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When performing vibration tests on civil engineering structures, it is often unpractical and
expensive to use arti"cial excitation (shakers, drop weights). Ambient excitation on the
contrary is freely available (tra$c, wind), but it causes other challenges. The ambient input
remains unknown and the system identi"cation algorithms have to deal with output-only
measurements. For instance, realisation algorithms can be used: originally formulated for
impulse responses they were easily extended to output covariances. More recently, data-
driven stochastic subspace algorithms which avoid the computation of the output covarian-
ces were developed. The key element of these algorithms is the projection of the row space of
the future outputs into the row space of the past outputs. Also typical for ambient testing of
large structures is that not all degrees of freedom can be measured at once but that they are
divided into several set-ups with overlapping reference sensors. These reference sensors are
needed to obtain global mode shapes. In this paper, a novel approach of stochastic subspace
identi"cation is presented that incorporates the idea of the reference sensors already in the
identi"cation step: the row space of future outputs is projected into the row space of past
reference outputs. The algorithm is validated with real vibration data from a steel mast
excited by wind load. The price paid for the important gain concerning computational
e$ciency in the new approach is that the prediction errors for the non-reference channels are
higher. The estimates of the eigenfrequencies and damping ratios do not su!er from this fact.
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I. INTRODUCTION

In-operation system identi"cation is a very relevant topic in civil engineering. For bridge
monitoring based on damage identi"cation methods that need the dynamic characteristics
of the structure, the only e$cient way to obtain these characteristics is in-operation modal
analysis. The bridge was available for public use during the measurements and it was
impossible to change the boundary conditions to obtain an ideal free-free set-up. So the use
of arti"cial shaker or impact excitation is not very practical: in most cases at least one lane
has to be closed and secondary excitation sources, having a negative e!ect on the data
quality, cannot be excluded: tra$c under/on the bridge, wind, micro tremors [1]. For
output-only system identi"cation, on the other hand, these ambient excitation sources are
essential. By using such stochastic and unmeasurable ambient excitation, the traditional
frequency response function or impulse response function based modal parameter estima-
tion methods are excluded, since they rely on both input and output measurements.

A widely used method in civil engineering to determine the eigenfrequencies of a structure
based on output-only measurements is the rather simple peak-picking method. In this
method, the measured time histories are converted to spectra by a discrete Fourier
transform (DFT). The eigenfrequencies are simply determined as the peaks of the spectra.
88}3270/99/110855#24 $30.00/0 ( 1999 Academic Press
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Mode shapes can be determined by computing the transfer functions between all outputs
and a reference sensor. A practical implementation of this method was realised by Felber
[2]. The major advantage of the method is its speed: the identi"cation can be done on-line
allowing a quality check of the acquired data on site. Disadvantages are the subjective
selection of eigenfrequencies, the lack of accurate damping estimates and the determination
of operational de#ection shapes instead of mode shapes, since no modal model is "tted to
the data.

Therefore, we are looking for more advanced methods. Literature exists on several system
identi"cation methods that can identify systems excited by unknown input. The detailed
knowledge of the excitation is replaced by the assumption that the system is excited by
white Gaussian noise. The most general model of a linear time-invariant system excited by
white noise is the so-called ARMAV-model: the autoregressive term of the outputs is related
to a moving average term of the white noise inputs. Based on the measurements, the
prediction error method [3] is able to solve for the unknown matrix parameters. Unfortu-
nately, this method results in a highly non-linear minimisation problem with related
problems such as: convergence not being guaranteed, local minima, sensitivity to initial
values and especially in the case of multivariable systems, an almost unreasonable computa-
tional burden [4, 5]. One possible solution is to omit the moving average terms of an
ARMAV-model that cause the non-linearity and to solve a linear least-squares problem to
"nd the parameters of an ARV-model. A disadvantage is that since this model is less
general, an overspeci"cation of the model order is needed which results in a number of
spurious numerical modes. The stochastic subspace system identi"cation method [6] shares
the advantages of both the above-mentioned methods: the identi"ed model is a stochastic
state-space model which is in fact a transformed ARMAV-model, and as such more general
than the ARV-model; the identi"cation method does not involve any non-linear calcu-
lations and is therefore much faster and more robust than the prediction error method.

There has been much work on output-only identi"cation. Benveniste and Fuchs [7]
considered as early as in 1985 the use of stochastic realisation algorithms (Section 4) for
modal analysis of structures (Section 7.1). Another interesting result of Benveniste and
Fuchs [7] is the extension to the non-stationary white noise case. More results and
applications are given in [8, 9]. Another application of subspace identi"cation, in addition
to the determination of modal parameters, is the use of the so-called level 1 damage
detection (for answering the question whether there is structural damage or not). This
subject is treated in [10, 11]. Several applications of output-only identi"cation have been
reported: modal analysis of aircraft structures [12]; health monitoring of a sports car [13];
and identi"cation of o!shore platforms [14]. As an alternative for output-only time domain
methods, Guillaume et al. [15] have developed the maximum likelihood identi"cation that
operates in the frequency domain. In contrast to the peak-picking method that does not
really imply any parametric modelling, a modal model is "tted to the output spectra.
Peeters et al. [16] are reporting on the comparison of several output-only identi"cation
methods when applied to bridge vibration data.

The paper is organised as follows. Section 2 discusses the state-space modelling of
vibrating structure. Section 3 gives some well-known properties of stochastic state-space
models; also some notations are clari"ed, needed in the discussion of the stochastic
realisation algorithm (Section 4) and the stochastic subspace algorithm (Section 5). Both
algorithms are variants of the classical implementations in the sense that in the stochastic
realisation algorithm of section 4 only the covariances between the outputs and a set of
references are needed. The algorithm of Section 5 is a data-driven subspace translation of
this algorithm. In Section 6, the approaches of the two previous sections are compared.
Section 7 explains how the identi"cation results can be used in modal and spectrum
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analysis. Finally, Section 8 discusses a practical application of the theory: a steel mast
excited by wind load is analysed.

2. STATE-SPACE MODELLING OF VIBRATING STRUCTURES

The dynamic behaviour of a discrete mechanical system consisting of n
2

masses connec-
ted through springs and dampers is described by the following matrix di!erential equation:

M;G (t)#C
2
;Q (t)#K;(t)"F(t)"B

2
u (t) (1)

where M, C
2
, K3Rn2]n2 are the mass, damping and sti!ness matrices, F(t)3Rn2]1 is the

excitation force, and ;(t)3Rn2]1 is the displacement vector at continuous time t. Observe
that the force vector F (t) is factorised into a matrix B

2
3Rn2]m describing the inputs in

space and a vector u (t)3Rm]1 describing the m inputs in time. For systems with distributed
parameters (e.g. civil engineering structures), this equation is obtained as the "nite element
approximation of the system with only n

2
degrees of freedom (dofs) left. Although equation

(1) represents quite closely the true behaviour of a vibrating structure, it is not directly used
in the system identi"cation methods described in this paper. The reasons are the following.
Firstly, this equation is in continous time, whereas measurements are mostly sampled at
discrete-time instants. Secondly, it is not possible to measure all dofs (as implied by this
equation). And "nally, there is some noise modelling needed: there may be other unknown
excitation sources next to F (t) and measurement noise is always present in real life.
Moreover, it is typical for output-only cases that the detailed knowledge of the excitation is
replaced by the assumption that the system is excited by white noise. For all these reasons,
the equation of dynamic equilibrium (1) will be converted to a more suitable form:
the discrete-time stochastic state-space model. The state-space model originates from
control theory, but it also appears in mechanical/civil engineering to compute the modal
parameters of a dynamic structure with a general viscous damping model (in case of
proportional damping one does not need the state-space description to "nd the modal
decomposition) [17].

Following derivations are almost classical and most of them can for instance be found in
Juang [18]. With the following de"nitions,

x (t)"A
;(t)

;Q (t)B , A
c
"A

0 I
n2

!M~1K !M~1C
2
B , B

c
"A

0

M~1B
2
B (2)

equation (1) can be transformed into the state equation

xR (t)"A
c
x (t)#B

c
u(t) (3)

where A
c
3Rn]n is the state matrix (n"2n

2
), B

c
3Rn]m is the input matrix and x (t)3Rn]1

is the state vector. The number of elements of the state-space vector is the number of
independent variables needed to describe the state of a system.

In practice, not all the dofs are monitored. If it is assumed that the measurements are
evaluated at only l sensor locations, and that these sensors can be accelerometers, velocity
or displacement transducers, the observation equation is [18]

y (t)"C
a
;G (t)#C

v
;Q (t)#C

d
;(t) (4)

where y(t)3R l]1 are the outputs, and C
d
, C

v
, C

a
3R l]n2 are the output matrices for

displacement, velocity, acceleration. With the following de"nitions,

C"[C
d
!C

a
M~1K C

v
!C

a
M~1C

2
], D"C

a
M~1B

2
(5)
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equation (4) can be transformed into:

y (t)"Cx(t)#Du(t) (6)

where C3R l]n is the output matrix and D3R l]m is the direct transmission matrix. In
many papers, this direct transmission matrix D is omitted for some reason. However,
mostly, accelerations are measured in a practical vibration experiment and since in this case
C

a
O0 (5), D should be part of the state-space model.
Equations (3) and (6) constitute a continuous-time deterministic state-space model.

Continuous time means that the expressions can be evaluated at each time instant t3R and
deterministic means that the input}output quantities u (t), y (t) can be measured exactly. Of
course, this is not realistic: measurements are available at discrete time instants kDt, k3N

with Dt, the sample time and noise is always in#uencing the data. After sampling, the
state-space model looks like

x
k`1

"Ax
k
#Bu

k (7)
y
k
"Cx

k
#Du

k

where x
k
"x(kDt) is the discrete-time state vector, A"exp(A

c
Dt) is the discrete state matrix

and B"[A!I]A~1
c

B
c
is the discrete input matrix. If A

c
is not invertible, another expres-

sion holds for B [18]. The stochastic components (noise) are included and we obtain the
following discrete-time combined deterministic-stochastic state-space model:

x
k`1

"Ax
k
#Bu

k
#w

k (8)
y
k
"Cx

k
#Du

k
#v

k

where w
k
3Rn]1 is the process noise due to disturbances and modelling inaccuracies and

v
k
3R l]1 is the measurement noise due to sensor inaccuracy. They are both unmeasurable

vector signals but we assume that they are zero mean, white and with covariance matrices:

ECA
w
p

v
p
B (wT

q
vT
q
)D"A

Q S

ST RB d
pq

(9)

where E is the expected value operator and d
pq

is the Kronecker delta.
Finally, we can concentrate on the practical problem: in the case of ambient vibration

testing the input u
k
remains unmeasured and it disappears from equation (8). The input is

now implicity modelled by the noise terms w
k
, v

k
. However, the white noise assumptions of

these terms cannot be omitted: it is necessary for the proofs of the system identi"cation
methods of next sections. The consequence is that if this white noise assumption is violated,
for instance if the input contains some dominant frequency components in addition to white
noise, these frequency components cannot be separated from the eigenfrequencies of the
system and they will appear as poles of the state matrix A .

3. STOCHASTIC STATE-SPACE MODELS

In this section, some important properties of stochastic state-space systems are given.
Also some notations are clari"ed. The stochastic state-space model is de"ned as equation (8)
without u

k
terms:

x
k`1

"Ax
k
#w

k (10)
y
k
"Cx

k
#v

k
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with w
k
, v

k
zero mean E[w

k
]"0, E[v

k
]"0 and with covariance matrices given by (9).

Further the stochastic process is assumed to be stationary with zero mean E[x
k
xT
k
]"R,

E[x
k
]"0 where the state covariance matrix R is independent of the time k. w

k
, v

k
are

independent of the actual state E[x
k
wT

k
]"0, E[x

k
vT
k
]"0. The output covariance matrices

are de"ned as

K
i
,E[y

k`i
yT
k
]3R l]l (11)

and "nally the next state-output covariance matrix G is de"ned as

G,E[x
k`1

yT
k
]3Rn]l . (12)

From these de"nitions the following properties are easily deduced:

R"ARAT#Q

K
0
"CRCT#R (13)

G"ARCT#S

K
i
"CAi~1G. (14)

Equation (14) is very important and means that the output covariances can be considered
as impulse responses of the deterministic linear time-invariant system A, G, C, K

0
. There-

fore, the classical realisation theory applies which goes back to Ho and Kalman [19] and
was extended to stochastic systems by Akaike [20] and Aoki [21]. Such a stochastic
realisation algorithm will be explained in the next section. Also in mechanical engineering,
this observation (14) is used to feed classical algorithms, that normally work with impulse
responses, with output covariances instead: polyreference LSCE, ERA, Ibrahim time
domain. A paper that is often referred to in this context was written by James et al. [22].
This paper contributed to the introduction in the mechanical engineering community of
the idea that it is possible to extract modal parameters from systems that are excited by
unknown forces. One often mistakenly thinks that the analysis is restricted to operational
de#ection shapes in these cases.

Before tackling the identi"cation problem, some notations are explained. In the following
the reference outputs will play an important role. Typical for ambient testing of large
structures is that not all outputs can be measured at once but that they are divided into
several set-ups with overlapping sensors. Candidates for the reference outputs are these
sensors, common to every set-up because they are placed at optimal locations on the
structure, where it is expected that all modes of vibration are present in the measured data.
However, additional sensors may be included as references in the identi"cation of one
set-up. Assume that the l elements of the outputs are arranged so as to have the r references
"rst; then we have

y
k
,A

y3%&
k

y&3%&
k
B, y3%&

k
"¸y

k
, ¸,[I

r
0] (15)

where y3%&
k

3Rr]1 are the reference outputs and y&3%&
k

3R (l~r)]1 are the others; ¸3Rr]l is
the selection matrix that selects the references. We can now de"ne the covariance matrices
between all outputs and the references:

K3%&
i
,E[y

k`i
y3%&
k

T]"K
i
¸T3R l]r . (16)

For the next state-reference output covariance we have

G3%&,E[x
k`1

y3%&
k

T]"G¸T3Rn]r . (17)
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These expressions can be compared with the more classical expressions equations (11) and
(12). The important property (14) now reads

K3%&
i
"CAi~1G3%&. (18)

The output measurements are gathered in a block Hankel matrix with 2i block rows and
j columns. The "rst i blocks have r rows, the last i have l rows. For statistical reasons, it is
assumed that jPR. The Hankel matrix can be divided into a past reference and a future
part (a Hankel matrix is a matrix where each antidiagonal consists of the repetition of the
same element):

H,

1

Jj A
y3%&
0

y 3%&
1

2 y 3%&
j~1

y 3%&
1

y 3%&
2

2 y 3%&
j

2 2 2 2

y 3%&
i~1

y 3%&
i

2 y3%&
i`j~2

y
i

y
i`1

2 y
i`j~1

y
i`1

y
i`2

2 y
i`j

2 2 2 2

y
2i~1

y
2i

2 y
2i`j~2

B,A
>3%&

0Di~1
>

i D2i~1
B,A

>3%&
p
>
f
B

`ri

`li

&&past''

&&future''
3R (r`l)i]j .

(19)

Remark that the output data is scaled by a factor 1/Jj . The subscripts of >
i D2i~1

3R li]j

are the subscript of the "rst and last element in the "rst column of the block Hankel matrix.
The subscripts p and f stand for past and future. The matrices >3%&

p
and >

f
are de"ned by

splitting H into two parts of i block rows. Another division is obtained by adding one block
row to the past references and omitting the "rst block row of the future outputs. Because the
references are only a subset of the outputs (r)l ), l!r rows are left over in this new
division. These rows are denoted by >&3%&

i Di
3R (l~r)]j :

H"A
>3%&

0 Di
>&3%&

i Di
>

i`1 D2i~1
B" A

>3%&`
p
>&3%&

i Di
>~
f

B
` r(i#1)

` l!r

` l (i!1)

(20)

Some other matrices need to be de"ned. The extended observability matrix is

O
i
,A

C

CA

CA2

2

CAi~1
B3R li]n (21)

The matrix pair MA, CN is assumed to be observable, which implies that all the dynamical
modes of the system can be observed in the output. The reference reversed extended
stochastic controllability matrix is de"ned as

C3%&
i
,(Ai~1G3%& Ai~2G3%&2AG3%& G3%&)3Rn]ri (22)
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The matrix pair MA, G3%&N is assumed to be controllable, which implies that all the dynamical
modes of the system can be excited by the stochastic input.

4. REFERENCE-BASED COVARIANCE-DRIVEN STOCHASTIC REALISATION

In this section, a modi"ed version of the classical covariance-driven stochastic realisation
algorithm [7, 20, 21] is presented. The modi"cation consists of reformulating the algorithm
so that it only needs the covariances between the outputs and a limited set of reference
outputs instead of the covariances between all outputs [22, 23]. The background of this
algorithm helps to understand the reference-based stochastic subspace algorithm presented
in the next section that makes use of the output data directly without the need to estimate
the output covariances. The covariance matrices between all outputs and a set of references
have already been de"ned in equation (16) as K3%&

i
,E[y

k`i
y3%&
k

T]. They are gathered in
a block Toeplitz matrix (a Toeplitz matrix is a matrix where each diagonal consists of the
repetition of the same element):

¹3%&
1 Di

,A
K3%&

i
K3%&

i~1
2 K3%&

1
K3%&

i`1
K3%&

i
2 K3%&

2
2 2 2 2

K3%&
2i~1

K3%&
2i~2

2 K3%&
i
B3R li]ri . (23)

From equation (19) and assuming ergodicity, the block Toeplitz matrix equals

¹3%&
1 Di

">
f
>3%&

p
T . (24)

Because equation (18) the block Toeplitz matrix decomposes as

¹3%&
1 Di

"A
C

CA

2

CAi~1B (Ai~1G3%&Ai~2G3%&
2

AG3%&G3%&)"O
i
C3%&

i
. (25)

Both factors, the observability and reference-reversed controllability matrix, can be
obtained by applying the singular-value decomposition (SVD) to the block Toeplitz matrix:

¹3%&
1 Di

";S<T"(;
1
;

2
)A

S
1

0

0 0B A
<T

1
<T

2
B";1

S
1
<T

1
(26)

where ;3R li]li and <3Rri]ri are orthonormal matrices ;T;";;T"I
li

and
<T<"<<T"I

ri
and S3R li]ri is a diagonal matrix containing the singular values in

descending order. Since the inner dimension of the product O
i
C3%&

i
equals n and since we

assume that ri*n, the rank of the product cannot exceed n. The rank of a matrix is found
as the number of non-zero singular values. In the last equality of equation (26), the zero
singular values and corresponding singular vectors are omitted. With equations (25) and
(26), we can now state that

O
i
";

1
S1@2
1 (27)

C3%&
i
"S1@2

1
<T

1
.

Once O
i
and C3%&

i
are known, the solution to the identi"cation problem is straightforward.

From equations (21) and (22) we know that C equals the "rst l rows of O
i
and G3%& equals the
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last r columns of C3%&
i

. The state matrix A can, for instance, be found by decomposing a
shifted block Toeplitz matrix:

¹3%&
2 Di`1

"O
i
AC3%&

i
(28)

and solving equation (28) for A by introducing equation (27):

A"Os
i
¹3%&

2 Di`1
C 3%&s

i
"S~1@2

i
;T

1
¹3%&

2 Di`1
<

1
S~1@2
1

(29)

where (f)s represents the pseudo-inverse of a matrix.
At this point the identi"cation problem is theoretically solved: based on the output

covariances the system order n and the system matrices A, G3%&, C are recovered. A "rst
comment that can be made when applying the covariance-driven stochastic realisation
algorithm to measurements is that in reality the number of measurements is not in"nite,
jOR, and therefore the covariances computed by equation (24) are not the true covarian-
ces but only estimates. Another remark is that in theory the system order n can be
determined by inspecting the number of non-zero singular values of ¹3%&

1 Di
in equation (26). In

practice, however, due to noise (modelling inaccuracies, measurement noise and computa-
tional noise) the higher singular values are not exactly zero. In this case, the order can be
determined by looking at a &gap' between two successive singular values. The singular value
where the maximal gap occurs yields the model order. This criterion should however not be
applied dogmatically. For large, real structures there is generally no clear gap.

5. REFERENCE-BASED DATA-DRIVEN STOCHASTIC SUBSPACE

In this section, a novel reference-based version of the stochastic identi"cation (SSI)
method is presented. The key step of SSI is the projection of the row space of the future
outputs into the row space of the past outputs [24]. The idea is now to take instead of all
past outputs only the past reference outputs. This reduces the dimensions of the problem
and thus also the computation time. In modal analysis applications, often, a lot of sensors
are used. They have a certain spatial distribution over the structure, leading to signals of
di!erent quality. Some sensors are located at nodal points of a mode shape and others may
be located at points close to "xed boundaries: e.g. for most civil engineering structures it is
generally impossible to obtain a free}free set-up. Since the number of references is limited,
their quality is important: all modes must be present in the data measured by the references.
If the &best' sensors are selected as references, no loss of identi"cation quality is expected. On
the contrary, because the lower quality sensors are partially omitted, the identi"cation
results may be more accurate. The reason why the projection is not limited to the reference
future outputs too, is that in this case one would obtain mode shapes amplitudes at the
reference sensors only, whereas one is interested in the mode shapes at all measured
locations. The new algorithm is denoted as SSI/ref: reference-based stochastic subspace
identi"cation.

The comparison between the covariance-driven stochastic realisation algorithm
(Section 4) and the data-driven stochastic subspace algorithm (Section 5) is made in a
separate Section (Section 6).

5.1. KALMAN FILTER STATES

The Kalman "lter states play an important role in stochastic subspace identi"cation. The
meaning of Kalman "lter states will brie#y be explained. More details can be found in the
literature [3, 18, 24]. The aim of the Kalman "lter is to produce an optimal prediction for
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the state vector x
k`1

by making use of observations of the outputs up to time k and the
available system matrices together with the known noise covariances. These optimal
predictions are denoted by a hat (xL

k`1
). When the initial state estimate (xL

0
"0), the initial

covariance of the state estimate (P
0
,E[xL

0
xL T
0
]"0) and the output measurements

(y
0
, 2 , y

k
) are given, the non-steady-state Kalman "lter state estimates xL

k`1
are de"ned by

the following recursive formulas, expressing the system, the Kalman "lter gain matrix and
the state covariance matrix:

xL
k`1

"AxL
k
#K

k
(y

k
!CxL

k
)

K
k
"(G!AP

k
CT ) (K

0
!CP

k
CT )~1 (30)

P
k`1

"AP
k
AT#(G!AP

k
CT ) (K

0
!CP

k
CT )~1(G!AP

k
CT )T .

The Kalman "lter state estimates are gathered to form the Kalman "lter state sequence,
that will be recovered by the stochastic subspace algorithm (see further):

XK
i
,(xL

i
xL
i`12

xL
i`j~1

)3Rn]j . (31)

5.2. PROJECTIONS

First we take the QR-factorisation of the block Hankel matrix (19) consisting of past
references and future outputs:

H,A
>3%&
p
>
f
B"RQT (32)

where Q3Rj]j is an orthonormal matrix QTQ"QQT"I
j

and R3R (r`l)i]j is a lower
triangular matrix. Since (r#l )i(j we can omit the zeros in R and the corresponding zeros
of Q:

ri r l!r l(i!1) jPR

% % % % %

H"

ri `
r `

l!r `
l(i!1) ` A

R
11

0 0 0

R
21

R
22

0 0

R
31

R
32

R
33

0

R
41

R
42

R
43

R
44
B A

QT
1

QT
2

QT
3

QT
4
B

` ri

` r

` l!r

` l (i!1)

(33)

Further in the algorithm, the Q-factors will cancel out because of their orthonormality. So
we do not need them and we achieved an important data reduction. As stated before,
projections are important in subspace identi"cation. The projection of the row space of the
future outputs into the row space of the past reference outputs is de"ned as

P 3%&
i
,>

f
/Y3%&

1
,>

f
>3%&T

p
(>3%&

p
>3%&

p
T)s>3%&

p
. (34)

The idea behind this projection is that it retains all the information in the past that is
useful to predict the future. Introducing the QR-factorisation of the output Hankel matrix
(33) into equation (34) gives the following simple expression for the projection:

P 3%&
i

"A
R

21
R

31
R

41
B QT

1
3R li]j . (35)
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The main theorem of stochastic subspace identi"cation [24] states that the projection
P3%&

i
can be factorised as the product of the observability matrix (21) and the Kalman "lter

state sequence (31):

P 3%&
i

"A
C

CA

CA2

2

CAi~1
B (xL

i
xL
i`1

2 xL
i`j~1

),O
i
XK

i
. (36)

Remember that this formula holds asymptotically only for jPR. The proof of this
theorem for algorithms where all past outputs have been used (SSI) can be found in Van
Overschee and De Moor [24]. In the present case, where only the past reference outputs
have been used (SSI/ref ), the proof is almost the same, except for the signi"cance of the
obtained Kalman "lter state sequence XK

i
. The Kalman state estimate is in this case the

optimal prediction for the states by making use of observations of the reference outputs only
instead of all outputs as in Section 5.1. At "rst sight there seems to be no di!erence between
SSI and SSI/ref: in both cases the same decomposition is found (36). Indeed, theoretically
the internal state of a system does not depend on the choice and number of observed
outputs. However, in identi"cation problems where the system is estimated based on
observations, the choice and number of outputs does matter. The Kalman "lter state
estimates in SSI/ref will di!er from the SSI-estimates.

Both factors of equation (36), the observability matrix O
i
and the state sequence XK

i
are

obtained by applying the SVD to the projection matrix:

P 3%&
i

";
1
S
1
<T
1

. (37)

Since rank (P3%&
i

)"n, we have ;
1
3R li]n, S

1
3Rn]n, <

1
3Rj]n. Combining equations

(36) and (37) gives

O
i
";

1
S1@2
1

, XK
i
"Os

i
P 3%&

i
. (38)

5.3. DETERMINATION OF THE SYSTEM MATRICES

Up to now we found the order of the system n (as the number of non-zero singular values
in equation (37)), the observability matrix O

i
and the state sequence XK

i
. This section

explains how to recover the system matrices A, C, Q, R, S. Using the shifted past and future
outputs of the data Hankel matrix (20) another projection is obtained:

P3%&
i~1

,>~
f

/Y 3%&`
p

"(R
41

R
42

) A
QT

1
QT

2
B3R l(i~1)]j . (39)

The "rst equality de"nes the projection, the second explains how to compute it from
equation (33). It can be proved similar to equation (36) that

P 3%&
i~1

"O
i~1

XK
i`1

. (40)

O
i~1

is obtained after deleting the last l rows of O
i
computed as in equation (38). The

shifted state sequence is now obtained as

XK
i`1

"Os
i~1

P 3%&
i~1

. (41)



865STOCHASTIC SUBSPACE IDENTIFICATION
At this moment, the Kalman state sequence XK
i
, XK

i`1
are calculated using only the output

data (38), (41). The system matrices can now be recovered from following overdetermined
set of linear equations, obtained by extending equation (10):

A
XK

i`1
>

i D i
B"A

A

CB (XK
i
)#A

o
w

o
v
B (42)

where>
i D i

is a Hankel matrix with only one block row (19). In order to "t in the QR-scheme,
it is written as (33)

>
i D i
"A

R
21

R
22

0

R
31

R
32

R
33
B A

QT
1

QT
2

QT
3
B3R l]j . (43)

Since the Kalman state sequences and the outputs are known and the residuals (oT
w

oT
v
)T

are uncorrelated with XK
i
, the set of equations can be solved for A, C in a least-squares sense:

A
A

CB"A
XK

i`1
>

i D i
BXK s

i
(44)

When introducing equations (38), (35), (41), (39) into (44), it is clear that the Q-factors cancel
out.

Finally, the noise covariances Q, R, S are recovered as the covariances of the residuals in
equation (42). This guarantees the positive realness of the identi"ed covariance sequence
[24]. We will come back to the issue of positive realness (Sections 7.2}7.3).

A, C, Q, R, S can be transformed into A, G, C, K
0

by solving the Lyapunov equation for
R (13):

R"ARAT#Q (45)

after which G and K
0

can be computed from (13)

K
0
"CRCT#R , G"ARCT#S . (46)

At this point the identi"cation problem is theoretically solved: based on the outputs, the
system order n and the system matrices A, G, C, K

0
were found.

The same remark as with the covariance-based algorithm concerning the determination
of the model order n applies. Due to noise (modelling inaccuracies, measurement noise and
computational noise) the higher singular values are not exactly zero and the order can only
be determined by looking at a &gap' between two successive singular values. The singular
value where the maximal gap occurs yields the model order. However, in many practical
cases, no gap is visible. The application will show that the problem of order determination
can be solved by constructing the so-called stabilisation diagram (Section 8.3). Another
remark is that by imposing positive realness of the identi"ed covariance sequence, a small
bias was introduced on the estimates of G and K

0
.

6. COVARIANCE-DRIVEN VS DATA-DRIVEN SUBSPACE

This section points out some of the similarities and di!erences between the covariance-
driven approach (Section 4) and the data-driven approach (Section 5). First the similarities.
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Both methods start with a data-reduction step. In the realisation algorithm, the raw time
histories of the data Hankel matrix (19) are converted to the covariances of the Toeplitz
matrix (24): ¹ 3%&

l Di
">

f
>3%&

p
T . The number of elements is reduced from (r#l) i]j to li]ri

(remember that j goes to in"nity). In the subspace algorithm, a similar reduction is obtained
by projecting the row space of the future outputs into the row space of the past reference
outputs (34): P 3%&

i
,>

f
/Y3%&

p
. This projection is computed using the QR-factorisation of

the data Hankel matrix (33). A signi"cant data reduction is obtained because only the
R-factor is further needed in the algorithm. Both methods then proceed with a singular-
value decomposition. The decomposition of ¹3%&

1 Di
reveals the order of the system, the

column space of O
i
and the row space of C3%&

i
(25}27). Similarly, the decomposition of

P3%&
i

reveals the order of the system, the column space of O
i
and the row space of XK

i
(36}38). In [24] it is shown that by an appropriate weighting of P

i
(all outputs are

considered in [24]: P3%&
i
PP

i
), the covariance-driven algorithms available in literature can

be "tted into the framework of the data-driven subspace methods. This completes the
similarities.

Equation (24) is one way of estimating the output covariances, but not the fastest
one. Note that it is indeed an estimate since in reality jOR. Another possibility is
computing the covariances as the inverse discrete Fourier transform of the auto- and
cross-spectra of the outputs. The spectra can be estimated by applying the discrete Fourier
transform to the output time histories. This second possibility is considerably faster but less
accurate due to leakage errors. Anyhow the use of Fourier transforms makes the
covariance-driven methods less time-consuming than the data-driven methods which imply
a slower QR-factorisation step.

An advantage of the data-driven method is that it is implemented as a numerically robust
square root algorithm: the matrices are not squared up as in the covariance-driven
algorithm (24). More advantages of the data-driven method become clear in Sections 7.2
and 7.3 where some validation tools for the identi"ed state-space model are presented: an
expression of the spectra based on the identi"ed state-space matrices and the separation of
the total response in modal contributions.

7. POSTPROCESSING

7.1. MODAL ANALYSIS

This section explains how the system identi"cation results of previous section can be used
in modal analysis of structures. System identi"cation [3] is the general term that stands for
experiment-based modelling of &systems': biological, chemical, economical, industrial, cli-
matological, mechanical, etc. The system is subjected to an input and the responses are
measured. After adopting a certain model for the system, values are assigned to the model
parameters so that the model matches the measured data. In the previous sections,
a stochastic state-space model was identi"ed using output data. Modal analysis can be
considered as a particular type of system identi"cation: instead of describing the system by
means of rather abstract mathematical parameters, the system's behaviour is now expressed
in terms of its modes of vibration. A mode is characterised by an eigenfrequency, a damping
ratio, a mode shape and a modal scaling factor. Note that in output-only modal analysis,
this last parameter cannot be estimated.

As a result of the identi"cation the discrete state matrix A is obtained. The dynamic
behaviour of the system is completely characterised by its eigenvalues:

A"WKW~1 (47)
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where K"diag(j
q
)3Cn]n, q"1, 2 , n, is a diagonal matrix containing the discrete-time

complex eigenvalues and W3Cn]n contains the eigenvectors as columns. The continuous-
time state equation (3) is equivalent to the second-order matrix equation of motion (1).
Consequently, they have the same eigenvalues and eigenvectors. These can be obtained by
an eigenvalue decomposition of the continuous-time state matrix:

A
c
"W

c
K

c
W~1

c
(48)

where K
c
"diag(j

cq
)3Cn]n is a diagonal matrix containing the continuous-time complex

eigenvalues and W
c
3Cn]n contains the eigenvectors as columns. Because of relation (7),

A"exp(A
c
Dt) . (49)

we have

W
c
"W, j

cq
"

ln(j
q
)

Dt
. (50)

The eigenvalues of A
c
occur in complex conjugated pairs and can be written as

j
cq
, j*

cq
"!m

q
u

q
$ju

q
J1!m2

q
(51)

where m
q

is the modal damping ratio of mode q and u
q

is the eigenfrequency of mode q
(rad/s).

The estimated states of the system x
k

do not necessarily have a physical meaning.
Therefore, the eigenvectors of the state matrix W need to be transferred to the outside world.
The mode shapes at the sensor locations, de"ned as columns U

q
of U3C l]n , are the

observed parts of the system eigenvectors W and are thus obtained using the observation
equation (6):

U"CW . (52)

In this section, it was shown how the modal parameters u
q
, m

q
, U

q
can be extracted

analytically from the identi"ed system matrices A, C.

7.2. SPECTRUM ANALYSIS

It is also possible to derive an analytical expression for the spectrum based on the
identi"ed stochastic state-space matrices A, G, C, K

0
. In Caines [25], it is shown that the

spectrum of a stochastic system can be written as

S
yy

(z)"[C(zI
n
!A)~1G#K

0
#GT(z~1I

n
!AT)~1CT]

z/e ju*t (53)

where S
yy

(z)3C l]l is the spectrum matrix containing the auto- and cross-spectra between
the outputs. The autospectra are real and located on the main diagonal. This expression (53)
can be evaluated for any number on the unit circle z"e ju*t where u (rad/s) can be any
frequency of interest. For the implementation of the reference-based stochastic realization
algorithm presented in Section 4, the complete analytical spectrum matrix (53) does not
exist. Only the auto- and cross-spectra between the reference outputs can be determined,
since it is not G3Rn]l (12) but only G3%&3Rn]r (17) which is identi"ed. Also this algorithm
does not guarantee positive realness of the identi"ed covariance sequence K

i
(11). One of the

consequences is that the Z-transform of this sequence, which is the spectrum (53), is not
a positive-de"nite matrix for all z"e ju*t on the unit circle [24]. In other words, the
analytical spectrum can become negative which has of course no physical meaning. The
implementation of SSI and SSI/ref presented in Section 5 does not su!er from these two
shortcomings.
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7.3. MODAL RESPONSE AND PREDICTION ERRORS

It can be shown that the stochastic state-space model (10) can be converted to a forward
innovation form by solving a Riccati equation:

z
k`1

"Az
k
#Ke

k (54)
y
k
"Cz

k
#e

k

where K3Rn]l is the Kalman gain and e
k
3R l]1 are the innovations with covariance

matrix E[e
p
eT
q
]"R

e
d
pq

. Note that the state vector z
k

is di!erent from x
k

because of the
di!erent state space basis. With equations (47) and (52) this model can be written in the
modal basis:

z
mk`1

"Kz
mk
#K

m
e
k (55)

y
k
"Uz

mk
#e

k

where W~1z
k
"z

mk
, W~1K"K

m
. By eliminating the innovations in the "rst equation we

obtain

z
mk`1

"(K!K
m
U)z

mk
#K

m
y
k (56)

yL
k
"Uz

mk

where yL
k

is the one-step-ahead predicted output and the innovations are the prediction
errors e

k
"y

k
!yL

k
. The state-space model (K!K

m
U, K

m
, U, 0) (56) can be simulated with

the measured outputs y
k

serving as inputs. As the outcome of the simulation we get the
states in modal basis z

mk
and the predicted outputs yL

k
. Since K (55) is a diagonal matrix, the

contribution of each mode to the total response can be separated. If (z
mk

)
q

represents
component q of z

mk
, the modal response of mode q is de"ned as

yL (q)
k
"U

q
(z

mk
)
q
. (57)

The total measured response can be decomposed as

y
k
"

n
+
q/1

U
q
(z

mk
)
q
#e

k
. (58)

The simulation (56) not only yields the prediction errors but also the modal contributions
to the total response. Note that for obtaining the prediction errors it was not necessary to
convert the state space to the modal basis. They could also be computed from equation (54).

Note that the approach of this section is only possible in combination with the data-
driven subspace method. In order to obtain the forward innovation form (54), the full
G matrix is needed and not only G3%& as obtained in the covariance-driven method.
Moreover the covariance-driven implementation does not guarantee a positive real
covariance sequence which means that it is not always possible to obtain a forward
innovation model [24].

8. APPLICATION: STEEL MAST EXCITED BY WIND

8.1. INTRODUCTION

In the design process of a steel transmitter mast, the damping ratios of the lower modes
are important factors. The wind turbulence spectrum has a peak value at a very low
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frequency of about 0.04 Hz [26]. All eigenfrequencies of the considered structure are
situated at the descending part of the turbulence power spectrum, and thus in fact only
the few lower modes of vibration are important for determining the structure's response to
dynamic wind load. The structure under consideration is a steel frame structure with
antennae attached at the top. In order to prevent malfunctioning of the antennae, the
rotation at the top has to be limited to 13. Only once in 10 years, this value may be
exceeded. The dynamic response (and thus the rotation angle) of a structure reaches its
maximum at resonance, where the amplitude is inversely proportional to the damping ratio.
So the damping is directly related to the maximum rotation angle. A high damping ratio
means that the amount of steel needed to meet the speci"cation of limited rotation can be
reduced. Therefore, a vibration experiment was performed on a steel transmitter mast in
order to determine these damping ratios. Since it is very di$cult, if not impossible, to
measure the dynamic wind load, only response measurements were recorded and the mast
constitutes an excellent real-life example to validate output-only system identi"cation
methods.

8.2. STRUCTURE AND DATA ACQUISITION

Figure 1 gives a general view of the structure. A typical cross-section is illustrated in
Fig. 2. The mast has a triangular cross-section consisting of three circular hollow section
pro"les. The three main tubes are connected to smaller tubes forming the diagonal and
horizontal members of the truss structure. The structure is composed of "ve segments of
6 m, reaching a height of 30 m. At the top in the centroid of the section, an additional tube
rises above the truss structure resulting in a total height of 38 m. A ladder is attached to
one side of the triangle. Together with the diagonals, this ladder disturbs, somewhat, the
symmetry of the structure. Further, the mast is founded on a thick concrete slab supported
by three piles. A "rst test was carried out on 24 February 1997 [27]. The obtained damping
ratios were very low: 0.2}0.5%. However at that time the transmitter equipment (the
antennae) was not yet placed. Therefore, a new test was performed on 26 March 1998. The
sectorial antennae for a cellular phone network, situated at a height of about 33 m (Fig. 1),
are expected to have an important in#uence on the dynamics of the structure. The
additional mass (#10%) is considerable and it is located at a place where large displace-
ments occur.

The measurement grid for the dynamic test consisted of 23 points: every 6 m, from 0 to
30 m, three horizontal accelerations were measured. Their measurement direction is de-
noted in Fig. 2 by H1, H2, H3. Assuming that the triangular cross-section remains
undeformed during the test, the three measured accelerations are su$cient to describe the
complete horizontal movement of the considered section. At ground level (0 m) also three
vertical accelerations were measured in order to have a complete description of all displace-
ment components of the foundation. Another di!erence as opposed to the "rst test was that
two supplementary sensors were installed on the central tube at 33 m. These two sensors
measuring in both horizontal directions allow a better characterisation of the mode shapes.
Due to the limited number of acquisition channels and high-sensitivity accelerometers, the
measurement grid of 23 sensor positions was split into four set-ups. In output-only modal
analysis where the input force remains unknown and may vary between the set-ups, the
di!erent measurement set-ups can only be linked if there are some sensors in common. The
three sensors at 30 m are suitable as references since it is not expected that these are situated
at a node of any mode shape. The cut-o! frequency of the anti-aliasing "lter was set at
20 Hz. The data were sampled at 100 Hz. A total of 30 720 samples was acquired for each
channel, resulting in a measurement time of about 5 min for each set-up. In Fig. 3, a typical
time signal and its power spectrum is represented.



Figure 1. Steel transmitter mast with eccentric antennae at the top.

870 B. PEETERS AND G. D. ROECK
8.3. SYSTEM IDENTIFICATION

Before identi"cation the data was decimated with factor 8: it was "ltered through a digital
low-pass "lter with a cut-o! frequency of 5 Hz and resampled at 12.5 Hz. This operation
reduces the number of data points to 3840 and makes the identi"cation more accurate in the
considered frequency range 0}5 Hz. There are nine outputs l of which the "rst 3 are
considered as references r. The number of block rows i (19) is taken as 10, resulting in
a maximal model order of ri"30 in SSI/ref and li"90 in SSI, if all singular values are
retained (37).

There exist several implementations of the stochastic subspace method [24]; one of these
is the canonical variate algorithm (CVA). In this algorithm, the singular values can be
interpreted as the cosines of the principal angles between two subspaces: the row space of



Figure 2. Typical cross-section of mast.

Figure 3. Horizontal acceleration measured at 30 m. (top) Time signal, (bottom) power spectrum.
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the past (reference) outputs and the future outputs. Figure 4 represents these principal
angles for both SSI/ref and SSI. As explained in Section 5.3 the true model order is found by
looking for a gap in the principal angles. The gap for SSI/ref is located at n"14 and for SSI
at n"18. The graph suggests that SSI/ref: requires a lower model order to "t the data.



Figure 4. Principal angles between two subspaces computed for both subspace methods. *, SSI/ref; #, SSI.
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There are two possible explanations: an unfavourable and a favourable one to SSI/ref: the
method is not able to extract all useful information from the data or it gets rid of the noise
faster because the reference outputs have the highest signal-to-noise ratios. It will be
demonstrated that the second explanation is more likely.

In modal analysis applications, one is not interested in a state-space model that "ts
the data as such, but rather in the modal parameters that can be extracted from that
model (47). Practical experience with real data [5, 16, 27] showed that it is better to
overspecify the model order and to eliminate spurious numerical poles afterwards.
This can be done by constructing stabilisation diagrams. By rejecting less singular
values (principal angles), models of increasing order are determined. Each model
yields a set of modal parameters and these can be plotted in a stabilisation diagram.
In Fig. 5 the diagrams for SSI/ref and SSI are represented. The criteria are 1% for
eigenfrequencies, 5% for damping ratios and 1% for mode shape vectors (MAC).
Physical poles will show up as stable ones whereas numerical poles will not become stable
with increasing order. These diagrams indicate that SSI/ref yields stable poles at a lower
order.

If we would zoom around 1.17 Hz in Fig. 5, two stable poles would become visible. So, if
the poles around 5 Hz are not counted because they originate from the applied digital
low-pass "lter, there are seven physical poles present in the data, occurring in complex
conjugated pairs. This means that SSI/ref indeed predicted the true model order n"14
(Fig. 4). It must be noted that this rarely happens. In the present case, the response was
linear and the signal-to-noise ratio very good, thanks to the well-de"ned boundary condi-
tions and the #exibility of the structure. This resulted in high-quality signals with clear
peaks in the power spectra.



Figure 5. Stabilisation diagrams. The criteria are: 1% for frequencies, 5% for damping ratios, 1% for mode
shape vectors (MAC). (left) SSI/ref, (right) SSI. =, stable pole; .v, stable frequency and vector: .d, stable frequency
and damping; .f, stable frequency.

TABLE 1

Estimated eigenfrequencies and damping ratios: averge f, m and standard deviations p
f
, pm based

on eight samples of SSI/ref and SSI results

Mode Eigenfrequencies Damping ratios
no.

SSI/ref SSI SSI/ref SSI

f (Hz) p
f
(Hz) f (Hz) p

f
(Hz) m(%) pm (%) m(%) pm (%)

1 1.170 0.002 1.171 0.002 0.5 0.2 0.5 0.2
2 1.179 0.001 1.179 0.002 0.7 0.2 0.8 0.2
3 1.953 0.004 1.953 0.004 0.7 0.1 0.7 0.1
4 2.601 0.002 2.601 0.003 0.3 0.1 0.4 0.1
5 2.711 0.001 2.711 0.001 0.17 0.05 0.17 0.04
6 3.687 0.003 3.648 0.002 0.2 0.1 0.3 0.1
7 4.628 0.004 4.633 0.003 0.2 0.1 0.3 0.1
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8.4. IDENTIFICATION RESULTS

Rather than trying to "nd one order and related state-space model where all modes are
stable, di!erent orders are selected to determine the modal parameters. There are four
set-ups and every set-up was measured twice. So, there are eight estimates for every
eigenfrequency and damping ratio. The mean values and standard deviations are repre-
sented in Table 1. Unfortunately, there is no statistical information present for mode shapes
since four set-ups yield only 1 mode shape estimate. The uncertainties on the eigenfrequen-
cies are extremely low. As usual, the damping ratios are more uncertain. However, it
seems that placing the antennae at the top had a positive in#uence on the damping
ratios in the sense that they are somewhat higher for the lowest modes: 0.3}0.7% instead of
0.2}0.5% [27].

From Table 1 there can be hardly seen any di!erence between the SSI/ref and SSI
estimates. By using only the past references, no loss of quality occurred, but there was an
important gain concerning computational e$ciency: the results were obtained using only



Figure 6. Mode shapes of the "rst 7 modes obtained with SSI/ref. In ascending order from left to right, from top
to bottom.
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40% of the computational time and number of #oating point operations as required by SSI.
The gain in computational e$ciency is a function of the ratio r/l, the number of references
over the total number of outputs. The mode shapes obtained with SSI/ref are represented in
Fig. 6. If the MAC-matrix is computed between the SSI/ref and SSI mode shapes, diagonal
values exceeding 99% are found for all seven modes, indicating that the identi"ed modes are
about the same for both methods.



Figure. 7. Comparison of spectrum estimates. (left) Reference signal, (right) other signal. -, SSI, -.-., SSI/ref; - -,
Welch's.

Figure 8. Modal contributions to the total response. The top chart is the measured data; the contributions from
the "rst 7 modes are ordered from top to bottom. The amplitudes of the measured data have been multiplied by 0.5.
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The stochastic state-space model can be converted analytically to an expression for the
power and cross-spectra (53). These spectra can be compared with spectra that are obtained
with a non-parametric identi"cation method, e.g. Welch's averaged periodogram method
that mainly consists of discrete Fourier transforms (DFT). In Fig. 7 the estimated power
spectra of a reference channel and a non-reference channel are represented. Welch's
spectrum is compared with the SSI/ref and the SSI spectrum. For the reference channel all
spectra are well in line, but for the non-reference channel the SSI/ref spectrum di!ers from
the other two. The resonance peaks are well described, but the valleys between the eigen-
frequencies are di!erent.

In Fig. 8 the approach of Section 6.3 has been used to determine the contributions of each
mode to the total response. The di!erences between the top chart and the sum of the seven
other charts are the residuals or one-step-ahead prediction errors (58). To obtain one
number for each output channel, the total prediction error is de"ned as

e
c
"S

+N
k/1

((y
k
)
c
!(yL

k
)
c
)2

+N
k/1

((y
k
)
c
)2

]100% (59)



TABLE 2

¹otal prediction errors e
c
(%) for all nine output channels, obtained with two SSI/ref-cases:

channels 1}3 as references and channels 2, 3, 8 as references and with SSI

Channel 1 2 3 4 5 6 7 8 9

SSI/ref (1}3) 15 14 14 17 17 24 23 23 25
SSI/ref (2, 3, 8) 17 13 14 18 13 24 22 14 27
SSI 13 13 14 13 13 18 13 14 14
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where (y
k
)
c
is channel c of the output vector. In Table 2, the prediction errors for SSI/ref with

channels 1}3 as references, for SSI/ref with channels 2, 3, 8 as references and for classical SSI
are presented. Note that channels 1}3 are the reference sensors common to every set-up and
needed to obtain global mode shapes. There is however no theoretical objection against
selecting di!erent reference sensors in the identi"cation of one set-up. In SSI/ref the
prediction errors are lower for the reference channels and comparable with the classical SSI
method. The prediction errors for the channels not belonging to the references are consider-
ably higher.

9. CONCLUSIONS

This paper presented the use of stochastic subspace identi"cation for in-operation modal
analysis. A new implementation of the method was proposed: in the references based
stochastic subspace identi"cation method (SSI/ref ), the row space of the future outputs is
projected into the row space of the past reference outputs. This reduces the dimensions of
the matrices and thus also the computation time. The new approach was illustrated and
compared with the classical stochastic subspace identi"cation method (SSI) using data from
a vibration test on a steel transmitter mast. From this comparison the following conclusions
can be made:

1. The SSI/ref method is considerably faster than SSI. Also the state-space model and
related modal parameters are already stable at a lower model order. This increase in
computational e$ciency can be important in civil engineering applications where
a structure is measured using a number of sensors and set-ups and where long data
records are acquired.

2. Because of the di!erence set-ups, there are always overlapping reference sensors needed
to obtain global mode shapes. The SSI/ref method incorporates the idea of the reference
sensors already in the identi"cation step.

3. The eigenfrequencies and damping ratios are determined with low and comparable
uncertainties in both methods: SSI/ref and SSI. Also the mode shapes identi"ed with
both methods are about the same (MAC-values exceeding 99%).

4. The SSI/ref prediction errors are higher for channels that do not belong to the reference
channels because these channels are partially omitted in the identi"cation process. Also
the spectrum derived from the SSI/ref state-space model deviates from Welch's DFT
spectrum estimate for non-reference channels although the deviations are mainly situ-
ated between the resonance peaks and not at the resonances.

5. Some further investigations are still needed as to what extent the mode shapes su!er from
the same fact, namely that the mode shape may be less accurately estimated at non-
reference sensor positions. The MAC-values suggest that this is not the case, but it is
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known that MAC is not able to indicate small changes. It will be investigated by the
authors by means of a simulated example where the mode shapes are exactly known.

In addition to the determination of the modal parameters the subspace methods resulted
in some interesting postprocessing/validation tools: an analytical expression for the spectra,
the modal contributions to the total response and the prediction errors.
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