure of a connected network
where the number of nodes is at least three,n ≥ 3.

ta =

∑max(deg(G))
i=1 (|Di| × CC difi)−

∑ε−1
j=1 |Dj |

n

The first component of the measure sums the product of
the degree set and the boolean clustering coefficient vari-
ance. Then all the degree sets containing fewer thanε mem-
bers are subtracted. Finally, to normalize the value, we di-
vide by the number of nodes in the network. A topological
anonymity value close to -1 is associated with a network
having a large number of nodes in degree sets less thanε.
As the value ofta increases, the hiding ability of the net-
work structure increases. A topological anonymity value of
1 indicates a network that does not contain basic node iden-
tity breaches or edge inference breaches.

In order to simplify the metric, we assume that the graph
is connected and that there are at least three nodes in the
network. Extensions for graphs that contain multiple dis-
connected components is straightforward, but outside the
scope of this paper.
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Figure 3. Varying values for ta - Upper left: ta = −5/6; Lower left: ta = 0; Right: ta = 0.62

Figure 3 shows three different networks and their corre-
spondingta values. We setε = 2 for all the networks. The
network in the upper left corner is a ’star’ network. Here,
the topological anonymity value is negative (−5/6) since
there are only two degree sets and both contain breaches.
Degree setD1 has five members, but has no variance in the
clustering coefficients. Degree setD5 has only one mem-
ber, so|D5| < ε. The network in the lower left corner is
a fully connected network, whereta = 0. Here, there is
not a node anonymity breach, but every node has an edge
inference breach, i.e. the variance of the clustering coeffi-
cients is zero. Finally, the network on the right has a positive
ta value. Intuitively, this results since every degree set has
more thanε members and every degree set except one has
variance in its edge connectivity structure.

The topological anonymity measure gives us a way to
measure the level of anonymity of the connectivity struc-
ture of a network and provides users with insight into the
obscuring power of the network topology.

Figure 5. Political Blogs Network

5 Privacy evaluation of topological structures

In this section we analyze our measure in the context
of two random graphs and one real world data set. Figure
4 shows an example of two random graphs. On the left
is an Erd̈os-Renyl random graph where the degree of the
nodes in the network follow a binomial distribution. On
the right is an example of a scale free network in which the
degree distribution follows a power law distribution. We
chose a scale free network because the degree of nodes in
many social networks has been shown to follow a power
law distribution [2]. Both of these random networks have
100 nodes and an average degree of approximately 12. Our
third data set, shown in Figure 5 is a political blog network
data set [1]. Here links exist between blog sites based on a
crawl of the front page of each blog. For this analysis, we
only include blog sites with at least one link in the network.
There are 1224 nodes and the average degree is 27.

Figure 6 shows the comparison of the topological
anonymity measure for the synthetic networks and the po-
litical blog network. The x-axis showsε values and the y-
axis showsta values for increasing values ofε. We see
that for the scale free network topological anonymity de-
creases rapidly asepsilon increases to only 4. Recall, that
an epsilon value of 4 means that 4 nodes must have the
same degree for anonymity to exist. On the other hand,
the Erd̈os-Renyl random graph maintains a high topological
anonymity asε increases. Given the underlying binomial
distribution, this is not surprising. Finally, the political blog
network has poor anonymity as well. Its degree distribution
is closer to that of a scale free network. Looking at values
of topological anonymity gives insight into how resilient
our network is to privacy breaches. An important use of
this measure is for evaluating how well different anonymity
schemes work. For example, if the topological anonymity
of a network is 0.1 and a proposed perturbation algorithm
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Figure 4. Random Networks - Left: Binomial distribution; Right: scale free distribution on right

increases the value to 0.2, users can evaluate whether the
cost of perturbation is enough for the level of improvement
in theta value.

Figure 6. Comparison of Topological
Anonymity

6 Conclusions and future directions

In this paper we present a metric (topological anonymity)
that can be used to understand the level of anonymity in a
social network based on the topology of the network. The
metric is based on well known graph and social network
topology measures, degree and clustering coefficient. Our
notion of anonymity is based on two types of breaches, a
node anonymity breach and an edge inference breach. If ei-
ther of those local neighborhood breaches occur, the topo-
logical anonymity measure decreases.

We show that some topologies have more redundancy
in them than others. For example, a random graph based
on a binomial distribution of the degree of the node has a
higher topological anonymity value than one based on a
power law distribution. When analyzing graph structure,

we see that a highly symmetric topology leads to edge in-
ference breaches. A topology that is not symmetric enough
leads to node identity breaches. Topological anonymity,ta
attempts to balance this conflict by taking both node degree
and clustering coefficient into account.

Now that we can identify the privacy issues, what algo-
rithms should we use to efficiently make the network more
resilient? What properties should be maintained in the net-
work to get an approximation of the network that is mean-
ingful for social network analysis applications and graph
mining? How do we maintain the anonymity level when the
topology of a given social network is changing? There are
a lot of questions that still remain and a number of future
directions that can be explored.
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