The Game of Life on Penrose Tilings: Robinson Triangle

Seung Hyeon Mandy Hong

July 18, 2022

1 Introduction

John Horton Conway's Game of Life gained much attention in different areas because of the concept that it generates complexity from simplicity.[5] If we are given three simple rules: survival, death, and birth, and initial configuration, we can play Game of Life. Compared to the simple setting of this game, what we get is more complex. Generally, Game of Life is played on the regular square tiling, a periodic tiling. However, we implement Game of Life on an aperiodic tiling, specifically on the Robinson Triangle tiling, a variation of the Penrose tiling. Sections 2 and 3 define rules, terms, and methods related to Game of Life on Robinson Triangle tiling. We use an emerging programming language called Julia. Julia is designed for high-performance and enables us to use features such as animated visualization or numerical and scientific computing.[2] Finally, in Section 5, we show patterns, still life and oscillator, discovered when playing Game of Life on Robinson Triangle tiling.

2 Game of Life

Conway's Game of Life (also called life) resembles a society of living organisms because it can be explained by the rise, fall, and alterations. Initially, Conway used a large checkerboard (assumed to be an infinite plane) and flat square counters of two colors to be placed on the checkerboard. The checkerboard is, in fact, a regular square tiling and we call each tile in the tiling a *cell*. To play *Game of Life*, we start with a simple configuration of live cells on the tiling and observe how it changes as we apply Conway's *genetic laws*.[3] A simple arrangement of live cells needs to meet three criteria. First, there should be no initial pattern that the population can grow without limit. Second, there should be simple initial patterns that do grow without limit. Lastly, there should be simple initial patterns that grow and change before ending by fading away, reaching stable figures, or oscillating by repeating several periods. Meeting these criteria makes the population's behavior unpredictable. After setting the initial stage of this game, we apply genetic laws for births, deaths, and survivals to cells. The rules are the following[3]: **Definition 2.1.** Genetic laws apply three rules: survival, death, and birth on counters.

- 1. Survival: Every cell with two or three live neighbors (other cells that share its edge) survives to the next generation.
- 2. Death: Each counter with four or more live neighbors or one or none die.
- 3. Birth: A dead cell with three adjacent live neighbors is alive at the next generation.

Births and deaths co-occur, constituting a single generation or move. Using the genetic laws to create subsequent generations, we can find the population undergoing changes: Society could vanish, reach a stable figure, or oscillate forever. There are several significant patterns people are interested in finding when playing *Game of Life*. Our primary interest is to find an oscillator, a pattern that repeats a finite number of configurations and a still life, a pattern that reaches a stable state without changing from generation to generation.[3]

3 Penrose Tiling

A tiling can either be periodic or nonperiodic.[4].

Definition 3.1. A *tiling* of the plane \mathbb{R}^2 with *protoset* \mathcal{P} is a collection of \mathfrak{T} of closed sets in the plane, called *tiles* and a finite collection \mathcal{P} of closed sets in the plane, each called a *prototile*, such that the following hold [1]:

- 1. Each prototile is topologically equivalent to a disk.
- 2. Each tile is congruent to a prototile.
- 3. $\mathbb{R}^2 = \bigcup_{T \in \mathfrak{T}} T$ (\mathfrak{T} is a covering.)
- 4. $\operatorname{int}(T_i) \cap \operatorname{int}(T_j) = \emptyset$ for all $i \neq j$ (\mathfrak{T} is a packing.)

Definition 3.2. A *periodic tiling* is one on which you can outline a region that tiles the plane by translation, that is, by shifting the position of the region without rotating or reflecting it. A *nonperiodic* tiling is not periodic.

The checkerboard that Conway used to play *Game of Life* is a periodic tiling because we can outline a square region that tiles the plane by shifting the position of that region without rotating or reflecting it. We investigate how *Game of Life* will proceed if we change underlying square tiling (periodic tiling) to Robinson Triangle tiling (aperiodic tiling). Among various tiles that tile aperiodically, one of the most well-known tiles is Penrose tiles[4], discovered by British mathematical physicist Roger Penrose.

Definition 3.3. The *Penrose tiles* are sets of tiles with two different shapes that tile only nonperiodically. The shapes of a pair of Penrose tiles that force nonperiodicity can vary.

Using sets of Penrose tiles as prototiles, it is possible to get different Penrose tilings. The most popular Penrose tilings are Penrose tiling, kite and dart tiling, and Penrose Rohmb tiling (Figure 1).

Figure 1: (From left to right) Pentagonal Penrose tiling[7], kite and dart tiling[6], Penrose Rhomb tiling[8], and Robinson Triangle tiling[9].

We are particularly interested in Robinson Triangle tiling (the last figure in Figure 1), the variation of Penrose Rohmb tiling suggested by the American mathematician Raphael M. Robinson. If we cut two Penrose Rhombs into triangles, we get four prototiles of the Robinson Triangle tiling (Figure 2).

Figure 2: Dividing Two Penrose Rhombs into triangles. Four triangles are prototiles of the Robinson Triangle tiling.

The Robinson Triangle tiling is created using a substitution rule, a method to generate aperiodic tiling.[10] Suppose we are given a finite set of building blocks $T_1, T_2 \cdots T_m$ (the prototiles), an expanding linear map Q (with inflation factor |Q|), and a rule, how to dissect each scaled tile QT_i into copies of the original prototiles T_1, T_2, \cdots, T_m .[10] Then,

using the substitution method (inflation and subdivision), we first inflate each prototile by the inflation factor and subdivide each inflated prototile into copies of the original prototiles. For the Robinson Triangle tiling, we use the inflation factor of $\phi = \frac{1+\sqrt{5}}{2}$ which is the golden ratio to inflate each prototile. Then, we subdivide each tile into three or two tiles depending on the tile type (Figure 3). By continued inflation and subdivision, we can generate a tiling of the plane.[1]

Figure 3: Substitution rule for prototiles in Robinson Triangle tiling.

4 Game of Life on Robinson Triangle Tiling

In order to play *Game of Life* on Robinson Triangle tiling, we created several functions we explain in each subsections.

4.1 Getting Functions to Generate Coordinates and Graphic of Four Prototiles

To plot the Robinson Triangle tiling, we first need to find the coordinates of four prototiles. Using information about the angles and lengths of four tiles, we first find three coordinates of the two wider triangles which are shown with labels in Figure 4. Here, we calculate $a = \cos(\frac{\pi}{5}) \cdot \phi$ and $h = \sin(\frac{\pi}{5}) \cdot \phi$ using trigonometry. Next, we find three coordinates of two narrower triangles shown with labels in Figure 4. Here, we calculate $a = \frac{1}{2}$ and $h = \sin(\frac{2}{5}\pi) \cdot \phi$ using trigonometry.

Using three coordinates of each triangle, we create four functions wider_triangle_up, wider_triangle_down, narrower_triangle_up, and narrower_triangle_down. Four functions use same parameter s which is the size/side length of each prototile. Four functions plot a size s polygon, filled with colors, using three coordinates we have. Similarly, we get four functions wider_triangle_up_stroke, wider_triangle_down_stroke, narrower_triangle_up_stroke, and narrower_triangle_down_stroke which plot stoke of each polygon. These functions are modified version of four functions mentioned above

Figure 4: Calculating three coordinates of the Robinson Triangle.

that draw polygons. Using the same parameter **s** four functions plot a size **s** polygon using three coordinates of triangles. However, since we are not filling each polygon with color but getting the stroke of the polygon, we need to add one more coordinate (the first coordinate we initially started drawing the polygon) to close the stroke. We also create four functions **w_triangle_up_coordinate**, **w_triangle_down_coordinate**, **n_triangle_up_coordinate**, and **n_triangle_down_coordinate**. Four functions also use same parameter **s** and return coordinates of each triangle as a list when the size of a tile is **s**.

If triangles are rotated or translated, we need to update coordinates. We create two functions new_coordinate_r and new_coordinate_t to update coordinates. For the first function new_coordinate_r, we get an updated coordinate when list of coordinates (pL) are rotated by the given angle, orientation. Starting by creating an empty vector to store updated coordinates, we go over all points in the list of coordinates given to calculate new coordinates. When we say original coordinate is (x, y), we can update this using the fact that new x coordinate can be calculated by $x \cos(\text{orientation}) - y \sin(\text{orientation})$ and new y coordinate can be calculated by $x \sin(\text{orientation}) + y \cos(\text{orientation})$. After calculating new coordinate, we add that point to the empty vector we initially created. For the second function new_coordinate_t, we get an updated coordinate when the origin in the list of coordinates given (pointL) is translated to the new location (translate). Starting by creating an empty vector to store updated coordinates, we go over all points in the list of coordinates given and calculate new coordinates by adding the new location point (translate). After calculating new coordinate, we add that point to the empty vector we initially created. Both functions return list of updated coordinates.

4.2 Generating Robinson Triangle Tiling Using Substitution Method

For substitution, we create two functions, substitution_robinson_triangle_list and plot_Robinson_Triangle_png which use functions mentioned above. The first function produces a level-n substitution when given three parameters: upper_level_coordinatesL, nstep, size. The first parameter, upper_level_coordinatesL, is a list of vectors. Each vector has tile types, the origin of a tile, and the orientation of a tile. Set of vectors

with three elements compose the initial configuration of tiling, which is also a level-0 substitution. Two other parameters, nstep is the level of substitution we want, and size is the side length of each tile. As an output, we get a list of vectors with tile type, origin, and orientation after n substitution, which is information of all tiles after substitution.

We repeat same process for nstep times. First, we define new size by multiplying size by ϕ^{i-1} where *i* refers to current step. Then we pass a list of vectors given to a new variable (initial) and create an empty vector to store information of all tiles after substitution (v). Going over all vectors in the list given, we inflate the given tile and subdivide it into three or two tiles depending on the tile type. If the tile type of the given list is a wider upward triangle, we first inflate the tile by ϕ and get new coordinates. Then we find three locations to place three triangles when subdividing inflated tile which are new_p1, new_p2, and new_p3. Using the inflated tile's coordinate, we get three new origins and add them to the coordinate list of the inflated tile. Then we update all six coordinates after rotation and translation for the inflated wider upward triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated coordinate list and rotated by the angle of $4\pi/5$, considering the orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $4\pi/5$ and consider this added angle as the orientation of the first wider triangle. The second narrower triangle is at the fifth element of the updated coordinate list and rotated by the angle of $\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $\pi/5$ and consider this added angle as the orientation of the second narrower triangle. The third wider triangle is at the sixth element of the updated coordinate list and rotated by the angle of π considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $\pi/5$ and consider this added angle as the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to π and consider this added angle as the orientation of the triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to π and consider this added angle as the orientation of the third wider triangle. Then we store the tile type, position, and orientation of three tiles as a vector and append three vectors to \mathbf{v} .

If the tile type of the given list is a wider, downward triangle, we first inflate the tile by ϕ and get new coordinates. Then we find three locations to place three triangles when subdividing inflated tile which are new_p1, new_p2, and new_p3. Using the inflated tile's coordinate, we get three new origins and add them to the coordinate list of inflated tile. Then we update all six coordinates after rotation and translation for the inflated wider triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated coordinate list and rotated by the angle of $-4\pi/5$, considering the orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-4\pi/5$ and consider this added angle as the orientation of the first wider triangle. The second narrower triangle is at the fifth element of the updated coordinate list and rotated by the angle of $-\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by the angle of $-\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-\pi/5$ and consider this added angle as the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-\pi/5$ and consider this added angle as the orientation of the second narrower triangle. The third

wider triangle is at the sixth element of the updated coordinate list and rotated by the angle of π considering the orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to π and consider this added angle as the orientation of the third wider triangle. Then we store the tile type, position, and orientation of three tiles as a vector and append three vectors to v.

If the tile type of the given list is a narrower upward triangle, we first inflate the tile by ϕ and get new coordinates. Then we find two locations to place two triangles when subdividing the inflated tile. The second location is already in the coordinate list, and we only need to get one new location which is **new_p1**. Using the inflated tile's coordinate, we get two new origins and add **new_p1** to the coordinate list of inflated tile. Then we update all four coordinates after rotation and translation for the inflated narrower triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated coordinate list and rotated by the angle of $3\pi/5$ considering the orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $3\pi/5$ and consider this added angle as the orientation of the first wider triangle. The second narrower triangle is at the third element of the updated coordinate list and rotated by the angle of $-3\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-3\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-3\pi/5$ and consider this added angle as the orientation of the second narrower triangle. Then we store the tile type, position, and orientation of two tiles as a vector and append two vectors to v.

If the tile type of the given list is a narrower, downward triangle, we first inflate the tile by ϕ and get new coordinates. Then we find two locations to place two triangles when subdividing the inflated tile. The second location is already in the coordinate list, and we only need to get one new location which is new_p1. Using the inflated tile's coordinate, we got two new origins and added new_p1 to the coordinate list of inflated tile. Then we update all four coordinates after rotation and translation for the inflated narrower triangle.

For the subdivision, the first wider triangle is at the fourth element of the updated coordinate list and rotated by the angle of $-3\pi/5$ considering the orientation of the updated inflated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $-3\pi/5$ and consider this added angle as the orientation of the first wider triangle. The second narrower triangle is at the third element of the updated coordinate list and rotated by the angle of $3\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $3\pi/5$ considering the orientation of the updated triangle is 0. If the tile we are subdividing is rotated by some angle, we add that to $3\pi/5$ and consider this added angle as the orientation of the second narrower triangle. Then we store the tile type, position, and orientation of two tiles as a vector and append two vectors to v.

After each substitution, we get v which is the list of vectors for the *i*th substitution and use this for the next level substitution. After all substitution ends, we get a final list of vectors which is information of all tiles after level-*n* substitution as an output.

The second function, plot_Robinson_Triangle_png, plots Robinson Triangle tiling when given three parameters: nstep, list, and size. The first parameter, nstep and the third parameter, size come from the substitution function, which is what level of substitution we want and the size of each prototile. Second parameter, list, is a list of vectors and each vector has tile types, the origin of a tile, and the orientation after level-*n* substitution. We get list as an output of the substitution function. As an output for plot_Robinson_Triangle_png, we get graphic of Robinson Triangle tiling after level-*n* substitution in a png format. For each level of substitution, we first update the side length of each tile by multiplying size by inflation factor. Going over all vectors in the list given, we first translate to the origin of each tile which is the second element of each vector, and rotate by the given orientation, which is the third element of each vector. Then, depending on the tile type, we plot the corresponding triangle using functions that draw polygons using coordinates.

In addition to plotting Robinson Triangle tiling using different colors for four triangles, we create a function that plots tiling without colors, plot_Robinson_Triangle_stroke_png. This function uses same three parameters: nstep, list, and size from above function. As an output, we get graphic of Robinson Triangle tiling that is not filled with colors, after level-n substitution in png format. For each level of substitution, we first update the side length of each tile by multiplying size by inflation factor. Going over all vectors in the list given, we first translate to the origin of each tile which is the second element of each vector, and rotate by the given orientation, which is the third element of each vector. Then, depending on the tile type, we plot the corresponding triangle using four functions that draw strokes of polygons using coordinates.

4.3 Gathering Neighboring Tile Information

In order to get neighboring tile information, we create three functions, coordinate_list, round_coordinate, and neighbor_robinson_triangle_more_info. The first function outputs a level-*n* substitution and gives us tile type and three coordinates of all tile after level-*n* substitution. This function is same as substitution_robinson_triangle_list, the substitution function from Section 4.2, except one additional argument after each subdividing process. In addition to creating an empty vector to store information of all tiles after substitution (v), we create one additional empty vector to store information on tile type and three coordinates of all tiles after substitution (c_l). After we store tile type, position, and orientation of subdivided tiles as a vector and append two vectors to v, we also create a vector with tile type and all three coordinates of subdivided tile. Then we append this vector to c_l. After each substitution, we get c_l which is the list of vectors with tile type and three coordinates of all tiles after *i*th substitution and use this for the next level substitution. After all substitution is done, we get a final list of vectors which is information of all tiles after level-*n* substitution as an output.

The second function, round_coordinate, uses c_list which is list of vectors with coordinates as a parameter and round each coordinate to ten decimal places. Since the current coordinate list we get as an output from the above function gives us coordinates with 12 decimal places, we round these coordinates to ten decimal places to compare

coordinates to get the neighboring tiles. We go over all vectors in the coordinate list and round x and y coordinates of three coordinates of each tile. Then we replace each coordinate using rounded x and y coordinates.

The third function, neighbor_robinson_triangle_more_info gives two outputs. The first output has information on tile type, position, orientation, and neighbor type (corner or edge) of all neighboring tiles of each tile in the tiling. The second output is a vector with a list of vectors that store neighboring tiles' tile numbers. We will frequently use second output when playing *Game of Life*. This function uses two parameters: substitution_l and coordinate_1. First parameter, substitution_1 is an output we get after doing leveln substitution using function from Section 4.2 and second parameter, coordinate_l is a list of rounded coordinates of all tiles after level-n substitution using two functions above. Inside the function, we first create two empty vectors to store information on adjacent tile(s) of all tiles and information on tile numbers. We go over all tiles, get the current tile's coordinates and create an empty vector to store information about neighboring tiles and tile numbers of the current tile. Then we compare all other tiles' coordinates with the current tile's coordinates. If the current tile's coordinates and comparing tile's coordinates have one shared point, two tiles are corner-to-corner neighbors. Thus, we append comparing tile's information (tile type, position, orientation, neighbor type) to the empty vector that stores all neighboring tiles' information of the current tile. Also, we append neighboring tile numbers to the empty vector. If the current tile's coordinates and comparing tile's coordinates have two shared points, two tiles are edge-to-edge neighbors. Then we append comparing tile's information (tile type, position, orientation, neighbor type) to the empty vector that stores all neighboring tiles' information of the current tile. Also, we append neighboring tile numbers to the empty vector. We repeat the same process for all tiles and return two lists, a list of neighboring tile information and neighboring tile numbers of all tiles.

4.4 Playing Game of Life

Using outputs from above three sections, we create functions to play *Game of Life* on Robinson Triangle tiling and to plot the results of each generation. In order to play *Game of Life*, we need two functions: one_move, and GoL_Robinson_triangle.

First function, one_move generates a list of live cells after one generation when playing *Game of Life*. This function uses three parameters: GoL_info, neighbor_l_more_info, and neighbor_l_tile_num. The first parameter is the list of live cells' tile number of current generation. The second and third parameters are outputs from the function in Section 4.3. We start by creating an empty state vector that will have the state (0 or 1, live or dead) of all tiles in the tiling. Beginning with an all-zero vector that has the same length as the total number of tiles in the tiling, we go over all tiles and change the state of each tile by checking GoL_info. If the tile number is in GoL_info, that tile is alive and we change the state from 0 to 1. After going over all tiles, we get the state vector, state_all_tile.

Next, we create a vector to store the sum of alive neighbors of each tile. Beginning with an empty vector, we go over all tiles' neighboring tile lists with the tile number (neighbor_l_tile_num). Using the neighboring tile's tile number, we access the state vector and find the state of each neighboring tile. If the neighboring tile is alive, we add one to variable n which initially starts with 0. If the neighboring tile is dead, we do not change n. After going over each tile's neighboring tiles, we update the empty vector that store the sum of alive neighbors of each tile. We repeat the same process for all tiles and get the final output, total_neighbor.

Using total_neighbor, we are able to play *Game of Life*. We first create an empty vector to store alive cells' tile number after one move (GoL_info_one_move). Going over all tiles, first, we check if each tile is alive or dead by using GoL_info. If *i*th tile is in GoL_info, *i*th tile is alive. Then we check how many alive neighbors that *i*th tile has. Applying original *Game of Life* rules, if the tile has two or three neighbors, the tile survives after the current move and we add that tile's number to GoL_info_one_move. If the tile has less than one neighbor or more than four neighbors, the tile is dead after the current move and we do not add that tile's number to GoL_info_one_move. If *i*th tile has. If the tile has three alive neighbors, the tile gain birth after the current move and we add that tile's number to GoL_info_one_move. If *i*th tile has three to GoL_info_one_move. The tile has three to alive neighbors, the tile gain birth after the current move and we add that tile's number to GoL_info_one_move. If *i*th tile has three to GoL_info_one_move. Taking three steps, we get our final output GoL_info_one_move which is a list of alive cells after one move.

The second function, GoL_Robinson_triangle generates a vector with a list of live cells of all moves when playing *Game of Life*. This function uses four parameters and the first three parameters are the same as the above function. One additional parameter is max_generation which indicates the maximum number of generations we will allow when playing *Game of Life*. Beginning with an empty vector to store all lists of alive cells after all moves (all_step_GoL_info), we first append a list of live cells of initial configuration to the empty vector. Then we get an updated live cell list after one move. We continuously generate an updated live cell list after one move and compare it with the live cell list from the previous move. If the current live cell list and previous live cell list are not the same, we keep playing the *Game of Life* and append the current live cell list to all_step_GoL_info. If two lists are the same, we reach a steady-state (still life or all cells dead) and stop playing *Game of Life*. Then we append the current list to all_step_GoL_info. If the number of generation (g) is same as max_generation, we also stop playing *Game of Life*. As a result of running this function, we get a vector with a list of live cells of all generations.

4.5 Plotting Game of Life

To plot the results of each move and get graphic of *Game of life* in png format, we need two functions: plot_one_move_png, and plot_GoL_Robinson_triangle_png. The first function, plot_one_move_png colors all live cells of current move when given four parameters: nstep, list, size, and GoL_info. The first three parameters come from the substitution function

in Section 4.2, which is the level of the substitution, output of the substitution function (substitution list), and the size of each prototile. The fourth parameter, GoL_info, is a list of live cells' tile numbers of current generation. Going over all vectors in the list given, we first generate tiling of level-*n* substitution. Then we color all live cells in GoL_info. After identifying tile number of each live cell, we get the information (tile type, position, and orientation) of that cell using list and color live cell.

The second function, plot_GoL_Robinson_triangle_png shows graphics of all generations when given four parameters: nstep, list, size, and all_GoL_info. All parameters are same as above functions except all_GoL_info. Instead of using one list of live cells of one generation, we use a vector with lists of live cells of all generations. First, we start by creating an empty dictionary to store each plot of each move. Going over all moves, we generate each plot and store the plot in a dictionary using *i* from *i*th generation as key to the dictionary. Then we display each plot to see the result of all move.

4.6 Generating Game of Life Animation

In order to see how the *Game of Life* proceed, we need to generate an animation. Thus, we create a function, GoL_animation_Robinson_triangle, to get Game of Life animation. This function uses five parameters: all_GoL_info, step, size, list, and gif_name. The first parameter is a vector with a list of live cells of all moves when playing *Game of Life*. The second and third parameters are the same parameters used to create substitution tiling. The fourth parameter is an output we get after doing level-n substitution and the last parameter is the animation file name. Our animation function has three parts: creating a movie object, generating scenes to store graphics, and getting animation. First, we create a movie object to play animation which has a frame length that is the same as the total number of generations when playing each *Game of Life*. Then we create scenes to make animations. We need two scenes, background which is the level-6 Robinson Triangle tiling, and frame which is a *Game of Life* graphic of each generation. Once we have the movie object and scenes, we construct animation using them. Using the internal animate function, we put the movie object, the background scene, and frames with Game of Life graphic of each generation. As an output, we get *Game of Life* animation that shows all processes.

4.7 Implementing Game of Life on Robinson Triangle Tiling

Using all functions we explain from previous sections, in order to start playing *Game of Life*, we take three steps before running our last function, GoL.

- 1. Generate level-6 substitution tiling starting with ten tiles with side length five using substitution_robinson_triangle_list function.
- 2. Generate coordinate list of all tiles in level-6 substitution tiling using coordinate_list and round_coordinate functions.

3. Generate neighboring tiles' information using neighbor_robinson_triangle_more_info function.

After going through three steps, we run our final function GoL. When given initial live cells list (initial configuration to play *Game of Life*), maximum generation, and animation file name as parameters, we get the result of *Game of Life* as an animation. Inside the function, using variables created from above three steps, we use GoL_Robinson_triangle to generate list of live cells of all move and use that list to generate animation using our animation function, GoL_animation_Robinson_triangle.

5 Results

As a result of playing *Game of Life* on the Robinson Triangle tiling, we discover several still life patterns and oscillators. To find a still life, we run the GoL function multiple times with randomly generated live cell list until the function gives list of live cells as an output. If we get the output before reaching maximum generation, we use the output to visually check if the configuration is a still life. To find oscillator, we run the Game of Life function multiple times until the function reaches maximum generation. If we get the output that has repeating lists of live cells, we use the output to visually check if there are configurations that repeats after finite number of generations. As a result, we find eight still life patterns (Figure 5) and two oscillators (Figure 6 and Figure 7) by playing Game of Life on level-6 substitution tiling.

Figure 5: Eight still life patterns.

Figure 6: Period-4 oscillator.

6 Further Work

When playing *Game of Life* on Robinson Triangle tiling, all still life patterns we discover has four live cells. We would like to classify all 4-counter still lives. To find eight still lives, we used functions from Section 4 to play *Game of Life*. Instead of playing *Game of Life* using randomly generated live cell list, we consider using combinatorics to classify all possible scenarios when having four live cells in the distinct neighborhood of each tile type.

7 Acknowledgement

J. Reid and Polly Anderson endowment funded this research, and we thank them for the support of this research. Also, I would like to express my sincere thanks of gratitude to our advisor, Dr. May Mei for the supportive mentorship and guidance throughout the summer. Lastly, I want to acknowledge and thank Zheng Fang and Raghav Goel, who I worked together this summer, for great feedback and suggestions throughout the research.

Figure 7: Period-14 oscillator.

References

- [1] Colin Adams. The tiling book: An introduction to the mathematical theory of tilings. unpublished, N.D.
- [2] Julia Computing company. The julia programming language. https://julialang. org/, accessed January 28, 2022.
- [3] Martin Gardner. Mathematical games: The fantastic combinations of john conway's new solitaire game "life". *Scientific American*, 223(4):120–123, 1970.
- [4] Martin Gardner. Mathematical games: Extraordinary nonperiodic tiling that enriches the theory of tiles. *Scientific American*, 236(1):110–121, 1977.
- [5] Siobhan Roberts. The lasting lessons of john conway's game of life. https://www.nytimes.com/2020/12/28/science/math-conway-game-of-life. html?searchResultPosition=1, accessed June 1, 2022.
- [6] Bielefeld University. Penrose kite dart. https://tilings.math.uni-bielefeld.de/ substitution/penrose-kite-dart/, accessed June 18, 2022.
- Bielefeld University. Penrose pentagon boat star. https://tilings.math. uni-bielefeld.de/substitution/penrose-pentagon-boat-star/, accessed June 18, 2022.
- [8] Bielefeld University. Penrose rhomb. https://tilings.math.uni-bielefeld.de/ substitution/penrose-rhomb/, accessed June 18, 2022.
- [9] Bielefeld University. Robinson triangle. https://tilings.math.uni-bielefeld.de/ substitution/robinson-triangle/, accessed June 18, 2022.
- [10] Bielefeld University. Substitution. https://tilings.math.uni-bielefeld.de/ glossary/substitution/, accessed June 18, 2022.