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Abstract. Statistical machine learning has revolutionized computer vision. Sys-
tems trained on large quantities of empirical data can achieve levels of robustness
that far exceed their hand-crafted competitors. But this robustness is in a sense
“shallow” since a shift in context to a situation not explored in the training data
can completely destroy it. This is not an intrinsic feature of the machine learning
approach, but rather of the rigid separation of the powerfully adaptive training
phase from the final cast-in-stone system. An alternative this work explores is to
build “deep” systems that contain not only the trained-up perceptual modules, but
the tools used to train them, and the resources necessary to acquire appropriate
training data. Thus, if a situation occurs that was not explored in training, the
system can go right ahead and explore it. This is exemplified through an object
recognition system that is tightly coupled with an “active segmentation” behavior
that can discover the boundaries of objects by making them move.

1 Introduction

The goal of this work is to build a perceptual system for a robot that integrates useful
“mature” abilities, such as object localization and recognition, with the deeper devel-
opmental machinery required to forge those competences out of raw physical experi-
ences. The motivation for doing so is simple. Training on large corpora of real-world
data has proven crucial for creating robust solutions to perceptual problems such as
speech recognition and face detection. But the powerful tools used during training of
such systems are typically stripped away at deployment. For problems that are more
or less stable over time, such as face detection in benign conditions, this is acceptable.
But for problems where conditions or requirements can change, then the line between
training and deployment cannot reasonably be drawn. The resources used during train-
ing should ideally remain available as a support structure surrounding and maintaining
the current perceptual competences. There are barriers to doing this. In particular, an-
notated data is typically needed for training, and this is difficult to acquire online. But
that is the challenge this work addresses. It will show that a robotic platform can build
up and maintain a quite sophisticated object localization, segmentation, and recognition
system, starting from very little.



2 Theplace of perception in Al and robotics

If the human brain were a car, this message would be overlaid on all our mental reflec-
tions: “caution, perceptual judgements may be subtler then they appear”. Time and time
again, the difficulty of implementing analogues of human perception has been underes-
timated by Al researchers. For example, the Summer Vision Project of 1966 at the MIT
Al Lab apparently expected to implement figure/ground separation and object recog-
nition on a limited set of objects such as balls and cylinders in the month of July, and
then extend that to cigarette packs, batteries, tools and cups in August [19]. That “blind
spot” continues to the current day. But there has been progress. Results in neuroscience
continue to drive home the sophistication of the perceptual machinery in humans and
other animals. Computer vision and speech recognition have become blossoming fields
in their own right. Advances in consumer electronics have led to a growing drive to-
wards advanced human/computer interfaces, which bring machine perception to the
forefront. What does all this mean for Al, and its traditional focus on representation,
search, planning, and plan execution? For devices that need to operate in rich, uncon-
strained environments, the emphasis on planning may have been premature:

“I suspect that this field will exist only so long as it is considered acceptable to
test these schemes without a realistic perceptual interface. Workers who have
confronted perception have found that on the one hand it is a much harder prob-
lem than action selection and that on the other hand once it has been squarely
faced most of the difficulties of action selection are eliminated because they
arise from inadequate perceptual access in the first place.” [6]

It is undeniable that planning and search are crucial for applications with complex
logistics, such as shipping and chess. But for robotics in particular, simply projecting
from the real world onto some form where planning and search can be applied seems to
be the key research problem: “This abstraction process is the essence of intelligence and
the hard part of the problem being solved” [4]. Early approaches to machine perception
in Al focused on building and maintaining detailed, integrated models of the world that
were as complete as possible given the sensor data available. This proved extremely
difficult, and over time more practical approaches were developed. Here are cartoon-
caricatures of some of them:

— Stay physical: Stay as close to the raw sensor data as possible. In simple cases,
it may be possible to use the world as its own model and avoid the difficulties
involved in creating and maintaining a representation of a noisily- and partially-
observed world [4]. Tasks such as obstacle avoidance can be achieved reactively,
and [9] gives a good example of how a task with temporal structure can be per-
formed by maintaining state in the world and the robot’s body rather than within its
control system. This work clearly demonstrates that the structure of a task is logi-
cally distinct from the structures required to perform it. Activity that is sensitive to
some external structure in the world does not imply a control system that directly
mirrors that structure in its organization.

— Stay focused: Adopt a point of view from which to describe the world that is suffi-
cient for your task and which simplifies the kind of references that need to be made,



hopefully to the point where they can be easily and accurately maintained. Good
examples include deictic representations like those used in Pengi [7], or Toto’s rep-
resentations of space [16].

— Stay open: Use multiple representations, and be flexible about switching between
representations as each run into trouble [17]. This idea overlaps with the notion
of encoding common sense [15], and using multiple partial theories rather than
searching — perhaps vainly — for single unified representations.

While there are some real conflicts in the various approaches that have been adopted,
they also have a common thread of pragmatism running through them. Some ask “what
is the minimal representation possible”, others “what choice of representation will allow
me to develop my system most rapidly?” [15]. They are also all steps away from an
all-singing, all-dancing monolithic representation of the external world. Perhaps they
can be summarized (no doubt kicking and screaming) with the motto “robustness from
perspective” — if you look at a problem the right way, it may be relatively easy. This
idea was present from the very beginning of Al, with the emphasis on finding the right
representations for problems, but it seemed to get lost once division of labor set in and
the problems (in some cases) got redefined to match the representations.

There is another approach to robust perception that has developed, and that can per-
haps be described as “robustness from experience”. Drawing on tools from machine
learning, just about any module operating on sensor input can be improved. At a mini-
mum, its performance can be characterized empirically, to determine when it can be re-
lied upon and when it fails, so that its output can be appropriately weighed against other
sources. The same process can be applied at finer granularity to any parameters within
the module that affect its performance in a traceable way. Taking statistical learning of
this kind seriously leads to architectures that seem to contradict the above approaches,
in that they derive benefit from representations that are as integrated as possible. For
example, when training a speech recognition system, it is useful to be able to combine
acoustic, phonological, language models so that optimization occurs over the largest
scope possible [18].

The success of statistical, corpus-based methods suggests the following additional
organizing principle to the ones already enunciated :-

— Stay connected: Maintain a tight empirical connection between parameters in the
system and experience in the world. Machine learning techniques start this connec-
tion, but are not usually used to maintain it over time. This will require integrating
the tools typically used during training with the deployed system itself, and engi-
neering opportunities to replace hand-annotation.

3 Replacing annotation

Suppose there is some property P of the environment whose value the robot cannot
determine in general, but which it can determine is special situations. Then there is the
potential for the robot to collect training data from such special situations, and learn
other more robust (and generally applicable) ways to determine the property P. This
process will be referred to as “developmental perception” in this paper.
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Fig. 1. Degrees of freedom (DOFs) of the robot Cog. The arms terminate either in a primitive
“flipper” or a four-fingered hand. The head, torso, and arms together contain 22 degrees of free-
dom.

What kind of special situations and properties might fit this specification? One pos-
sibility is interaction with a human, where social cues can help the robot evaluate its cur-
rent situation. This was explored at our laboratory with Kismet, an expressive “infant-
like” robot head [2]. Another possibility, and the one this paper explores, is physical
exploration, using active perception, on a humanoid robot: Cog.

4 The experimental platform

This work is implemented on the robot Cog, an upper torso humanoid [3]. Cog has
two arms, each of which has six degrees of freedom. The joints are driven by series
elastic actuators [22]. The arm is not designed to enact trajectories with high fidelity.
For that a very stiff arm is preferable. Rather, it is designed to perform well when
interacting with a poorly characterized environment, where collisions are frequent and
informative events. Cog runs an attentional system consisting of a set of pre-attentive
filters sensitive to motion, color, and binocular disparity. The different filters generate
information on the likelihood that something interesting is happening in a certain region
of the image. A voting mechanism is used to “decide” what to attend and track next. The
pre-attentive filters are implemented on a space-variant imaging system, which mimics
the distribution of photoreceptors in the human retina as in [20]. The attentional system
uses vision and non-visual sensors (e.g. inertial) to generate a range of oculomotor
behaviors. Examples are saccades, smooth pursuit, vergence, and the vestibulo-ocular
reflex (VOR).

5 Active perception

Active perception refers to the use of motor action to simplify perception [1], and has
proven its worth many times in the history of robotics. The most well-known instance
of active perception is active vision. The term “active vision” is, in common usage,
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Fig. 2. Cartoon motivation (top) for active segmentation (bottom). Human vision is excellent at
figure/ground separation (top left), but machine vision is not (top center). Coherent motion is a
powerful cue (top right) and the robot can invoke it by simply reaching out and poking around.
The lower row of images show the processing steps involved. The moment of impact between the
robot arm and an object, if it occurs, is easily detected — and then the total motion after contact,
when compared to the motion before contact and grouped using a minimum cut approach, gives
a very good indication of the object boundary [11].

essentially synonymous with moving cameras. But there is much to be gained by tak-
ing advantage of the fact that robots can be actors in their environment, not simply
passive observers. They have the opportunity to examine the world using causality, by
performing probing actions and learning from the response. In conjunction with a devel-
opmental framework, this could allow the robot’s experience to expand outward from
its sensors into its environment.

As a concrete example of this idea, Cog was given a simple “poking” behavior,
whereby it selects locations in its environment, and sweeps through them with its
arm [10]. If an object is within the area swept, then the motion signature generated by
the impact of the arm with that object greatly simplifies segmenting that object from
its background, and obtaining a reasonable estimate of its boundary (see Figure 2).
The image processing involved relies only on the ability to fixate the robot’s gaze in
the direction of its arm. This coordination is easy to achieve either as a hard-wired
primitive or through learning [10]. Within this context, it is possible to collect
excellent views of the objects the robot pokes, and the robot’s own arm. This is
important, because figure/ground separation is a long-standing problem in computer
vision, due to the fundamental ambiguities involved in interpreting the 2D projection
of a 3D world. No matter how good a passive system is at segmentation, there will be
times when only an active approach will work, since visual appearance can be
arbitrarily deceptive.
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Fig. 3. If the robot is engaged in a known activity (left), there may be sufficient constraint to
identify novel elements within that activity. Similarly, if known elements take part in some un-
familiar activity, tracking those can help characterize that activity. Potentially, development is an
open-ended loop of such discoveries.

6 Developmental perception

The previous section showed how, with a particular behavior, the robot could reliably
segment objects from the background (even if it is similar in appearance) by poking
them. It can determine the shape of an object boundary in this special situation, even
though it cannot do this normally. This is precisely the kind of situation that a devel-
opmental framework could exploit. Figure 3 shows how an open-ended developmental
cycle might be possible. Particular, familiar situations allow the robot to perceive some-
thing about objects and actors (such as a human or the robot itself) that could not be
perceived outside those situations. These objects and actors can be tracked into other,
less familiar situations, which can then be characterized and used for further discov-
ery. Throughout, existing perceptual capabilities (“primitive features”) can be refined
as opportunities arise.

As a specific example of development, the segmented views provided by poking
of objects and actors by poking can be collected and clustered as shown in Figure 4.
Such views are precisely what is needed to train up an object detection and recognition
system, and follow those objects and actors into other, non-poking contexts.

As well as giving information about the appearance of objects, the segmented views
of objects can be pooled to train up detectors for more basic visual features — for exam-
ple, edge orientation.
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Fig. 4. The top row shows sample views of a toy car that the robot sees during poking. Many such
views are collected and segmented as described in [11]. The views are aligned to give an average
prototype for the car (and the robot arm and human hand that acts upon it). To give a sense of the
quality of the data, the bottom row shows the segmented views that are the best match with these
prototypes. The car, the robot arm, and the hand belong to fundamentally different categories.
The arm and hand cause movement (are actors), the car suffers movement (is an object), and the
arm is under the robot’s control (is part of the self).

7 What isorientation?

Natural images are full of anisotropy, where some visual property is very different de-
pending in which direction you measure it. The most obvious example is that of an
edge, where there is a discontinuity between one material and another. Visual appear-
ance will typically remain similar in directions parallel to the edge, but could change
drastically across the edge. Contours of constant luminance on a shade surface behave
like edges also, with luminance change being minimal parallel to the contour and max-
imal when measured perpendicular to them. For such directional changes in luminance,
or any other property, it is natural to associate a direction or orientation in which change
is minimal. In this chapter, we will be concerned with the orientation associated with
edges in luminance at the finest scale available. This is certainly not all that is to be said
about orientation (consider, for example, the Kanizsa triangle). But it is a useful case,
particularly for object localization and recognition. Orientation detection will prove key
to achieving orientation and scale invariance in these tasks.

Orientation is associated with neighborhoods rather than individual points in an im-
age, and so is inherently scale dependent. At very fine scales, relatively few pixels are
available from which to judge orientation. Lines and edges at such scales are extremely
pixelated and rough. Orientation filters derived from analytic considerations, with pa-
rameters chosen assuming smooth, ideal straight lines or edges (for example, [8]) are
more suited to larger neighborhoods with more redundant information. For fine scales,
an empirical approach seems more promising, particularly given that when the number
of pixels involved is low, it is practical to sample the space of all possible appearances
of these pixels quite densely. At very fine scales, the interpretation of an image patch



Fig. 5. Sampling an object boundary. Poking (left) identifies the boundary of the object (center);
we can then sample along this boundary to get examples of oriented regions of known orientation

(right).

Fig. 6. Some boundary samples. Dotted pixels belong to a segmented object. The four-by-four
grid overlaid on the boundary shows the result of thresholding.

could hinge on a relatively small number of pixels. Noise sensitivity becomes a critical
issue. But even beyond that, it seems that the assignment of labels to image patches is
likely to be quite a non-linear process. One way to avoid making too many assump-
tions up front is to actually collect some data. Poking allows the robot to build up a
reference “catalog” of the manifold appearances real edges can take on. At fine scales,
with relatively few pixels, we can hope to explore the space of all possible appearances
of such a neighborhood, and collect empirical data on how they relate to orientation.
Such statistics are important to minimize the impact of pixel noise, and to capture the
scrambling effects of quantization on line and edge appearance.

8 Active segmentation and orientation detection

Once an object boundary is known, the appearance of the edge between the object
and the background can be sampled along it, and labelled with the orientation of the
boundary in their neighborhood (Figure 5). Figure 7 shows an orientation filter trained
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Fig. 7. The empirical appearance of edges. Each 4 x 4 grid represents the possible appearance of
an edge, quantized to just two luminance levels. The dark line centered in the grid is the average
orientation that patch was observed to have in the training data. The upper set of patches are
the most frequent ones that occur in training data consisting of about 500 object segmentations.
The lower set of patches are a selection of patterns chosen to illustrated the diversity of possible
patterns that can occur. The oriented features represented include edges, thin lines, thick lines,
zig-zags, corners etc. It is difficult to imagine a set of conventional filters that could respond
correctly to the full range of features seen here — all of which appeared multiple times in object
boundaries in real images.
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up from such data that can work at much finer scales than normally possible when
the filter is derived from an ideal edge model such as that of [8]. The “catalog” of edge
appearances found shows that the most frequent edge appearances is an “ideal” straight,
noise-free edge, as might be expected (top of Figure 7) — but a remarkable diversity of
other forms also occur which are far less obvious (bottom of Figure 7).

There are powerful object recognition techniques which are robust to occlusion and
could be trained with the kind of data poking makes available [21]. This has not yet
been done, but it offers the interesting possibility of a computational analog of the kind
of development proposed in [13], where segments of a single object visually divided by
an occluder become linked perceptually in young infants.

9 Recognition

Using active segmentation, the robot can collect examples of the appearance of ob-
jects. Ideally, these examples could be used to train up an object recognition module for
those objects, so they could be detected without further physical contact. Object recog-
nition is a vast research area, so it is useful to identify the constraints applicable in this
work. The two most important are that real-time performance is required, and that back-
grounds and lighting are uncontrolled. For high-speed performance, geometric hashing
is a useful technique (for a review see [23]). In this method, geometric invariants of
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Fig. 8. The orientation filter applied to some test images (on left). Note the small scales involved
— the individual pixels are plainly visible. The second column shows the output of the orientation
filter, color coded by angle (if viewed in color). The third column shows the same information
in vector form. The fourth column shows the orientation determined using steerable quadrature
filters [12]. The results are remarkably similar, but the filters are much more computationally
expensive to apply. For high resolution patterns, such as that on the bottom row, the empirically-
trained orientation filter may have the advantage, but this is difficult to judge.

Fig. 9. The orientation filter applied to an image from [5]. The bottom row shows regions with
horizontal, vertical, left-diagonal and right-diagonal orientation respectively.
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Fig. 10. Geometric hashing for 2D-2D recognition. For the set of points shown on the left, each
pair is considered in turn and used to normalize the rest for translation, orientation, and scale.
The normalized locations of the points for each permutation are stored in a hash table, along with
references to the model and pair of points that generated them.

some kind are computed from points in model (training) images, then stored in hash
tables. Recognition then simply involves accessing and counting the contents of hash
buckets. One possibility for the geometric invariants is to take a set of points selected
by an interest operator, and use each pair of points in turn to normalize the remainder
by scale and rotation. The position of the normalized points can be stored in a 2D hash
table, as shown in Figure 10.

Rather than use pairs of point features, this work uses pairs of oriented regions.
The orientation filter developed earlier in this paper is applied to images, and a simple
region growing algorithm divides the image into sets of contiguous pixels with coherent
orientation. Adaptive thresholding on the minimum size of such regions is applied, so
that the number of regions is bounded, independent of scene complexity. In “model”
(training) views, every pair of regions is considered exhaustively, and entered into a
hash table, indexed by relative angle, relative position, and the color at sample points
between the regions. Such features are very selective, yet quite robust to noise.

Another novel feature of the procedure is that rather than simply counting the num-
ber of matches with the model, each match is used to predict the center and scale of the
object, if the match were valid. Regions with a great deal of convergent evidence are
treated as matches. Some variants of geometric hashing do something like this, where
each match implies a particular transformation, and only “coherent” matches are aggre-
gated (e.g. [14]), but this method is better suited to objects with symmetries.

Numerical results

Testing on a set of 400 images of four objects (about 100 each) being poked by the robot,
with half the images used for training, and half for testing, gives a recognition error rate
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Fig. 11. If the recognition system is trained on real images of a green cube (typical segmentation
shown on left), and presented with a synthetic version of the cube along with a set of distractors
(middle), we can evaluate what features are used for recognition. The superimposed circle and
lines indicate the detected position of the object and the edges implicated. The image on the
right shows the strength of evidence for the object across the entire image, which lets us rank the
distractors in order of attractiveness. In this case, the most prominent feature used in recognition
is the outer green square.

of about 2%, with a median localization error of 4.2 pixels in a 128 x 128 image (as
determined by comparing with the center of the segmented region given from poking).
By segmenting the image by grouping the regions implicated in locating object, and
filling in, a median of 83.5% of the object is recovered, and 14.5% of the background
is mistakenly included (again, determined by comparison with the results of poking).

Quialitative results

Figure 11 shows a test of the recognition system, trained on real data, and tested on syn-
thetic data. The object in question is a cube with a green face containing a red triangle.
When presented with an image containing numerous variations on this theme, the most
reasonable match (in the author’s judgement) is selected. Figure 12 shows examples of
the cube being resegmented in real images. Finally, Figure 13 shows recognition and
training occurring online.

10 Conclusions

Robots are very much embedded in a local environment, in a particular context. Rather
than trying to use object recognition technology designed to recognize thousands of
objects under controlled conditions, either at training time or recognition time, it is more
important to look at ways to quickly tailor the robot’s perceptual system to its local
environment. This paper has given a “proof of concept” for this. Using the simplest
possible form of manipulation, simple physical contact, the robot can acquire well-
segmented views of an object, and then learn to recognize that object in a variety of
situations. If there is some other distractor that the robot confuses the object with, the
robot can explicitly learn about that distractor online. While the system presented here
is overly simple in some ways — manipulation is very primitive, and the robot relies on
human help to bring objects close enough for it to reach — it is robust in a novel and
very practical sense: if something isn’t working, the robot can take action to fix it.
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Fig. 12. The cube being recognized, localized, and segmented in real images. The image in the
first column is one the system was trained on. The image in the remain columns are test images.
Note the scale invariance demonstrated in the final image.
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Fig. 13. This figure shows stills from a three-minute interaction with Cog. The area of the first
frame highlighted with a square shows the state of the robot — the left box gives the view from the
robot’s camera, the right shows an image it associates with the current view. Initially the robot is
not familiar with any objects, so the right box is empty. It is presented with the cube, and pokes
it (first frame). Then, if shown the cube again, it recognizes it (this recognition is evidenced by
showing an image recorded from when the object was poked). If the cube is turned to another
side, the robot no longer recognizes it (third frame). If that side of the cube is presented to the
robot to poke (fourth frame), if can then recognize it (fifth frame) and differentiate if from the
green side (sixth frame). If it confuses another object with what it has already seen, such as the
ball in the seventh frame, this is easily to fix by poking (eighth, ninth frames). The final three
frames show the invariance of the recognition system to scale.
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