
Distributed Search in Railway Scheduling Problems

Montserrat Abril, Miguel A. Salido, Federico Barber
Dpto. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
{mabril, msalido, fbarber}@dsic.upv.es

Abstract

Many problems of theoretical and practical interest can be
formulated as Constraint Satisfaction Problems (CSPs). Solv-
ing a general CSP is known to be NP-complete; however, dis-
tributed models may take advantage of dividing the problem
into a set of simpler interconnected sub-problems which can
be more easily solved. The purpose of this paper is three-
fold: first, we present a technique to distribute the constraint
network by means of selection of tree structures. Thus, the
CSP is represented as a meta-tree CSP structure that is used
as a hierarchy of communication by our distributed algorithm.
Then, a distributed and asynchronous search algorithm (DTS)
is presented. DTS is committed to solving the meta-tree CSP
structure in a Depth-First Search Tree. Finally, an intra-agent
search algorithm is presented. This algorithm takes into ac-
count the Nogood message to prune the search space. We
have focused our research on the railway scheduling problem
which can be distributed by tree structures. We show that our
distributed algorithm outperforms well-known centralized al-
gorithms.

keywords: Distributed Constraint Satisfaction Problems,
Tree Partition, Train Scheduling.

Introduction
Many real problems in Artificial Intelligence (AI) as well
as in other areas of computer science and engineering can
be efficiently modelled as Constraint Satisfaction Problems
(CSPs), which can be solved using constraint programming
techniques. Some examples of such problems include: spa-
tial and temporal planning, qualitative and symbolic reason-
ing, diagnosis, decision support, scheduling, hardware de-
sign and verification, real-time systems and robot planning.
Most of the work is focused on general methods for solving
CSPs.

However, many of the problems solved by using central-
ized algorithms are inherently distributed. Some works are
currently based on distributed CSPs (see special issue of Ar-
tificial Intelligence, Volume 161, 2005). Furthermore, many
researchers are working on graph partitioning (Schloegel,
Karypis, & Kumar 2003). The main objective of graph par-
titioning is to divide the graph into a set of regions so that
each region has roughly the same number of nodes and the
sum of all edges connecting different regions is minimized.

Preprint submitted to Elsevier

Researchers are almost always interested in the size of the
problems (nodes or edges), although a few studies have been
made on the graph structure of the sub-problems induced by
the partition (Miller 1986). For instance, one study seeks a
node-separator whose induced graph is Hamiltonian.

Graph partitioning can also be applied to constraint satis-
faction problems. Thus, we can use graph partitioning when
dealing with large-scale CSPs to distribute the problem into
a set of sub-CSPs. For instance, we can divide a CSP into
several subCSPs so that constraints among variables of each
sub-CSP are minimized (Salido & Barber 2006).

Otherwise, a domain-dependent partition can be used.
This requires a deeper analysis of the problem to be solved.
In this paper, we also show that a domain-dependent par-
tition obtains a more adequate distribution so that greater
efficiency is obtained.

In this paper, we present two techniques for structuring
and solving CSPs. To this end, the CSP is previously or-
ganized in a meta-tree CSP structure so that the original
constraint graph is partitioned into trees that represent sub-
problems. Thus, the search algorithm carries out the search
in each node in linear time (Freuder 1982), (Dechter & Pearl
1987).

Our research also focuses on the railway scheduling prob-
lem. Railway traffic has increased considerably, which has
created the need to optimize the use of railway infrastruc-
tures. This is, however, a hard and difficult task. Our aim
is to model the railway scheduling problem as a Constraint
Satisfaction Problem (CSP) and solve it using a distributed
CSP solver. Due to the topological properties of the railway
scheduling problem, the resultant CSP can be distributed in
semi-independent sub-problems so that the solution can be
solved easier.

In the following section, we summarize some definitions
about CSPs. A tree partition method is presented in sec-
tion 3. Our distributed algorithm for solving meta-tree CSP
structures is presented in section 4. We present our intra-
agent search method in section 5. In section 6, we describe
the railway scheduling problem. An evaluation of our meth-
ods over real railway networks is presented in section 7. Fi-
nally, we summarizes our conclusions in section 8.

Centralized, Distributed and Partitionable
CSPs

In this section, we present some basic definitions related
to CSPs, which will be convenient for our purposes and
will unify works from the constraint satisfaction community.
Then, we present three ways of solving a CSP: as a central-
ized problem, as a partitionable problem and as a distributed
problem.

A CSP consists of: a set of variables X =
{x1, x2, ..., xn}; each variable xi ∈ X has a set Di of pos-
sible values (its domain); a finite collection of constraints
C = {c1, c2, ..., cp} that restricts the values that the vari-
ables can simultaneously take.

A solution to a CSP is an assignment of values to all the
variables so that all constraints are satisfied; a problem with
a solution is termed satisfiable or consistent.

A binary constraint network is a network in which every
constraint subset involves at most two variables. In this case,
the network can be associated with a constraint graph, where
each node represents a variable and the arcs connect nodes
whose variables are explicitly constrained (Dechter 1992).

A meta-tree CSP structure is a tree whose nodes are com-
posed by trees. Thus, we will refer to the main tree as meta-
tree CSP structure and to each individual tree as single-
tree. We will define each node of the meta-tree CSP struc-
ture as meta-node and each individual and atomic node of
the trees as single-node. It can be deduced that each meta-
node corresponds to a single-tree. Each constraint between
two single-nodes of different meta-nodes is called inter-
constraint. Each constraint between two single-nodes of the
same meta-node is called intra-constraint.

Partition : A partition of a set C is a set of disjoint subsets
of C whose union is C. The subsets are called the blocks of
the partition.

Distributed CSP: A distributed CSP (DCSP) is a CSP in
which the variables and constraints are distributed among
automated agents (Yokoo & Hirayama 2000).

Each agent has some variables and attempts to determine
their values. However, there are inter-constraints and the
value assignment must also satisfy them. In our model, there
is a set of agents and each agent knows the set of constraints
and the domains of variables involved in these constraints.

Partition of CSPs
There are many ways to solve a CSP. However, these prob-
lems can be classified into three categories: centralized
problems, distributed problems, and partitionable problems.
• A CSP is a centralized CSP when there are no pri-

vacy/security rules between parts of the problem, and all
knowledge about the problem can be gathered into one
process. It is commonly recognized that centralized CSPs
must be solved by centralized CSP solvers. Many prob-
lems are represented as typical examples to be modelled
as a centralized CSP and solved using constraint program-
ming techniques. Some examples are: sudoku, n-queens,
map coloring, etc.

• A CSP is a distributed CSP when the variables, domains
and constraints of the underlying network are distributed

among agents. This distribution is carried out due to
many factors: constraints may be strategic information
that should not be revealed to competitors, or even to a
central authority; a failure of one agent can be less critical
and other agents might be able to find a solution without
the failed agent. Examples of such systems are sensor net-
works, meeting scheduling, web-based applications, etc.

• A CSP is a partitionable CSP when the global prob-
lem can be divided into smaller problems (sub-problems)
which must be coordinated to find the solution to the
global problem. For example, the search space of a CSP
can be divided into several regions, and a solution is found
by using parallel computing.

Given these three categories, we can conclude that a dis-
tributed CSP cannot be solved by centralized techniques.
However, can a centralized CSP be solved by distributed
techniques? The answer is ’yes’ if the CSP is partitionable
and the size of the problem is high enough to decompose
into a set of subproblems.

Real problems usually imply models with a great num-
ber of variables and constraints, causing dense networks of
inter-relations. Problems of this kind can be handled as a
whole only at overwhelming computational cost. Thus, it
could be an advantage to decompose problems of this kind
into several simpler interconnected sub-problems which can
be more easily solved.

For instance, the map coloring problem is a typically cen-
tralized problem. The goal of a map coloring problem is to
color a map so that regions sharing a common border have
different colors. Let’s suppose that each country of Europe
must be colored. Figure 1 (1) shows a colored portion of
Europe. This problem can be solved by a centralized CSP
solver. However, if the problem is to color each region of
each country of Europe (Spain, Figure 1(3); France, Figure
1(4)), it is easy to see that the problem can be partitioned
into a set of sub-problems that are grouped by clusters. This
problem can be solved as a distributed problem, even when
the problem is not inherently distributed.

A map coloring problem can be solved by first converting
the map into a graph where each region is a vertex and an
edge connects two vertices if and only if the corresponding
regions share a border. In our problem of coloring the re-
gions of each country of Europe, it can be observed that the
corresponding graph maintains clusters representing each
country (Spain, Figure 1(3); France, Figure 1(4)). Thus, the
problem can be solved in a distributed way.

Why Tree Partition?
As Rina Dechter states in (Dechter 1992), a problem is con-
sidered easy when it admits a solution in polynomial time.
In the context of constraint networks, a problem is easy if
an algorithm like backtracking can solve it in a backtrack-
free manner, i.e., without dead-ends, thus producing a so-
lution in linear time with regard to the number of variables
and constraints. Theoretical research has identified topolog-
ical features that determine this level of consistency and has
yielded tractable algorithms for transforming some networks
into backtrack-free representations.

(1) (2)

(3) (4)

Figure 1: map coloring of Europe.

A main topological feature is centered on a graphical
parameter called width, and the definitions are relative to
the primal constraint graph. An ordered (primal) constraint
graph is defined as one in which the nodes are linearly or-
dered to reflect the sequence of variable assignments exe-
cuted by the backtracking algorithm. The width of a node is
the number of arcs that connect that node to previous ones,
the width of an ordering is the maximum width of all nodes,
and the width of a graph is the minimum width of all or-
derings of that graph. It is known that only trees are width-
one graphs (Freuder 1982). An ordered constraint graph is
backtrack-free if the level of directional strong consistency
along this order is greater than the width of the ordered
graph. Thus, if the graph has width-one (i.e., it is a tree),
a directional two-consistency is sufficient (Dechter 1992) to
solve the problem in linear time.

How to Convert a binary CSP into a Meta-Tree
CSP Structure
Any binary CSP can be translated into a meta-tree CSP
structure. However, there are many ways to divide a graph
into trees. Depending on user requirements, it may be desir-
able to obtain balanced single-trees, that is, each single-tree
maintains roughly the same number of single-nodes; or it
may be desirable to obtain single-trees in such a way that
the number of edges connecting two single-trees are mini-
mized.

Due to the complexity of finding the best partition, our
technique finds an unbalanced tree partition in polynomial
time (n2 in the worst case, where n is the number of vari-
ables). It divides the problem into an undefined number of
trees.

The TreePartition algorithm (Algorithm 1) divides the
network graph G into k sub-graphs which are trees. The
nodes and edges of graph G are the variables and constraints

of the CSP, respectively. TreePartition randomly selects a
root node that does not belong to another sub-graph, then
the SearchTree function constructs a tree. This function re-
cursively carries out a Depth First Search in graph G. The
SearchTree function selects a new node i which is connected
with VarNode and whose inclusion in the present Tree does
not introduce a cycle, that is, node i is not connected with
another node of the present Tree. Node i is marked as vis-
ited; it indicates that this node already belongs to one tree.
Tree construction finishes when either there are no unvisited
nodes or the remainder nodes introduce cycles in the present
tree. The TreePartition algorithm finishes when all nodes of
G belong to any sub-graph.

Algorithm TreePartition(G)

Input: Graph G, originally all nodes are unvisited.
Start meta-node v of G

Output: Tree partition

Tree partition=Ø;
while G6= Ø do

Tree=Ø;
RootNode = selectNode(G);
insert RootNode into Tree;
mark RootNode as visited;
SearchTree(G,RootNode,Tree);
insert Tree into Tree partition;

end
end
function SearchTree(G, VarNode, Tree)

forall i adjacent(1) to VarNode ∧ i unvisited do
if NoCycle(i,Tree) then

insert i into Tree;
mark i as visited;
SearchTree(G,i,Tree);

end
end
/* (1) two single nodes are

adjacent if at least one
constraint exists between them.
*/

Algorithm 1: TreePartition Algorithm.

The next step is to build the meta-tree CSP structure with
k meta-nodes that will be studied by agents. This meta-tree
CSP structure is used as a hierarchy to communicate mes-
sages between meta-nodes. The meta-tree CSP structure is
built using Algorithm 2. The nodes and edges of graph G
are, respectively, the meta-nodes and inter-constraints ob-
tained after the CSP partition. The root meta-node is ob-
tained by selecting the most constrained meta-node. The
MetaTreeCSPStructure algorithm then simply puts meta-
node v into the meta-tree CSP structure (process(v)); it ini-
tializes a set of markers to indicate which vertices have
been visited; it chooses a new meta-node i and then calls
MetaTreeCSPStructure(G,i) recursively. If a meta-node has
several adjacent meta-nodes, it would be equally correct to
choose them in any order, but it is very important to delay
the test for whether a meta-node is visited until the recursive

calls for previous meta-nodes are finished.

Algorithm MetaTreeCSPStructure(G,v)

Input: Graph G, originally all nodes are unvisited.
Start meta-node v of G

Output: meta-tree CSP structure

process(v);
mark v as visited;
forall meta-node i adjacent(1) to v unvisited do

MetaTreeCSPStructure(G,i);
end
/* (1) meta-node i is adjacent to

meta-node v if at least one
inter-constraint exists between i
and v. */

Algorithm 2: MetaTreeCSPStructure Algorithm.

Our aim is to solve CSPs by dividing the constraint graph
by means of trees. Figure 3-1 shows a simple example of
CSP. In Figure 3-2, this CSP has been divided into several
trees and has been translated into a meta-tree CSP structure.

DFSTreeSearch Algorithm (DTS)
In the specialized literature, there are many works about
distributed CSPs. In (Yokoo & Hirayama 2000), Yokoo et
al. present a formalization and algorithms for solving dis-
tributed CSPs. These algorithms can be classified as central-
ized methods, synchronous backtracking or asynchronous
backtracking (Yokoo & Hirayama 2000).

Our algorithm, called DFSTreeSearch (DTS), can be con-
sidered as a distributed and asynchronous algorithm. DTS
is committed to solving the meta-tree CSP structure in a
Depth-First Search Tree (DFS Tree) where the root meta-
node is composed of the most constrained single-tree (in
the sense that this single-tree maintains a higher number of
single-nodes). DFS trees have already been investigated as a
means to boost search (Decher 2003). Due to the relative in-
dependence of nodes lying in different branches of the DFS
tree, it is possible to perform search in parallel on these in-
dependent branches.

Once the variables are divided and arranged, the problem
can be considered as a distributed CSP, where a group of
agents manages each single-tree with its variables (single-
nodes) and its constraints (intra-constraints). Each agent is
in charge of solving its own sub-problem by means of any
search method. Each sub-problem is composed of its CSP,
which is subject to the variable assignment generated by the
ancestor agents in the meta-tree CSP structure.

Thus, the root agent works on its sub-problem (root meta-
node). If the root agent finds a solution, then it sends the
consistent partial state to its children agents in the meta-tree
CSP structure, and all children work concurrently to solve
their specific sub-problems knowing the consistent partial
states assigned by the root agent. When a child agent finds
a consistent partial state, it again sends this partial state to
its children and so on. Finally, leaf agents try to find a so-
lution to their own sub-problems. If each leaf agent finds a
consistent partial state, it sends an OK message to its parent

Problem Solutions

Tree-

Decomposition c(1): block1

c(2):block2

c(3):block3

c(4):block4

Constraint

Partition

Meta-Tree Order

Time steps

Agents

c(1)

a1

c(2)

a2

c(3)

a3

c(4)

a4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...

a1

a2

a3

a4

s11 + s4...

s11+s21+s3...

N
o
g
o
o
d

S
to
p

s12+s22

s12 + s41

s12+s22+s3...

S
o
lu
ti
o
n

N
o
g
o
o
d

s12+s23

s12+s23+s31 S
o
lu
ti
o
n
S
o
lu
ti
o
n

P
ro
b
le
m
 S
o
lu
ti
o
ns11 s12

s11+s21

24 25

Figure 2: Execution of DFSTreeSearch Algorithm.

agent. When all leaf agents answer their parents with OK
messages, a solution to the entire problem is found. When a
child agent does not find a solution, it sends a Nogood mes-
sage to the parent agent. The Nogood message contains the
variables that empty the variable domains of the child agent.
When the parent agent receives a Nogood message, it stops
the search carried out by the children and tries to find a new
solution taking into account the Nogood information and so
on. If a parent agent finds a new solution, it will start the
same process again sending this new solution to its children.
Each agent works in the same way with its children in the
meta-tree CSP structure. However, if the root agent does not
find a solution, then DTS returns no solution found.

The top of Figure 2 shows our technique for partitioning
a CSP into a meta-tree CSP structure. Then, DTS is carried
out. Once the CSP is partitioned, the root agent (a1) starts
the search process finding a partial solution. It sends this
partial solution to its children. Agents that are brothers are
committed to concurrently finding the partial solutions of
their sub-problems. Each agent sends the partial problem
solutions to its children agents. A problem solution is found
when all leaf agents find their partial solution. For example,
(state s12+s41) + (state s12+s23+s31) is a problem solution.
The concurrence can be seen in Figure 2 in Time step 4 in
which agents a2 and a4 are concurrently working. agent a4

sends a Nogood message to its parent (agent a1) in step 9
because it does not find a partial solution. Then, agent a1

stops the search process of all its children and it finds a new
partial solution which is sent to its children. Now, agent a4

finds its partial solution, and agent a2 works with its child,
agent a3, to find their partial problem solution. When agent
a3 finds its own partial solution, the global problem will be
found. This happens in Time step 25.

Example
Figure 3 shows an example to analyze the behavior of DTS.

First, the constraint network of Figure 3(1) is partitioned
into three trees and the DFS tree is built (Figure 3(2)). Agent

a finds its first partial solution (X1 = 1, X2 = 1) and sends
it to its children: agents b and c (see Figure 3(3)). This is a
good partial solution for agent c (Figure 3(4)); however this
partial solution empties the X3 variable domain. Thus, agent
b sends a Nogood message to its father (Nogood (X1 = 1))
(Figure 3(5)). Then, agent a processes the Nogood mes-
sage, prunes its search space, finds a new partial solution
(X1 = 2, X2 = 2) and sends it to its children (Figure 3(6)).
At this point in the process, agent c sends a Nogood mes-
sage to its father (Nogood (X1 = 2)) because X5 variable
domain is empty (Figure 3(7)). Agent a stops the search of
agent b (Figure 3(8)) and then processes the Nogood mes-
sage, prunes its search space, finds a new partial solution
(X1 = 3, X2 = 3) and sends it to its children (Figure 3(9)).
Since this last partial solution is good for both children, they
respond with an OK message and the search ends (Figure
3(10)), and returns the solution presented in Figure 3(11).

Figure 3: Example of DTS execution.

Intra-agent search
In section 4, we showed the distributed algorithm DTS for
solving distributed CSPs, and we pointed out that each agent
is in charge of solving its own sub-CSP by means of a search
method. Agents are free to select their own search methods
in order to find partial solutions.

In this section, we propose a new algorithm to solve sub-
CSPs with a tree structure: Tree Search Algorithm (TSA).
This algorithm is based on the theorem presented in (Decher
2003): ”Let d be a width-1 ordering of a constraint tree
T. If T is arc-consistent relative to d, then the network is
backtracking-free along d”. Therefore, TSA finds a par-
tial solution in polynomial time. Furthermore, our algo-
rithm is based on Nogood message, which allows us to
prune the search space.

TSA(G, Nogood message)

Input: Constraint Graph G={X,E} where E is a set of
constraints and X={x1, ..., xn} is a set of
variables ordered according to d=(x1, ..., xn);
Nogood message: set of inconsistent variables.

Output: partial solution

if Nogood message==Ø then
DAC(G); /* apply directional

arc-consistency along d. */
if ∀Xi: Di 6= Ø then

solution ← assignValue(1);
else

return NO SOLUTION;
end

else
markVarNogood(X , Nogood message);
if ((∃ xj ,xs ∈ X: xj , xs ∈ Nogood message
and s > j) and (@ xt ∈ X:(xt ∈
Nogood message ∧ j < t < s)) then

set value(xj) restricted by xs;
reviewDAC(xj ,xs);

else
reviewDAC(xj ,x1);

end
solution← NO SOLUTION;
while solution == NO SOLUTION do

k←j;
while (k ≥ 1 and Dk==Ø) do

k←previousV arNogood;
end
if k < 1 then

return NO SOLUTION;
else

foreach xi ∈ X / j ≤ i < n do
reset effects of xi ←value(xi);

end
solution← assignValue(k);
if @ xi ∈ Nogood message: xi changed
value(xi) then

solution← NO SOLUTION;
markVarNogood(X ,Nogood message);
set value(xj) restricted by xs;
reviewDAC(xj ,xs);

end
end

end
end
return solution;

Algorithm 3: Tree Search Algorithm.

reviewDAC(startVar, endVar)

if (parent(startV ar) < endV ar and
review(parent(startV ar),startV ar,endV ar)) then

reviewDAC(parent(startV ar),endV ar);
end

Algorithm 4: ReviewDAC Algorithm.

review(i, j, end)

removed← false;
foreach v ∈ Di do

if (@ y ∈ Di / cij is true then
set v restricted by xfin;
removed← true;

end
end
return removed;

Algorithm 5: Review Algorithm.

assignValue(i)

xi ← as: as ∈ Di;
foreach xj / xj is child of xi do

prune Dj according to (xi ← as and cij)
end
if i < n then

unmark xi+1 varNogood;
assignValue(i + 1);

end
Algorithm 6: AssignValue Algorithm.

markVarNogood(Var, Nogood message)

xi ← as: as ∈ Di;
foreach xi / (xi ∈ V ar and xi ∈ Nogood message)
do

mark xi as V arNogood;
xj ← parent(xi);
while xj 6= Ø do

mark xj as V arNogood;
xj ← parent(xj);

end
end

Algorithm 7: MarkVarNogood Algorithm.

The algorithms 3, 4, 5, 6 and 7 show the pseudo-code
of the Tree Search Algorithm (TSA). Algorithm 3 shows
the main function of TSA and the others show the auxil-
iary functions. The main algorithm starts with a tree net-
work structure and a width-1 ordering d. TSA has a dif-
ferent behavior for finding the first solution of the subprob-
lem than for finding the rest of the solutions of the subprob-
lem. To find the first solution, TSA carries out directional
arc-consistency along d. If the network is directional arc-
consistent, then TSA uses the algorithm assignV alue(1)
following the established order d to ensure that no back-
tracking will be necessary. If the network is not directional
arc-consistent, then the problem is not consistent and returns
NO − SOLUTION .

If TSA receives a Nogood message and Xj is the high-
est variable included in the Nogood message(according to
ordering d), TSA bounds the search space by means of
avoiding the domains of higher variables to Xj . Thus, any
valid partial solution can be lost due to the fact that the re-
moved search space is not consistent with the entire prob-
lem. We must take into account that no variable included

in the Nogood has been assigned to any other value of its
domain.

Once TSA receives a Nogood message, it labels all the
variables involved in the Nogood message and the preced-
ing variables, (according to d), as V arNogood. Then TSA
carries out the algorithm reviewDAC because a value cor-
responding to the variables involved in the Nogood message
has been removed or bounded. To carry our this task, we
must take into account two different cases:

• If the Nogood message maintains only one variable (Xj)
owned by the agent, then the assigned value of this vari-
able must be removed and the algorithm reviewDAC must
check the domains of the variables ranging between X1

and Xj to ensure that these variables guarantee directional
arc-consistency. It is not necessary to check directional
arc-consistency for the rest of the variables due to the fact
that the value removed from variable Xj does not affect
to the rest of the variables.

• If the Nogood message maintains more than two vari-
ables, the current value of variable Xj (the variable with
the highest order, according to d, included in the Nogood
message) will not be removed. However it will be labelled
as bounded by the value of variable Xs (the second vari-
able with the highest order, according to d, involved in the
Nogood message). In this case, the algorithm reviewDAC
must check the domains of variables ranging between Xj

and Xs since when to as Xs changes its current value, the
value of Xj that is bounded by Xs will be included in the
domain again.

The algorithm reviewDAC only checks directional arc-
consistency in the branch of the tree that is involved in the
removal of a value of a variable, since this does not affect
any other branch of the tree.

The following step in the search process is to backtrack to
the highest variable involved in the Nogood message Xj . To
this end, TSA searches the first variable with no empty do-
main from Xj , in decreasing order. If no variable is found,
then TSA returns NO−SOLUTION . Otherwise, if a vari-
able Xk has no empty domain, then TSA unassigns the value
of all the variables that are higher than Xk according to d
(Xk included). Then, TSA calls algorithm assignV alue to
assign values to variables from Xk to Xn. To prevent the
new solution generating the same Nogood message, TSA
searches for a solution with different value assignments in, at
least, one of the variables involved in the previous Nogood
message.

Next, we show an example of TSA execution. It is based
on the DCSP shown in Figure 4. This figure shows a CSP
divided into two sub-problems with tree structure.

According to the DTS algorithm and TSA, the pro-
cess starts with the search for the first partial solution
in sub-problem 1. First, the TSA carries out a
directional arc-consistency according to ordering
d={X1,X2,X3,X4,X5,X6}. This action prunes the
domains of the variables X1 and X4 as shown in Figure
4. Then, sub-problem 1 has the partial solutions shown in
Figure 5.

X2< X1 X1> X4 X4< X6X4 X5X7<= X4X7X2 X9 X6X9X5X7<= X9X8 X7X10X8
X1<= X3

Figure 4: Example of DCSP with tree structure.

Figure 5: Set of valid partial solutions of Sub-P1 (Figure 4)
after directional arc-consistency.

Next, TSA assigns values to its variables. The
first partial solution included in the set of valid
partial solutions shown in Figure 5 is (X1=2,
X2=1,X3=2,X4=1,X5=2,X6=2). This first partial solution
is inconsistent with sub-problem 2 since assignments X2=1
and X4=1 empty the domain of X7. Therefore, the agents
that owns sub-problem 2 sends the Nogood message:
(X2=1, X4=1 to the other agent.).

When the agent that owns sub-problem 1 gets the Nogood
message (X2=1, X4=1), it marks the value of X4 restricted
by X2. It causes the pruning of seven partial solutions that
are valid for sub-problem 1 but which are inconsistent with
the global problem (see Figure 6). Next, this agent marks the
variables X4, X2 and X1 as varNogood and it searches for
a varNogood variable that has an available value beginning

with X4. The found variable is X1. Then this agent as-
signs new values beginning with X1 and it finds a new par-
tial solution: X1=3, X2=1,X3=3,X4=1,X5=2,X6=2 (Fig-
ure 7). This partial solution does not change any value
of the variables in Nogood message. Therefore, TSA
repeats the same process again: it marks the value of
X4 restricted by X2. Now, this causes the pruning of
three partial solutions (see Figure 7). TSA again marks
the variables X4, X2 and X1 as varNogood. In this
case, variable X4 is the first varNogood variable with
available values. Thus, TSA assigns new values begin-
ning with X4 and it obtains the partial solution: X1=3,
X2=1,X3=3,X4=2,X5=1,X6=3.

Figure 6: TSA pruning with Nogood-message
(X2=1,X4=1).

Figure 7: Second TSA pruning with Nogood-message
(X2=1, X4=1).

Again, the agent that owns sub-problem 2 sends a No-
good message (X5=1, X6=3) since the last partial solution
of sub-problem 1 empties the domain of X9. When the
agent that owns sub-problem 1 gets this Nogood message,
it marks the value of X6 restricted by X5, and it marks the
variables X5, X6 and their ancestors as varNogood. Be-
ginning with X6, the first variable with available values is
X5. The value reassignment, beginning with X5, obtains
the partial solution: X1=3, X2=1,X3=3,X4=2,X5=3,X6=3
(see Figure 8).

Finally, the last partial solution of sub-problem 1 is con-
sistent with sub-problem 2, for example with the assign-

ment: (X7=2, X8=1, X9=3, X10=2). Then, we have a global
solution and the DTS algorithm finishes.

Figure 8: TSA pruning with Nogood-message
(X5=1,X6=3).

Figure 8 shows that thanks to the Nogood messages, TSA
has pruned eleven partial solutions of sub-problem 1 that
are inconsistent with sub-problem 2.

Railway Scheduling Problem
Train timetabling is a difficult and time-consuming task, par-
ticularly in the case of real networks where the number of
constraints and the complexity of constraints grow drasti-
cally. A feasible train timetable should specify the departure
and arrival time of each train to each location of its jour-
ney, in such a way that the line capacity and other opera-
tional constraints are taken into account. Traditionally, train
timetables are generated manually by drawing trains on a
time-distance graph called a running-map. The train sched-
ule is generated from a given starting time and is manually
adjusted so that all constraints are met. High priority trains
are usually placed first followed by lower priority trains. It
can take many days to develop train timetables for a line,
and the process usually stops once a feasible timetable has
been found. The resulting plan of this procedure may be far
from optimal.

A sample of a running map is shown in Figure 9, where
several train crossings can be observed. A running map
contains information regarding railway topology (stations,
tracks, distances between stations, traffic control features,
etc.) and the schedules of the trains that use this topology
(arrival and departure times of trains at each station, fre-
quency, stops, crossings, etc,). The names of the stations are
presented on the left side of Figure 9, and the vertical line
represents the number of tracks between stations (one-way
or two-way). The horizontal line represents the time.

The literature of the 1960s, 1970s, and 1980s related
to rail optimization was relatively limited. Compared to
the airline and bus industries, optimization was generally
overlooked in favor of simulation or heuristic-based meth-
ods. However, (Cordeau, Toth, & Vigo 1998) point out
greater competition, privatization, deregulation, and increas-
ing computer speed as reasons for the more prevalent use of
optimization techniques in the railway industry. Our review

INFORM

Stations

Halts

Time

Paths

Tracks

Figure 9: Example of a running-map

of the methods and models that have been published indi-
cates that the majority of authors use models that are based
on the Periodic Event Scheduling Problem (PESP) intro-
duced by (Serafini & Ukovich 1989). The PESP considers
the problem of scheduling as a set of periodically recurring
events under periodic time-window constraints. The model
generates disjunctive constraints that may cause the expo-
nential growth of the computational complexity of the prob-
lem depending on its size. (Schrijver & Steenbeek 1994)
have developed CADANS, a constraint programming- based
algorithm to find a feasible timetable for a set of PESP con-
straints. The scenario considered by this tool is different
from the scenario that we have used in this work; therefore,
the results are not easily comparable. The train scheduling
problem can also be modeled as a special case of the job-
shop scheduling problem ((Silva de Oliveira 2001), (Walker
& Ryan 2005)), where train trips are considered jobs that are
scheduled on tracks that are regarded as resources.

Our goal is to model the railway scheduling problem as a
Constraint Satisfaction Problem (CSP) and to solve it using
constraint programming techniques. However, due to the
huge number of variables and constraints that this problem
generates, a distributed model is developed to distribute the
resultant CSP into semi-independent sub-problems so that
the solution can be found efficiently.

Variables and Constraints in the Railway
Scheduling Problem
The variables of the railway scheduling problem are the ar-
rival and departure times of trains at stations. The domain
of the variables is the time with a granularity of minutes.
There are three groups of scheduling rules in our railway
scheduling problem: traffic rules, user requirements rules
and topological rules. A valid running map must satisfy the
above rules. These scheduling rules can be modelled using
the following constraints, where variable TAi,k represents
that train i arrives at station k and the variable TDi,k means
that train i departs from station k:

1. Traffic rules guarantee crossing and overtaking opera-
tions. We assume two trains (i and j) going in opposite

directions between stations k and k + 1. The main con-
straints to take into account are:
• Reception time constraint. There exists a given time to

detour a train back from the main track so that crossing
or overtaking can be performed (RecT).

(TAi,k + RecTi < TAj,k) ∨ (TAj,k + RecTj < TAi,k)

• Expedition time constraint. There exists a given time
to put a train back on the main track so that crossing or
overtaking can be performed (ExpT).

(TDi,k + ExpTi < TDj,k) ∨ (TDj,k + expTj < TDi,k)

• Crossing constraint: Any two trains going in opposite
directions must not simultaneously use the same one-
way track.
(TDi,k +Ti,(k k+1) < TDj,k+1)∧(TDi,k < TDj,k+1 +Tj,(k+1 k))

∨

(TDi,k+Ti,(k k+1) > TDj,k+1)∧(TDi,k > (TDj,k+1+Tj,(k+1 k))

• Overtaking constraint: Two trains (i and s) going at
different speeds in the same direction can only overtake
each other at stations.
(TDi,k < TDs,k) ∧ (TDi,k + Ti,(k k+1) < TDs,k + Ts,(k k+1))

∨

(TDi,k > TDj,k) ∧ (TDi,k + Ti,(k k+1) > (TDs,k + Ts,(k k+1))

Reception Expedition

Incoming train

Station

Detoured train

Expedition Time

Reception Time

 Time

Crossing

Figure 10: Constraints related to crossing and overtaking in
stations

2. User Requirements: The main constraints due to user
requirements are:
• Type and Number of trains going in each direction to

be scheduled.
• Path of trains: Locations used and Stop time for com-

mercial purposes in each direction.
TDi,k = TAi,k + StopTimei,k

• Scheduling frequency. Train departure must satisfy
frequency requirements in both directions. It could be
a fixed time (1) or a time interval (Freq ± δ) (2). Fre-
quency is a very tight constraint and is only sometimes
required.
(1) TDi+1,k = TDi,k + Freq

(2) (TDi,k + Freq − δ) ≤ TDi+1,k ≤ (TDi,k + Freq + δ)

• Departure interval for the departure of the first trains
going in both the up and down directions.

StartTimei < TDi,1 < EndTimei

3. Railway infrastructure topology and type of trains to
be scheduled give rise to other constraints to be taken into
account. Some of them are:

• Number of tracks in stations (to perform technical
and/or commercial operations) and the number of
tracks between two locations (one-way or two-way).

• Time constraints, between each two contiguous sta-
tions (Ti,(k k+1)).

TAi,k+1 − TDi,k = Ti,(k k+1)

Figure 11 shows the set of variables of two trains going in
opposite directions between stations A and E. After study-
ing the problem, we have detected an advantageous tree
partition of the railway scheduling problem. In Figure 11,
the edges between two variables represent time constraints
(TDi,k- TAi,k+1) and stop time constraints (TAi,k- TDi,k),
respectively; these constraints make up train paths and they
could be private information of railway operators. Figure 12
shows a clear tree partition of the railway scheduling prob-
lem where each sub-CSP has all variables of only one train
and the respective intra-constraints are time constraints and
time stop constraints that are usually fixed by railway op-
erators. The inter-constraints are the traffic rules that are
usually controlled by infrastructure managers.

Figure 11: Variables of two opposite trains.

Figure 12: Train-based tree partition.

Evaluation
In this section, we carry out an evaluation between DTS
and a centralized CSP solver. To this end, we have used
a well-known centralized CSP solver called Forward Check-
ing (FC). The classical binary version of FC ((Haralick & G.
1980)) has a prohibitive computational cost for the type of
problems evaluated in this section (a simple railway schedul-
ing problem with 4 trains could not be solved after 1 day of

execution); that is why we use the full path consistency For-
ward Checking algorithm (FCPath)1. This algorithm per-
forms full path consistency on future variables whenever the
current variable is instantiated.

This empirical evaluation of the railway scheduling prob-
lem was carried out over a real railway infrastructure that
joins two Spanish cities (La Coruna and Vigo). The journey
between these two cities is currently divided by 40 stations.
In our empirical evaluation, each set of random instances
was defined by the 3-tuple < n; s; f >, where n was the
number of periodic trains in each direction, s the number
of stations, and f the frequency (in minutes). The prob-
lems were randomly generated by modifying these parame-
ters. Usually, increasing the number of trains involves a CSP
with a greater number of variables; increasing the number of
stations involves a CSP with a greater number of variables
and a greater domain size; and decreasing the frequency in-
volves increasing the problem tightness because the number
of conflicts between trains is greater.

0,001

0,01

0,1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of Trains

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 13: Running Times in problems < n, 5, 60 >.

1000

10000

100000

1000000

10000000

100000000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of trains

C
C

C

TrainTrees RandomTrees FCPath

Figure 14: Concurrent constraint checks in problems
< n, 5, 60 >.

In this evaluation, we compare the running time and con-
current constraint checks (CCC) ((Meisels et al. 2002))
of DTS with a well-known centralized algorithm: FCPath.
DTS is executed over two different tree partitions: random

1FCPath was obtained from Van Beek page. It can be found in:
http://ai.uwaterloo.ca/ vanbeek/software/software.html

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of Trains

N
u

m
b

er
 o

f
M

es
sa

g
es

RandomTrees TrainTrees

Figure 15: Message exchanges in problems < n, 5, 60 >.

partition is obtained using the TreePartition algorithm (Al-
gorithm 1), which is a general tree partition method; train
partition is a domain-dependent partition, which has been
illustrated in Figure 12. It must be taken into account that
both types of partitions roughly generate the same number
of sub-problems and inter-constraints.

Figures 13 and 14 show the behaviors of DTS and FCPath
in several instances of n according to the tuple < n, 5, 60 >.
The number of trains (n) was increased from 1 to 20 trains
in each direction. It must be taken into account that both
graphs maintain a log10 scale. Figures 13 and 14 show that
DTS outperforms the FCPath algorithm, both random par-
tition and train partition, in all instances. Figure 13 shows
that DTS with train partition always has smaller running
times than DTS with random partition. However, Figure
14 shows that DTS with random partition sometimes has
fewer CCC than DTS with train partition. The last two as-
sertions seem to be contradictory, but the explanation is in
Figure 15: DTS with train partition exchanges fewer mes-
sages than DTS with random partition; thus, train partition
saves a lot of running time. This is due to the fact that train
partition involves better agent coordination.

0,001

0,01

0,1

1

10

100

1000

5 10 15 20

Number of Stations

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 16: Running Times in problems < 4, s, 60 >.

Figure 16 shows the behaviors of DTS and FCPath in sev-
eral instances of s according to the tuple < 4, s, 60 >, where
the number of stations (s) was increased from 5 to 20. It can

0,001

0,01

0,1

1

10

100

15 30 45 60

Frequency (Minutes)

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 17: Running Times in problems < 4, 10, f >.

be observed that DTS with train partition has a better behav-
ior than DTS with random partition and FCPath. In Figure
17, we evaluate the behavior of the algorithms with differ-
ent frequencies according to the tuple < 4, 10, f >, where
frequency was increased from 15 to 60 minutes. It can be ob-
served that sice the problem instances have the same number
of variables and domain size, both DTS with train partition
and FCPath have homogeneous behaviors. In general, both
graphs corroborate the good behavior of the DTS algorithm,
particularly with train partition.

Conclusions
We have presented three techniques for structuring and solv-
ing binary CSPs. The first one translates, in polynomial
time, the original binary graph into a meta-tree CSP struc-
ture, where each node in the meta-tree CSP structure is a
tree. The second technique is a distributed algorithm (DTS)
for solving the resultant meta-tree CSP structure. DTS ex-
ploits the linear complexity to solve each tree and minimizes
the storage of Nogoods. The third technique is an intra-
agent search algorithm. This algorithm takes into account
the Nogood message to prune the search space. These tech-
niques have been applied to the railway scheduling problem.
The evaluation shows that general distributed models have a
better behavior than the centralized model and that domain-
dependent distributed models are more efficient than general
ones. Thus, this technique may be appropriate for solving
centralized problems that can be divided into smaller sub-
problems.

Acknowledgements
This work has been partially supported by the research
projects TIN2007-29666-E and TIN2007-67943-C02-01
(Min. de Educacion y Ciencia, Spain-FEDER), FOM-
70022/T05 (Min. de Fomento, Spain), GV/2007/274 (Gen-
eralidad Valenciana) and by the Future and Emerging Tech-
nologies Unit of EC (IST priority - 6th FP), under contract
no. FP6-021235-2 (project ARRIVAL).

References
Cordeau, J.; Toth, P.; and Vigo, D. 1998. A survey of op-
timization models for train routing and scheduling. Trans-
portation Science 32:380–446.
Decher, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Dechter, R., and Pearl, J. 1987. Network-based heuristics
for constraint satisfaction problems. Artificial Intelligence
34:1–38.
Dechter, R. 1992. Constraint networks (survey). Encyclo-
pedia Artificial Intelligence 276–285.
Freuder, E. 1982. A sufficient condition for backtrack-free
search. Journal of the ACM 29:24–32.
Haralick, R., and G., E. 1980. Increasing tree efficiency
for constraint satisfaction problems. Artificial Intelligence
14:263–314.
Meisels, A.; Kaplansky, E.; Razgon, I.; and Zivan, R. 2002.
Comparing performance of distributed constraint process-
ing algorithms. In Proc. 4th Workshop on Distributed Con-
straint Reasoning.
Miller, G. 1986. Finding small simple cycle separators
for 2-connected planar graphs. Journal of Computer and
System Sciences 32:265–279.
Salido, M., and Barber, F. 2006. Distributed CSPs by
graph partitioning. Applied Mathematics and Computation
183:491–498.
Schloegel, K.; Karypis, G.; and Kumar, V. 2003. Graph
partitioning for high-performance scientific simulations.
Sourcebook of parallel computing 491–541.
Schrijver, A., and Steenbeek, A. 1994. Timetable construc-
tion for railned. Technical Report, CWI, Amsterdam, The
Netherlands.
Serafini, P., and Ukovich, W. 1989. A mathematical model
for periodic scheduling problems. SIAM Journal on Dis-
crete Mathematics 550–581.
Silva de Oliveira, E. 2001. Solving single-track railway
scheduling problem using constraint programming. Phd
Thesis. Univ. of Leeds, School of Computing.
Walker, C., S. J., and Ryan, D. 2005. Simultaneous dis-
ruption recovery of a train timetable and crew roster in real
time. Comput. Oper. Res 2077–2094.
Yokoo, M., and Hirayama, K. 2000. Algorithms for dis-
tributed constraint satisfaction: A review. Autonomous
Agents and Multi-Agent Systems 3:185–207.

