The Game of Life on Penrose Tilings: Robinson Triangle

Seung Hyeon Mandy Hong

July 18, 2022

1 Introduction

John Horton Conway’s Game of Life gained much attention in different areas because of the
concept that it generates complexity from simplicity.[5] If we are given three simple rules:
survival, death, and birth, and initial configuration, we can play Game of Life. Compared
to the simple setting of this game, what we get is more complex. Generally, Game of Life is
played on the regular square tiling, a periodic tiling. However, we implement Game of Life
on an aperiodic tiling, specifically on the Robinson Triangle tiling, a variation of the Penrose
tiling. Sections 2 and 3 define rules, terms, and methods related to Game of Life and
Penrose tiling. Section 4 discusses the algorithms we use to play Game of Life on Robinson
Triangle tiling. We use an emerging programming language called Julia. Julia is designed
for high-performance and enables us to use features such as animated visualization or
numerical and scientific computing.[2] Finally, in Section 5, we show patterns, still life and
oscillator, discovered when playing Game of Life on Robinson Triangle tiling.

2 Game of Life

Conway’s Game of Life (also called life) resembles a society of living organisms because it
can be explained by the rise, fall, and alterations. Initially, Conway used a large checker-
board (assumed to be an infinite plane) and flat square counters of two colors to be placed
on the checkerboard. The checkerboard is, in fact, a regular square tiling and we call each
tile in the tiling a cell. To play Game of Life, we start with a simple configuration of
live cells on the tiling and observe how it changes as we apply Conway’s genetic laws.[3]
A simple arrangement of live cells needs to meet three criteria. First, there should be no
initial pattern that the population can grow without limit. Second, there should be simple
initial patterns that do grow without limit. Lastly, there should be simple initial patterns
that grow and change before ending by fading away, reaching stable figures, or oscillating
by repeating several periods. Meeting these criteria makes the population’s behavior un-
predictable. After setting the initial stage of this game, we apply genetic laws for births,
deaths, and survivals to cells. The rules are the following[3]:

Definition 2.1. Genetic laws apply three rules: survival, death, and birth on counters.

1. Survival: Every cell with two or three live neighbors (other cells that share its edge)
survives to the next generation.

2. Death: Each counter with four or more live neighbors or one or none die.
3. Birth: A dead cell with three adjacent live neighbors is alive at the next generation.

Births and deaths co-occur, constituting a single generation or move. Using the genetic
laws to create subsequent generations, we can find the population undergoing changes:
Society could vanish, reach a stable figure, or oscillate forever. There are several significant
patterns people are interested in finding when playing Game of Life. Our primary interest
is to find an oscillator, a pattern that repeats a finite number of configurations and a still
life, a pattern that reaches a stable state without changing from generation to generation. [3]

3 Penrose Tiling

A tiling can either be periodic or nonperiodic.[4].

Definition 3.1. A tiling of the plane R? with protoset P is a collection of T of closed sets
in the plane, called tiles and a finite collection P of closed sets in the plane, each called a
prototile, such that the following hold [IJ:

1. Each prototile is topologically equivalent to a disk.
2. Each tile is congruent to a prototile.

3. R? =Upes T (T is a covering.)

4. int(T;) (int(T;) = 0 for all i # j (¥ is a packing.)

Definition 3.2. A periodic tiling is one on which you can outline a region that tiles the
plane by translation, that is, by shifting the position of the region without rotating or
reflecting it. A nonperiodic tiling is not periodic.

The checkerboard that Conway used to play Game of Life is a periodic tiling because
we can outline a square region that tiles the plane by shifting the position of that region
without rotating or reflecting it. We investigate how Game of Life will proceed if we
change underlying square tiling (periodic tiling) to Robinson Triangle tiling (aperiodic
tiling). Among various tiles that tile aperiodically, one of the most well-known tiles is
Penrose tiles[4], discovered by British mathematical physicist Roger Penrose.

Definition 3.3. The Penrose tiles are sets of tiles with two different shapes that tile only
nonperiodically. The shapes of a pair of Penrose tiles that force nonperiodcity can vary.

Using sets of Penrose tiles as prototiles, it is possible to get different Penrose tilings.
The most popular Penrose tilings are Pentagonal Penrose tiling, kite and dart tiling, and
Penrose Rohmb tiling (Figure 1).

"'..".""" @ PVa\VaVd \\Wa \
F AR IRT AN V7 N4y 7L
S VIX o L YA AL

R ATAA SR A
AP NMay. . viNav,
POV LV

Figure 1: (From left to right) Pentagonal Penrose tiling[7], kite and dart tiling[6], Penrose
Rhomb tiling[8], and Robinson Triangle tiling[9].

We are particularly interested in Robinson Triangle tiling (the last figure in Figure 1),
the variation of Penrose Rohmb tiling suggested by the American mathematician Raphael
M. Robinson. If we cut two Penrose Rhombs into triangles, we get four prototiles of the

Robinson Triangle tiling (Figure 2).

Figure 2: Dividing Two Penrose Rhombs into triangles. Four triangles are prototiles of the
Robinson Triangle tiling.

The Robinson Triangle tiling is created using a substitution rule, a method to generate
aperiodic tiling.[I0] Suppose we are given a finite set of building blocks 71,75 - - - T}y, (the
prototiles), an expanding linear map) (with inflation factor |@Q|), and a rule, how to
dissect each scaled tile QT; into copies of the original prototiles 11,75, - - - T,,.[10] Then,

using the substitution method (inflation and subdivision), we first inflate each prototile
by the inflation factor and subdivide each inflated prototile into copies of the original
prototiles. For the Robinson Triangle tiling, we use the inflation factor of ¢ = HT\/g which
is the golden ratio to inflate each prototile. Then, we subdivide each tile into three or two
tiles depending on the tile type (Figure 3). By continued inflation and subdivision, we can
generate a tiling of the plane.[I]

\

' -
v w

/

\

Figure 3: Substitution rule for prototiles in Robinson Triangle tiling.

4 Game of Life on Robinson Triangle Tiling

In order to play Game of Life on Robinson Triangle tiling, we created several functions we
explain in each subsections.

4.1 Getting Functions to Generate Coordinates and Graphic of Four
Prototiles

To plot the Robinson Triangle tiling, we first need to find the coordinates of four prototiles.
Using information about the angles and lengths of four tiles, we first find three coordinates
of the two wider triangles which are shown with labels in Figure 4. Here, we calculate
a = cos(%) - ¢ and h = sin(%) - ¢ using trigonometry. Next, we find three coordinates
of two narrower triangles shown with labels in Figure 4. Here, we calculate a = % and
h = sin(27) - ¢ using trigonometry.

Using three coordinates of each triangle, we create four functions wider_triangle_up,
wider_triangle down, narrower_triangle_up, and narrower_triangle down. Four func-
tions use same parameter s which is the size/side length of each prototile. Four func-
tions plot a size s polygon, filled with colors, using three coordinates we have. Sim-
ilarly, we get four functions wider triangle up_stroke, wider_triangle down _stroke,
narrower_triangle up_stroke, and narrower_triangle down_stroke which plot stoke
of each polygon. These functions are modified version of four functions mentioned above

(0,0

/10 =

0,0

(-a,)@ @h) (ah) AW @ h)

Figure 4: Calculating three coordinates of the Robinson Triangle.

that draw polygons. Using the same parameter s four functions plot a size s polygon using
three coordinates of triangles. However, since we are not filling each polygon with color but
getting the stroke of the polygon, we need to add one more coordinate (the first coordinate
we initially started drawing the polygon) to close the stroke. We also create four functions
w_triangle_ up_coordinate, w_triangle_down_coordinate, n_triangle_up_coordinate,
and n_triangle down_coordinate. Four functions also use same parameter s and return
coordinates of each triangle as a list when the size of a tile is s.

If triangles are rotated or translated, we need to update coordinates. We create two
functions new_coordinate_r and new_coordinate_t to update coordinates. For the first
function new_coordinate r, we get an updated coordinate when list of coordinates (pL)
are rotated by the given angle, orientation. Starting by creating an empty vector to store
updated coordinates, we go over all points in the list of coordinates given to calculate new
coordinates. When we say original coordinate is (x,y), we can update this using the fact
that new x coordinate can be calculated by x cos(orientation) — ysin(orientation) and
new y coordinate can be calculated by xsin(orientation) + ycos(orientation). After
calculating new coordinate, we add that point to the empty vector we initially created.
For the second function new_coordinate_t, we get an updated coordinate when the origin
in the list of coordinates given (pointL) is translated to the new location (translate).
Starting by creating an empty vector to store updated coordinates, we go over all points
in the list of coordinates given and calculate new coordinates by adding the new location
point (translate). After calculating new coordinate, we add that point to the empty
vector we initially created. Both functions return list of updated coordinates.

4.2 Generating Robinson Triangle Tiling Using Substitution Method

For substitution, we create two functions, substitution_robinson _triangle list and
plot_Robinson Triangle png which use functions mentioned above. The first function
produces a level-n substitution when given three parameters: upper_level_coordinatesL,
nstep, size. The first parameter, upper_level _coordinatesL, is a list of vectors. Each
vector has tile types, the origin of a tile, and the orientation of a tile. Set of vectors

with three elements compose the initial configuration of tiling, which is also a level-0
substitution. Two other parameters, nstep is the level of substitution we want, and size
is the side length of each tile. As an output, we get a list of vectors with tile type, origin,
and orientation after n substitution, which is information of all tiles after substitution.

We repeat same process for nstep times. First, we define new size by multiplying size
by ¢*~! where i refers to current step. Then we pass a list of vectors given to a new variable
(initial) and create an empty vector to store information of all tiles after substitution
(v). Going over all vectors in the list given, we inflate the given tile and subdivide it into
three or two tiles depending on the tile type. If the tile type of the given list is a wider
upward triangle, we first inflate the tile by ¢ and get new coordinates. Then we find three
locations to place three triangles when subdividing inflated tile which are new_p1, new_p2,
and new_p3. Using the inflated tile’s coordinate, we get three new origins and add them
to the coordinate list of the inflated tile. Then we update all six coordinates after rotation
and translation for the inflated wider upward triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated
coordinate list and rotated by the angle of 47/5, considering the orientation of the updated
inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that
to 47 /5 and consider this added angle as the orientation of the first wider triangle. The
second narrower triangle is at the fifth element of the updated coordinate list and rotated
by the angle of 7/5 considering the orientation of the updated inflated triangle is 0. If the
tile we are subdividing is rotated by some angle, we add that to 7/5 and consider this added
angle as the orientation of the second narrower triangle. The third wider triangle is at the
sixth element of the updated coordinate list and rotated by the angle of 7 considering the
orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated
by some angle, we add that to m and consider this added angle as the orientation of the
third wider triangle. Then we store the tile type, position, and orientation of three tiles as
a vector and append three vectors to v.

If the tile type of the given list is a wider, downward triangle, we first inflate the tile
by ¢ and get new coordinates. Then we find three locations to place three triangles when
subdividing inflated tile which are new_pl1, new_p2, and new_p3. Using the inflated tile’s
coordinate, we get three new origins and add them to the coordinate list of inflated tile.
Then we update all six coordinates after rotation and translation for the inflated wider
triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated
coordinate list and rotated by the angle of —47/5, considering the orientation of the up-
dated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add
that to —4m /5 and consider this added angle as the orientation of the first wider triangle.
The second narrower triangle is at the fifth element of the updated coordinate list and
rotated by the angle of —m/5 considering the orientation of the updated inflated triangle
is 0. If the tile we are subdividing is rotated by some angle, we add that to —7/5 and
consider this added angle as the orientation of the second narrower triangle. The third

wider triangle is at the sixth element of the updated coordinate list and rotated by the
angle of m considering the orientation of the updated inflated triangle is 0. If the tile we
are subdividing is rotated by some angle, we add that to m and consider this added angle
as the orientation of the third wider triangle. Then we store the tile type, position, and
orientation of three tiles as a vector and append three vectors to v.

If the tile type of the given list is a narrower upward triangle, we first inflate the tile
by ¢ and get new coordinates. Then we find two locations to place two triangles when
subdividing the inflated tile. The second location is already in the coordinate list, and we
only need to get one new location which is new_p1. Using the inflated tile’s coordinate, we
get two new origins and add new_p1 to the coordinate list of inflated tile. Then we update
all four coordinates after rotation and translation for the inflated narrower triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated
coordinate list and rotated by the angle of 37 /5 considering the orientation of the updated
inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that
to 37/5 and consider this added angle as the orientation of the first wider triangle. The
second narrower triangle is at the third element of the updated coordinate list and rotated
by the angle of —37/5 considering the orientation of the updated inflated triangle is 0. If
the tile we are subdividing is rotated by some angle, we add that to —37/5 and consider
this added angle as the orientation of the second narrower triangle. Then we store the tile
type, position, and orientation of two tiles as a vector and append two vectors to v.

If the tile type of the given list is a narrower, downward triangle, we first inflate the
tile by ¢ and get new coordinates. Then we find two locations to place two triangles when
subdividing the inflated tile. The second location is already in the coordinate list, and we
only need to get one new location which is new_pl. Using the inflated tile’s coordinate,
we got two new origins and added new_p1 to the coordinate list of inflated tile. Then we
update all four coordinates after rotation and translation for the inflated narrower triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated
coordinate list and rotated by the angle of —37 /5 considering the orientation of the updated
inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that
to —37/5 and consider this added angle as the orientation of the first wider triangle. The
second narrower triangle is at the third element of the updated coordinate list and rotated
by the angle of 37 /5 considering the orientation of the updated inflated triangle is 0. If
the tile we are subdividing is rotated by some angle, we add that to 3w /5 and consider
this added angle as the orientation of the second narrower triangle. Then we store the tile
type, position, and orientation of two tiles as a vector and append two vectors to v.

After each substitution, we get v which is the list of vectors for the ith substitution
and use this for the next level substitution. After all substitution ends, we get a final list
of vectors which is information of all tiles after level-n substitution as an output.

The second function, plot Robinson Triangle png, plots Robinson Triangle tiling
when given three parameters: nstep, list, and size. The first parameter, nstep and
the third parameter, size come from the substitution function, which is what level of

substitution we want and the size of each prototile. Second parameter, list, is a list
of vectors and each vector has tile types, the origin of a tile, and the orientation after
level-n substitution. We get 1ist as an output of the substitution function. As an output
for plot_Robinson Triangle png, we get graphic of Robinson Triangle tiling after level-n
substitution in a png format. For each level of substitution, we first update the side length
of each tile by multiplying size by inflation factor. Going over all vectors in the list given,
we first translate to the origin of each tile which is the second element of each vector, and
rotate by the given orientation, which is the third element of each vector. Then, depending
on the tile type, we plot the corresponding triangle using functions that draw polygons
using coordinates.

In addition to plotting Robinson Triangle tiling using different colors for four triangles,
we create a function that plots tiling without colors, plot_Robinson _Triangle_stroke_png.
This function uses same three parameters: nstep, 1list, and size from above function.
As an output, we get graphic of Robinson Triangle tiling that is not filled with colors,
after level-n substitution in png format. For each level of substitution, we first update the
side length of each tile by multiplying size by inflation factor. Going over all vectors in
the list given, we first translate to the origin of each tile which is the second element of
each vector, and rotate by the given orientation, which is the third element of each vector.
Then, depending on the tile type, we plot the corresponding triangle using four functions
that draw strokes of polygons using coordinates.

4.3 Gathering Neighboring Tile Information

In order to get neighboring tile information, we create three functions, coordinate_list,
round_coordinate, and neighbor_robinson_triangle more_info. The first function out-
puts a level-n substitution and gives us tile type and three coordinates of all tile after level-n
substitution. This function is same as substitution robinson triangle list, the sub-
stitution function from Section 4.2, except one additional argument after each subdividing
process. In addition to creating an empty vector to store information of all tiles after
substitution (v), we create one additional empty vector to store information on tile type
and three coordinates of all tiles after substitution (c_1). After we store tile type, position,
and orientation of subdivided tiles as a vector and append two vectors to v, we also create
a vector with tile type and all three coordinates of subdivided tile. Then we append this
vector to c_1. After each substitution, we get c_1 which is the list of vectors with tile type
and three coordinates of all tiles after ith substitution and use this for the next level sub-
stitution. After all substitution is done, we get a final list of vectors which is information
of all tiles after level-n substitution as an output.

The second function, round_coordinate, uses c_list which is list of vectors with
coordinates as a parameter and round each coordinate to ten decimal places. Since the
current coordinate list we get as an output from the above function gives us coordinates
with 12 decimal places, we round these coordinates to ten decimal places to compare

coordinates to get the neighboring tiles. We go over all vectors in the coordinate list
and round x and y coordinates of three coordinates of each tile. Then we replace each
coordinate using rounded z and y coordinates.

The third function, neighbor _robinson _triangle more_info gives two outputs. The
first output has information on tile type, position, orientation, and neighbor type (corner
or edge) of all neighboring tiles of each tile in the tiling. The second output is a vector with
a list of vectors that store neighboring tiles’ tile numbers. We will frequently use second
output when playing Game of Life. This function uses two parameters: substitution_1
and coordinate_1. First parameter, substitution_1 is an output we get after doing level-
n substitution using function from Section 4.2 and second parameter, coordinate_1 is a
list of rounded coordinates of all tiles after level-n substitution using two functions above.
Inside the function, we first create two empty vectors to store information on adjacent
tile(s) of all tiles and information on tile numbers. We go over all tiles, get the current tile’s
coordinates and create an empty vector to store information about neighboring tiles and tile
numbers of the current tile. Then we compare all other tiles’ coordinates with the current
tile’s coordinates. If the current tile’s coordinates and comparing tile’s coordinates have
one shared point, two tiles are corner-to-corner neighbors. Thus, we append comparing
tile’s information (tile type, position, orientation, neighbor type) to the empty vector that
stores all neighboring tiles’ information of the current tile. Also, we append neighboring
tile numbers to the empty vector. If the current tile’s coordinates and comparing tile’s
coordinates have two shared points, two tiles are edge-to-edge neighbors. Then we append
comparing tile’s information (tile type, position, orientation, neighbor type) to the empty
vector that stores all neighboring tiles’ information of the current tile. Also, we append
neighboring tile numbers to the empty vector. We repeat the same process for all tiles and
return two lists, a list of neighboring tile information and neighboring tile numbers of all
tiles.

4.4 Playing Game of Life

Using outputs from above three sections, we create functions to play Game of Life on
Robinson Triangle tiling and to plot the results of each generation. In order to play Game
of Life, we need two functions: one move, and GoL_Robinson_triangle.

First function, one_move generates a list of live cells after one generation when playing
Game of Life. This function uses three parameters: GoL_info, neighbor_1 more_info, and
neighbor_ 1 tile num. The first parameter is the list of live cells’ tile number of current
generation. The second and third parameters are outputs from the function in Section 4.3.
We start by creating an empty state vector that will have the state (0 or 1, live or dead)
of all tiles in the tiling. Beginning with an all-zero vector that has the same length as the
total number of tiles in the tiling, we go over all tiles and change the state of each tile by
checking GoL_info. If the tile number is in GoL_info, that tile is alive and we change the
state from 0 to 1. After going over all tiles, we get the state vector, state_all tile.

Next, we create a vector to store the sum of alive neighbors of each tile. Beginning
with an empty vector, we go over all tiles’ neighboring tile lists with the tile number
(neighbor_1_tile num). Using the neighboring tile’s tile number, we access the state
vector and find the state of each neighboring tile. If the neighboring tile is alive, we add
one to variable n which initially starts with 0. If the neighboring tile is dead, we do not
change n. After going over each tile’s neighboring tiles, we update the empty vector that
store the sum of alive neighbors of each tile. We repeat the same process for all tiles and
get the final output, total neighbor.

Using total neighbor, we are able to play Game of Life. We first create an empty
vector to store alive cells’ tile number after one move (GoL_info_one move). Going over all
tiles, first, we check if each tile is alive or dead by using GoL_info. If ith tile is in GoL_info,
1th tile is alive. Then we check how many alive neighbors that th tile has. Applying original
Game of Life rules, if the tile has two or three neighbors, the tile survives after the current
move and we add that tile’s number to GoL_info_one move. If the tile has less than one
neighbor or more than four neighbors, the tile is dead after the current move and we do
not add that tile’s number to GoL_info_one_move. If ith tile is not in GoL_info, ith tile
is dead. We also check how many alive neighbors this ith tile has. If the tile has three
alive neighbors, the tile gain birth after the current move and we add that tile’s number to
GoL_info_one_move. Taking three steps, we get our final output GoL_info_one_move which
is a list of alive cells after one move.

The second function, GoL_Robinson_triangle generates a vector with a list of live
cells of all moves when playing Game of Life. This function uses four parameters and the
first three parameters are the same as the above function. One additional parameter is
max_generation which indicates the maximum number of generations we will allow when
playing Game of Life. Beginning with an empty vector to store all lists of alive cells after
all moves (all_step_GoL_info), we first append a list of live cells of initial configuration to
the empty vector. Then we get an updated live cell list after one move. We continuously
generate an updated live cell list after one move and compare it with the live cell list from
the previous move. If the current live cell list and previous live cell list are not the same, we
keep playing the Game of Life and append the current live cell list to all_step_GoL_info.
If two lists are the same, we reach a steady-state (still life or all cells dead) and stop playing
Game of Life. Then we append the current list to all_step_GoL_info. If the number of
generation (g) is same as max_generation, we also stop playing Game of Life. As a result
of running this function, we get a vector with a list of live cells of all generations.

4.5 Plotting Game of Life

To plot the results of each move and get graphic of Game of life in png format, we need two
functions: plot_one move_png, and plot_GoL _Robinson_triangle_png. The first function,
plot_one move_png colors all live cells of current move when given four parameters: nstep,
list, size, and GoL_info. The first three parameters come from the substitution function

10

in Section 4.2, which is the level of the substitution, output of the substitution function
(substitution list), and the size of each prototile. The fourth parameter, GoL_info, is a list
of live cells’ tile numbers of current generation. Going over all vectors in the 1list given,
we first generate tiling of level-n substitution. Then we color all live cells in GoL_info.
After identifying tile number of each live cell, we get the information (tile type, position,
and orientation) of that cell using 1ist and color live cell.

The second function, plot_GoL_Robinson_triangle_png shows graphics of all genera-
tions when given four parameters: nstep, list, size, and all_GoL_info. All parameters
are same as above functions except all_GoL_info. Instead of using one list of live cells of
one generation, we use a vector with lists of live cells of all generations. First, we start by
creating an empty dictionary to store each plot of each move. Going over all moves, we
generate each plot and store the plot in a dictionary using ¢ from ith generation as key to
the dictionary. Then we display each plot to see the result of all move.

4.6 Generating Game of Life Animation

In order to see how the Game of Life proceed, we need to generate an animation. Thus,
we create a function, GoL_animation Robinson _triangle, to get Game of Life animation.
This function uses five parameters: all_GoL_info, step, size, 1list, and gif name. The
first parameter is a vector with a list of live cells of all moves when playing Game of Life.
The second and third parameters are the same parameters used to create substitution
tiling. The fourth parameter is an output we get after doing level-n substitution and
the last parameter is the animation file name. Our animation function has three parts:
creating a movie object, generating scenes to store graphics, and getting animation. First,
we create a movie object to play animation which has a frame length that is the same as
the total number of generations when playing each Game of Life. Then we create scenes to
make animations. We need two scenes, background which is the level-6 Robinson Triangle
tiling, and frame which is a Game of Life graphic of each generation. Once we have the
movie object and scenes, we construct animation using them. Using the internal animate
function, we put the movie object, the background scene, and frames with Game of Life
graphic of each generation. As an output, we get Game of Life animation that shows all
processes.

4.7 Implementing Game of Life on Robinson Triangle Tiling

Using all functions we explain from previous sections, in order to start playing Game of
Life, we take three steps before running our last function, GoL.

1. Generate level-6 substitution tiling starting with ten tiles with side length five using
substitution robinson _triangle 1ist function.

2. Generate coordinate list of all tiles in level-6 substitution tiling using coordinate_list
and round_coordinate functions.

11

3. Generate neighboring tiles’ information using neighbor_robinson_triangle more_info

function.

After going through three steps, we run our final function GoL. When given initial live
cells list (initial configuration to play Game of Life), maximum generation, and animation
file name as parameters, we get the result of Game of Life as an animation. Inside the
function, using variables created from above three steps, we use GoL_Robinson_triangle
to generate list of live cells of all move and use that list to generate animation using our
animation function, GoL_animation Robinson_triangle.

5 Results

As a result of playing Game of Life on the Robinson Triangle tiling, we discover several
still life patterns and oscillators. To find a still life, we run the GoL function multiple
times with randomly generated live cell list until the function gives list of live cells as an
output. If we get the output before reaching maximum generation, we use the output to
visually check if the configuration is a still life. To find oscillator, we run the Game of
Life function multiple times until the function reaches maximum generation. If we get the
output that has repeating lists of live cells, we use the output to visually check if there are
configurations that repeats after finite number of generations. As a result, we find eight
still life patterns (Figure 5) and two oscillators (Figure 6 and Figure 7) by playing Game
of Life on level-6 substitution tiling.

Figure 5: Eight still life patterns.

12

Figure 6: Period-4 oscillator.

6 Further Work

When playing Game of Life on Robinson Triangle tiling, all still life patterns we discover
has four live cells. We would like to classify all 4-counter still lives. To find eight still
lives, we used functions from Section 4 to play Game of Life. Instead of playing Game of
Life using randomly generated live cell list, we consider using combinatorics to classify all
possible scenarios when having four live cells in the distinct neighborhood of each tile type.

7 Acknowledgement

J. Reid and Polly Anderson endowment funded this research, and we thank them for the
support of this research. Also, I would like to express my sincere thanks of gratitude to
our advisor, Dr. May Mei for the supportive mentorship and guidance throughout the
summer. Lastly, I want to acknowledge and thank Zheng Fang and Raghav Goel, who I
worked together this summer, for great feedback and suggestions throughout the research.

13

References

1]

2]

Colin Adams. The tiling book: An introduction to the mathematical theory of tilings.
unpublished, N.D.

Julia Computing company. The julia programming language. https://julialang.
org/l, accessed January 28, 2022.

Martin Gardner. Mathematical games: The fantastic combinations of john conway’s
new solitaire game "life”. Scientific American, 223(4):120-123, 1970.

Martin Gardner. Mathematical games: Extraordinary nonperiodic tiling that enriches
the theory of tiles. Scientific American, 236(1):110-121, 1977.

Siobhan Roberts. The lasting lessons of john conway’s game of life.
https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.
html?searchResultPosition=1, accessed June 1, 2022.

Bielefeld University. Penrose kite dart. https://tilings.math.uni-bielefeld.de/
substitution/penrose-kite-dart/, accessed June 18, 2022.

Bielefeld University. Penrose pentagon boat star. https://tilings.math.
uni-bielefeld.de/substitution/penrose-pentagon-boat-star/, accessed June
18, 2022.

Bielefeld University. Penrose rhomb. https://tilings.math.uni-bielefeld.de/
substitution/penrose-rhomb/, accessed June 18, 2022.

Bielefeld University. Robinson triangle. https://tilings.math.uni-bielefeld.de/
substitution/robinson-triangle/| accessed June 18, 2022.

Bielefeld University. Substitution. https://tilings.math.uni-bielefeld.de/
glossary/substitution/), accessed June 18, 2022.

15

https://julialang.org/
https://julialang.org/
 https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html?searchResultPosition=1
 https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life.html?searchResultPosition=1
https://tilings.math.uni-bielefeld.de/substitution/penrose-kite-dart/
https://tilings.math.uni-bielefeld.de/substitution/penrose-kite-dart/
https://tilings.math.uni-bielefeld.de/substitution/penrose-pentagon-boat-star/
https://tilings.math.uni-bielefeld.de/substitution/penrose-pentagon-boat-star/
https://tilings.math.uni-bielefeld.de/substitution/penrose-rhomb/
https://tilings.math.uni-bielefeld.de/substitution/penrose-rhomb/
https://tilings.math.uni-bielefeld.de/substitution/robinson-triangle/
https://tilings.math.uni-bielefeld.de/substitution/robinson-triangle/
https://tilings.math.uni-bielefeld.de/glossary/substitution/
https://tilings.math.uni-bielefeld.de/glossary/substitution/

	Introduction
	Game of Life
	Penrose Tiling
	Game of Life on Robinson Triangle Tiling
	Getting Functions to Generate Coordinates and Graphic of Four Prototiles
	Generating Robinson Triangle Tiling Using Substitution Method
	Gathering Neighboring Tile Information
	Playing Game of Life
	Plotting Game of Life
	Generating Game of Life Animation
	Implementing Game of Life on Robinson Triangle Tiling

	Results
	Further Work
	Acknowledgement

