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ABSTRACT 

In [I] a  regularized  iterative  algorithm  was  de- 
scribed  which  has  been  shown  to  be  very  suitable  for 
solving  the  ill-posed  image  restoration  problem.  By 
incorporating  deterministic  constraints  and  adapti- 
vity  this  very  general  algorithm  is  capable  of  achie- 
ving  both  noise  suppression  and  ringing  reduction 
in  the  restoration  process.  It  consumes,  however, 
considerable  computation  to  obtain  a  (visually)  sta- 
ble  solution  due  to  the  low  convergence  speed  of  the 
algorithm.  The  purpose of this  paper  is to investi- 
gate  the  possibilities  for  speeding  up  the  conver- 
gence  of  this  restoratiori  method. To this  end  we 
compare  the  classical  steepest  descent  algorithm 
(with  linear  convergence)  with a  conjugate  gradients 
based  method  (superlinear  convergence)  and  a  new 
Q-th  order  converging  algorithm.  The  latter  solution 
method  has  the  highest  convergence  rate,  but  is  re- 
stricted  in  its  application  to  space-invariant  image 
restoration  with  a  linear  constraint.  Although  the 
actual  convergence  speed  of  the  algorithms  involved 
generally  depends on the  image  data  to  be  restored, 
it  will  be  shown  that for real-life  images  the  con- 
strained  conjugate  gradients  algorithm  yields  a  con- 
siderable  convergence  speed  improvement. 

1. INTRODUCTION 

In  many  practical  situations  image  degradations 
may  be  modeled  by a linear  blur  and  an  additive 
noise  term  which  is  uncorrelated  with  the  signal. 
The  noisy  blurred  image  can  then  be  described  by  the 
following  algebraic  model: 

g = Df + n, (1) 

where  the  linear  distortion  operator D is  known  or 
can  be  satisfactory  identified.  The  original  and 
noisy  blurred  images  are  denoted  by  the  lexicogra- 
phically  ordered  vectors  f  and g, respectively.  The 
characteristics of the  noise  term n are  only  partial- 
ly  known  in  practice,  hence  the  exact  original  ima- 
ge cannot  be  computed  from  the  distorted  version. 
Image  restoration  concentrates  on  removing  the  degra- 
dations  caused  by  the  blur  and  the  noise to obtain 
an  improved  image f which  is  an  acceptable  approxi- 
mation to the  original  image.  Since  the  inverse 
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problem  formulated  in  eq. (1) is  ill-posed, the so- 
lution  method  has to  be  regularized  in  order  to ob- 
tain  physically  meaningful  s_olutions. To this  end  we 
require  the  restored  image  f  to  satisfy  the  follow- 
ing 3  conditions  in  which  adaptivity  and a  determi- 
nistic  constraint  are  introduced  to  achieve  both 
noise  suppression  and  ringing  reduction [l}, [2]: 

(i) I1g-D?l I =(g-Df)  R(g-D?) 6 E , 2 - t  2 
R 

where  R  is  a  diagonal  weight  matrix  which  locally 
regulates  the  restoration  process. 

where L represents a  high-pass  filter.  Equation  (3) 
imposes  a  smoothness  condition on the restored  image 
2 which  is  locally  regulated  by  the  weight  matrix S. 
(iii) The  restored  image f  satisfies  the  (possibly 
nonlinear)  constraint C, representing  certain  deter- 
ministic a  priori  information  about  the  original 
image  f.  The  nonexpansive  projection  onto  the  closed 
convex  set  described  by C is  denoted  by P. 

To  compute  a  solution 2 satisfying  the  conditions 
(i)-(iii),first  eqs. ( 2 )  and (3) are  combined  into 
a single  quadrature  formula 

where  the  regularization  parameter  has  the  fixed  va- 
lue u=(E/E)~. 

The  solution to the  image  restoration  problem  is 
now  given-by  the  vector  f  which  minimizes  the  func- 
tional  +(f)  subject to  the  deterministic  constraint 
C.  Because  this  minimization  problem  is  nonlinear 
and  space-variant,  an  iterative  solution  method  is 
used.  The  iterative  image  restoration  procedures  de- 
scribed so far,  however,  are  based on the  steepest 
descent  method [1 ] - [4 ] ,  and  turn  out  to  be  very  time 
consuming  due  to  their  low  convergence  speed. For 
this  reason  more  efficient  iterative  image  restora- 
tion  algorithms,  which  preserve  the  advantages  of  the 
iterative  approach  and  have  a  higher  convergence 
speed,  are  desirable. In 1-D  iterative  signal  pro- 
cessing [5]-[9] some  earlier  work  concerning  the  con- 
vergence  speed  of  iterative  procedures  has  been  re- 
ported  by  Marucci  et  al. [7], Prost  and  Goutte [ 8 ] ,  
and  Singh  et  al. [9] among  others. 

speeding up the  convergence  of  the  described  image 
restoration  method.  In  Section  2  we  briefly  review 

In  this  paper  we  investigate  possibilities  for 
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the  classical  steepest  descent  algorithm  as  was  pre- 
sented  in [1],[2]. Next, in  Section 3 the  method  of 
conjugate  gradients  is  considered,  and  extended  with 
a  projection  operator.  Basically,  the  methods  of 
steepest  descent  and  conjugate  gradients  have  a  li- 
near  convergence  rate.  In  Section 4 we  describe a 
new  iterative  algorithm  with a  Q-th  order  convergen- 
ce rate. The  convergence  performance  of  the  descri- 
bed  algorithms  will  be  illustrated  by  some  nume- 
rical  examples  in  Section 5. 

2. STEEPEST  DESCENT  METHOD 

In [1],[2] we  have  shown  that @ ( ? )  is  minimized 
subject  to  the  constraint C by  the-following  pro- 
cedure:  compute  the  gradient  of_@(f)  with  respect 
to f, and  define  the  mapping  G(f) 

Then  the  fixed  point  iteration 

converges  monotonically to  the  required  solution, 
provided  that G is a contraction  mapping, or 

where I I .  [ I is  the  regular  Euclidean  norm.  The  cor- 
rections  made  by G to  an  iteration  fk  are  in  the  di- 
rection  of  the  negative  gradient,  hence  eq. (6) re- 
presents a  steepest  descent  type  of  algorithm,  ex- 
tended  with a projection  operator.  Since  the  conver- 
gence  speed  of  steepest  descent  algorithms  is  con- 
trolled  by  the  parameter P, it  can  be  optimized  by 
selecting  an  appropriate 8 in  every  iteration  step. 
Substituting  eq. (5) into (6), and  introducing a 
variable B yields 

rk = -$  V@(? ) = D R(g-D?  )-aL'SLf t 
k k k 

t -  
(ea) 

where  rk  is  called  the  direction  vector  for  the k-th 
iteration step, and  where Bk is  chosen  to  minimize 
Q(fk+l). For  a linear  projection  operator  an  expli- 
cit  expression  for  the  optimal Bk can  be  derived: 

For  a  nonlinear  projection  operator  such  an  expli- 
cit  relation  cannot  be  obtained. However, as a  con- 
sequence  of  the  convexity  of  the  set  described  by 
the  constraint  C-and  the  convexity  of  the  set- 
K = {h[@(h) S @(fk)},  it can  be  shown  that  @(fkcl) 
is a  convex  function  of pk. A (linear) search  method, 
such as  repeated  quadratic  interpolation  or  the  gol- 
den-section  rule,  can  therefore  successfuliy  be 
used  to  obtain  the  optimal Pk which  minimizes 
@(fK+l)  [I11 

Although  the  projection  operator  incorporated  in 
the  algorithm  may  increase  the  convergence  rate  (for 
example  when C is a very  tight  constraint) [ 8 ] ,  the 
steepest  descent  method  has  basically a linear  con- 
vergence rate, and  is  known  to  converge  slowly  in 
practice.  The  attractiveness of rhe  algorithm is, 

however, its  straightforwardness,  simple  implementa- 
tion  which  is  independent  of  the  projection  opera- 
tor  to  be  used  and  its  mild  convergence  conditions. 

3 .  CONJUGATE GRADIENTS  METHOD 

Motivated  by  the  desire  to  accelerate  the  method 
of  steepest  descent,  the  concept  of  conjugate  di- 
rections  has  been  introduced  successfully  in  optimi- 
zation  theory [11]. Conjugate  direction  methods, 
which  were  invented  for  purely  quadratic  problems, 
can  be  viewed  as a  special  orthogonal  expansion  of 
the  solution  of  the  minimization  problem.  We  will 
focus  on  the  most  important  conjugate  direction  me- 
thod, namely  the  method  of  the  conjugate  gradients. 
One of the  advantages  of  this  method  is  the  conver- 
gence  in a finite  number  of  iterations  when  exact 
arithmetic is assumed  (superlinear  convergence).For 
non-exact  arithmetic  the  conjugate  gradients  method 
does  not  converge  in a  finite  number  of  iterations 
because  the  conjugacy  will  no  longer  hold,  but  the 
method  has  still a  considerably  increased  conver- 
gence  speed  compared  with  the  steepest  descent me- 
thod. 

Since  the  use  of  nonlinear  constraints  does  not 
directly  fit  into  conjugate  direction  algorithms, 
several  ideas  have  been  proposed  for  extending  these 
methods  with  nonlinear  constraints  (for  example  the 
gradient  projection  method [ll]). The  major  disad- 
vantages  of  these  extensions  comprise  the  conputa- 
tional  complexity,  the  strong  dependence  of  the  im- 
plementation on the  constraints  to  be  used  and  the 
fact  that  solutions  of  the  truncated  iterative  pro- 
cess  (as  is  always  done in  practice)  do  not  always 
satisfy  the  constraint(s).  We  therefore  apply  the 
more  direct  extension as suggested  by  Marucci  et  al. 
in [ 7 ]  to project  the  iterates  themselves  after 
every  iteration  step. Hence,  we  obtain  a  flexible 
algorithm  whose  complexity  is  comparable  to  that  of 
the  method  of  steepest  descent.  The  extended  conju- 
gate  gradients  algorithm  is  defined  as 

r = - j V @ ( ?  )=D R(g-D? )-aL S Lf t -  t 
k  k k k (loa) 

2 
pk = 'k (I/rk(I /llrk-~ll )'pk-l 

2 (lob) 

- ,. 
fkil'P[fk + P, Pkl.  (10c) 

Here  pk is called  the  direction  vector,  which  is 
based  on  the  current  steepest  descent  vector  rk  and 
the  preceding  direction  vector pk-I. Eq. (10) repre- 
sents a  true  conjugate  gradients  algorithm  only  when 
the  projection  operator  is  omitted.  Clearly,  by  in- 
corporating  the  projection  operator  the  concept of 
the  orthogonal  solution  decomposition  will  no  longer 
hold.  Fortunately,  in  the  practice of image  resrora- 
tion  the  modifications  made  to  an  iterate  by  the Fro- 
jection  operator  are  relatively  small,  which  holds 
particularly  for  the  restoration of real-life  ima- 
ges. Hence, it  can  be  expected  that  as  long  as  the 
constraint  C  is  not  too  tight,  the  direction  vector 
of  the  previous  iteration  step  will  still  be  useful 
in  determining  the  currect  direction  vector. 

The  optimal P k  value for  the  extended  conjugate 
gradients  algorithm  is  obtained  by  minimizing  @(fk+l) 
with  respect to pk, yielding 

(PPkCrk) 8 =  (11) 
k 2 I lDPPkj  IR  ILppkl 1s 

2 
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Linear  search  methods  can  be  employed  for  nonlinear 
projection  operators  since  @(fk+l)  is  again a  con- 
vex  function of Pk.  We  cannot use,  however,  a  fixed 
pk value for every iterationstep, since a  general 
upperbound  to pk, which  ensures  the  convergence  of 
the  iterations,  does  not  exist. 

4. A  Q-th ORDER  CONVERGING  ALGORITHM 

Although  the  method of the  (extended)  conjugate 
gradients  has  a  considerably  higher  convergence 
speed  than  the  steepest  descent  method,  both  techni- 
ques  have  basically  a  linear  convergence  rate.  In 
[ 9 ]  Singh  et  al.  proposed  an  iterative  restoration 
technique  with a quadratic  convergence  rate,  which 
we  generalize  and  extend to  a  regularized  iterative 
image  restoration  algorithm  with  a Q-th order  con- 
vergence  rate  (Q=2,3, ...) in  this  section.  We  remark 
that  recently  it  was  brought to our  attention  that 
an  iterative  deconvolution  algorithm  based on the 
same  generalization  has  been  independently  deve- 
loped  by  Morris  et  al. [lo]. 

in  eq. ( 4 ) .  The  solution f of  this  unconstrained 
problem can  be  formulated  as 

Consider  the  minimization of the  function O ( ? )  

(D  RD + a L  SL) ? = DtRg, t  t 
(12) 

which  we  rewrite  as 

? = (I - Bo) p DtRg , -1 
( 1 3 )  

where p i 0  and  the  operator Bo is  defined  by 

Bo = I - @ ( D  RD + a L SL). t  t 
( 1 4 )  

Since  the  inversion  of  the  matrix (I-Bo) may  be 
(neariy)  impossible  or  time  consuming,  we  approxi- 
mate  f  in eq. (13) by a Taylor  expansion  with  Qo 
terms (Q, 2 2) : 

By  combining  eqs. (13) and (15) to  eliminate  the 
term  pDtRg,  and  by  defining  B1 = Bgo  we  arrive  at 

? = ( I - B )  -1 - 1 fl' (16) 

which  is of the  same form as  eq. (13).  Hence we  can 
repeat  the  above  process  infinitely  to  obtain  the 
following Q-th  order  converging  algorithm 

Q,- 1 

Here Qk determines  the  degree  of  convergence  at ite- 
ration step k. To ensure  the  convergence  of  the ite- 
rations  to  the  solution of eq. (13), Bk  has  to  be a 
contraction  mapping,  yielding  the  same  conditions 
for p as  were  obtained  in  the  steepest  descent  algo- 
rithm  (eq.  (7)).  The  optimzzation  of p in  every  ite- 
ration  step  to  minimize  @(fk+l)  results  in  solvlng 
an  unattractive  high-order  polynomial  equation, 
hence  we  prefer to use  a  fixed  value  of P .  To  inter- 
pret  the  iterative  scheme  in  eq. (IT), the  follow- 

ing  expression  for  the  (k+l)-st  iterate  of  eq. (17) 
is  derived (Qk=Q, for all k) 

By  comparing  this  result  with  the  corresponding ex- 
pression  obtained  from  the  unconstrained  steepest 
descent  algorithm  with  a  fixed B value 

r.- I i=O 

we  observe  that  the  proposed  iterative  scheme  eq. 
(17) and  the  unconstrained  steepest  descent  method 
compute  exactly the  same  solution.  However,  the 
steepest  descent  algorithm  requires Qk+l-l  itera- 
tions to  obtain  the  same  solution  which  the  Q-th  or- 
der  converging  algorithm  reaches  after  only k+l ite- 
rations.  The  extra  expense  for  the  enormous  reduc- 
tion  in  the  required  number of iterations  are  more 
complicated  computations  in  a  single  iteration  step 
and  extra  memory  requirements  to  store Bk. The  effi- 
ciency  of  the  proposed  algorithm  therefore  depends 
on  the  choice  of  the  convergence rate  parameter  Q 
and  the  way  by  which  the  algorithm has  been  imple- 
mented. 

The  most  simple  and  direct  method  for  incorpora- 
ting  the  projection  operator P in  the  Q-th  order  con- 
verging  algorithm  is  to  project  the  iterates  as  was 
proposed  in [ 9 ]  

?k+l = P [ C B; Fk] 
j =O 

This  extension  will,  however,  inevitably  lead  to  di- 
verging  iterations  and  erroneous  results  since  the 
unaltered  iterations  on  the  matrix  Bk  in  eq. (17b) 
would  progress  independently of the  projection ope- 
rator.  Consequently,  the  incorporation  of  the  pro- 
jection  operator  in  eq. (20)  must  be  followed  by a 
modification  of  eq. (17b)  as  well. By  observing  that 
in  the k-th iteration  step the  following  relation 
holds  (cf.  eq.  (16)) 

and  by  using eq. ( 2 0 ) ,  some  mathematical  manipula- 
tions  yield  the  following  relation  between  two suc- 
cessive  Bk  matrices 

- 
P ( I  - B ) f (I - Bk+l)  f. Qk - 

k ( 2 2 )  

For  a linear  projection  operator  eq. (22)  reduces  to 

Bk+l = P B> + ( I - P ) ,  (23) 

which  includes  eq. (17b) as a  special  case.  Eq.(22) 
cannot  be  solved  for  a  nonlinear  projection  opera- 
tor,  therefore  the  extension  in  eq. (20) holds 
merely  for  linear  projections. 

generally  be  used  only  for  space-invariant  image 
restoration,  since  space-variant  operators  (as  in- 
troduced  by  the R and S weight  matrices)  would  re- 
quire  the  storage  of  the  (sparse)  N2xM2  matrix Bk 
for  NxM  images.  In 1-D  signal  processing  the  matrix 
Bk is  only of the  size N2, which  disposes  of  the 

The  proposed  Q-th  order  converging  algorithm  can 
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b. Steepest Descent  (optrmized 0) 
a.   Steepest  Descent (5 = 1.9) 

c .  Conjugate Gradient (0 = 1.9) 
d.  Conjugate Gradient  (optimized 6) 

Q - t h  Order  Converging  Algorithm: 
e .  Q = 2 , 0 =-1.9 

4. Q = 4 , 0 = 1.9 
f .  Q = 3 , 0 = 1.9 

h .  Q = 10, 0 = 1.9 

1.4 

0.7 . 

0 .o # i t e r a t i o n s  

0 10 20 30 40 50 - 
Fig .  1. Convergence  behavior of @(fk )   (uncons t r a ined ) .  

Functional 

W f k )  3.2 

b. Steepest Descent  (optimized 0) 
a.   Steepest  Descent @ = 1.9) 

C .  Con~uqate Gradient (0 = 1.9) 
d.  Conlugate Gradient  (optimized 0) 

2 .4  

1 .G 

iverging  i terat ions 

0 . 8  

0.0 
0 10 20 30  40 50 

1 

Fig .  2 .  Convergence  behavior of @ ( f k )   ( c o n s t r a i n e d )  

above r e s t r i c t i o n .  

5 .  EXPERIMENTAL RESULTS 

A s y n t h e t i c  "G"-image was b lu r red   w i th  a p i l l b o x  
defocusing  model  (squared  radius = 5 ) ,  and  uncorre- 
l a t e d  random noise  was added  with SNR =_30 dB. I n  
f i g u r e  1 the  convergence  behavior of @ ( f k )  !s shown 
for   the   uncons t ra ined   s teepes t   descent ,   con;ugate  
g r a d i e n t s  and t h e  Q-th order  converging  algorithm 
(a=O.O1, L=Laplace  operator ,   R=S=Ident i ty) .   Clear-  
l y ,  t h e  Q-th  order   converging  a lgori thm  has   the 
best   convergence  performance;   the  opt imal   value(s)  
f o r  Q cons ider ing   the   to ta l   e lapsed   t ime  can   be  ob- 
t a i n e d  from f i g u r e   3 .   I n   f i g u r e  2 the  performance 
of t h e   s t e e p e s t   d e s c e n t  and  conjugate   gradients  me- 
thod are compared when a v e r y   t i g h t   c o n s t r a i n t  i s  
used,  namely  bounding  the  upper  and  lower  intensity 
va lues .  Note t h a t   i n   t h i s   c a s e   t h e  Q-th order  con- 
verging  a lgori thm  cannot   be  appl ied  (see  sect ion 4 ) .  

I n   t he   nex t  example  an image of a r e a l - l i f e   s c e n e  
('lcameraman") was blurred  with  motion  blur   over  5 
p ixe ls   and   no ise  was added  with SNR=30 dB. We used 
the   adapt ive   regular ized   a lgor i thm  (us ing   the  R and 
S matrices) to   ach ieve   bo th   no ise   suppress ion   and  
r ing ing   r educ t ion   i n   t h i s   r ea l - i i f e   s cene .   In   f i gu re  
4 t h e  SNR improvements  versus  the  elapsed  time, 
which i s  t h e  most   impor tan t   in   p rac t ice ,  are shown 
fo r   bo th   t he   s t eepes t   descen t  and  conjugate  gra- 
d i en t s   a lgo r i thm  wi th  and  without  an  intensity  con- 
s t r a i n t .   F o r   t h e  image under   cons idera t ion   th i s  
c o n s t r a i n t  i s  moderately  tight.  Undoubtly  the  con- 
vergence  performance  of  the  (extended)  conjugate 

2.5 

2 . 2  

1.9 

l . G  

1.3 

total  elagsed  time 
to  reach the l imiting 
solution. 

0.6 

0 .3  

0.0 
2 i o  20 30 40 

Fig.  3. Order Q of the algori thm i n  eq.(17)   versus  
the  required  convergence  t ime. 

___---- 
12.0 d 

10.0 

8.0 
nconstrained: 

a.  Steepest  Descent (P = 0.4) 
b. Steepest  Descent  (optmnized 0) 
c.  Con~ugate  Gradlent  (optimized 0) 

6.0  Constralned: 
d. Steepest  Descent  (optimized 0 )  
e.  Conjugate  Gradient  (optinzed 0) 

4.0 
elapsed  time  (min) 

0 1 2 3 4 5 6 7 8 9 1 0  

F i a .  4 .  SNR improvements   versus   e lapsed  i terat ion 
t ime  for  a r e a l - l i f e   s c e n e .  

g rad ien ts   a lgor i thm i s  s u p e r i o r   t o   t h e   s t e e p e s t   d e s -  
cent   a lgori thm i n  both  the  constrained  and uncon- 
s t r a i n e d  case. 
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