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Abstract—Edge-preserving filters such as local M-smoothers or bilateral filtering are usually designed for Gaussian noise. This paper

investigates how these filters can be adapted in order to efficiently deal with Poissonian noise. In addition, the issue of photometry

invariance is addressed by changing the way filter coefficients are normalized. The proposed normalization is additive, instead of being

multiplicative, and leads to a strong connection with anisotropic diffusion. Experiments show that ensuring the photometry invariance

leads to comparable denoising performances in terms of the root mean square error computed on the signal.

Index Terms—Edge-preserving filter, local M-smoothers, bilateral filtering, anisotropic diffusion, photometry invariance, Poissonian

noise.
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1 INTRODUCTION

MANY fields of imaging face the difficulty of providing
meaningful information in poorly illuminated envir-

onments. Microscopy and optical astronomy, with the use of
telescopes, enter into well-known domains where low photon
counts are an issue. In medical imaging, this problem also
occurs in modalities that involve high-energy photons such as
positron emission tomography [1] (PET) and single photon
emission computed tomography [2] (SPECT). In this case, the
difficulty stems from the poor efficiency of the photon
detectors. Therefore, the resulting images combine two
weaknesses: statistical noise is consequential, and they have
a low resolution. Edge-preserving filters [3] address this
problem in an appealing way: They attenuate noise without
smoothing the images, that is, without noticeably decreasing
the resolution. This property is useful in numerous applica-
tions of PET and SPECT, where quantitative measures are
performed on the images, in some region of interest, such as a
tumor or a patient organ. In these applications, a filter that
blurs edges and transitions eventually increases the spillover
between contiguous regions of interest and jeopardizes their
accurate delineation.

However, the use of edge-preserving filters suffer from
two limitations. First, the majority of these filters are
designed for i.i.d. Gaussian noise. This prevents us from
applying them as such to images with low photon counts,
because the pixel intensities actually follow a Poissonian
distribution and so, the noise variance is not constant over
the image. Second, the filters should also give some
guarantees about the invariance of the total photon count
(the sum of all pixel counts), either in the delineated region

or in the whole image. As edges are never perfectly sharp in
practice, the first condition is difficult to fulfill, and only the
second milder constraint will be considered in this paper.

The literature indicates that Gaussian filtering [4] is used
in PET [1], [5] and SPECT [6], [7], [8] imaging, because it is
simple and preserves the total photometry; on the other
hand, it lacks the property of edge preservation and
degrades the resolution. Anisotropic diffusion [9] also
preserves the photometry, which is edge preserving but
relies on an additive noise model. If one preprocesses the
image with a variance-stabilizing transform (VST) such as
Anscombe’s [10], then anisotropic diffusion can deal with
Poissonian noise [11] but looses the property of photometry
invariance. Bilateral filtering [12], [13], [14] and local
M-smoothers [15], [16] also preserve edges, but neither
guarantee the photometry invariance nor work optimally
with Poissonian noise. In this context, our aim is twofold.
First, we derive edge-preserving filters based on local
M-smoothers that ensure the photometry invariance. Next,
we adapt these filters in order to deal with Poissonian noise.

The remainder of this paper is organized as follows: In
Section 2, we define the image model and present basic
denoising schemes like Gaussian filtering. Section 3 deals
with the invariance of the total photometry in an image. Edge-
preserving denoising techniques such as local M-smoothers
and bilateral filtering are briefly reviewed in Section 4.
Additive normalization for these filters is introduced in
Section 5, along with the corresponding objective functions
and some examples. Section 6 relates additive normalization
with anisotropic diffusion. Section 7 explains how we can
adapt edge-preserving filters and additive normalization to
Poissonian data and how this allows us to ensure the
photometry invariance. Experiments and results with sharp
and blurred images are detailed in Section 8. Finally, Section 9
gathers the conclusions.

2 IMAGE MODEL AND LOCAL SMOOTHING

We consider the case of imaging devices with low photon
counts. The resulting images are made of single-valued pixels
(or voxels in 3D) whose intensity value is representative of the
number of photons emitted in the corresponding region of the
space. When photon counts are low, noise is Poissonian, and
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the assumption of an image-independent noise model does
not hold. For the sake of simplicity, we adopt a one-
dimensional notation although real images are often at least
two-dimensional. The generalization to two or three dimen-
sions is shown to be straightforward further ahead.

In statistical estimation, the mean value of an unknown
constant signal � is estimated using a finite set of noisy
observations fi. If the noise is additive, i.i.d., and Gaussian,
we can write fi � Gð�; �Þ, where � is the noise standard
deviation. In the case of Poissonian noise, we have fi � P ð�Þ,
and the noise standard deviation is equal to

ffiffiffi
�
p

. In both cases,
the sample mean 1

N

PN
i¼1 fj is the maximum likelihood

estimate of the expectation �. The sample mean minimizes
the ‘2 error EðuÞ ¼ 1

2

PN
j¼1ðu� fjÞ

2.
In image analysis, the data fi (gray values or photon

counts) are measured at different positions (pixels) xi, and
we want to find a solution vector u ¼ ½ui�i¼1;...;N whose
entry ui estimates the unknown signal value �i at position xi.
For the sake of simplicity, we assume that the spacing
between successive positions is constant, that is, ðxiþ1 � xiÞ ¼
ðxjþ1 � xjÞ ¼ �x, for all 0 < i, j < N . As only one value is
available at each position xi, the only way to estimate �i is to
involve values of neighboring pixels. Given a distance
function �ðxi; xjÞ, the reflexive neighborhood around xi is
defined to be the set N i ¼ fj j �ðxi; xjÞ < �g, for some
constant neighborhood radius �. In order to have jN ij ¼
jN jj for all 0 < i, j < N , we define the distance function

�ðxi; xjÞ ¼ minfjxi � xjj; N�x� jxi � xjjg; ð1Þ

such that the vector x ¼ ½xi�i¼1;...;N can be considered to be
“circular” (for � � �x, x1 2 N N and xN 2 N 1).

Within this framework, local filtering is achieved by
minimizing the objective function

EðuÞ ¼ 1

2

XN
i¼1

X
j2N i

wijðui � fjÞ2: ð2Þ

The solution is obtained by differentiating E with respect to
ui and equating the partial derivative to 0

@EðuÞ
@ui

¼
X
j2N i

wijðui � fjÞ ¼ 0: ð3Þ

After rearranging the terms, it follows that

ûi ¼
P

j2N i
wijfjP

j2N i
wij

; ð4Þ

where the right-hand term is a weighted estimate (or W-
estimate, see [17]), with constant weights in this case. This
estimator relies on the assumption that nearby pixels are i.i.d.
with a high probability, as they likely lie in the same uniform
region of the image. Accordingly, weights are assumed to
vanish while moving away from the central pixel xi, and this
justifies the restriction of the sum to the neighborhood N i,
which simplifies the computations. The weights wij can be
defined using either a hard window or a soft one. Most often,
the second option is chosen, for instance, by using a Gaussian
function

wij ¼ exp � �ðxi; xjÞ
2

2�2

 !
; ð5Þ

where the adjustable “width” of the function is denoted �.
This is the principle of Gaussian smoothing.

The generalization to two or three dimensions merely
requires the adaptation of the distance function. In the
2D case, if ½xi; yi� denote the coordinates of the ith pixel in a
regular grid, then

�ð½xi; yi�; ½xj; yj�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðxi; xjÞ þ �2ðyi; yjÞ

q
ð6Þ

corresponds to the euclidean distance. The property jN ij ¼
jN jj for all 0 < i, j < N remains valid and is important in
photometry invariance.

3 TOTAL PHOTOMETRY INVARIANCE

Thanks to the normalizing denominator in (4), local filtering
ensures the invariance of the total photometry (or average
gray level in [18])

XN
i¼1

ûi ¼
XN
i¼1

fi �
XN
i¼1

ui: ð7Þ

To demonstrate the left equality, let us define the effective
weights of neighbors to be

Wij ¼
wijP
j2N i

wij
if i 2 N i

0 otherwise;

(
ð8Þ

and rewrite the estimate in (4) as ûi¼
PN

j¼1 Wijfj. Equality (7)
holds because the effective weights in (8) are such that

. there are no border effects (x is “circular” according
to the distance function � used to define the
neighborhoods),

. neighborhoods and effective weights are symmetric,
that is, j 2 N i , i 2 N j and Wij ¼Wji, and

. the effective weights are normalized, that is,PN
j¼1 Wij ¼ 1.

See [18] for a thorough discussion about the above
prerequisites, which eventually allow us to write

XN
i¼1

ûi ¼
XN
i¼1

XN
j¼1

Wijfj ð9Þ

¼
XN
j¼1

fj
XN
i¼1

Wji ¼
XN
j¼1

fj: ð10Þ

4 EDGE-PRESERVING FILTERING

The use of a vanishing function for the spatial weights wij in
(4) may prove to be insufficient near an edge, that is, a jump or
discontinuity of the signal u. In that case, the edge will be
more or less smoothed, depending on parameter �. In order to
overcome this limitation, the estimator of the sample mean
can be replaced with a robust M-estimator [19]. The objective
function is then

EðuÞ ¼
XN
i¼1

X
j2N i

wij�ijðuÞ: ð11Þ

Choosing �ijðuÞ ¼ 1
2 ðui � fjÞ

2 trivially leads to the
sample mean estimator. If we assume however that in

LEE ET AL.: EDGE-PRESERVING FILTERING OF IMAGES WITH LOW PHOTON COUNTS 1015



neighborhood N i, two or more constant signals are
mixed, a mode estimator is more appropriate. A usual
choice consists in taking

�ijðuÞ¼
:
�2 1� � ui � fj

� �� �
; ð12Þ

where

�ðsÞ¼: exp � s2

2�2

� �
: ð13Þ

In this case, the edge preservation results from the fact that
�ijðuÞ saturates for jui � fjj � � � �. If xi and xj are not on
the same side of an edge, then we can assume that j�i �
�jj � � and, so, we have

@�ijðuÞ
@ui

� 0 ð14Þ

for ui � �i and fj � �j. This means that fj has little
influence on the filtered value at xi. Notice also that

lim
�!0

�ijðuÞ ¼ 0; ð15Þ

and

lim
�!1

�ijðuÞ ¼
ðui � fjÞ2

2
; ð16Þ

which shows that for large values of �, the same behavior as
local filtering will be observed.

The objective function EðuÞ can be minimized by a
gradient descent, starting from the initial guess û0

i ¼ fi and
converging toward a local minimum if �ij is nonconvex

ûkþ1
i ¼ ûki � 	

@EðuÞ
@ui

����
ui¼ûki

; ð17Þ

¼ ûki � 	
X
j2N i

wij� ûki � fj
� �

ðûki � fjÞ; ð18Þ

¼ 1� 	
X
j2N i

wij� ûki � fj
� �0

@
1
Aûki

þ 	
X
j2N i

wij� ûki � fj
� �

fj: ð19Þ

Setting the step size

	 ¼ 1P
j2N i

wij� ûki � fj
� � ð20Þ

leads to the iterative update rule

ûkþ1
i ¼

P
j2N i

wij� ûki � fj
� �

fjP
j2N i

wij� ûki � fj
� � ; ð21Þ

which turns out to be a W-estimate with adaptive weights
and corresponds to the formula of the local M-smoothers
[15], [16].

The last equation is also closely related to bilateral
filtering [13]. This filter results from an intuitive general-
ization of local filtering [14], wherein tonal (or photometric)
similarity is involved in addition to spatial proximity.
Bilateral filtering is primarily intended to be noniterative
[13], like local filtering; however, its iterative application
(proposed in [14]) can be written as

ûkþ1
i ¼

P
j2N i

wij� ûki � ûkj
� 	

ûjP
j2N i

wij� ûki � ûkj
� 	 ; ð22Þ

where � denotes the tonal kernel and measures the photo-

metric similarity. The last update rule is equivalent to (21)

only for the first iteration ðû0
j ¼ fjÞ; in subsequent iterations,

the reference signal fj is replaced with the estimate ûkj . This

induces a coupling and makes bilateral filtering nonlocal, in

contrast to local M-smoothers. Therefore, bilateral filtering

can converge to a solution û that is uniform. This does not

happen with local M-smoothers [16]. In the case of bilateral

filtering, let us define

Wij ¼
wij� ûki�ûkjð ÞP
j2N i

wij� ûki�ûkjð Þ if j 2 N i

0 otherwise:

8<
: ð23Þ

This allows us to rewrite the update rule in (22) as

ûkþ1
i ¼

PN
j¼1 Wijû

k
j . Although the effective weights are

normalized ð
PN

j¼1 Wij ¼ 1Þ, it is however straightforward

to observe that the total photometry is not guaranteed to

be preserved. Indeed, equality Wij ¼Wji no longer holds,

because the respective denominators of Wij and Wji can

be different (they are computed over two different

neighborhoods and involve the corresponding estimates

of the signal).
The case of local M-smoothers proves to be even worse;

using the update rule ûkþ1
i ¼

PN
j¼1 Wijfj, we can write the

effective weights as

Wij ¼
wij� ûki�fjð ÞP
j2N i

wij� ûki�fjð Þ if j 2 N i

0 otherwise:

8<
: ð24Þ

In this case, even the numerator in (24) is problematic, as
equality jûki � fjj ¼ jûkj � fij is not guaranteed to hold.

It is noteworthy that the Hessian of (11) is diagonal and

easy to estimate. However, the choice of the step size in (19)

does not take advantage of that fact, although it would enable

the gradient descent to reach quadratic convergence. Instead,

the value of the step size is constrained by the necessity to

obtain the weight normalization, that is,
PN

i¼1 Wij ¼ 1, for

each pixel and at each update. This means that convergence

may be slow and that its speed may be different for each pixel.

5 ADDITIVE WEIGHT NORMALIZATION

The asymmetry in (24) can be addressed by changing the

value of the step size in the gradient descent (19) to

	 ¼ 1=
P

i2N i
wij. Thereby, we obtain symmetry for the first

iteration ðû0
j ¼ fjÞ, and using nonreflexive neighborhoods

N 0
i¼
: fj j j 6¼ i and �ðxi; xjÞ < �g ¼ N i n fig; ð25Þ

we can write û1
i ¼

PN
j¼1 Wijfj with the effective weights

Wij ¼

wij� ûi�fjð ÞP
j2N 0

i

wij
if j 2 N 0

i

1�
P

j2N 0
i
Wij if j ¼ i

0 otherwise:

8>>><
>>>:

ð26Þ
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It is noteworthy that the change of the step size leads to an
“additive” normalization in the last equation, instead of a
multiplicative one, as in (24). The normalization constraintPN

j¼1 Wij ¼ 1 is enforced by adjusting only the central
weight Wii, rather than by scaling all weights Wij in the
neighborhood N i. Unfortunately, using (26) for the second
and subsequent iterations breaks the symmetry and
normalization properties.

In order to address this issue, we first define a symme-
trization function

SðDij;DjiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ijD

2
ij þ ð1� 
ijÞ

2D2
ji

q
; ð27Þ

where Dij ¼ ui � fj and 0 � 
ij � 1. If S is chosen to be the
minimum of its squared arguments, then we fix 
ij as follows:


ij ¼
1 if D2

ij � D2
ji

0 if D2
ij > D2

ji:

(
ð28Þ

A similar equation can be obtained for the maximum.
In all cases, we have 
ji ¼ 1� 
ij and, therefore,
SðDij;DjiÞ ¼ SðDji;DijÞ.

Next, we define the objective function

EðuÞ ¼
XN
i¼1

X
j2N 0

i

wij�ijðuÞ; ð29Þ

where

�ijðuÞ¼:
D2
ii

2
þ ðfi � fjÞ


ij
� 
ijDij

� �
� ð1� 
ijÞDji

� �
: ð30Þ

In the last equation, � is proportional to the Gauss error
function

�ðsÞ¼: �
ffiffiffi
�
pffiffiffi

2
p erf

s

�
ffiffiffi
2
p

� �
ð31Þ

such that �0ðsÞ ¼ �ðsÞ. Notice that

lim
�!1

�ijðuÞ ¼
ðui � fiÞ2

2
þ ðfi � fjÞðui � fjÞ ð32Þ

¼ ðui � fjÞ
2

2
þ ðfj � fiÞ

2

2
ð33Þ

¼ ðfj � fiÞ
2

2
þ lim

�!1
�ijðuÞ; ð34Þ

whereas

lim
�!0

�ijðuÞ ¼
ðui � fiÞ2

2
; ð35Þ

which constitutes an essential difference with �ij. Hence,
we see that, in this case, edge preservation is ensured by
shifting the global minimum of �ij. If xi and xj are not on the
same side of an edge, then we can assume that j�i � �jj � �,
and so, for ui � �i and fj � �j, we have �ijðuÞ � ðui � fiÞ2=2.
On the other hand, if ui � �i and fj � �i, then �ijðuÞ �
ðui � fjÞ2=2. This is illustrated in Fig. 1, for the case 
ij ¼ 1. For

ij ¼ 0, l’Hôpital’s rule allows us to compute

lim

ij!0

�ijðuÞ ¼
D2
ii

2
þDij� ð1� 
ijÞDji

� �
: ð36Þ

Equating the partial derivative

@�ijðuÞ
@ui

¼ Dii þ ðfi � fjÞ� 
ijDij

� �
� ð1� 
ijÞDji

� �
ð37Þ

¼ Dii þ ðfi � fjÞ� SðDij;DjiÞ
� �

ð38Þ

to zero shows that if � > 0, then �ij reaches a minimum for
ui ¼ fj and uj ¼ fi. In particular, if S returns the minimum
of its squared arguments, then the conjunction degenerates
into a disjunction: The minimum is reached for ui ¼ fj or
uj ¼ fi. The presence of a minimum of �ij for ui ¼ fj is a
common point with �ij. Depending on the value of �, a
second minimum can appear in the interval ½fi; fi þ
0:285ðfj � fiÞ�, for � < 0:455jfj � fij. In this case, the two
minima are separated by a local maximum that is located in
the interval ½fi þ 0:285ðfj � fiÞ; fj�. The minimum for ui ¼ fj
is global for � > 0:41jfj � fij.

Starting from the initial guess û0
i ¼ fi, we can write the

gradient descent of EðuÞ as

ûkþ1
i ¼ ûki � 	

@EðuÞ
@ui

����
ui¼ûki

ð39Þ

¼ ûki � 	
X
j2N 0

i

wij Dii þ � S D̂k
ij; D̂

k
ji

� 	� 	
ðfi � fjÞ

� 	
; ð40Þ

where D̂k
ij extend the previous notations to the estimate ûki .

Setting 	 ¼ 1=
P

j2N 0
i
wij, we find

ûkþ1
i ¼ 1�

P
j2N 0

i
wij� S D̂k

ij; D̂
k
ji

� 	� 	
P

j2N 0
i
wij

0
@

1
Afi

þ
P

j2N 0
i
wij� S D̂k

ij; D̂
k
ji

� 	� 	
fjP

j2N 0
i
wij

:

ð41Þ

By comparison with (21), the last equation incorporates the
symmetrization function S and the first term in the right-
hand side comprises fi instead of ûki . Once translated into the
generic form ûkþ1

i ¼
PN

j¼1 Wijfj, the effective weights are
given by
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Fig. 1. Function �ijðuÞ, for fi ¼ 0, fj ¼ 1, 
ij, and � varying between 0

and 1.6. Depending on �, �ijðuÞ can have one or two minima (circles)

that are separated by a local maximum (crosses). For � ¼ 0,

�ijðuÞ ¼ ðui � fiÞ2=2, whereas for �!1, �ijðuÞ ! ðui � fiÞ2=2.



Wij ¼

wij� SðD̂k
ji;D̂

k
jiÞð ÞP

j2N 0
i

wij
if j 2 N 0

i

1�
P

j2N 0
i
Wij if j ¼ i

0 otherwise:

8>>><
>>>:

ð42Þ

and involve an additive normalization, as in (26). As
equalities wij ¼ wji and SðD̂k

ij; D̂
k
jiÞ ¼ SðD̂k

ji; D̂
k
ijÞ hold, and

since the denominator in (42) is constant, the symmetry
Wij ¼Wji is guaranteed. For bilateral filtering, the update
rule ûkþ1

i ¼
PN

j¼1 Wijû
k
j with effective weights

Wij ¼

wij� ûki�ûkjð ÞP
j2N 0

i

wij
if j 2 N 0

i

1�
P

j2N 0
i
Wij if j ¼ i

0 otherwise;

8>>><
>>>:

ð43Þ

can be used, since Sðûki � ûkj ; ûkj � ûki Þ ¼ ûki � ûkj .
Several differences between local M-smoothers with

multiplicative normalization (LMSMN) and additive nor-
malization (LMSAN) can be pointed out. First, it is note-
worthy that in the minimization of (11), the step size 	 given
in (20) differs for each pixel. In contrast, the gradient descent
of (29) involves a constant step size ð	 ¼ 1=

P
j2N 0

i
wijÞ.

Second, the contribution of the noisy value of a pixel to the
filtered value of another pixel depends on other surrounding
pixels in the case of a multiplicative normalization. For
additive normalization, this contribution is computed re-
gardless of neighboring pixels.

Looking at the minima of the respective objective functions
also reveals a difference. For instance, let us consider the toy
example illustrated in Fig. 2, where Gaussian noise pollutes a
1D piecewise constant signal. The variance of the noise is
equal to 1. The three panels represent Gaussian filtering,

LMSMN, and LMSAN, respectively. For all three filters,
jN ij ¼ 7, and the weights wij are computed according to (5),
with � ¼ 2�x. For both versions of local M-smoothers, the
kernel width � is set to 2.5. Six iterations of the gradient
descent have been performed, after initialization with the
noisy signal. In addition to the local minima that result from
the gradient descent, global optima are also depicted. For the
considered value of �, the local and global minima of each
filter are very close, if not identical. Gray levels in the
background of each diagram indicate the profile of the
underlying objective functions for each pixel index in
abscissa. Due to the quadratic term in (29), the profiles of
Gaussian filtering and LMSAN look similar, whereas those of
LMSMN have narrower basins. However, a careful inspec-
tion reveals that LMSMN and LMSAN yield comparable
results, whereas Gaussian filtering smooths the signal.

The recovery of the underlying signal can be assessed by
looking at the root mean square error (RMSE) between the
true signal and the filtered one

RMSE¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m¼1

XN
i¼1

ðûim � �imÞ2
vuut ; ð44Þ

where M is the number of trials, and m is the trial index.
Fig. 3 illustrates the RMSE (over 100 trials) of the considered
filters for increasing values of �. An additional curve gives
the RMSE of the noisy signal, without any filtering.

Forsmall valuesof�, the gradientdescent forbothLMSMN
and LMSAN leaves the noisy signal almost unchanged. For
LMSMN, however, we observe a discrepancy between the
global optimum of the objective function and the local
optimum reached by the gradient descent, starting with the
initialguess û0

i ¼ fi.Foreachlocationxi, theobjectivefunction
of LMSMN is a sum of several functions �ij that are centered
on the noisy values fi. If � is low, as illustrated in Fig. 4, the
number of basins increases and their depth critically depends
on the observed distribution of neighboring noisy values. In
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Fig. 2. Toy example with a piecewise constant signal and Gaussian
noise: (a) results of Gaussian filtering, (b) LMSMN, and (c) LMSAN with
nonreflexive neighborhoods for � ¼ 2�x and � ¼ 2:5. Levels of gray in
the background indicate the profile of the objective function. The
genuine and noisy signals are plotted along with the global optima of the
objective function and its local optima after initialization with the noisy
signal and six iterations.

Fig. 3. Average RMSEs for 100 data sets based on the piecewise
constant signal in Fig. 2. Noise is Gaussian with unit variance. Curves
for Gaussian filtering, LMSMN, and LMSAN (without symmetrization
function, that is, Sða; bÞ ¼ a) are plotted as a function of �. For LMSMN,
the RMSEs corresponding to the global optima (GO) of the objective
function are shown in addition to the local optima (LO) obtained with the
gradient descent.



some cases (see, for example, atxi ¼ 25), the global maximum

can be considered to be spurious and explains the high RMSE

value in Fig. 3. For LMSAN, such a discrepancy is not likely to

happen: due to the quadratic term in (30), the solution found

by the gradient descent is in good correspondence with the

global minimum of the objective function. Those two different

behaviors can also be explained by observing that the limits

(15) and (35) are different.
For large values of �, the limits (16) and (34) allow us to

write

lim
�!1

EðuÞ ¼
XN
i¼1

X
j2N i

wij lim
�!1

�ijðuÞ ð45Þ

¼
XN
i¼1

X
j2N i

wij
ðui � fjÞ2

2
ð46Þ

for LMSMN, and

lim
�!1

EðuÞ ¼
XN
i¼1

X
j2N 0

i

wij lim
�!1

�ijðuÞ ð47Þ

¼
XN
i¼1

X
j2N 0

i

wij
ðui � fjÞ2

2
þ
XN
i¼1

X
j2N 0

i

wij
ðfi � fjÞ2

2
ð48Þ

for LMSAN. Both objective functions turn out to be closely
related to that of local filtering. However, in contrast to
LMSMN and local filtering, the inner sum for LMSAN runs
over nonreflexive neighborhoods. Consequently, LMSAN
does not perform as well as LMSMN and Gaussian filtering
for large values of �, as shown in Fig. 3. The objective
function of LMSAN can also be defined with reflexive
neighborhoods, that is, N i instead of N 0

i . This leads to the
same effective weights, as in (42), except that N 0

i is replaced
with N i in the denominator of the first conditional
assignment. In this case, the asymptotic behavior for large
values of � is the same as that of Gaussian filtering, as can
be seen on the right part in Fig. 3.

Optimal values of � are different for LMSMN ð� � 1:7Þ,
LMSAN with nonreflexive neighborhoods ð� � 2:0Þ, and
LMSAN with reflexive neighborhoods ð� � 2:6Þ. LMSMN
outperforms LMSAN because it better smooths outliers: if fi
is an outlier, then its effective weight Wii is lower with
multiplicative normalization than that produced by additive
normalization. The difference between reflexive and nonre-
flexive neighborhoods in LMSAN can be explained in a
similar way: For the definition withN 0

i , we have 0 �Wii � 1,
whereas we have

wiiP
j2N i

wij
�Wii � 1 ð49Þ

for the alternative definition with N i. Therefore, in the case
of an outlier, the central weight Wii is slightly lower with
nonreflexive neighborhoods than with reflexive ones, and
this leads to better filtering performance.

Concerning the preservation of the total photometry,
Fig. 5 shows results that correspond to those in Fig. 3. The
photometric error is expressed as a percentage and is
computed as

%PE¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m¼1

100

N

XN
i¼1

1� ûim
fim

� � !2
vuut : ð50Þ

Notice that in this preliminary example, LMSAN is used
without any symmetrization function (that is, Sða; bÞ ¼ a).
This shows that even without symmetrization function, the
additive normalization reduces the photometric error. We
observe that LMSAN with reflexive neighborhoods achieves
a lower photometric error than with nonreflexive ones at the
expense of a higher RMSE. With any symmetrization
function, the photometric error of LMSAN is trivially null;
see also Section 8 for additional experiments with a
nondegenerate symmetrization function. The impact of the
symmetrization function on the RMSE is illustrated in Fig. 6 in
the different cases (the minimum, the maximum, and the
average, that is, 
ij ¼ 0:5). The minimum delivers the lowest
RMSE in this example.

6 CONNECTION WITH ANISOTROPIC DIFFUSION

The update rules with additive normalization described in
the previous section for local M-smoothers and bilateral
filtering can be related to anisotropic diffusion [9]. For a
continuous signal ûðx; tÞ that evolves in time, with initial
conditions ûðx; 0Þ ¼ fðxÞ, the partial differential equation
representing the diffusion-reaction process is
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Fig. 4. Similar toy example as that in Fig. 2: result of LMSMN with

� ¼ 2�x and � ¼ 0:5. For a low value of �, the global minima of the

objective function and those found by the gradient descent starting from

the noisy values as an initial guess do not always correspond.

Fig. 5. Average photometric errors for 100 data sets based on the
piecewise constant signal of Fig. 2. Noise is Gaussian with unit variance.
Curves for Gaussian filtering, LMSMN, and LMSAN (without symme-
trization function, that is, Sða; bÞ ¼ a) are plotted as a function of �. For
LMSMN, the RMSEs corresponding to the global optima (GO) of the
objective function are shown in addition to the local optima (LO)
obtained with the gradient descent.



@ûðx; tÞ
@t

¼ div g
jrxûðx; tÞj2

2

 !
rxûðx; tÞ

 !
: ð51Þ

In [9], g is a gradient-stopping function (or diffusivity
function) such that gð12 s2Þ ! 0 when s!1. The last
condition ensures that the diffusion slows down across
edges [20].

In order to obtain a discretized formulation of (51), let us
assume that for t ¼ k the approximation

rxûðx; tÞ
��
x!xi �

ûkiþ1 � ûki if x > xi

ûki�1 � ûki if x < xi

(
ð52Þ

holds [20], and let us redefine N 0
i¼
: fjj�ðxi; xjÞ ¼ �xg, so

that only direct neighbors are included. This leads to a
straightforward discretization [18] of (51), which is

ûkþ1
i � ûki
�

¼ 1

jN 0
i j

X
j2N 0

i

g
1

2
ðûkj � ûki Þ

2

� �
ðûkj � ûki Þ: ð53Þ

The corresponding update rule [20], [18] is written as

ûkþ1
i ¼ ûki þ

�

jN 0
i j

X
j2N 0

i

g
1

2
ðûkj � ûki Þ

2

� �
ðûkj � ûki Þ: ð54Þ

According to [20], the diffusion process can also be viewed
as a statistical estimation problem. Within that framework,
gð12 s2Þ ¼ �ðsÞ. Setting the step size � ¼ 1 allows us to
rewrite the above update rule as ûkþ1

i ¼
PN

j¼1 Wijû
k
j with

effective weights

Wij ¼
� ûi�ûjð Þ
jN 0

i j
if j 2 N 0

i

1�
P

j2N 0
i
Wij if j ¼ i

0 otherwise:

8><
>: ð55Þ

This corresponds to bilateral filtering with additive normal-
ization, as in (43), but with restricted neighborhoods, and
wij ¼ 1. Hence, this discrete definition of anisotropic
diffusion preserves the total photometry of the image. A
different approach for relating anisotropic diffusion to

bilatering filtering has been developed in [21] and [22], in
the case of multiplicative normalization.

7 POISSONIAN NOISE

The edge-preserving filters that have been described in the
previous section rely on the assumption of i.i.d. Gaussian
noise for all pixels. In that context, the Gaussian function �ðsÞ
involved in (42) and (43) can be intuitively interpreted as a
similarity measure. More precisely, the filtered value of the
ith pixel is a weighted average in which heavier weights are
given to neighboring pixels having a similar count as that
of the ith pixel. The similarity depends on the width
parameter�, whose value is usually chosen to be proportional
to the noise standard deviation �. A good trade-off yields a
good denoising efficiency in constant regions of the images,
along with the preservation of the intensity jumps, provided
they are much larger than �.

If noise is Poissonian, � should be adjusted independently
for each pixel, in order to keep the same trade-off between
denoising efficiency and edge preservation everywhere in the
image. Otherwise, if� remains constant, edges in regions with
low counts are smoothed whereas denoising in regions with
high counts is insufficient. Since Poissonian noise is con-
sidered to be multiplicative, a simple trick to overcome this
limitation could be to replace � with an estimate of the
product �

ffiffiffiffiffi
�i
p

, e.g., �
ffiffiffiffi
fi
p

for local M-smoothers or �
ffiffiffiffiffi
ûi
p

for
bilateral filtering. Nevertheless, this leaves three unresolved
issues. First, fi (and ûi to a lesser extent) is a noisy estimate of
�i. Second, Poissonian distributions are asymmetric, and this
fact is not taken into account in the similarity measure �ðsÞ.
Third, factors for neighboring voxels i and j are different,
what breaks the weight symmetryWij ¼Wji and jeopardizes
the total photometry invariance.

A more elegant solution to the problem is brought by using
a VST, like Anscombe’s [10]. If r � P ð
Þ and 
!1, then
t ¼ AðrÞ¼: 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 3=8

p
is such that t � Gð2

ffiffiffi


p

; 1Þ. In practice, t
is approximately Gaussian with unit variance for 
 � 10 [23].
This suggests to follow the strategy described in [11]:

1. Apply A to the image.
2. Use a classical filter designed for Gaussian noise.
3. Apply A�1 to the denoised image.

Unfortunately, this strategy does not ensure the photometry
invariance. Even if the filter preserves the photometry of the
transformed image, this does not necessarily remain true for
the image obtained after the third step, since Anscombe’s
VST and its inverse are nonlinear.

Instead, we propose to embed a VST in the objective
function of the aforementioned filters and to compute the
corresponding gradient descent update rule. This allows us
to avoid any pre- and posttransformation of the image and
to obtain the filtered pixel counts directly as a weighted
average of the noisy ones. As the usual functions for robust
mode-estimation involve a squared difference of two pixel
counts, we use Fisz’s transform [24] instead of Anscombe’s.
Fisz’s transform is a special case of Fisz’s theorem [25] and
has already been used in wavelet-based denoising [24], [23].
According to Fisz’s theorem, if r; t � P ð
Þ are two inde-
pendent Poissonian variables and 
!1, then

s ¼ Fðr; tÞ¼: r� tffiffiffiffiffiffiffiffiffiffi
rþ t
p � Gð0; 1Þ: ð56Þ
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Fig. 6. Closer look at the curves in Fig. 3. The results of LMSMN and

LMSAN are given, as a function of �; the average RMSEs over 100 trials

are shown. For LMSAN, additional curves show the effect of different

symmetrization functions S.



In practice, Fisz’s transform provides us with a better
“Gaussianization” than Anscombe’s, and s is approximately
Gaussian with unit variance for 
 � 1 [23]. By comparison,
for two independent Gaussian variables r; t � Gð�; 1Þ, we
have s ¼ r� t � Gð0;

ffiffiffi
2
p
Þ.

This allows us to rewrite the objective function of local
filtering in (2) as

EðuÞ ¼
XN
i¼1

X
j2N i

wijF 2ðui; fjÞ: ð57Þ

The derivative of EðuÞ involves

@F 2ðr; tÞ
@r

¼ ðr� tÞHðr; tÞ; ð58Þ

where

Hðr; tÞ ¼ rþ 3t

ðrþ tÞ2
: ð59Þ

As the optimum cannot be expressed in closed form, the
gradient descent leads to the update rule ûkþ1

i ¼
PN

j¼1 Wijfj,
where the effective weights are

Wij ¼
wijHðûki ;fjÞP
j2N i

wijHðûki ;fjÞ
if j 2 N i

0 otherwise:

(
ð60Þ

This update rule does not preserve the total photometry.
For LMSMN, we can define

�ijðuÞ ¼ �2 1� �
ffiffiffi
2
p
Fðui; fjÞ

� 	� 	
; ð61Þ

which allows us to rewrite the objective function in (11) as

EðuÞ ¼
XN
i¼1

X
j2N i

wij�ijðuÞ: ð62Þ

Function �ij resembles an “upside-down bell” like �ij. The
only difference is that the bell width depends on the product
of � and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui þ fj

p
in this case. The derivative ofEðuÞ involves

@�ijðuÞ
@ui

¼ ðui � fjÞ�
ffiffiffi
2
p
Fðui; fjÞ

� 	
Hðui; fjÞ; ð63Þ

and the effective weights can be written as

Wij ¼
wij�

ffiffi
2
p
Fðûki ;fjÞð ÞHðûki ;fjÞP

j2N i
wij�

ffiffi
2
p
Fðûki ;fjÞð ÞHðûki ;fjÞ

if j 2 N i

0 otherwise:

8<
: ð64Þ

The use of Fisz’s transform makes the derivation of an
additive normalization more difficult than in the Gaussian
case. Indeed, if we embed Fisz’s transform into (30), the
derivative ofF appears in the gradient descent and prevents
us from obtaining an update rule in the form of ûkþ1

i ¼
PN

j¼1

Wijfj. However, if we write the effective weights as

Wij ¼

wij�
ffiffi
2
p

SðFðûki ;fjÞ;Fðûkj ;fiÞÞð ÞP
j2N i

wij
if j 2 N 0

i

1�
P

j2N 0
i
Wij if i ¼ j

0 otherwise;

8>><
>>: ð65Þ

then we can test this ad hoc definition with a similar example
to that in Fig. 2. The piecewise constant signal that is shown in

Fig. 7 occupies four levels (50 for the baseline; 100, 150, and
200 for the bumps). Poissonian noise is generated according
to these values using Ahrens’ and Dieter’s method [26]. As the
RMSE is an optimal error measure for Gaussian noise only,
we include Fisz’s VST in the computation of the RMSE, that is,

RMSE¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

MN

XM
m¼1

XN
i¼1

F 2ðûim; �imÞ

vuut : ð66Þ

The results over 100 trials are given in Fig. 8. Three lines are
drawn for Gaussian filtering: The first one corresponds to
Gaussian filtering applied to the raw, noisy signal; the
second one preprocesses the signal with Anscombe’s VST;
the third curve corresponds to the version with embedded
Fisz’s transform, which minimizes (57) by the gradient
descent. According to the definition of the RMSE for
Poissonian noise in (66), the two implementations of
Gaussian filtering that involve a VST are expected to
outperform the version that is deprived of VST. However,
more importantly, it is noteworthy that the gradient descent
of (57) with Fisz’s transform outperforms the solution that
first applies Anscombe’s VST and then compute the W-
estimate (4) in closed form. This difference can also be
pointed out for LMSMN but only for large values of �. The
ranking of edge-preserving filters remains the same as with
Gaussian noise: LMSMN outperforms LMSAN with nonre-
flexive neighborhoods, which, in turn, achieves better
results than LMSAN with reflexive neighborhoods.

The photometric error is plotted in Fig. 9. Gaussian
filtering with a VST (either embedded or as a preprocessing)
does not preserve the total photometry. Notice also that in this
preliminary example, LMSAN is used without any symme-
trization function (that is, Sða; bÞ ¼ a). This shows that even
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Fig. 7. Toy example with a piecewise constant signal and Poissonian
noise: results of (a) Gaussian filtering, (b) LMSMN, and (c) LMSAN with
nonreflexive neighborhoods and incorporated Fisz’s transform for � ¼
2�x and � ¼ 2:5. Levels of gray in the background reveal the profile of the
objective function for Gaussian filtering and LMSMN. The genuine and
noisy signals are plotted along with the local optima (LO) of the objective
functions after initialization with the noisy signal and six iterations of the
gradient descent.



without symmetrization function, the additive normalization
reduces the photometric error. LMSAN achieves a lower
photometric error with reflexive neighborhoods than with
nonreflexive ones in this respect. The impact of the symme-
trization on the RMSE is illustrated in Fig. 10 for three
symmetrization functions S (minimum, maximum, and
average). The minimum provides the lowest RMSE.

8 EXPERIMENTS WITH SHARP AND BLURRED

IMAGES

For this series of experiments, we use gray-level images
consisting of 642 pixels. Two kinds of images are used: sharp
ones and blurred ones. Sharp images are based on the pattern

that can be seen in the left column in Fig. 11. The same pattern

is also generated in a 256-by-256 grid, as shown in the middle

column in Fig. 11. This second pattern is then resized to an

image having 642 pixels using a bilinear interpolation in order

to obtain the blurred pattern in the right column in Fig. 11. In

the case of the sharp pattern, each pixel belongs to a single

region, and all regions have strictly constant intensities.

However, this model is not very realistic for most imaging

devices. As the image grid is quite coarse, portions of two or
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Fig. 8. Average RMSEs for 100 data sets based on the piecewise
constant signal in Fig. 7. Noise is Poissonian. Curves for Gaussian
filtering, LMSMN, and LMSAN (without symmetrization function, that is
Sða; bÞ ¼ a) are plotted as a function of �. Gaussian filtering is applied to
the noisy signal without preprocessing and using Anscombe’s VST (AT),
too. A third version involves Fisz’s VST (FT) and minimizes (57). LMSMN
is applied to preprocessed data using Anscombe’s VST and (11) or
directly using Fisz’s VST embedded in (62). For LMSAN, results for
reflexive and nonreflexive neighborhoods are given. The RMSE values
correspond to local optima (LO) of the objective functions after the
gradient descent.

Fig. 9. Average photometric errors corresponding to the results in Fig. 8.

LMSAN is used without symmetrization function, that is, Sða; bÞ ¼ a.

Fig. 10. Closer look at the curves in Fig. 8. The results of LMSMN and

LMSAN are given as a function of �; the average RMSEs over 100 trials

are shown. For LMSAN, additional curves show the effect of different

symmetrization functions S.

Fig. 11. Image patterns used in the experiments. In the left column, the
image is sharp (each pixel fully belongs to a single region, and only three
intensities are permitted). In the middle column, a similar pattern is
shown with a four times finer grid of pixels. In the right column, this high-
resolution pattern is blurred using bilinear interpolation; in this case,
pixels near the boundary of two regions can have intermediate
intensities. The last two rows show the corresponding images with
Gaussian and Poissonian noise.



more objects can be included in the same pixel. In other
words, near boundaries, several objects can contribute to the
intensity of a single pixel. This phenomenon is also referred to
as the “partial volume effect” [27]. As a consequence,
transitions between uniform regions are smooth and
approximately one-pixel wide. The second pattern simulates
this minimal blur observed in most digital images. For very
low-resolution devices, blur can be even more important, but
then, the application of an edge-preserving filter becomes
questionable, and other models should be used.

The experiments involve both Gaussian and Poissonian
noise. In the former case (Fig. 11, penultimate row), noise
is generated as follows: fi � Gð�i; 1Þ and �i 2 f1; 5:5; 10g. In
the latter case (Fig. 11, last row), we have fi � P ð�iÞ and
�i 2 f10; 55; 100g.

The quality of the filtering process is measured with both
the RMSE and the photometric error. However, we generalize
(44) and (50) in order to focus on particular regions in the
images. This gives

RMSE¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M
PN

i¼1 �i

XM
m¼1

XN
i¼1

�iðûim � �imÞ2
vuut ; ð67Þ

and

%PE¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m¼1

100PN
i¼1 �i

XN
i¼1

�i 1� ûim
fim

� � !2
vuut ; ð68Þ

where the weights �i are chosen in {0, 1}. Obviously, %PE
vanishes for filters that have the property of photometry
invariance only if all pixels share the same weight. In the case
of Poissonian noise, the RMSE with embedded Fisz’s trans-
form defined in (66) is generalized in the same way. Four
masks are constituted. The first mask is uniform and assesses
the recovery of the whole image (100 percent of the image).
The second mask includes plateaus, that is, regions with
constant intensity (approximately 54 percent of the image).
The third one focus on pixels near edges (approximately
39 percent of the image). The last mask gathers all intensity
ramps (approximately 14 percent of the image). The last three
masks are shown in Fig. 12. There is some overlapping
between edges and ramps.

The results of Gaussian smoothing are given in Tables 1
and 2 for M ¼ 100. Four cases are detailed: Gaussian noise
with classical Gaussian smoothing (GN, GS), Poissonian
noise with no VST (PN, GS), with Anscombe’s transform (PN,
GSAT), and with Fisz’s transform (PN, GSFT). In the last case,
six iterations were performed. Each row in Tables 1 and 2

shows the values of � that yields the lowest RMSE (the
corresponding values of %PE precede in italics) for the mask
mentioned in the first column. The last four columns give the
RMSEs and photometric errors for all masks, which corre-
spond to these parameter values. Figs. 13 and 14 show the
residual noise over 100 trials, that is, the average over m of
ûim � �im and Fðûim; �imÞ in the Gaussian and Poissonian
cases, respectively. These figures correspond to the lowest
RMSEs that are reached over the whole image. Fig. 15 shows
graphically the evolution of both the RMSE and photometric
error for values of � comprised in the interval [0, 1].

Looking at the results of Gaussian filtering in the case of
Poissonian noise (see Fig. 15 and Tables 1 and 2), we can see
that using a VST allows us to reach lower RMSE values.
Moreover, the iterative Gaussian filter that incorporates
Fisz’s transform systematically outperforms the combination
of the classical filter with data that have been preprocessed
with Anscombe’s transform. On the other hand, only the
classical filter ensures the invariance of the total photometry.
Filters relying on a VST lead to a photometric error of
approximately 2 percent on the whole image.

The results of LMSMN and LMSAN are collected in
Tables 1 and 2 ðM ¼ 100Þ. LMSAN is run with nonreflexive
neighborhoods ðN 0

i Þ. As in the preliminary examples, the
best results were achieved with the minimum as the
symmetrization function. For each filter, four cases are
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Fig. 12. Masks corresponding to plateaus, edges, and ramps in the

computation of RMSE and %PE; black and white corresponds to values

of �i equal to 0 and 1, respectively.

TABLE 1
Results with the Sharp Image Pattern in Fig. 11

The first column indicates the mask (whole image, plateaus, edges, and
ramps; see Fig. 12) for which the RMSE is minimized. The second and
third columns give the values of � and � at the minimum. The last four
columns show the photometric errors (%PE, in italics) and the RMSEs
that are measured in all four masks. Bold figures indicate the best results.



detailed: Gaussian noise, Poissonian noise without VST,
Poissonian noise with Anscombe’s transform, and Poisso-
nian noise with embedded Fisz’s transform. For all filters,
six iterations were performed. Each row in Tables 1 and 2
shows the values of � and � that yield the lowest RMSEs
(the corresponding values of %PE precede in italics) for the
mask mentioned in the first column. The last four columns
give the RMSEs and photometric errors for all masks, which
correspond to these parameter values. The residual noise
over 100 trials is shown in Figs. 13 and 14, when the RMSE
is minimized over the whole image.

LMSMN and LMSAN always provide better results than
Gaussian filtering. For the sharp image pattern (Table 1),
LMSMN outperforms LMSAN in almost all cases, except for
ramps corrupted by Poissonian noise. Applying LMSMN and
LMSAN without VST to Poissonian data leads to good but
suboptimal results; in that case, the photometric error remains
low for LMSMN, except for ramps. Looking at the values of �
and � that correspond to the lowest RMSEs, we can see that
optima for the various weighting masks are located far from
each other (0:83 � � � 3:85 and 4:90 � � � 9:09 for LMSMN).
The best trade-off for � eventually depends on the image
content in this case. If we use a VST, optima lie closer to each
other (0:85 � � � 2:88 and 0:94 � � � 1:32 for LMSMN with
Fisz’s transform), in particular for LMSAN (0:78 � � � 1:40
and 1:11 � � � 1:35 with Fisz’s transform). The type of the
VST does not really influence the location of the RMSE

optima, for all three filters. Notice that for plateaus, LMSMN
reaches the minimal RMSE with � � 2:8 and � � 0:7, whereas
LMSAN minimizes the RMSE with � � 1:4 and � � 1:3. This
means that LMSMN increases the width of the spatial kernel
while reducing that of the tonal kernel in order to recover
plateaus. By comparison, in the case of LMSAN, the spatial
width � is only slightly increased, and � is kept high. To
illustrate intuitively these two different behaviors, let us
consider the ith pixel in some plateau, not so far away from an
edge (the edge crosses N 0

i ). Thanks to the multiplicative
normalization, the effective weights of LMSMN of faraway
neighbors that lie inside the plateau can be scaled up; on the
other hand, contributions of neighbors that lie outside the
plateau remain negligible. This provides us with a good
denoising performance in the plateaus. As for LMSAN, the
effective weights do not involve any adaptive scaling,
increasing � to a large extent tends to increase Wii, in order
to compensate for the low contributions of pixels that lie
outside the plateau. Obviously, a high value ofWii decreases
the denoising efficiency of LMSAN.

For the blurred image pattern (Table 2), LMSMN and
LMSAN achieve comparable results. LMSMN takes the
advantage for plateaus, whereas LMSAN dominates in the
ramps. With a VST, LMSAN globally outperforms LMSMN
for all weightings, except for plateaus. In particular,
LMSAN performs better with Fisz’s transform than with
Anscombe’s. The photometric error follows a similar
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TABLE 2
Results with the Blurred Image Pattern in Fig. 11

The first column indicates the mask (whole image, plateaus, edges, and
ramps; see Fig. 12) for which the RMSE is minimized. The second and
third columns give the values of � and � at the minimum. The last four
columns show the photometric errors (%PE, in italics) and the RMSEs
that are measured in all four masks. Bold figures indicate the best results.

Fig. 13. Residual images for the sharp image pattern and for the
different filters, averaged over 100 trials. The first row illustrates the
case of Gaussian noise. The last three rows give the residues for
Poissonian noise, without VST, with Anscombe’s transform, and with
Fisz’s, respectively.



evolution and is lower with LMSAN than with LMSMN,
except for plateaus. With the blurred pattern, LMSAN thus
combines the lowest RMSEs with the invariance of the total
photometry; in addition, low photometric errors are also
observed in subsets of the image, except in plateaus. As was
the case with the sharp pattern, the optima of LMSAN lie
closer to each other than those of LMSMN. For LMSAN, we
have 0:59 � � � 1:15 and 0:91 � � � 1:17, compared to
0:59 � � � 1:82 and 0:51 � � � 1:52.

By comparison with LMSMN, the overall better perfor-
mance of LMSAN in difficult situations, that is, in intensity
ramps and near blurred edges, can be explained as follows: In
regions of the image that are not strictly piecewise constant,
the reflexive weightWii computed by LMSAN is higher than
that produced by LMSAN. Similarly, the weights of the
neighbors (Wij, j 2 N 0

i ) are smaller with LMSAN than
LMSMN. In nonconstant regions, this strategy of giving
more importance to the considered pixel and less to its
neighbor leads to a good trade-off: denoising is lower, but the
distortion of the underlying signal is weaker as well.

9 CONCLUSION

Classical edge-preserving filters such as local M-smoothers
and bilateral filters can be modified in order to ensure the
invariance of the total photometry. For this purpose, the

usual normalization that scales all filter coefficients can be
replaced with an additive normalization. In that case, the
normalization adjusts only the coefficient of the pixel to be
filtered, whereas the coefficient of neighboring pixels is left
unchanged. In this way, all coefficients of the weighted
average sum to one and the respective coefficients of two
neighboring pixels can easily be made symmetric. Experi-
ments show that preserving the total photometry with an
additive normalization leads to comparable performances in
terms of the RMSE.

In order to deal with Poissonian data, Anscombe’s VST
can be used. However, filtering the transformed data and
applying the inverse transform do not guarantee the
invariance of the total photometry, even if the filter involves
an additive normalization. We show how to overcome
this difficulty, namely, by incorporating another VST
(Fisz’s transform) directly in the filters. In this way, we
obtain versions of for example, Gaussian filtering, local
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Fig. 14. Residual images for the blurred image pattern and for the
different filters, averaged over 100 trials. The first row illustrates the
case of Gaussian noise. The last three rows give the residues for
Poissonian noise, without VST, with Anscombe’s transform, and with
Fisz’s, respectively.

Fig. 15. Results of Gaussian filtering (RMSE and %PE) for the sharp and
blurred image patterns (upper eight plots and lower eight plots,
respectively). The columns give the results for the whole image, the
plateaus, the edges, and the ramps in the image patterns. In each plot,
the error value is shown as a function of �, the width of the spatial
Gaussian kernel.



M-smoothers, and bilateral filtering that can denoise
Poissonian data without any preprocessing. Experiments
show that Gaussian filtering with Fisz’s transform outper-
forms classical Gaussian filtering, namely, without VST,
applied on either the raw data or data preprocessed with
Anscombe’s transform. A similar improvement is observed
for local M-smoothers, although the RMSE advantage of
Fisz’s transform over Anscombe’s is smaller in this case. On
the other hand, the combination of additive normalization
with the embedded Fisz’s transform allows the local M-
smoothers to preserve the total photometry, whereas this is
impossible with Anscombe’s.

The model behind edge-preserving filters like local M-
smoother makes them optimal for piecewise constant data.
Provided this condition is met, experiments show that the
usual multiplicative normalization allows local M-smooth-
ers to yield better results than the proposed additive
normalization. However, if the signal is slightly blurred,
as is often the case in reality, then the additive normal-
ization outperforms the multiplicative one. An intuitive
explanation can be sketched as follows: In neighborhoods
that encompass a blurred jump, the additive normalization
leads to lower filter coefficients than the multiplicative one.
Consequently, constant regions of the signal are denoised
almost as well as with the multiplicative normalization,
whereas the blurred jumps are filtered to a lesser extent.
This proves to be a good trade-off in this more difficult case.
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from the Université Catholique de Louvain
(UCL), Belgium, in 1999 and 2003, respectively.
He is currently a postdoctoral researcher of the
Belgian Fonds National de la Recherche Scien-
tifique. His current work aims at developing
specific image restoration techniques for posi-
tron emission tomography in the Center for

Molecular Imaging and Experimental Radiotherapy, Saint-Luc University
Hospital, Belgium. His research interests include machine learning
techniques such as nonlinear dimensionality reduction, independent
component analysis, cluster analysis, and vector quantization. He is a
member of the UCL Machine Learning Group.

Xavier Geets received the MD degree from the
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