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Introduction
In the 1970s Roger Penrose and John Conway presented the mathematical 

world with two beautiful and intriguing developments - Penrose with his sets of 
tiles that tile the plane non-periodically providing us a class of aperiodic tilings
known as Penrose tilings [5], and Conway with his Game of Life, a cellular 
automaton simulated on a lattice of square cells with extremely simple rules 
governing the future state of the cells that can lead to extremely complex 
‘organisms’ being born out of relatively simple starting configurations. [4] 

We have investigated the results of playing the Game of Life on a Penrose 
tiling, and present findings from our simulations.

The Game of Life
Conway's Game of Life is played on an infinite grid of squares, with each 

square being known as a cell. The fate of a cell in the next generation of the 
simulation depends on the states of its immediate neighbors as follows: [4]
1. If a cell is alive and has 2 or 3 live neighbors, it survives to the next 

generation. Otherwise, it dies.
2. If a cell is dead and has exactly 3 live neighbors, it becomes alive in the next 

generation.
From the application of these rules we observe many figures or organisms, 

which can be classified into a few broad categories. [4] (images from [7])
• A still life is an organism in which all cells survive to the next generation and 

is thus in a state of equilibrium - no births, no deaths. 

Figure 1: Still lifes, from left to right – block, beehive, aircraft carrier
• An oscillator is an organism that starts at some initial state and after a 

certain number of generations (known as its period) returns to that state in 
the same position.

Figure 2: An oscillator called a blinker
• A spaceship is an organism that translates across the plane by a certain 

vector in a specific number of generations.

Figure 3: Phases of the Lightweight Spaceship (LWSS)

Penrose Tilings

We use what is referred to as the P1 protoset, which consists of six tiles 
– a star, boat, rhombus, and three regular pentagons (which differ in how 
they are substituted). 

We use the substitution or inflate-and-subdivide method to generate 
this tiling. This involves taking a tile, enlarging it by a certain factor (which 

in our case happens to be the golden ratio 𝜙 =
ଵା ହ

ଶ
 ), and replace this 

enlarged tile by a certain arrangement of tiles with the same size as the 
original tile, and which collectively roughly imitate its shape. [6] (see Fig. 
4) Applying this process repetitively n times we are able to produce an 
arbitrarily large patch which we call the n th level substitution patch.

Findings

Figure 5: Still lifes observed

Figure 6: A period 2 oscillator

Figure 7: Another period 2 oscillator

Figure 8: A period 6 oscillator
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Implementation
First, we generate the tiling and data regarding the tiles and their neighbors which we then use to apply the Game of Life 

rules on the tiles. We choose to use the Julia programming language for this purpose due to its easy learning curve and 
performance benefits, which helps greatly due to the large numbers of tiles we would be taking into consideration.

We begin by defining a Tile struct which contains basic properties of a tile such as its type, its “origin” which is the first 
vertex of the tile to be drawn and from which all other vertices are calculated, the angle between its line of symmetry passing 
through the origin and the horizontal axis, and a dictionary for storing its neighbors.

We observe that a tile can be formed using just 3 pieces of information - the type of tile, its origin and its angle with the 
horizontal. Let us suppose we wish to draw a rhombus whose first vertex is at the origin of the plane and makes and angle of 0 
with the horizontal. Then going anti-clockwise, we know that the vectors from the tile's origin to the other points make angles 
of

గ

ଵ଴
, 0 and −

గ

ଵ଴
, and by calculating the magnitudes of these vectors, we can determine the coordinates for the other vertices. 

These coordinates can thus be generated on-the-fly later when we plot these tiles for a visual representation of them. After 
generating these coordinates, we define functions that carry out the substitution rules according to the tile’s type. 

Next, we define methods to determine the neighbors of a given tile in a patch. We do this as 
follows.

This process clearly take a lot of computation time due to the large number of comparisons between points taking place. 
Thus, we compile the neighbor information of all tiles in a given patch into a dictionary whose keys are the indices of the tiles 
within the patch, and the values are their respective neighbor dictionaries. We then proceed to store this dictionary into a 
JLD2 file which is a file format designed for saving and loading Julia data structures. 

Since we have the number of neighbors for each tile in the patch, we can implement the Game of Life rules for the same. 
Firstly, we pass a list of live indices to initialize our simulation. Next, we extract the lists of neighbors for each tile and check if 
any of those neighbors' indices are alive. Then, according to the number of live neighbors the tile is determined to have, we
decide whether or not to add the tile's index to the list of live indices for the next generation which is returned by our function. 
We can then repeat this process for as many generations as we like, passing in the output of the previous generation as an 
input for the next one.

To visualize the tiling and the Game of Life being played on it, we utilized the Luxor package. After getting the tiles in a 
patch we proceed to compute the vertices for each of them. We then use Luxor's poly method to join those vertices to form a 
closed polygon. When playing the Game of Life, we add a black, filled polygon in the same manner as we did for the tiling at the
coordinates corresponding to the tile at the live index. We generate an SVG image for every generation using Luxor's @svg
macro and animate and store it to a GIF file using the @animate macro.

We limited our testing space to six patches pulled from the 5th substitution patch of a type-1 pentagon tile, centered 
roughly around the center of the patch. We did so in an effort to get a hold of a reasonably large enough patch for our 
simulations while minimizing the effects of considering tiles on the boundary of the patch, which lead to inaccurate results 
due to having an inaccurate number of live neighbors counted. After running the Game of Life simulation multiple times on 
these patches we have observed numerous still lifes and oscillators. The smallest still lifes and oscillators found comprised of 
3 tiles each. Oscillator periods vary between 2 and 6. We have presented some of the organisms we have identified here.

1.Choose a tile 𝑇 and compute the 
coordinates of its vertices. Then, pick 
another tile 𝑇′ and compute its vertices' 
coordinates as well.

2.We compare every vertex of 𝑇 in anti-
clockwise order to the vertices of 𝑇′. If 
any vertex of 𝑇 is also a vertex of 𝑇′, then 
𝑇′ is a neighbor of 𝑇. If two such vertices 
exist, that must mean 𝑇 and 𝑇′ share an 
edge, and we say that 𝑇′ is an edge 
neighbor of 𝑇. Otherwise, 𝑇′ is said to be 
a corner neighbor of 𝑇.

Figure 4: Substitution rules for the tiles of the P1/Pentagon Boat Star prototile set


