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Stochastic System Identification
for Operational Modal Analysis:
A Review
This paper reviews stochastic system identification methods that have been used
mate the modal parameters of vibrating structures in operational conditions. It is fo
that many classical input-output methods have an output-only counterpart. For insta
the Complex Mode Indication Function (CMIF) can be applied both to Frequency
sponse Functions and output power and cross spectra. The Polyreference Time D
(PTD) method applied to impulse responses is similar to the Instrumental Variable
method applied to output covariances. The Eigensystem Realization Algorithm (ER
equivalent to stochastic subspace identification.@DOI: 10.1115/1.1410370#
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1 Introduction
The application of system identification to vibrating structur

yielded a new research domain in mechanical engineering, kn
asexperimental modal analysis. In this case, amodal model, con-
sisting of eigenfrequencies, damping ratios, mode shapes
modal participation factors, is identified from vibration data. Cla
sically, one applies an artificial, measurable input to the sys
and one measures the output. From these measurements, th
perimental model can be obtained by a variety of parameter
mation methods. However, cases exist where it is rather diffi
to apply an artificial force and where one has to rely upon av
able ambient excitation sources. It is practically impossible
measure this ambient excitation and the outputs are the only
formation that can be passed to the system identification a
rithms. Because in these cases the deterministic knowledge o
input is replaced by the assumption that the input is a realiza
of a stochastic process~white noise!, one speaks ofstochastic
system identification. Specializing to the identification of vibrating
structures the termsoutput-only modal analysisand operational
modal analysisare used. A common problem of operational mod
analysis methods is that if the white noise assumption is viola
for instance if the input contains in addition to white noise a
some dominant frequency components, these frequency com
nents cannot be separated from the eigenfrequencies of the sy
and will be identified as such.

The need to perform output-only modal analysis proba
emerged first in civil engineering, where it is very difficult an
expensive to excite constructions such as bridges and build
with a hammer or shaker and to obtain artificially induced vib
tion levels that exceed the natural vibrations due to traffic or wi
Nevertheless, also in mechanical engineering, operational m
analysis proved to be very useful: for instance to obtain the mo
parameters of a car during road testing or an aeroplane du
flight tests.

Many textbooks exist that give an extensive overview of inp
output modal parameter estimation methods@1–4#. We should
also mention some recent efforts to compare input-output sys
identification methods for applications in structural dynam
@5,6#. Individual output-only modal parameter estimation metho
are discussed in several papers, but an overview and compa
of different methods are missing. The present paper, which
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based on@7#, tries to fill that gap. Almost all methods discussed
this paper have successfully been applied to real-life vibrat
data. These applications are beyond the scope of this paper
can, for instance, be found in@7–9#.

2 Vibrating Structures: Models and Measurement
Data

The aim of this section is to introduce some basic concepts
are most helpful in understanding the similarities and differen
between stochastic system identification methods.

2.1 Models. One of the first steps of system identification
adopting a certain model structure. Afterwards the parameter
the chosen model are estimated from measurement data. A
range of model structures is proposed in system identification
erature, see for instance Ljung@10#. The general system identifi
cation procedure is to try out several model structures with
bothering about the underlying physical input-output relatio
The aim of this section is to discuss some models that can t
represent a vibrating structure excited by white noise. By con
quence, these models are physically meaningful.

Physical Model. The dynamic behavior of a discrete mechan
cal system consisting ofn2 masses connected through springs a
dampers is described by following matrix differential equation

Mq̈~ t !1C2q̇~ t !1Kq~ t !5 f ~ t ! (1)

whereM ,C2 ,KPRn23n2 are the mass, damping and stiffness m
trices;q(t)PRn2 is the displacement vector at continuous timet.
A dot over a time function denotes the derivative with respec
time. The vectorf (t)PRn2 is the excitation force. For system
with distributed parameters~e.g., civil engineering structures!, Eq.
~1! is obtained as the Finite Element~FE! approximation of the
system with onlyn2 degrees of freedom~DOFs! left. Although the
~nearly! physical model~1! is a good representation of a vibratin
structure, it is not directly useful in an experimental modelli
context. First, it is not possible~and also not necessary! to mea-
sure all DOFs of the FE model. Second, this equation is
continuous-time, whereas measurements are available as dis
time samples. And finally, there is some noise modelling need
there may be other unknown excitation sources apart fromf (t)
and measurement noise is always present in real life.

Stochastic State-Space Model.It can be shown that, by apply
ing model reduction, sampling and modelling the noise, Eq.~1!
can be converted to followingdiscrete-time stochastic state-spac
model~see for instance@7,11# for a detailed derivation!:
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xk115Axk1wk (2)
yk5Cxk1nk

where ykPRl is the sampled output vector~the measurements!;
xkPRn is the discrete state vector;wkPRn is the process noise
typically due to disturbances and modelling inaccuracies, but h
also due to the unknown excitation of the structure;nkPRl is the
measurement noise, typically due to sensor inaccuracy, but
also due to the unknown excitation of the structure;k is the time
instant; l is the number of outputs;n is the system order (n
52n2). The matrixAPRn3n is the state transition matrix tha
completely characterizes the dynamics of the system by its ei
values; andCPRl 3n is the output matrix that specifies how th
internal states are transformed to the outside world. The n
vectors are both unmeasurable vector signals assumed to be
mean, white and with covariance matrices:

EF S wp

np
D ~wq

Tnq
T!G5S Q S

ST R
D dpq (3)

where E is the expected value operator;dpq is the Kronecker
delta.

It is precisely such a stochastic state-space model that wil
identified when using so-called subspace identification meth
~see Sections 4.2 and 5.1!. In a second step, the modal paramet
are obtained from the matricesA andC. The derivation starts with
the eigenvalue decomposition ofA:

A5CLdC21 (4)

whereCPCn3n is the eigenvector matrix andLdPCn3n is a di-
agonal matrix containing the discrete-time eigenvalues. T
eigenfrequenciesv i and damping ratiosj i are found from:

m i5el iDt; l i ,l i* 52j iv i6 jA12j i
2v i (5)

where Dt is the sampling time. Finally, the mode shapesV
PCl 3n are found as:

V5CC (6)

ARMA Model. The more classical system identification met
ods @10# identify models that do not contain the state. It can
shown @12,13# that the following so-called ARMA model is
equivalent to the stochastic state-space model~2!:

yk1a1yk211¯1apyk2p5ek1g1ek211¯1gpek2p (7)

where, as before,yk is the output vector andekPRl is a white
noise vector sequence. The left-hand side is called the A
Regressive~AR! part and the right-hand side the Moving Avera
~MA ! part, hence the name of the model. The matricesa iPRl 3 l

are the AR matrix parameters; matricesg iPRl 3 l are the MA ma-
trix parameters. Sometimes, as in the present case of mul
outputs, one speaks of ARMAV models as to stress their mu
variable character. An ARMA model that is deduced from a sta
space model has the same AR order as MA order. This is den
as p in Eq. ~7!. The ARMA model order is related to the stat
space model order as:pl5n. Since it is derived from a stochasti
state-space model, also an ARMA model can truly represe
vibrating structure.

The modal parameters can be computed from the ARMA mo
by the eigenvalue decomposition of the companion matrix of
AR polynomial:

S 0 I ¯ 0

0 0 ¯ 0

¯ ¯ ¯ ¯

0 0 ¯ I

2ap 2ap21 ¯ 2a1

D S V
VLd

¯

VLd
p22

VLd
p21

D 5S V
VLd

¯

VLd
p22

VLd
p21

D Ld

(8)
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The observed mode shapesV are the firstl rows of the eigenvec-
tor matrix. As in the state-space case, the eigenfrequencies
damping ratios can be computed from the discrete eigenvalue
Ld ; see Eq.~5!.

Frequency-Domain Model.Many identification methods iden
tify frequency-domain models from samples of the Fourier tra
form of the measurement signals. Frequency-domain models
readily obtained by applying thez-transform to the discrete-time
models~2!, ~7!. For instance, the output power spectrum matrix
a state-space system can be written as@14#:

Sy~z!5C~zI2A!21G1R01GT~z21I 2AT!21CTuz5ej vDt (9)

whereSy(z)PCl 3 l is the spectrum matrix containing the pow
and cross spectra between the outputs. The power spectra ar
and located on the main diagonal. This expression can be ev
ated for any number on the unit circlez5ej vDt wherev @rad/s#
can be any frequency of interest. MatrixGPRn3 l is the next
state—output covariance matrix andR0PRl 3 l is the zero-lag out-
put covariance matrix:

G5E@xk11yk
T#, R05E@ykyk

T# (10)

An in structural dynamics more common form of the outp
power spectrum matrix is obtained by applying the Laplace tra
form to a continuous-time model and introducing the modal
rameters~see@7# for a detailed derivation!:

Sy~s!5S (
i 51

n
1

s2l i
$n i%^ l i

T& D RuS (
i 51

n
1

s* 2l i
$ l i%^n i

T& D U
s5 j v

(11)

wheres is the Laplace variable;$n i%PCl is the i th modal vector;
^ l i

T&PCm is thei th modal participation vector;m is the number of
~white noise! inputs; RuPRm3m is the white noise input covari-
ance matrix.

2.2 Measurement Data. In principle ~output! data yk are
available as discrete samples of the time signal. The identifica
methods of Section 5 will be able to use directly these time s
nals. However, many system identification methods exist that
quire other types of data.

The identification methods of Section 4 require output cova
ances as primary data type. Output covariances are defined a

Ri5E@yk1 i yk
T#5 lim

N→`

1

N (
k50

N21

yk1 i yk
T (12)

where the second equation follows from the ergodicity assum
tion. Of course, in reality, a finite numberN of data is available
and a covariance estimate is simply obtained by dropping the l
in ~12!.

The identification methods of Section 3 require a frequen
domain representation of the output signals. The frequen
domain representation of stochastic signals is provided by
~power! spectrumSyPCl 3 l , defined as the discrete-time Fourie
transform of the covariance sequence:

Sy~ej vDt!5 (
k52`

`

Rke
2 j vkDt (13)

For details on methods to estimate covariances and spe
from measured time data, we refer to the extensive literature
exist on the subject; see for instance@15,16#.

3 Frequency-Domain Spectrum-Driven Methods
The presentation order of the identification methods roug

corresponds to the historical application of stochastic system id
tification: from picking the peaks in spectrum plots~Section 3.1!
Transactions of the ASME
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to time-domain subspace methods that make extensively use
concepts from numerical linear algebra~Section 5.1!.

3.1 The Peak-Picking Method „PP…. The simplest ap-
proach to estimate the modal parameters of a structure subje
to ambient loading is the so-called Peak-Picking~PP! method. The
method is named after the key step of the method: the identifi
tion of the eigenfrequencies as the peaks of a spectrum plot.
method is for instance discussed in@15,17#.

Under the conditions of low damping and well-separated eig
frequencies, the spectrum~11! around an eigenfrequencyv i can
be approximated by:

Sy~ j v i !'a i$n i%^n i
H& (14)

where a i is a scale factor depending on the damping ratio,
eigenfrequency, the modal participation factor and the input co
riance matrix. Vector$n i% is the i th mode shape. From~14! it is
clear that each column or row of the spectrum matrix at an eig
frequency can be considered as an estimate of the mode sha
that frequency. Therefore it suffices to compute only 1 column
row of the spectrum matrix. In order to obtain damping ratios, i
often suggested to use the half-power bandwidth method, whic
able to quantify the sharpness of a resonance peak. It is, how
widely accepted that this estimate is not a very accurate one

Some refinements of the PP method exist. The coherence f
tion between two channels tends to go to one at the reson
frequencies because of the high signal-to-noise ratio at these
quencies. Consequently, inspecting the coherence function ca
sist in selecting the eigenfrequencies. Also, the phase angles o
cross spectra are helpful: if real modes are expected, the p
angles should be either 0 or 180 deg at the resonance frequen

A violation of the basic assumptions~low damping and well-
separated frequencies! leads to erroneous results. In fact th
method identifiesoperational deflection shapesinstead of mode
shapes and for closely spaced modes such an operational d
tion shape will be the superposition of multiple modes. Oth
disadvantages are that the selection of the eigenfrequencies
become a subjective task if the spectrum peaks are not very
and that the eigenfrequencies have to be a subset of the dis
frequency values of the discrete Fourier transform.

Despite these drawbacks many civil engineering cases e
where the method is successfully applied; see for instance@18,19#.
The popularity of the method is due to its implementation si
plicity and its speed: the only algorithm that is needed is the F
Fourier Transform~FFT! to convert time data to spectra. The com
putational speed can become irrelevant though, because o
large amount of user interaction needed to try to improve
estimation results.

3.2 The Complex Mode Indication Function „CMIF …. A
more advanced method consists of computing the Singular V
Decomposition~SVD! of the spectrum matrix:

Sy~ j v!5U~ j v!(~ j v!UH~ j v! (15)

whereUPCl 3 l is a complex unitary matrix containing the sing
lar vectors as columns. The diagonal matrix(PRl 3 l contains the
real positive singular values in descending order. This ‘‘meth
based upon the diagonalization of the spectral density matrix,
it was called, was already used in the beginning of the eightie
obtain the modes of a vibrating system subjected to natural e
tation @20#. Some years later, the method was also applied to F
quency Response Functions~FRFs! and became known as th
Complex Mode Indication Function~CMIF!. As suggested by the
name, the CMIF was originally intended as a tool to count
number of modes that is present in measurement data. As a u
byproduct, the CMIF also identifies the modal parameters fr
FRFs@21#. Recently, the spectrum-driven method received ag
attention as an alternative for the PP method in civil enginee
applications@22#. In this paper, the old method was given a ne
name, the frequency-domain decomposition method.
Journal of Dynamic Systems, Measurement, and Control
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The method is based on the fact that the transfer function
spectrum matrix evaluated at a certain frequency is only de
mined by a few modes. The number of significantly contributi
modes determines the rank of the spectrum matrix. The SVD
typically used for estimating the rank of a matrix: the number
nonzero singular values equals the rank@23#. The singular values
as a function of frequency(( j v) is the actual CMIF; see Fig. 1
for an example. Therefore, plotting the CMIF yields the eigenf
quencies as local maxima. The CMIF is also able to detect clos
spaced modes: more than one singular value will reach a lo
maximum around the close eigenfrequencies.

If only 1 mode is important at a certain eigenfrequencyv i , the
spectrum approximates a rank-one matrix and can be decomp
as ~15!:

Sy~ j v i !'s1~ j v i !$u1~ j v i !%^u1
H~ j v i !& (16)

By comparing~16! with ~14!, it is evident that the first singular
vector at resonance is an estimate of the mode shape at tha
quency. In case of mode multiplicity at a resonance frequen
every singular vector corresponding to a nonzero singular valu
considered as a mode shape estimate.

In some sense, the CMIF method can be considered as an S
extension of the PP method. The SVD is able to resolve mo
multiplicity. The method can also be applied to a reduced sp
trum matrix, where only the spectra between a chosen set of
erence sensors and all outputs have to be computed. In this c
the maximum number of detectable multiple poles cannot exc
the smallest dimension of the reduced spectrum matrix.

Extensions of the CMIF method are possible that do estim
eigenfrequencies and damping ratios differently as in the
method. After applying the SVD to the spectrum matrix, this m
trix is in fact decomposed in single-DOF systems. To such a s
tem, single-DOF modal parameter estimation methods could
applied, extensively documented in the modal analysis literat
@1–4#.

3.3 Maximum Likelihood Identification „ML …. Contrary
to the PP method or the CMIF which considers only one mode
a time, this method estimates the parameterized spectrum m
as a whole. Maximum Likelihood~ML ! identification is an
optimization-based method that estimates the parameters
model by minimizing an error norm. A discussion on the use
the ML estimator to identify parametric frequency-domain mod

Fig. 1 The complex mode indication function „CMIF…. The sin-
gular values of the spectrum matrix are plotted as a function of
the frequency. Around 2.4 Hz and 7 Hz, two singular values are
significant, indicating that there are two close modes.
DECEMBER 2001, Vol. 123 Õ 661
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can be found in@24,25#. The ML method results in equations th
are nonlinear in the unknown parameters. This requires an it
tive procedure. Therefore it is no surprise that often mentio
drawbacks of ML estimators are the high computational load
the fact that they are not suited to handle large amounts of d
During the last years attention has been paid to the optimizatio
the ML method: the algorithm has been modified to keep
memory requirements as low as possible; and using an ada
parameterization and fast signal processing techniques, an im
tant reduction of the computation time was possible. It has b
shown that ML identification is a robust method to find the mo
parameters of a structure from a large and noisy data set@26,27#.
Originally intended for application to FRFs, the method was
tended to use spectra as primary data, so that it also could be
in output-only cases@28#.

4 Time-Domain Covariance-Driven Methods
It is known for some time that there exist similar mathemati

expressions for impulse responses and output covariances~of a
system excited by white noise! as a function of the system param
eters; see for instance@12,15#. In modal analysis applications, thi
observation is used to feed classical impulse response b
modal parameter estimation methods with output covariances
stead@29#. Two such methods are discussed below.

4.1 The Instrumental Variable Method „IV …. In this sec-
tion, a method belonging to the class of so-called Instrume
Variable ~IV ! methods will be discussed. Although derived in
different way, the final equations of the IV method correspond
the Polyreference Time Domain~PTD! method after substituting
impulse responses by output covariances. The PTD metho
probably the most widely used traditional modal parameter e
mation method. It contains the~Least Squares! Complex Expo-
nential ~LSCE! and the Ibrahim Time Domain~ITD! methods as
special cases. For an overview, relations between these tradit
~input-output! methods and the original references, s
@1,3,30,31#. A more generic discussion and more references on
methods can be found in@10#.

An ARMA model ~7! of suitable order can represent a vibratin
structure. Unfortunately, the application of a classicalprediction
error method@10# to an ARMA model results in a highly nonlin
ear parameter estimation problem; see also Section 5.2. The
linearity is caused by the MA parameters. The advantage of th
method is that it identifies only the AR parameters~and that this is
achieved in a linear way!, while the underlying model structur
still is an ARMA model.

The idea of system identification is to ‘‘fit’’ a model to mea
sured datayk . A good parameter estimation method should extr
the maximum information from the data, leaving residualsek that
are uncorrelated with past data. This is formally written as:

; i .0 : E@ekyk2 i
T #5E@ek#E@yk2 i

T #50 (17)

where the first equality says thatek andyk2 i are uncorrelated; and
the second equality follows from the zero-mean property of
noise sequence. If, on the contrary the residuals are corre
with past data, they still contain useful but unmodelled inform
tion and the model is not ideal. The derivation of the IV meth
starts by imposing conditions like~17! to the ARMA model~7! in
order to get rid of the right-hand side~the MA part!. The ‘‘oldest’’
noise term isek2p ; so by post-multiplying the ARMA model by
yk2p2 i

T ~for i .0! and by taking the expectation we obtain:

; i .0 : E@ykyk2p2 i
T #1a1E@yk21yk2p2 i

T #1¯

1apE@yk2pyk2p2 i
T #50 (18)

Because of stationarity and Eq.~12!, we have: E@ykyk2 i
T #

5E@yk1 i yk
T#5Ri ;and the basic IV equation can be written

terms of the output covariancesRi :
662 Õ Vol. 123, DECEMBER 2001
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; i .0 : Rp1 i1a1Rp1 i 211¯1apRi50 (19)

By replacing the output covariances by their estimates and w
ing down the equation for all available time lagsi, the AR param-
etersa1 , . . . ,ap can be estimated by solving the resulting ove
determined set of equations in a least squares sense. Finally
eigenvalues and the observed mode shapes are obtained fro
eigenvalue decomposition of the companion matrix of the A
coefficients; see Eq.~8!.

As in the previous methods of Section 3, it is also in the case
the IV method possible to reduce the dimensions of the invol
matrices and the related computational effort by making use
subset of reference sensors. Only the covariances between al
puts and this subset have to be computed. Details can be foun
@7#. This corresponds to classical modal analysis, where the
pulse response matrices are rectangular matrices havingl rows
~i.e., the number of outputs! and m columns~i.e., the number of
inputs!. In output-only cases, the impulse responses are su
tuted by output covariances and the inputs by the reference
puts; see also@8,29#.

A typical problem of estimating a parametric model from da
is the determination of the model order. Apth order ARMA model
based onl outputs containspl poles. Consequently, the ‘‘ex
pected’’ number of poles covered by the data gives an indica
of the model order. This expected number can be based on ph
cal insight or counted as two times the number of peaks in
frequency-plot of a nonparametric spectrum estimate; see also
PP method, Section 3.1. A more accurate model order estima
provided by the CMIF, a frequency-plot of the singular values
a nonparametric spectrum estimate~Section 3.2!.

More formal procedures estimate models of different order a
compare these models according to a quality criterion such
Akaike’s Final Prediction Error or Rissanen’s Minimum Descri
tion Length criterion@10#.

However, in modal analysis one is usually not interested i
good model as such, but rather in the modal parameters extra
from that model. Practical experience with parametric models
modal analysis applications learned that it is better to over-spe
the model order and to eliminate spurious numerical poles af
wards, so that only true physical system poles are left. The fam
stabilization diagram@1,3# is a great tool to achieve this goal. Th
poles corresponding to a certain model order are compared to
poles of a one-order-lower model. If the eigenfrequency,
damping ratio and the related mode shape~or modal participation
factor! differences are within preset limits, the pole is labeled a
stable one. The spurious numerical poles will not stabilize at
during this process and can be sorted out of the modal param
data set more easily. Such a stabilization diagram is represent
Fig. 2.

Interesting to note and very relevant for civil engineering pra
tice is that the IV method is robust against nonstationary inp
~i.e., white noise with time-varying covariances!. This does not
only follow from practical experience but has also been theor
cally proven in@32#.

4.2 Covariance-Driven Stochastic Subspace Identification
„SSI-COV…. Like the CMIF method can be considered as
SVD-enhanced PP method, covariance-driven subspace ident
tion can—somewhat disrespectfully—be considered as an S
enhanced instrumental variable method. The covariance-dr
Stochastic Subspace Identification method~SSI-COV! is address-
ing the so-calledstochastic realization problem, i.e., the problem
of identifying a stochastic state-space model~2! from output-only
data.

Stochastic realization is closely related to deterministic~input-
output! realization, that goes back to Ho and Kalman@33# and was
Transactions of the ASME
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Fig. 2 Stabilization diagram obtained with the IV method. The used symbols are: ‘‘ Š’’ for
a stable pole; ‘‘.v’’ for a pole with stable frequency and vector; ‘‘.d’’ for a pole with stable
frequency and damping; ‘‘.f’’ for a pole with stable frequency and ‘‘.’’ for a new pole. Two
zooms are added that concentrate on the close modes around 2.4 and 7 Hz.
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extended with the SVD to treat noisy data in@34# and @35#. The
so-called Eigensystem Realization Algorithm~ERA!, developed
by Juang@36,37#, is a modal analysis application of these det
ministic realization algorithms. The stochastic~output-only! real-
ization problem is solved in@12,38–40#. Application of stochastic
realization to modal parameter estimation was reported by B
veniste and Fuchs@32#. They also proved that their algorithm i
robust against nonstationary inputs~e.g., a white noise sequenc
with time-varying covariance!.

Stochastic realization relies upon a fundamental property of
chastic state-space systems. It can be proven~see for instance
@41,42#! that the output covariancesRi ~12! can be decompose
as:

Ri5CAi 21G (20)

whereG is defined in~10!. The covariance sequenceRi can be
estimated from measurement data; so it remains to be solved
to decompose the covariances as to findA, C, G. Hereto, a block
Toeplitz matrixT1u iPRl i 3 l i is formed that consists of covariance

T1u i5S Ri Ri 21 ¯ R1

Ri 11 Ri ¯ R2

¯ ¯ ¯ ¯

R2i 21 R2i 22 ¯ Ri

D
5S C

CA
¯

CAi 21
D

↔
n

~Ai 21G¯AG G!ln5OiG i (21)

The second equality follows from applying property~20!. The
definitions of theextended observability matrix OiPRl i 3n and the
reversed extended stochastic controllability matrixG iPRn3 l i are
obvious from~21!. For l i .n, and in case of an observable an
ic Systems, Measurement, and Control
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controllable system, the rank of thel i 3 l i Toeplitz matrix equals
n, since it is the product of a matrix withn columns and a matrix
with n rows.

The actual implementation of SSI-COV consists of estimat
the covariancesRi , computing the SVD ofT1u i , truncate the SVD
to the model ordern, estimatingOi andG i by splitting the SVD in
two parts and finally estimatingA, C, G from Oi and G i . The
modal parameters are found fromA andC as indicated in~4! and
~6!. Implementation details can be found in the above-cited re
ences. Again, it is possible to slightly reformulate the SSI-CO
method, so that it only needs the covariances between all out
and a set of references@7,8#.

In theory, the system ordern can be determined by inspectin
the number of nonzero singular values ofT1u i ~21!. In practice,
however, the estimated covariance Toeplitz matrix is affected
‘‘noise’’ leading to singular values that are all different from zer
As typical noise sources we have:

• Modelling inaccuracies. It is possible that the true system t
generated the data cannot be modelled exactly as a stoch
state-space model. An attempt to model this system b
state-space model introduces an error in these cases.

• Measurement noise: introduced by the sensors and the e
tronics of the measurement hardware.

• Computational noise due to the finite precision of a
computer.

• The finite number of data. The covariances have to be e
mated, so that the factorisation property~20! does not hold
exactly. As a consequence, the rank of the covariance Toe
matrix will not be exactlyn.

Sometimes it is suggested to look at the ‘‘gap’’ between t
successive singular values. The singular value where the max
gap occurs yields the model order. This criterion should, howe
not be applied too dogmatically, since in most practical ca
there is no gap. Other statistical methods to determine the m
order are discussed in@43#.
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Fig. 3 Stabilization diagram obtained with the SSI-COV method. By comparing this dia-
gram with the IV diagram „Fig. 2 …, it is clear that the IV method requires higher model
orders to find stable poles.
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However, to obtain a good model for modal analysis appli
tions, it is probably a better idea to construct a stabilization d
gram, by identifying a whole set of models with different ord
The stabilization diagram was already introduced in Section
In case of the SSI-COV method, an efficient construction of
stabilization diagram is achieved by computing the SVD of
covariance Toeplitz matrix only once. Models of different ord
are then obtained by including a different number of singular v
ues and vectors in the computation ofOi andG i . A stabilization
diagram obtained with the SSI-COV method is shown in Fig.

5 Time-Domain Data-Driven Methods

5.1 Data-Driven Stochastic Subspace Identification„SSI-
DATA …. Recently, a lot of research effort in the system ident
cation community was spent to subspace identification as
denced by the book of Van Overschee and De Moor@42# and the
second edition of Ljung’s book@10#. Subspace methods identif
state-space models from~input and! output data by applying ro-
bust numerical techniques such asQR factorization, SVD and
least squares. As opposed to SSI-COV, the DATA-driven Stoch
tic Subspace Identification method~SSI-DATA! avoids the com-
putation of covariances between the outputs. It is replaced
projecting the row space of future outputs into the row space
past outputs. In fact, the notions covariances and projections
closely related. They both are aimed to cancel out the~uncorre-
lated! noise. The first SSI-DATA algorithms can be found in@44#.
A general overview of data-driven subspace identification~both
deterministic and stochastic! is provided in@42#.

Although somewhat more involved as compared to previ
methods, it is also possible with SSI-DATA to reduce the dime
sions of the matrices~and the memory requirements of the alg
rithm! by introducing the idea of the reference sensors. This
demonstrated in@7,11#. It is beyond the scope of this paper
explain the SSI-DATA method in detail. The interested reade
referred to the above-cited literature.
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Covariance-Driven Versus Data-Driven Subspace Identificati
At this point it is useful to discuss the similarities and differenc
between the SSI-COV~Section 4.2! and the SSI-DATA method
~Section 5.1!. First the similarities. Both methods start with a da
reduction step. In the SSI-COV algorithm the raw time histor
yk , consisting ofl channels andN data points~with N→`!, are
converted to the covariances of the Toeplitz matrix~21!. The num-
ber of elements is reduced froml 3N to l i 3 l i . In the SSI-DATA
algorithm a similar reduction is obtained by projecting the ro
space of the future outputs into the row space of the past outp
This projection is computed from theQR factorization of a big
data Hankel matrix; see@7,11,42#. A significant data reduction is
obtained because only a part of theR factor is needed in the
sequel of the algorithm. Both methods then proceed with an S
This decomposition reveals the order of the system and the
umn space ofOi ~21!.

Several variants of stochastic subspace identification ex
They differ in the weighting of the data matrices before the ap
cation of the SVD. This weighting determines the state-space
sis in which the identified model will be identified. Equivale
implementations exist for both SSI-COV and SSI-DATA. Mo
details can be found in@40# and @42#. Well-known variants are
Canonical Variate Analysis~CVA!, Principal Components~PC! or
Unweighted Principal Components~UPC!. This last variant is
sometimes also called Balanced Realization~BR!.

There are also differences between the covariance-driven
data-driven approaches. In the SSI-COV method, the covaria
can be computed in a very fast way by using the FFT algorit
@15,16#. The corresponding step in SSI-DATA is the relative
slow QR factorisation. Therefore SSI-COV is much faster th
SSI-DATA. In favor of the data-driven method is that it is imple
mented as a numerically robust square root algorithm: the ou
data is not squared up as in the covariance-driven algorithm.

We should add that in practical applications of any of the va
ants of stochastic subspace identification, no accuracy differe
can be observed when looking at the identified modal parame
Transactions of the ASME
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5.2 Other Data-Driven Methods

The prediction Error Method Applied to an ARMA Mode
Prediction Error Methods~PEM! can be considered as a gene
system identification framework@10#. These methods identify the
parameters of a model by minimizing the so-called prediction
rors. The straightforward application of PEM to estimate
ARMA model ~7! from data results in a highly nonlinear optim
zation problem with related problems as: convergence not b
guaranteed, local minima, sensitivity to initial values and a h
computational load. In contrast to the nonlinear frequency-dom
ML method ~see Section 3.3!, nonlinear time-domain method
~such as PEM applied to an ARMA model! never reached an
acceptable level of robustness and applicability for real-life d
@45–47#. Despite these drawbacks, some authors tried to apply
PEM to identify the modal parameters of civil engineering stru
tures; see for instance@48,49#.

The Prediction Error Method Applied to an AR Model.The
nonlinearity of the PEM is caused by the MA part of the ARM
model ~7!. By omitting the moving-average part, an aut
regressive model is obtained:

yk1a1yk211¯1apyk2p5ek (22)

and the PEM reduces to a linear least squares problem, whic
easily solved. Unfortunately, apth-order AR model is not an
equivalent representation of a vibrating structure withpl modes.
The use of an AR model as a substitution of an ARMA model c
only be justified if the AR model order goes to infinity:p→`
@10#. In practice this means that many spurious poles will be
troduced that need to be separated from the true system poles
use of AR models for modal parameter estimation is, for instan
demonstrated in@50,51#.

6 Experimental Comparison
In this section, the accuracy of the system identification res

of the different methods in terms of the modal parameters
compared by means of a Monte-Carlo analysis consisting of
simulation runs.

The mast structure, shown in Fig. 4, is subjected to indepen
white noise inputs at all horizontal translation DOFs. The

Fig. 4 FE model of the mast structure used in the Monte-Carlo
analysis
Journal of Dynamic Systems, Measurement, and Control

ownloaded 17 Feb 2013 to 152.3.102.242. Redistribution subject to ASM
l.
al

er-
an
-
ing
gh
ain

ata
the
c-

A
-

h is

an

in-
. The
ce,

lts
are
00

ent
e-

sponses at 6 horizontal DOFs are simulated and afterwards
taminated by white measurement noise withN/S510% ~N/S is
the ratio of the rms values of the noise and output signal!. The
noisy outputs are then fed to 5 system identification methods
~Section 3.1!, CMIF ~Section 3.2!, IV ~Section 4.1!, SSI-COV

Fig. 5 Eigenfrequency estimation results from 100 Monte-
Carlo simulations. The estimates are divided by the true values
„a value of 1 on the graphs indicates a perfect estimate …. These
relative frequencies are shown as dots. The scatter of this
quantity gives an idea about the variance of the estimate. The
average estimate is also shown „as a dashed line …. The devia-
tion of this quantity from 1 „full line … corresponds to the bias of
the estimate. The rows show the 3 modes; the columns repre-
sent the results of 3 identification methods: PP, IV and SSI-
DATA.

Fig. 6 Damping ratio estimation results from 100 Monte-Carlo
simulations. The estimates are divided by the true values „a
value of 1 on the graphs indicates a perfect estimate …. These
relative damping ratios are shown as dots. The scatter of this
quantity gives an idea about the variance of the estimate. The
average estimate is also shown „as a dashed line …. The devia-
tion of this quantity from 1 „full line … corresponds to the bias of
the estimate. The rows show the 3 modes; the columns repre-
sent the results of 3 identification methods; PP, IV and SSI-
DATA.
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~Section 4.2! and SSI-DATA~Section 5.1!. More details about the
structure and the simulations can be found in@7#.

Figures 1–3, which were already introduced previously, con
intermediate identification results of CMIF, IV and SSI-COV. A
explained in Sections 4.1 and 4.2, no order selection criteria
such is applied. The stable poles are selected from the stabiliza
diagrams and they don’t have to originate from one model. T
modal parameter estimation results for the first three modes
represented in Figs. 5–7. In our discussion of the CMIF meth
we did not include an alternative frequency or damping estima
procedures as compared to the PP method. The only differen
that the CMIF can detect closely spaced modes and finds
eigenfrequencies in a more objective way. Therefore the CM
frequencies and damping ratios are not presented in the figu
The results of SSI-COV and SSI-DATA are so close to each ot
that only SSI-DATA is presented.

The eigenfrequency estimates of the PP method can only
the discrete values determined by the frequency resolution of
spectrum~Fig. 5!. All methods yield unbiased eigenfrequency e
timates. Although still small, the standard deviation of the
estimates is three times higher than for the other methods.

When looking at the damping estimates~Fig. 6!, the high bias
of the PP damping estimates is striking. It is rather a coincide
that mode 2 and 3 have unbiased damping estimates, as
situation changes when choosing different options for
non-parametric spectrum estimate~resolution, window, overlap,
averages!.

Regarding the mode shape estimates~Fig. 7!, the IV estimates
for the first mode are too bad to fit into the scales. Also
average correlation of the PP estimates of the third mode c
not be represented. The subspace methods clearly outperform
others.

7 Conclusions
This paper reviewed stochastic system identification meth

for operational modal analysis.
The basic peak-picking method~PP! finds the eigenfrequencie

as the peaks of non-parametric spectrum estimates. This frequ

Fig. 7 Mode shape estimation results from 100 Monte-Carlo
simulations. The correlation between the estimated and the
true mode shapes are shown „as dots …. The average correlation
is also shown „as a dashed line …. The rows show the 3 modes;
the columns represent the results of 4 identification methods:
PP, CMIF, IV and SSI-DATA. The scaling of the y-axis varies in
vertical direction „to accommodate to the changing estimation
quality of the different modes …, but not in horizontal direction,
allowing an easy comparison of the methods.
666 Õ Vol. 123, DECEMBER 2001
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selection procedure becomes a subjective task in case of n
operational data, weakly excited modes and relatively close eig
frequencies. The related half-power bandwidth damping esti
tion method is unreliable; and operational deflection shapes
identified instead of mode shapes.

The complex mode indication function~CMIF! is an SVD-
extension of the PP method, allowing for a more objective se
tion of the eigenfrequencies and the identification of clos
spaced modes. In seems however that the mode shape estim
quality depends on the selected singular vector around reson
~and that it is not always the vector at resonance that gives
best estimates!.

The parametric methods~IV, SSI-COV, SSI-DATA! share the
advantage that stabilization diagrams can be constructed by i
tifying parametric models of increasing order. These diagrams
very valuable in separating the true system poles from the sp
ous numerical poles.

The instrumental-variable method~IV ! does not involve an
SVD and consequently suffers from the lack of a noise-trunca
mechanism. This is reflected in the fact that the mode shape
mates are less accurate than in the subspace methods and
higher order models are required to obtain good modal param
estimates. A lot of additional poles are necessary for fitting
noise.

Both covariance-~SSI-COV! and data-driven subspace metho
~SSI-DATA! seem to perform equally well concerning modal p
rameter estimation performance, although theoretically the
merical behavior of SSI-DATA should be better than that of S
COV since it avoids to square up the data. The SSI-COV met
is considerably faster than the SSI-DATA method if its da
reduction step is carried out by the FFT, whereas SSI-DATA
quires a slowerQR factorization step. Evidently, because it on
uses linear numerical algorithms, the SSI-DATA method is s
much faster than non-linear prediction error methods that
sometimes proposed to estimate the modal parameters from
erational data.

As was indicated in this paper, a lot of classical input-outp
methods carry over~after some modifications! to the output-only
case. FRF-driven methods can be converted to spectrum-dr
methods; impulse-response-driven methods are almost identic
output-covariance-driven methods and input-output data-dri
methods are very similar to output-only data-driven methods.
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