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Guido De Roeck This paper reviews stochastic system identification methods that have been used to esti-
Department of Civil Engineering, mate the modal parameters of vibrating structures in operational conditions. It is found
K.U. Leuven, that many classical input-output methods have an output-only counterpart. For instance,
Kasteelpark Arenberg 40, the Complex Mode Indication Function (CMIF) can be applied both to Frequency Re-
B-3001 Leuven, sponse Functions and output power and cross spectra. The Polyreference Time Domain
Belgium (PTD) method applied to impulse responses is similar to the Instrumental Variable (IV)
e-mail: guido.deroeck@bwk kuleuven.ac.be method applied to output covariances. The Eigensystem Realization Algorithm (ERA) is
equivalent to stochastic subspace identificatidi@Ol: 10.1115/1.1410370
1 Introduction based onf7], tries to fill that gap. Almost all methods discussed in

ethis paper have successfully been applied to real-life vibration
. S . . X data. These applications are beyond the scope of this paper, but
yielded a new research domain in mechanical engineering, kn

0 .
asexperimental modal analysitn this case, anodal modelcon- %h’ for instance, be found [7—9)]
sisting of eigenfrequencies, damping ratios, mode shapes and
modal participation factors, is identified from vibration data. Clas-
sically, one applies an artificial, measurable input to the systen Vibrating Structures: Models and Measurement
and one measures the output. From these measurements, thepgitg
perimental model can be obtained by a variety of parameter esti- . . o . .
mation methods. However, cases exist where it is rather difficult | € @im of this section is to introduce some basic concepts that
to apply an artificial force and where one has to rely upon ava ire most helpful in understa.ndlng.the. similarities and differences
able ambient excitation sources. It is practically impossible ctween stochastic system identification methods.

measure this ambient excitation and the outputs are the only in2.1 Models. One of the first steps of system identification is
formation that can be passed to the system identification alggdopting a certain model structure. Afterwards the parameters of
rithms. Because in these cases the deterministic knowledge of the chosen model are estimated from measurement data. A wide
input is replaced by the assumption that the input is a realizatipange of model structures is proposed in system identification lit-
of a stochastic procesgvhite nois@, one speaks oftochastic erature, see for instance Ljufig0]. The general system identifi-
system identificatiarSpecializing to the identification of vibrating cation procedure is to try out several model structures without
structures the termeutput-only modal analysiand operational bothering about the underlying physical input-output relations.
modal analysisre used. A common problem of operational modalhe aim of this section is to discuss some models that can truly
analysis methods is that if the white noise assumption is violate@present a vibrating structure excited by white noise. By conse-
for instance if the input contains in addition to white noise alsquence, these models are physically meaningful.

some dominant frequency components, these frequency compo- . . . . .
nents cannot be separated from the eigenfrequencies of the systefYSical Model. The dynamic behavior of ahdlscr?]te mechani-
and will be identified as such. cal system consisting of, masses connected through springs and

The need to perform output-only modal analysis probabl?/ampers is described by following matrix differential equation:
emerge_d first in c_ivil engineering, Whehre it ibs_zj/ery diffié:ut!t _r;l;d Mg(t) +C,q(t) +Kq(t)=f(t) 1)
expensive to excite constructions such as bridges and buildin o _ .
with a hammer or shaker and to obtain artificially induced vibré’?ﬁer?M 'CZ‘KHZER 2”12 are the mass, damping and stiffness ma-
tion levels that exceed the natural vibrations due to traffic or win§{ic€S:d(t) € K’ |sfthe @splgcement t\:ecéor_at _contlr!uhous time
Nevertheless, also in mechanical engineering, operational mofafiot over a time unction denotes the derivative with respect to
analysis proved to be very useful: for instance to obtain the modH'e- The vectorf(t) € k™ is the excitation force. For systems

parameters of a car during road testing or an aeroplane durl?@h_ distrib_uted paramete(g.g,, civil engineering_Struc_:tur)asEq.
flight tests. 1) is obtained as the Finite Eleme(&E) approximation of the
Many textbooks exist that give an extensive overview of inpu?—y stem with onlyn, degrees of freedorDOFS left. Although the
output modal parameter estimation methdds-4]. We should nearly phys_lcal mode(l) IS a good_ representation ofa V'bra“F‘g
also mention some recent efforts to compare input-output systéﬁﬁutcmtre":.'t LS .{'pt dlrtectly l_JslefuIdlnlan extperlmental modelling
identification methods for applications in structural dynamic on exli [;rSFI 'Sf r;ﬁ pIgISESI G?jnl aSso nod nfﬁ_essar’got_mea_- .
[5,6]. Individual output-only modal parameter estimation methodd € @ s ot the model. econd, s equation IS n

. . ; .continuous-time, whereas measurements are available as discrete
are ghscussed in several papers, but an overview and compan%ﬁqﬂe samples. And finally, there is some noise modelling needed:
of different methods are missing. The present paper, which tRere may be other unkr;own excitation sources apart ffom

_— ) ] B o and measurement noise is always present in real life.
1Research performed while working at the Department of Civil Engineering, K.U.
Leuven. Stochastic State-Space Modelt can be shown that, by apply-
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Xis 1= AXy+ Wy The observed mode shapésare the first rows of the eigenvec-
(2)  tor matrix. As in the state-space case, the eigenfrequencies and
Y= CXet v damping ratios can be computed from the discrete eigenvalues in

wherey,eR' is the sampled output vectgthe measurements Aq: see EQ(5).

xxe R" is the discrete state vectom, e R" is the process noise, Frequency-Domain Model. Many identification methods iden-
typically due to disturbances and modelling inaccuracies, but helfy frequency-domain models from samples of the Fourier trans-
also due to the unknown excitation of the structurgs R' is the  form of the measurement signals. Frequency-domain models are
measurement noise, typically due to sensor inaccuracy, but hezadily obtained by applying thetransform to the discrete-time
also due to the unknown excitation of the structlés the time models(2), (7). For instance, the output power spectrum matrix of
instant; | is the number of outputsn is the system ordern( a state-space system can be writterj 1a§:

=2n,). The matrixAe R"™" is the state transition matrix that - - -

comél)etely characterizes the dynamics of the system by its eigen- S,(2)=C(zI=A) "G +Ro+G(z 1 —A) ICTp—giost (9)
values; andC e R'™" is the output matrix that specifies how thewhere S,(z) e (™! is the spectrum matrix containing the power
internal states are transformed to the outside world. The noiard cross spectra between the outputs. The power spectra are real
vectors are both unmeasurable vector signals assumed to be zevd located on the main diagonal. This expression can be evalu-

mean, white and with covariance matrices: ated for any number on the unit circie= e/t where w [rad/g
S can be any frequency of interest. Matrixe R is the next
W T T Q : : IX1 5
Ell P (Wavg) |=| o Soq (3) state—output covariance matrix aRge R'™" is the zero-lag out-
Vp S R put covariance matrix:
where E is the expected value operatas,, is the Kronecker G=E[Xs1yr], Ro=Elyyr] (10)

delta.
It is precisely such a stochastic state-space model that will B&@ in structural dynamics more common form of the output

identified when using so-called subspace identification methopl@wer spectrum matrix is obtained by applying the Laplace trans-

(see Sections 4.2 and 5.1n a second step, the modal parameter®®rm to a continuous-time model and introducing the modal pa-

are obtained from the matricésandC. The derivation starts with rameters(see[7] for a detailed derivation

the eigenvalue decomposition Af

n n
1
A=WAWp @ S=| 2 oo DR 2 o 100
i=1S )\I i=1S )\I s=jw
where¥ e C"*" is the eigenvector matrix andlye C"*" is a di- (11)
agonal matrix containing the discrete-time eigenvalues. The ) ) 1 .
eigenfrequencies; and damping ratios; are found from: wheres is the Laplace variabldg;v;} € C' is theith modal vector;
A _ , (ITy e C™ is theith modal participation vectom is the number of
wi=eMt N N == foi 1= & (5)  (white noise inputs; R,e R™™ is the white noise input covari-
where At is the sampling time. Finally, the mode shapgs ance matrix.
e (" are found as: 2.2 Measurement Data. In principle (outpu) datay, are
V=CWw ©) available as discrete samples of the time signal. The identification

methods of Section 5 will be able to use directly these time sig-
ARMA Model. The more classical system identification methnals. However, many system identification methods exist that re-
ods[10] identify models that do not contain the state. It can b@uire other types of data.
shown [12,13 that the following so-called ARMA model is The identification methods of Section 4 require output covari-
equivalent to the stochastic state-space mézel ances as primary data type. Output covariances are defined as:

Vit arYk-1t ot apyp=ect yit1t ot vpeup  (7)

where, as beforey, is the output vector ané, e R' is a white
noise vector sequence. The left-hand side is called the Auto- . .
RegressivéAR) part and the right-hand side the Moving Averagdvhere the second equation follows from the ergodicity assump-
(MA) part, hence the name of the model. The matriegs B! tion. Of course, in reality, a finite numbét of data is available

are the AR matrix parameters; matrices= R'*' are the MA ma- and a covariance estimate is simply obtained by dropping the limit

. . . in (12).
trix parameters. Sometimes, as in the present case of multip! . P : .
outhL)Jts one speaks of ARMAV models gs to stress their mulp-erhe. identification _meth?dsh of Section .3 r?qw_rreh a ;‘requency
L . omain representation of the output signals. The frequency-
variable character. An ARMA model that is deduced from a state- . : R : :
space model has the same AR order as MA order. This is deno?eoc!nam representatlonl Xc,)f sto_chastlc S|gnal_s IS prqwded by_ the
asp in Eq. (7). The ARMA model order is related to the state- pow?r) spefctLumSyeC_ + defined as .the discrete-time Fourier
space model order api=n. Since it is derived from a stochastictransform of the covariance sequence:
state-space model, also an ARMA model can truly represent a *
vibrating structure. S(eledty= D) R lekat (13)
The modal parameters can be computed from the ARMA model k=—o
by the eigenvalue decomposition of the companion matrix of the

N-1
) 1

Ri:E[kayI]: lim N E Yk+iYI (12)
N— oo k=0

For details on methods to estimate covariances and spectra

AR polynomial: from measured time data, we refer to the extensive literature that
0 | 0 v v exist on the subject; see for instar(dé, 16].
0 0 0 VAyq VAyq
VA/.\.p.fZ B V/.\'p.fg Ad 3 Frequency-Domain Spectrum-Driven Methods
0 0 B VA‘Sfl VA?H The presentation order of the identification methods roughly
—ap, —apq . —ag d d corresponds to the historical application of stochastic system iden-
(8) tification: from picking the peaks in spectrum pld&ection 3.1
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to time-domain subspace methods that make extensively usec ' . . ; ; , :
concepts from numerical linear algeki®ection 5.1

3.1 The Peak-Picking Method (PP). The simplest ap- ¢
proach to estimate the modal parameters of a structure subjec
to ambient loading is the so-called Peak-PickiR§) method. The .|
method is named after the key step of the method: the identific

tion of the eigenfrequencies as the peaks of a spectrum plot. T

method is for instance discussed[itb,17). 107 ) "?"‘MJW'

Under the conditions of low damping and well-separated eiges Pl [ "'”,"",,'v MW\W
frequencies, the spectrufi1) around an eigenfrequenay; can .| b, mv"“M‘a}\\\/‘t{i‘\‘\ﬂr{u". I xvlrﬁfu";’ajvm“_‘wl 1
be approximated by: b [ AT Ui N T TR

. WN ,‘/‘r’-«]fl" Ll : | u"r"l,”hl\/ o Yty i ﬁkp'!ﬂl’uyix“; (r"ylv y VVWJMM‘M
S,(jo)=~ai{v}{v") (14) w0 %‘t"&‘““ﬂfk “» ";"' Gt s T “"“fﬁ‘.‘" i q“,:;m( A
“»W"Vu’.',’ ‘&1" W wf ‘.; SO ‘ L { A v"?'«.;vfa’““v
- . . , : P et et b Tt A RA TS n{m» i el
where «; is a scale factor depending on the damping ratio, tt ,vﬂ’ i ‘M“Im‘} Vw.ﬁ\‘;‘,vf\:ﬁ,‘u‘:?n r’,LJ;V,,(\mﬁ‘M.ﬁ i ‘ﬁ'f*l i k"’ifl’l ,!,5;;,”* *“%"W
i it ! h \

!
i
o i

eigenfrequency, the modal participation factor and the input cov 10k} ATy
' \ | ’r‘ N ‘
i

riance matrix. Vectof»;} is theith mode shape. Frortl4) it is i
clear that each column or row of the spectrum matrix at an eige | ‘ , ‘ ‘ Lo
frequency can be considered as an estimate of the mode shag o 2 4 6 8 10 12
that frequency. Therefore it suffices to compute only 1 column c. flHz]
row of the spectrum matrix. In order to obtain damping ratios, it is. o ) .
often suggested to use the half-power bandwidth method, whicH j9: 1 _The complex mode indication function ~  (CMIF). The sin-
. - dlar values of the spectrum matrix are plotted as a function of

able to quantify the sharpness of a resonance peak. It is, howe & frequency. Around 2.4 Hz and 7 Hz, two singular values are
widely accepted that this estimate is not a very accurate one. gignificant, indicating that there are two close modes.

Some refinements of the PP method exist. The coherence func-
tion between two channels tends to go to one at the resonance
frequencies because of the high signal-to-noise ratio at these fre-

quencies. Consequently, inspecting the coherence function can asrhe method is based on the fact that the transfer function or
sist in selecting the eigenfrequencies. Also, the phase angles of 3@ctrum matrix evaluated at a certain frequency is only deter-
cross spectra are helpful: if real modes are expected, the phagged by a few modes. The number of significantly contributing
angles should be either 0 or 180 deg at the resonance frequencigsdes determines the rank of the spectrum matrix. The SVD is
A violation of the basic assumptiortfow damping and well- typically used for estimating the rank of a matrix: the number of
separated frequenciedeads to erroneous results. In fact theyonzero singular values equals the r42R]. The singular values
method identifiesoperational deflection shapésstead of mode 35 g function of frequency(jw) is the actual CMIF; see Fig. 1
shapes and for closely spaced modes such an operational defigean example. Therefore, plotting the CMIF yields the eigenfre-
tion shape will be the superposition of multiple modes. Othgjuencies as local maxima. The CMIF is also able to detect closely
disadvantages are that the selection of the eigenfrequencies ggficed modes: more than one singular value will reach a local
become a subjective task if the spectrum peaks are not very clggiximum around the close eigenfrequencies.
and that the eigenfrequencies have to be a subset of the discretg only 1 mode is important at a certain eigenfrequengy the

frequency values of the discrete Fourier transform. spectrum approximates a rank-one matrix and can be decomposed
Despite these drawbacks many civil engineering cases exjg{(15):

where the method is successfully applied; see for instit@d9. . . ) o
The popularity of the method is due to its implementation sim- Sy(jwi)=o1(jo){us(je)u(jw)) (16)
plicity and its speed: the only algorithm that is needed is the FastBy comparing(16) with (14), it is evident that the first singular

Fourier Transform(FFT) to convert time data to spectra. The COMyqctor ot resonance is an estimate of the mode shape at that fre-

putational speed can become irrelevant though, because Of%%ncy. In case of mode multiplicity at a resonance frequency,
Iar?e atlmount OII user interaction needed to try to improve thgey singular vector corresponding to a nonzero singular value is
estimation resufts. considered as a mode shape estimate.

f ity
it
! l“.“.t f
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3.2 The Complex Mode Indication Function(CMIF). A In some sense, the CMIF method can be considered as an SVD
more advanced method consists of computing the Singular Valggtension of the PP method. The SVD is able to resolve mode
Decomposition(SVD) of the spectrum matrix: multiplicity. The method can also be applied to a reduced spec-

) ) _ " trum matrix, where only the spectra between a chosen set of ref-
Sy(jw)=U(jw)Z(jo)U"(jw) (15) erence sensors and all outputs have to be computed. In this case,

whereU e C'¥! is a complex unitary matrix containing the Singu_the maximum number of detectable multiple poles cannot exceed

. N . the smallest dimension of the reduced spectrum matrix.
lar vectors as columns. The diagonal matfix R *' contains the ~ £y4angjons of the CMIF method are possible that do estimate
real positive smgglar vallues. in descending order. Th's mgtrl enfrequencies and damping ratios differently as in the PP
based upon the diagonalization of the spectral density matrix, thod. After applying the SVD to the spectrum matrix, this ma-

tﬁfx is in fact decomposed in single-DOF systems. To such a sys-

obtain the modes of a vibrating system subjected to natural eXElrn single-DOF modal parameter estimation methods could be
tation[20]. Some years later, the method was also applied to Frg- 9 P

quency Response FunctioSRF9 and became known as theﬁpfgfd’ extensively documented in the modal analysis literature
Complex Mode Indication FunctiofCMIF). As suggested by the '

name, the CMIF was originally intended as a tool to count the 3.3 Maximum Likelihood Identification (ML). Contrary
number of modes that is present in measurement data. As a usé&futhe PP method or the CMIF which considers only one mode at
byproduct, the CMIF also identifies the modal parameters froemmtime, this method estimates the parameterized spectrum matrix
FRFs[21]. Recently, the spectrum-driven method received agaas a whole. Maximum LikelihoodML) identification is an
attention as an alternative for the PP method in civil engineerimptimization-based method that estimates the parameters of a
applicationg22]. In this paper, the old method was given a newnodel by minimizing an error norm. A discussion on the use of
name, the frequency-domain decomposition method. the ML estimator to identify parametric frequency-domain models
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can be found irf24,25. The ML method results in equations that Vi>0 : Ry i+ Ry, g+ +a,R=0 (19)
are nonlinear in the unknown parameters. This requires an itera-
tive procedure. Therefore it is no surprise that often mentioned
drawbacks of ML estimators are the high computational load and
the fact that they are not suited to handle large amounts of dataBy replacing the output covariances by their estimates and writ-
During the last years attention has been paid to the optimizationiog down the equation for all available time lagshe AR param-
the ML method: the algorithm has been modified to keep th&§ersay, ... ,a, can be estimated by solving the resulting over-
memory requirements as low as possible; and using an adapiegermined set of equations in a least squares sense. Finally, the
parameterization and fast signal processing techniques, an impgigenvalues and the observed mode shapes are obtained from the
tant reduction of the computation time was possible. It has beeigenvalue decomposition of the companion matrix of the AR
shown that ML identification is a robust method to find the modaloefficients; see Eq8).
parameters of a structure from a large and noisy datf2ée27. As in the previous methods of Section 3, it is also in the case of
Originally intended for application to FRFs, the method was exhe IV method possible to reduce the dimensions of the involved
tended to use spectra as primary data, so that it also could be ugtdrices and the related computational effort by making use of a
in output-only casep28]. subset of reference sensors. Only the covariances between all out-
puts and this subset have to be computed. Details can be found in
[7]. This corresponds to classical modal analysis, where the im-
- . . . pulse response matrices are rectangular matrices haviogs
4 Time-Domain Covariance-Driven Methods (i.e., the number of outputsand m columns(i.e., the number of
It is known for some time that there exist similar mathematicahputs. In output-only cases, the impulse responses are substi-
expressions for impulse responses and output covariaioées tuted by output covariances and the inputs by the reference out-
system excited by white noisas a function of the system param-puts; see als8,29.
eters; see for instan¢@2,15. In modal analysis applications, this A typical problem of estimating a parametric model from data
observation is used to feed classical impulse response bagethe determination of the model orderpth order ARMA model
modal parameter estimation methods with output covariances lased onl outputs containgl poles. Consequently, the “ex-
stead[29]. Two such methods are discussed below. pected” number of poles covered by the data gives an indication
41 The Instrumental Variable Method (IV). In this sec- of the model order. This expected number can be based on physi-

. : cal insight or counted as two times the number of peaks in the

tion, & method belonging to the class of so-called Instrumentgy quency-plot of a nonparametric spectrum estimate; see also the
V_arlable (V) methqu wil b.e discussed. Although derived in P method, Section 3.1. A more accurate model order estimate is
different way, the final equations of the IV method correspond Tﬁ’ ’ o

the Polyreference Time Domaii?TD) method after substituting rovided by th(_a CMIF, a frequ_ency-plc_)t 0f3the singular values of
impulse responses by output covariances. The PTD method®| ponparametric spectrum espméﬁectlon -+ .
. ore formal procedures estimate models of different order and

ﬂgﬁgslﬁgﬁoﬁoﬁ (\;\ggzﬁ/n:iﬁg_g:st'tggﬁgrrgsgg:n%?erinéexts(r)_esgbmpare these models according to a quality criterion such as
X : i . Akaike’s Final Prediction Error or Rissanen’s Minimum Descrip-
nential (LSCE) and the lbrahim Time DomaifiTD) methods as tion Length criterior{ 10].

special cases. For an overview, relations between these ’[raditionqlk)wever in modal analysis one is usually not interested in a

(input-outpul methods and the original references, se od model as such, but rather in the modal parameters extracted

[1,3,30,31. A more generic discussion and more references on Ifrom that model. Practical experience with parametric models in
methods can be found {i0].

g ... modal analysis applications learned that it is better to over-specify
strﬁgtﬁrzMSnTocﬁfrl]gzelof ?#'etaglel?crgg(;;zr; ;eggzsen;%\ilc'ggﬁm%e model order and to eliminate spurious numerical poles after-
: Y, PP oy wards, so that only true physical system poles are left. The famous

error method(10] to an ARMA model resuits in a highly nonlin- trq_bilization diagrani1,3] is a great tool to achieve this goal. The

ﬁr?é aprirair:igeljseesd“tr)n attllq%nlvﬁ)LOb;?;nr%zte;Sal.?ﬁ essg\tllglqtglze. thtﬁ en les corresponding to a certain model order are compared to the
Y y P : 9 oles of a one-order-lower model. If the eigenfrequency, the

e o B amping ratio an th rlated mode shagermodal partiaton
facton differences are within preset limits, the pole is labeled as a

still is an ARMA model. f 8 . -~
The idea of system identification is to “fit" a model to mea-étable one. The spurious numerical poles will not stabilize at all

sured daty, . A good parameter estimation method should extra tg:g‘g;thr'ﬁoegogg:ﬁ agﬂgﬁg ggg‘ﬁirztggo?luéigf ngnrgorialrggéir;%t?rz
the maximum information from the data, leaving residuglshat Y- 9 P

. S . . Fig. 2.
are uncorrelated with past data. This is formally written as: Interesting to note and very relevant for civil engineering prac-
Vi>0 : E[eyy ;1=E[eJE[y;_1=0 (17) tice is that the IV method is robust against nonstationary inputs

i . (i.e., white noise with time-varying covariangeJhis does not
where the first equality says thet andy,.; are uncorrelated; and oy follow from practical experience but has also been theoreti-
the second equality follows from the zero-mean property of tr&yy proven in[32].
noise sequence. If, on the contrary the residuals are correlate
with past data, they still contain useful but unmodelled informa-
tion and the model is not ideal. The derivation of the IV method
starts by imposing conditions likd.7) to the ARMA model(7) in 4.2 Covariance-Driven Stochastic Subspace Identification
order to get rid of the right-hand sidthe MA pary. The “oldest” (gg|.cov). Like the CMIF method can be considered as an
noise term ise,_,; S0 by post-multiplying the ARMA model by gy/p_enhanced PP method, covariance-driven subspace identifica-
Yk—p-i (for i>0) and by taking the expectation we obtain: tion can—somewhat disrespectfully—be considered as an SVD-
; . T T enhanced instrumental variable method. The covariance-driven
Vi>0 @ E[YwYk—p-ilt a1ElYk-1Yx—p-il+ Stochastic Subspace Identification metli6&I-COV) is address-
+apElyk- pprfi]:o (18) ing the so-calledstochastic realization probleni.e., the problem
of identifying a stochastic state-space mo@lfrom output-only
Because of stationarity and E@12), we have:E[y,y, ] data.
=E[yk+iyl]=Ri ;and the basic IV equation can be written in  Stochastic realization is closely related to determinigtiput-
terms of the output covarianc&s: outpud realization, that goes back to Ho and Kalnj@8] and was
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Number of poles, n

Fig. 2 Stabilization diagram obtained with the IV method. The used symbols are: “
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a stable pole; “.v” for a pole with stable frequency and vector; “.d” for a pole with stable
frequency and damping; “.f” for a pole with stable frequency and “.” for a new pole. Two
zooms are added that concentrate on the close modes around 2.4 and 7 Hz.

extended with the SVD to treat noisy data[B¥] and[35]. The
so-called Eigensystem Realization AlgorithiBRA), developed n, since it is the product of a matrix with columns and a matrix
by Juang[36,37, is a modal analysis application of these detemith n rows.
ministic realization algorithms. The stochastautput-only real-
ization problem is solved ifil2,38—4Q. Application of stochastic the covarianceR;, computing the SVD ofy;, truncate the SVD
realization to modal parameter estimation was reported by Beta-the model orden, estimatingD; andT’; by splitting the SVD in
veniste and FuchE32]. They also proved that their algorithm istwo parts and finally estimating, C, G from O; andT';. The
robust against nonstationary inputsg., a white noise sequencemodal parameters are found frolnandC as indicated ir(4) and
with time-varying covariange
Stochastic realization relies upon a fundamental property of stgnces. Again, it is possible to slightly reformulate the SSI-COV

chastic state-space systems. It can be progee for instance method, so that it only needs the covariances between all outputs
[41,42) that the output covariance® (12) can be decomposed ang a set of referencég,g).

as:

R=CA~!G

(20)

where G is defined in(10). The covariance sequené® can be
estimated from measurement data; so it remains to be solved hgWtypical noise sources we have:
to decompose the covariances as to #acC, G. Hereto, a block o _ ) _
Toeplitz matrixTy; € R"*!" is formed that consists of covariances: * Modelling inaccuracies. Itis possible that the true system that

R;
Ri+1
Tyi=
Rai—1

C
CA

CA~
<—

n

Ri-1
R;

Roi—»

Ry
R,

R;

(AI71G---AG G)[n=0jT

1

(1)

The second equality follows from applying prope(B0). The
definitions of theextended observability matrix;@ R"*" and the
reversed extended stochastic controllability maffipe R"*'" are
obvious from(21). For li>n, and in case of an observable andrder are discussed [43].

Journal of Dynamic Systems, Measurement, and Control

controllable system, the rank of thiexli Toeplitz matrix equals

The actual implementation of SSI-COV consists of estimating

(6). Implementation details can be found in the above-cited refer-

In theory, the system order can be determined by inspecting
the number of nonzero singular values ©f; (21). In practice,
however, the estimated covariance Toeplitz matrix is affected by
“noise” leading to singular values that are all different from zero.

generated the data cannot be modelled exactly as a stochastic
state-space model. An attempt to model this system by a
state-space model introduces an error in these cases.

* Measurement noise: introduced by the sensors and the elec-
tronics of the measurement hardware.

» Computational noise due to the finite precision of any
computer.

» The finite number of data. The covariances have to be esti-
mated, so that the factorisation propef80) does not hold
exactly. As a consequence, the rank of the covariance Toeplitz
matrix will not be exactlyn.

Sometimes it is suggested to look at the “gap” between two
successive singular values. The singular value where the maximal
gap occurs yields the model order. This criterion should, however,
not be applied too dogmatically, since in most practical cases
there is no gap. Other statistical methods to determine the model
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Fig. 3 Stabilization diagram obtained with the SSI-COV method. By comparing this dia-
gram with the IV diagram (Fig. 2), it is clear that the IV method requires higher model
orders to find stable poles.

However, to obtain a good model for modal analysis applica- Covariance-Driven Versus Data-Driven Subspace Identification.
tions, it is probably a better idea to construct a stabilization digt this point it is useful to discuss the similarities and differences
gram, by identifying a whole set of models with different ordebetween the SSI-COVSection 4.2 and the SSI-DATA method
The stabilization diagram was already introduced in Section 4.(8ection 5.1 First the similarities. Both methods start with a data
In case of the SSI-COV method, an efficient construction of theduction step. In the SSI-COV algorithm the raw time histories
stabilization diagram is achieved by computing the SVD of th?k, consisting ofl channels andN data pointsiwith N— o), are
covariance Toeplitz matrix only once. Models of different ordeggonyerted to the covariances of the Toeplitz mati®). The num-
are then obtained by including a different number of singular valer of elements is reduced froix N to i X1i. In the SSI-DATA
ues and vectors in the computation@f andT'; . A stabilization gig0rithm a similar reduction is obtained by projecting the row
diagram obtained with the SSI-COV method is shown in Fig. 355506 of the future outputs into the row space of the past outputs.
This projection is computed from th@R factorization of a big
data Hankel matrix; sef7,11,43. A significant data reduction is

5 Time-Domain Data-Driven Methods obtained because only a part of tRefactor is needed in the
sequel of the algorithm. Both methods then proceed with an SVD.

5.1 Data-Driven Stochastic Subspace ldentificatio(SSI-  This decomposition reveals the order of the system and the col-
DATA). Recently, a lot of research effort in the system identifiumn space oD, (21).
cation community was spent to subspace identification as evi-everal variants of stochastic subspace identification exist.
denced by the book of Van Overschee and De Mdai and the They differ in the weighting of the data matrices before the appli-
second edition of Ljung’s bookl0]. Subspace methods identify cation of the SVD. This weighting determines the state-space ba-
state-space models frofinput and output data by applying ro- gjs in which the identified model will be identified. Equivalent

bust numerical techniques such @R factorization, SVD and - : ;
; plementations exist for both SSI-COV and SSI-DATA. More
least squares. As opposed to SSI-COV, the DATA-driven StOChao%tails can be found if40] and [42]. Well-known variants are

tic Subspace Identification methd8SI-DATA) avoids the com- ~, oo \ariate Analysi€CVA), Principal Component&C) or
putation of covariances between the outputs. It is replaced g%weighted Principal Componen&PC). This last variant is

rojecting the row space of future outputs into the row space : )
Eas{t outguts. In factf)the notions cova?iances and project[i)ons gpépetlmes also Ca”.ed Balanced Realiza(BR). . .
closely related. They both are aimed to cancel out(tieeorre- herf_e are also differences between the covarlance-drlve_n and
lated noise. The first SSI-DATA algorithms can be found[#¥]. data-driven approa}ches. In the SSI-COV method, the covariances
A general overview of data-driven subspace identificatiooth Can P& computed in a very fast way by using the FFT algorithm
deterministic and stochastics provided in[42]. [15,16. The cc_)rre_spondlng step in SSI-DA_TA is the relatively
methods, it is also possible with SSI-DATA to reduce the dimer®SI-DATA. In favor of the data-driven method is that it is imple-
sions of the matricegand the memory requirements of the algomented as a numerically robust square root algorithm: the output
rithm) by introducing the idea of the reference sensors. This @ata is not squared up as in the covariance-driven algorithm.
demonstrated in7,11]. It is beyond the scope of this paper to We should add that in practical applications of any of the vari-
explain the SSI-DATA method in detail. The interested reader &ts of stochastic subspace identification, no accuracy differences
referred to the above-cited literature. can be observed when looking at the identified modal parameters.
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52 Other Data_Driven Methods Peak Picking Instr. Var. Subspace

The prediction Error Method Applied to an ARMA Model. ™~ -~ - Lot o1
Prediction Error Method$PEM) can be considered as a generag 1k SO i
system identification framewoifl0]. These methods identify the =
parameters of a model by minimizing the so-called prediction e~ ®% : 099 098
rors. The straightforward application of PEM to estimate a 0 50 w0 50 000 50 100
ARMA model (7) from data results in a highly nonlinear optimi-
zation problem with related problems as: convergence not bei e e
guaranteed, local minima, sensitivity to initial values and a higs T N ST e e
computational load. In contrast to the nonlinear frequency-dome= o - o o
ML method (see Section 3)3 nonlinear time-domain methods 099 o 098
(such as PEM applied to an ARMA modlehever reached an 0 50 00 50 10 o 50 100
acceptable level of robustness and applicability for real-life da
[45-47). Despite these drawbacks, some authors tried to apply t
PEM to identify the modal parameters of civil engineering struc:.g’ ] e ——— Ve e T T
tures; see for instandé8,49|. = T i

e ] [ S - 1

1.01 1.01 1.01

0.99 . - 0.99 0.99
The Prediction Error Method Applied to an AR ModelThe o % 00 o 50 o 50 T00
nonlinearity of the PEM is caused by the MA part of the ARMA
model (7). By omitting the moving-average part, an auto- Simutation Simulation Simulation

regressive model is obtained: Fig. 5 Eigenfrequency estimation results from 100 Monte-

Yt @Y1+ apYio p= € (22) Carlo simulations. The estimates are divided by the true values

(a value of 1 on the graphs indicates a perfect estimate ). These

and the PEM reduces to a linear least squares problem, whichetive frequencies are shown as dots. The scatter of this
easily solved. Unfortunately, ath-order AR model is not an quantity gives an idea about the variance of the estimate. The
equivalent representation of a vibrating structure withmodes. average estimate is also shown (as a dashed line ). The devia-
The use of an AR model as a substitution of an ARMA model caﬁ?” OfchiSthé}r”t:iW from 1h (fttl‘J]” ”3[‘3 )gorretipondls to the bias of
only be justified if the AR model order goes to infinitpi—cc 1€ ESUMAte. The rows show the 5 moaes; the columns repre-
[10]. In practice this means that many spurious poles will be irz]-e'];’;he results of 3 identification methods: PP, IV and SSI-
troduced that need to be separated from the true system poles. ﬁe '
use of AR models for modal parameter estimation is, for instance,
demonstrated if50,51].

sponses at 6 horizontal DOFs are simulated and afterwards con-
) ) taminated by white measurement noise WithS=10% (N/S is
6 Experimental Comparison the ratio of the rms values of the noise and output sigriie

In this section, the accuracy of the system identification resuff@isy outputs are then fed to 5 system identification methods: PP
of the different methods in terms of the modal parameters araection 3.1, CMIF (Section 3.2, IV (Section 4.], SSI-COV
compared by means of a Monte-Carlo analysis consisting of 100
simulation runs.

The mast structure, shown in Fig. 4, is subjected to independt Peak Picking Instr. Var. Subspace
white noise inputs at all horizontal translation DOFs. The re * ' ’

Mode 1

(8]

0 50 100 0 50 100 0 50 100

7 2 - 2 2
. (9 »

Mode 2

0 50 100 0 50 100 0 50 100

(5]

Mode 3

[4] [6]

0 50 100 0 50 100 0 50 100

Simulation Simulation Simulation

Fig. 6 Damping ratio estimation results from 100 Monte-Carlo
2 simulations. The estimates are divided by the true values (a
(2 value of 1 on the graphs indicates a perfect estimate ). These
relative damping ratios are shown as dots. The scatter of this
y quantity gives an idea about the variance of the estimate. The
(1] average estimate is also shown (as a dashed line ). The devia-
(3] tion of this quantity from 1 (full line ) corresponds to the bias of
the estimate. The rows show the 3 modes; the columns repre-
Fig. 4 FE model of the mast structure used in the Monte-Carlo sent the results of 3 identification methods; PP, IV and SSI-
analysis DATA.
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Peak Picking CMIF Instr. Var, Subspace selection procedure becomes a subjective task in case of noisy
: : operational data, weakly excited modes and relatively close eigen-
frequencies. The related half-power bandwidth damping estima-
tion method is unreliable; and operational deflection shapes are
A identified instead of mode shapes.
oossk SR O S N o 05 The complex mode indication functiofCMIF) is an SVD-
0 s oo s 1000 s 1000 s 10 extension of the PP method, allowing for a more objective selec-

» v 7 tion of the eigenfrequencies and the identification of closely
spaced modes. In seems however that the mode shape estimation
ol quality depends on the selected singular vector around resonance
T T T o (and that it is not always the vector at resonance that gives the
o : v N ' o best estimatgs
"o 50 100 0 50 100 0 50 100 0 50 100 The parametric methoddV, SSI-COV, SSI-DATA share the
advantage that stabilization diagrams can be constructed by iden-
tifying parametric models of increasing order. These diagrams are
very valuable in separating the true system poles from the spuri-
ous numerical poles.

S L o S The instrumental-variable methodV) does not involve an
085 50 100 2% 0 100%% T T 100 %% w1 SVD and consequently suffers from the lack of a noise-truncating
mechanism. This is reflected in the fact that the mode shape esti-

Mode 1

Mode 2

Mode 3

Smutaton Smutation Smuaton Simuation mates are less accurate than in the subspace methods and that

Fig. 7 Mode shape estimation results from 100 Monte-Carlo hlgher order models are _reqwred to obtain good modal parameter
simulations. The correlation between the estimated and the estimates. A lot of additional poles are necessary for fitting the
true mode shapes are shown (as dots ). The average correlation noise.

is also shown (as a dashed line ). The rows show the 3 modes; Both covariancetSSI-CO\) and data-driven subspace methods
the columns represent the results of 4 identification methods: (SSI-DATA) seem to perform equally well concerning modal pa-
PP, CMIF, IV and SSI-DATA. The scaling of the y-axis varies in rameter estimation performance, although theoretically the nu-
vertical direction (to accommodate to the changing estimation merical behavior of SSI-DATA should be better than that of SSI-
quality of the different modes ), but not in horizontal direction, COV since it avoids to square up the data. The SSI-COV method
allowing an easy comparison of the methods. is considerably faster than the SSI-DATA method if its data-

reduction step is carried out by the FFT, whereas SSI-DATA re-
quires a sloweQR factorization step. Evidently, because it only
uses linear numerical algorithms, the SSI-DATA method is still
much faster than non-linear prediction error methods that are

Figures 1-3, which were already introduced previously, cont . . )
intermediate identification results of CMIF, IV and SSI-COV. A%rgitrl]gwleja?;oposed to estimate the modal parameters from op

explained in Sections 4.1 and 4.2, no order selection criteria asy¢ o< indicated in this paper, a lot of classical input-output

Sl_Jch is applied. The stable poles are.sglected from the stabilizatmgthods carry ovefafter some modificationgo the output-only
dlagra:ms and :hey dtpn tt_have to l?”%'nattﬁ f;pn'; ?hne mOdzl' TQ: se. FRF-driven methods can be converted to spectrum-driven
moda pi“”(‘j”?e E.r esgm$ |c|)n reSL('j.S or the Ifrsth E:es”po eti #ethods; impulse-response-driven methods are almost identical to
represented in Figs. 5-7. In our discussion of the CMIF methog,, + covariance-driven methods and input-output data-driven
we did not include an alternative frequency or damping estimatiQo o s are very similar to output-only data-driven methods.
procedures as compared to the PP method. The only difference IS
that the CMIF can detect closely spaced modes and finds the
eigenfrequencies in a more objective way. Therefore the CMReferences
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