
Experimental
New Directions
for JavaScript
Andreas Rossberg, V8/Google

Thursday, January 29, 15

Motivation

Broad need for (more) scalable JavaScript

• Usability, esp. maintainability

• Performance, esp. predictability

ES6 opens up new opportunities

Types desperately needed (but tricky)

Thursday, January 29, 15

An Experiment

Embrace Harmony

Shun bad legacy

Grow types

In a VM!

Thursday, January 29, 15

Two Parts (Working titles)

“SaneScript” – a cleaner subset of JavaScript

• Focus on removing features

• Transition path to...

“SoundScript” – a gradual type system for JavaScript

• Based on TypeScript, but sound & effective

• Does not depend on, but benefits from, SaneScript

Both fully interoperate with good old JavaScript
Thursday, January 29, 15

Plan

• Implement in V8, prototype in Traceur

• Test in the field, iterate

• Need feedback! Collaboration welcome

• Ideally, develop into ES proposals eventually

Thursday, January 29, 15

“SaneScript”
In an insane world, it was the sanest choice.

— Sarah Connor

Thursday, January 29, 15

Motivation

Guide programmers on well-lit path

• Safer semantics

• Predictable performance

• Aim for the 95% use cases

Thursday, January 29, 15

“Sane” Mode

• Opt-in: “use sanity” (TBD)

• Implies strict mode

• Freely interoperable with “insane” code

• Can still be run as “insane” code (with caveats)

Thursday, January 29, 15

Subsetting the Language

• Static restrictions (early errors)

• Dynamic restrictions (exceptions)

• Per-object restrictions (“sane objects”)

Thursday, January 29, 15

Subsetting Compatibility

• Sane code not hitting any of the restrictions
would have same meaning outside the mode

• That is, “correct” sane code can run
unchanged on VMs not recognising the opt-in

Thursday, January 29, 15

Sane Scoping

• No more var

• No undeclared variables

• No use before declaration (static dead zone),
except mutually recursive function declarations

let is the new var. Proper scoping FTW.

Thursday, January 29, 15

Sane Objects

• Accessing missing properties throws
(on both reads & writes)

• Objects created in sane mode are non-extensible

• No freezing of non-configurable properties

If you want maps, you take maps.

Thursday, January 29, 15

Sane Classes

• Class objects and their prototypes are frozen

• Instances are created sealed

• Methods require proper instances

Fast and safe method & field access FTW.

Thursday, January 29, 15

Sane Arrays

• No holes, no accessors, no reconfiguration

• Length always in sync

• No out-of-bounds access,
except extension at the end

Fast arrays FTW. Maps are the new sparse arrays.

Thursday, January 29, 15

Sane Functions

• No arguments object

• Calling with too few arguments throws

Optional and rest arguments FTW.

Thursday, January 29, 15

Sane Coercions

• Nothing implicit besides ToBoolean (almost?)

• == and != require compatible typeof

No more WAT, no more WTF.

Thursday, January 29, 15

Plan

• Implement in Q1/2

Thursday, January 29, 15

“SoundScript”
That’s sound advice at any time.

— Jean-Luc Picard

Thursday, January 29, 15

Motivation

• Everybody keeps inventing type systems for JS

• Both user-facing and internal

• We strongly support standardisation!

• But inside a VM new requirements arise

• ...and new opportunities!

• Needs investigation

Thursday, January 29, 15

Design Goals

• Based on TypeScript (familiarity, reuse)

• Gradual (interop with untyped code)

• Sound (reliability, non-local optimisations)

• Precise (aggressive optimisations)

• Effective (feasible inside VM)

• Modular (lazy compilation, caching)

Thursday, January 29, 15

Sound Gradual Typing

• When it claims E:T, then, in fact, E:T

• But type any means “dynamically typed”

• Type any induces runtime type checks if necessary

• Protects invariants of statically typed code

• Disallow higher-order casts that’d require wrapping
(expensive; observable in JavaScript!)

Thursday, January 29, 15

Runtime Type Checking

• Objects and functions carry (more) runtime
type information

• Operations at type any may need to check

• get, set, call, ...

• Should not be a common case

• Much cheaper when done by VM!

Thursday, January 29, 15

Structural à la TypeScript

interface T extends U {
 a : number,
 m(x : string) : number,
 (x : boolean) : T,
 new(x : string) : U
}

(x : T) => U := {(x : T) : U}

Thursday, January 29, 15

Functions & Methods

• Can annotate type of this:
function(this : T, x : U) {}

• Function types are contravariant (soundness!)

• Method types are different, covariant in this
(tied to concise method syntax)

• Method extraction only allowed when this : any

Thursday, January 29, 15

Nominal Classes

• Class C introduces nominal instance type C

• ...and nominal class type typeof C

• Both are subtypes of respective structural types

• “Interfaces” remain structural

Thursday, January 29, 15

Why Nominal?

• Sound private state

• Sound binary methods

• Sound first-class classes

• More efficient code

• More efficient compilation (it’s runtime, too!)

Thursday, January 29, 15

Nominal Typing, Example

class D extends C {
 public a : T
 constructor(x : T) {}
 m(x : T) : U {}
 static s(x : T) : U
}

• D < C

• D < {a:T, m(x:T):U, constructor: typeof D, ...C’s...}

• typeof D < {new(x:T):D, s(x:T):U, ...C’s...}

Thursday, January 29, 15

Subtyping

• Nominal type are subtypes of structural

• Vice versa also allowed (semi-structural types)

• No (depth) subtyping on mutable properties

• But on immutable properties

• various requests for immutable data

• Invariant generics (at least for now)

Thursday, January 29, 15

Generics

• Sound (for realz)

• Runtime type passing (i.e., unerased)

• But no first-class instantiation
(that is, f<T> is not a value)

• Rationale: would change operational semantics

Thursday, January 29, 15

Going More Gradual

• Choice between T or any not gradual enough

• Enter any<T> — restricts uses as if T,
but provides no more guarantees than any

• Essentially, TypeScript’s interpretation of T

• Mainly for typing intrinsics, programmers
shouldn’t need it often

Thursday, January 29, 15

Type Inference

• Bidirectional type checking

• No inference across function boundaries

• Don’t break lazy compilation!

Thursday, January 29, 15

Lazy Compilation

• Keep supporting function granularity jit

• Mayhaps require “deferred early errors”

• Consider eager type-checking later (cost?)

Thursday, January 29, 15

Numerous Challenges

• Would like “non-nullable” as default, feasible?

• Would like a proper integer type, how?

• How much immutability can we require in typed code?

• Full ES6: symbols, how avoid dependent types?

• Full ES6: first-class classes, how deal with generativity?

• Control-flow dependent typing, how much?

• Reflection, what API?

• Syntax, what to do about incompatibilities?

• Performance, how keep cost of type checking low?

• Blame tracking, do we need any in the absence of wrapping?

• Object.observe breaks all optimisation ideas

• ...

Thursday, January 29, 15

Plan

• Implement in Q2-4 (?)

Thursday, January 29, 15

Types in VM: Challenges

• Type system must respect open world assumption

• additional definitions can be added at any time

• Type checking must be efficient enough

• preference for nominal typing

• Must not break lazy compilation of functions

• precludes non-local type inference

• necessitates “deferred early error” semantics

Thursday, January 29, 15

Types in VM: Opportunities

• More optimisations!

• aggressive ones require soundness

• Affordable runtime type checks

• easier debugging

• enabler for soundness

• Predictable performance

• Reduced warm-up time

• No opt/deopt cycles of death

• Ahead-of-time compilation/optimisation

Thursday, January 29, 15

Summary

• Both new challenges and new opportunities
putting types into a VM

• Standardising an unsound type system would
be a big lost opportunity

• This is an experiment

• All public, we would like your feedback!

Thursday, January 29, 15

Encore

Thursday, January 29, 15

Optional Types

• All types are “non-nullable” by default

• preferably exclude both null and undefined,
but the latter might be very hard to reconcile
with existing APIs

• Type ?T as short-hand for T|undefined|null

Thursday, January 29, 15

First-Class Classes

• Requires proper class types: class C extends T {...}

• Essentially, F-bounded existential type

• Generative: functions returning a class create a new
class (i.e., existential type) with each call

• Implicitly opened when bound to a variable

• Classes as parameters behave dually (universal type)

• do-expressions will introduce “avoidance problem”

Thursday, January 29, 15

