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Abstract

Time course measurements are becoming a common type of experiment in the use of microarrays. The temporal
order of the data and the varying length of sampling intervals are important and should be considered in clustering
time-series. However, the shortness of gene expression time-series data limits the use of conventional statistical mod-
els and techniques for time-series analysis. To address this problem, this paper proposes the fuzzy short time-series
(FSTS) clustering algorithm, which clusters profiles based on the similarity of their relative change of expression
level and the corresponding temporal information. One of the major advantages of fuzzy clustering is that genes
can belong to more than one group, revealing distinctive features of each gene’s function and regulation. Several
examples are provided to illustrate the performance of the proposed algorithm. In addition, we present the validation
of the algorithm by clustering the genes which define the model profiles in Chu et al. (Science, 282 (1998) 699).
The fuzzyc-means,k-means, average linkage hierarchical algorithm and random clustering are compared to the
proposed FSTS algorithm. The performance is evaluated with a well-established cluster validity measure proving
that the FSTS algorithm has a better performance than the compared algorithms in clustering similar rates of change
of expression in successive unevenly distributed time points. Moreover, the FSTS algorithm was able to cluster in
a biologically meaningful way the genes defining the model profiles.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Microarrays revolutionise the traditional way of one gene per experiment in molecular biology[4].
With microarray experiments it is possible to measure simultaneously the activity levels of thousands of
genes.An appropriate clustering of gene expression data can lead to meaningful classification of diseases,
identification of co-expressed functionally related genes, logical descriptions of gene regulation, etc.

Time course measurements are becoming a common type of experiment in the use of microarrays.
The particularity of time-series, which has to be considered in the clustering analysis, is the temporal
information: the measurements ordered in time and sampled at specific intervals.An appropriate similarity
measure for gene expression time-series should be able to identify similar shapes which are formed by
the relative change of expressions in temporal information.

This paper is organised as follows: the effects of the temporal information in the comparison of shapes
are discussed first, followed by the related work. The next section defines the short time-series (STS) dis-
tance, develops the fuzzy short time-series (FSTS) algorithm using the standard fuzzyc-means algorithm
(FCM) as a template, and provides simple examples to demonstrate its performance. Then, the validation
of the algorithm is presented by clustering the genes which define the model profiles in[5]. The fuzzy
c-means,k-means, average linkage hierarchical algorithm and random clustering are used for compari-
son. A well-established validity measure relevant to gene expression clustering is applied to evaluate the
quality of the clusters. In addition, the results are discussed using the external biological criteria. Then,
the scopes and limitations of the FSTS algorithm are discussed. Finally, conclusions are presented in the
final section summarising the presented research.

2. Temporal information and clustering

To visualise the effects of the temporal information in the comparison of shapes consider the following
example. The microarray analysis ofSaccharomyces cerevisaeby Chu et al.[5] shows that PYC1 and SIP4
are two of the 52 genes that were induced rapidly and transiently after transfer to sporulation medium.
PYC1 is involved in the gluconeogenesis pathway as a pyruvate carboxylase and SIP4 is a transcription
factor, which interacts with the SNF1 protein kinase. These genes were part of the handpicked genes
selected for the “metabolic’’ model profile used in[5]. Consider a synthetic gene (GENEX), whose
standardised1 expression values are identical to those of SIP4 except for the first time point which has
a higher expression. Fig.1(a) illustrates the resulting profile along with the standardised values of PYC1
and SIP4. When comparing the similarity of SIP4 and GENEX to PYC1, it can be observed that PYC1
and SIP4 have a more similar induction period after transfer to sporulation medium. That is, the relative
change of expression from the first to the second measurement of PYC1 is more similar in SIP4 than
in GENEX, while all the other changes are equal in SIP4 and in GENEX. However, when using the
Euclidean distance to assess the similarity, PYC1 is more similar to GENEX (dE = 1.45) than to SIP4
(dE = 1.57). The Euclidean distance is invariant with respect to the order of the observations, therefore,
the direction of change of expression (i.e. up–down) is not considered. The next element to consider is
the length of sampling intervals. By including this not only the direction of the change is considered
but also the rate of change. Biological processes are sampled at shorter intervals of time when intense

1 Standardised values (zero mean and standard deviation of one) are utilised to eliminate shifting and scaling factors.
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Fig. 1. (a) When comparing the similarity of SIP4 and GENEX to PYC1, it can be observed that PYC1 and SIP4 have a more
similar induction after transfer to sporulation medium. (b) PYC1 and SIP4 at the original sampling points. (c) PYC1 and SIP4
with a shortened length of sampling interval between time points three and four. In all figures the vertical axis correspond to the
standardised log10 (expression ratio).

biological activity is taking place. For example, the “metabolic’’ model profile is characterised by a rapid
and transient induction after transfer to sporulation medium. To be able to identify this rapid induction, a
short sampling interval between the first and the second measurement is required. Overall, SIP4 follows
a similar profile to PYC1, except for the transition from the third to the fourth time point. Interestingly,
the relevance of this difference in the comparison of the profiles is related to the length of the sampling
interval. Fig.1(b) and (c) show the expression levels of PYC1 and SIP4 at the original sampling intervals
and at modified intervals, respectively. Although the expression levels are the same for both cases, the
similarity between the profiles is different, since the difference of the profiles between time points three
and four is emphasised by the short sampling interval in (c). That is, having the same absolute values
of expression, the rate of change is increased with smaller sampling intervals. However, the Euclidean
distance and the correlation coefficient discard the length of the sampling interval. In addition, given
the shortness of the expression time-series, a large correlation coefficient does not necessarily indicate
two similar profile shapes, nor does a small correlation coefficient necessarily indicate different profile
shapes[19].

Motivated by the need to differentiate these cases and considering the scarce number of time points,
we introduce a new similarity measure, which can capture the temporal information of the time-series
data to evaluate the similarity of temporal gene expression profiles. Based on the advantages of fuzzy
clustering for extracting biological insights[12], we have developed the FSTS clustering algorithm.
One of the most significant advantages of fuzzy clustering is that genes can belong to more than one
group, revealing distinct aspects of their functions and regulations. Other advantages include its intuitive
biological interpretation, and its conceptual, computational and algorithmic simplicity, which are usually
the main disadvantages of model-based algorithms.

2.1. Related work

The idea of conserving the temporal order in the measurements have been treated recently by several
authors using algorithms with different degrees of complexity. In[11] a similarity function for time-
series is proposed according to up–down weighted patterns of filtered series where the filtering process
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has several user-defined thresholds. In[19], the proposed algorithm is based on the statistical theory of
ordered-restricted inference that makes explicit use of ordering information. Candidate temporal profiles
are defined in terms of inequalities among mean expression levels at the time points. In[20], a first
order autoregressive model is used to represent the clusters following an agglomerative clustering. In
[18], a two-step approach is introduced to identify groups of points ordered in a line configuration in
particular locations and orientations of the data-space. These groups correspond to expressions in the
time domain which have the same parameters of linear transformation between successive time points. In
[15] a clustering method based on hidden Markov models is presented, the approach assumes that in each
group, gene expressions are generated by a Markov chain with certain probability models. All of these
methods consider the temporal order but do not include the length of sampling interval in the analysis.
In [6], cubic interpolation is used to reduce the non-uniform spacing between measurements, however,
the work is not intended to assess the similarity of the profiles. Some researches have already addressed
this important issue in model-based clustering. For example, in[1] statistical spline estimation are used
to represent time-series gene expression profiles as continuous curves. The method takes account of the
actual duration each time point represents and weights time points differently according to the sampling
interval. However, the method does require data to be sampled at a sufficiently high rate, hence, the
authors use one of the largest data sets available. Although the cubic splines are commonly used, they
are not suitable for short time-series[7]. Later, in [17], time-course gene expression data is clustered
using a mixed-effect model with B-splines. The authors utilised “long’’ gene expression time-series (12
and 18 time points) and four equally spaced knots. However, it is not always possible to use equally
spaced knots if the series are unevenly sampled and equally spaced knots cannot properly reflect the
unevenly distributed time points. In this paper we present an intuitive but systematic approach to include
the temporal information in the comparison of shapes taking advantages of already well-established fuzzy
c-means algorithm. We illustrate the algorithm with several simulated data sets and validated it using a
real experimental data set, i.e. Chu et al.[5] S. cerevisiaedata set.

3. Algorithm and implementation

3.1. Short time-series distance

This section presents a measure of similarity for microarray time-series data. The proposed similarity
measure is driven by the concept of similarity and the particular characteristics of the time-series generated
with microarray experiments. First, there is no clear definition of what “similar’’ time-series are in a
biological context. However, it is generally understood that similar expression profiles correspond to
similar shapes of expression. Therefore, it is a common practice to use lines between time points rather
than isolated points for aiding a visual comparison. Second, these series have two main properties given
by the nature of the experiments generating them: they are short and usually unevenly sampled. When
the time-series are short, traditional statistical analyses are not always suitable. For example, in the case
of an autoregressive model[20], the order of the model is very restricted by the low number of time
points available in gene expression time-series. In[7] the authors identified that conventional techniques
for time-series analysis, such as Fourier analysis or autoregressive or moving-average modelling are not
suitable for the small number of data points as in most gene expression time-series data. As an alternative,
the authors proposed to model the time-series with linear splines. The problem of short time-series has
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being identified in other fields and has been treated with a particular focus on shape comparisons[21],
that is, using the idea of up–down patterns.

The objective here is to define a similarity measure that can capture the temporal information to evaluate
the similarity of temporal gene expression profiles. We approach the problem by considering the time-
series as piecewise linear functions and measuring the difference of slopes between them. In[22], the
expression level at each time point and the slopes between time points are included in the comparison
of profiles. However, the slopes were calculated based on a reduced time interval of one, not taking into
account the variable time intervals. By measuring the difference of the true slopes, we are able to include
in a meaningful way the length of sampling intervals, while considering the shape (i.e. up–down patterns)
of the series. The length of sampling interval can be understood as a weight; the farther apart in time
the expressions are, the less weight they have in the comparison. Considering a gene expression profile
x = [x1, x2, . . . , xnt ], wherent is the number of sampling time points, the linear functionx(t) between
two successive time pointstk and t(k+1) can be defined asx(t) = �kt + �k, wheretk � t � t(k+1), and
�k = (x(k+1) −xk)/(t(k+1) − tk) and�k = (t(k+1)xk − tkx(k+1))/(t(k+1) − tk). The proposed STS distance
corresponds to the square root of the sum of the squared differences of the slopes obtained by considering
time-series as linear functions between measurements. The STS distance between two time-seriesx and
v is thus defined as

d2
STS(x, v) =

nt∑
k=1

(
v(k+1) − vk

t(k+1) − tk
− x(k+1) − xk

t(k+1) − tk

)2

. (1)

The STS distance is able to identify that SIP4 is more similar to PYC1 than GENEX and it considers the
length of sampling intervals.

3.2. Fuzzy short time-series clustering algorithm

The wide variety of clustering algorithms available from various disciplines are distinguished by the
way in which they measure distances between objects and the way they group the objects based upon
the measured distances[10]. In the previous section we already discussed the way in which we desire
the “distance’’ between objects to be measured; hence, in this section, we focus on grouping the objects
based upon the measured distance. For this purpose we select the fuzzy clustering scheme as a template
for our development, since fuzzy sets are a more realistic approach to address the concept of similarity
than classical sets. A classical set has a crisp or hard boundary where the constituting elements have only
two possible values of membership. In contrast, a fuzzy set has fuzzy boundaries where each element is
given a degree of membership providing information about the influence of a given gene for the overall
characteristics of the cluster. In addition, a fuzzy approach inherently accounts for noise in the data
because it extracts trends, not precise values.

Fuzzy clustering is a partitioning-optimisation technique[3,14,23]. The objective function that mea-
sures the desirability of partitions is described by

J (x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij d2(xj , vi), (2)

wherenc is the number of clusters,ng is the number of vectors to cluster,uij is the value of the membership
degree of the vectorxj to the clusteri, d2(xj , vi) is the squared distance between vectorxj and prototype
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Fig. 2. Diagram of the iterative procedures for the FCM clustering algorithm. Considering the partition of a set
X = [x1, x2, . . . , xng ], into 2�nc < ng clusters, the fuzzy clustering partition is represented by a matrixU = [uik], whose
elements are the values of the membership degree of the objectxk to the clusteri, ui(xk) = uik .

vi , andw is a parameter (usually set between 1.25 and 2), which determines the degree of overlap of
fuzzy clusters.

The minimisation of the fuzzy objective function is a nonlinear optimisation problem that can be
solved using various methods. The most common method is the Picard Iteration through the first-order
conditions for stationary points of the function. Fig.2 illustrates the iterative procedure of the fuzzy
c-means algorithm, the most well known fuzzy clustering algorithm. Considering other fuzzy extensions,
the convergence is independent of the change in the distance function if the distances are all positive and
the prototypes are calculated accordingly to the minimisation of the objective function. A full review of
the minimisation and convergence of the FCM objective function can be found in[2].

In order to integrate the STS distance into the conventional fuzzy clustering scheme, it is necessary to
obtain the value of the prototypevi that minimises (2), when (1) is used as the distance. Substituting (1)
into (2) we obtain

J (x, v, u) =
nc∑
i=1

ng∑
j=1

uw
ij

nt∑
k=1

(
vi(k+1) − vik

t(k+1) − tk
− xj (k+1) − xjk

t(k+1) − tk

)2

. (3)

The partial derivative of (3) with respect tovik is

�J (x, v, u)

�vik

=
g∑

j=1

2uw
ij

(
akvi(k−1) + bkvik + ckvi(k+1)

)
(
tk − t(k+1)

)2 (
tk − t(k−1)

)2

+
g∑

j=1

2uw
ij

(
dkxj (k−1) + ekxjk + fkxj (k+1)

)
(
tk − t(k+1)

)2 (
tk − t(k−1)

)2 , (4)

where

ak = −(t(k+1) − tk)
2, bk = −(ak + ck), ck = −(tk − t(k−1))

2,

dk = (t(k+1) − tk)
2, ek = −(dk + fk), fk = (tk − t(k−1))

2.

Setting (4) equal to zero and solving forvik we have

akvi(k−1) + bkvik + ckvi(k+1) = mik, (5)
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where

mik = −

ng∑
j=1

uw
ij

(
dkxj (k−1) + ekxjk + fkxj (k+1)

)
ng∑
j=1

uw
ij

.

Eq. (5) yields an underdetermined system of equations. We know the relations of the prototype values
among the time points, but not the absolute value at each time point. That is, we know the slope but not
the absolute level. By adding two known fixed time points we can solve the underdetermined system of
equations for anynt . If we add the same two time points to all the time-series the similarity is not altered.
If the fixed values are zero, a general solution is easier to obtain. The length of the sampling interval
between the first real time point and the last fixed time point acts as a weight to the first real time point.
Additional time points should bet1 = −1 andt2 = 0, and the original time points should be scaled down
by substraction to start ast3 = 1. This avoids alteringv with the added fixed time points, since with this
configuration, the values ofa, c andf for the extra time points equal one and do not affect the products.
The prototypes can be calculated as shown in the following equation:

v(i, n) =
n−3∑
r=2


mir

r−1∏
q=1

cq


 n−1∏

q=r+1

aq +
n−1∏

q=r+1

cq +
n∑

p=r+3

n−1∏
j=p−1

cj

p−2∏
j=r+1

aj


/

n−1∏
q=2

cq




+

mi(n−1)

n−2∏
q=1

cq + mi(n−2)

n−3∏
q=1

cq(a(n−1) + c(n−1))


/

n−1∏
q=2

cq, (6)

where 1�i�nc, 3�n�nt + 2 (sincev(i,1) = 0 andv(i,2) = 0),mi1 = 0 andc1 = 1.
The change of the distance function has no effect in the optimisation of (2) with respect to the mem-

bership degree, therefore,uij can be calculated as in the FCM algorithm,

uij = 1
nc∑

q=1
(dSTS(xi, vj )/dSTS(xi, vq))1/(w−2)

. (7)

The same scheme of the iterative procedure as for the FCM, described in Fig.2 is followed, but the distance
and the prototypes are calculated using (1) and (6), respectively. Fig.3 provides the pseudocode of the
FSTS clustering algorithm. The three user-defined parameters in the FSTS algorithm, i.e., the number of
clustersnc, the threshold of membership to form the final crisp clusters�, and the fuzziness parameter
w are the same as in the FCM. The selection ofw for an optimal performance of fuzzy clustering for
microarray data is addressed in[8].

3.3. Illustrative examples

Simulated data sets are used to illustrate the FSTS clustering algorithm. In the figures displaying the
simulated data sets, Figs.4, 5, and7, the horizontal axis denotes time and the vertical axis denotes the
expression level.
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STEP 1: Initialisation

ng : number of genes
nt : number of time points
X : gene expression matrix (GEM)[ng × nt ]
nc : number of clusters
w : fuzziness parameter
� : threshold for membership
� : termination tolerance
t : time points

STEP 2: Addition of two fixed time points
t1 = −1,
t2 = 0,
tk+2 = tk − t1 + 1 for 1�k ≤ nt ,
X = [0[ng×2] X[ng×nt ]].

STEP 3: Initialisation of the partition matrix
Initialise the partition matrix randomly,U(0) [nc × ng].

STEP 4: Repeat forl = 1,2, ...
3.1 Compute the cluster prototypes:

v(i, 1)(l) = 0,
v(i, 2)(l) = 0,
Forv(i, n)(l) use Equation (6) 1� i�nc, 3�n�nt + 2.

3.2 Compute the distances using Equation (1), 1� i�nc and 1�j �ng .
3.3 Update the partition matrix:

if dSTSij > 0 for 1� i�nc, 1�j �ng , use Equation (7);

otherwiseu(l)
ij

= 0 if dSTSij > 0, andu(l)
ij

∈ [0,1] with
nc∑
i=1

u
(l)
ij

= 1.

Until ‖U(l) − U(l−1)‖ < �.

Fig. 3. Pseudocode of the FSTS clustering algorithm.

Table 1
Simulated profilex = [x1, x2, . . . , xnt ]. A group of time-series with similar shapes can be obtained by changing the initial value

Time points Value

x1 Initial value
x2 a2x1 + b2
x3 a3x2 + b3
...

...

xnt ant x(nt−1) + bnt

For the first test the data set is created as described in the following. Four groups are created where
each group of five time-series has the same parameters of linear transformation between time points, as
shown in Table1. That is, for the groupi, 1�i�4, xj (k+1) = aikxjk + bik with 1�k < nt and 1�j �5.
The values ofa andb were obtained randomly from normal distributions (�a = 1, s.d.a = 0.15 and
�b = 0, s.d.b = 1.) for each group.

The resulting simulated time-series, shown in Fig.4, is clustered using FCM, FSTS,k-means (KM)
and average linkage hierarchical clustering (HC) algorithms. The number of clusters was set to four for
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Fig. 4. All the algorithms tested (FCM, FSTS, KM and HC) are able to identify the constituting clusters. (a) Simulated Data with
added noise, (b) Constituting clusters.

all the algorithms. The Euclidean distance was used for KM and the correlation coefficient for HC. All
the algorithms are able to identify the four clusters successfully (FCM 41 out of 50 runs, FSTS 50 out of
50 runs, KM 23 out of 50 runs and HC 50 out of 50 runs). The clustering parameters arew = 1.6 and
� = 0.4 for the two fuzzy algorithms.

In the second test we added (independent) random noises at each measurement of the data set shown
in Fig.4. Normal variations with mean zero and standard deviation 0.65 were used. The resulting data set
is displayed in Fig.5. The number of clusters was set to four for all the algorithms. In this case only the
fuzzy clustering algorithms (FCM and FSTS,w = 1.65 and� = 0.35) were able to identify successfully
the constituting clusters. Fig.6 presents the FSTS clustering results of the first and the second test using
membership plots. These plots map the membership degrees into greyscales. Here, the genes are ordered
in the horizontal axis according to the original clusters. It can be seen that for the original data set the
memberships are well defined being all above 0.9, while for the noisy data set the memberships are more
spread but the clusters can still be identified with an� value of 0.35. Fuzzy clustering provides a natural
approach to dealing with noise. In contrast, hard clustering assumes that the constituting clusters are well
defined, that is, the elements can only belong to one cluster.

The third test considers a subset of the simulated data set shown in Fig.4. The original data set was
“resampled’’ selecting 10 time points randomly out of the 20 original time points. The resulting data
set, simulating unevenly sampled time-series, is shown in Fig.7. The number of clusters was set to four
for all the algorithms. In this case, only the FSTS algorithm (w = 1.2 and� = 0.6) can identify the
four clusters successfully, while FCM and HC can only identify two clusters correctly and KM does not
produce consistent results. Choosing different parameters for the FCM did not lead to any improvement.
The original information of each series is kept in the closest time points, and lost as time points are farther
apart. The FSTS can extract this information by weighting the comparisons with the length of sampling
intervals.
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Fig. 5. Only the fuzzy clustering algorithms (FCM and FSTS) are able to identify successfully the constituting clusters. (a)
Simulated Data with added noise, (b) Constituting clusters.

Fig. 6. FSTS clustering results, the membership degree of each gene to each cluster is mapped into a greyscale. The genes are
ordered in the horizontal axis according to the original clusters. (a) Simulated data set, (b) Simulated data set with added noise.

4. Clustering of temporal profiles

We clustered a subset of the microarray data on the transcriptional program of sporulation in budding
yeast collected and analysed by Chu et al.[5]. 2 DNA microarrays containing 97% of the known or
predicted genes ofS. cerevisiaewere used to explore the temporal program of gene expression during
meiosis and spore formation. Changes in the concentrations of mRNA transcripts from each gene were
measured at seven uneven time intervals. The authors distinguished seven temporal patterns of induced
transcription. They chose a set of representative genes from each of the seven expression patterns, and
the average for each set was calculated to create the seven model profiles. We clustered the genes used to

2Available fromhttp://cmgm.stanford.edu/pbrown/sporulation.

http://cmgm.stanford.edu/pbrown/sporulation
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Fig. 7. Only the FSTS algorithm is able to identify the constituting clusters successfully. (a) Unevenly resampled simulated data,
(b) Constituting clusters.

Table 2
Experimental data set: temporal model profiles

Metabolic Early I Early II Early-mid Middle Middle-late Late

ACS1 ZIP1 KGD2 YBL078C YSW1 CDC27 SPS100
PYC1 YDR374C AGA2 QRI1 SPR28 DIT2 YKL050C
SIP4 DMC1 YPT32 PDS1 SPS2 DIT1 YMR322C
CAT2 HOP1 MRD1 APC4 YLR227C YOR391C
YOR100C IME2 SPO16 KNR4 ORC3
CAR1 NAB4 STU2 YLL005C

YPR192W YNL013C YLL012W
EXO1

produce these models, these genes are listed in Table2. The available external validation and unevenly
sampling intervals of this small set of genes make it ideal for our comparative study. As in[5], the ratio of
each gene’s mRNA level to its mRNA level in vegetative cells just before transfer to sporulation medium
was calculated, followed by a log-transformation.

4.1. Cluster validation

As observed in[13], not all related genes are similarly expressed, and some unrelated genes have
similar expression patterns. Therefore, external biological validation cannot be used as the only means to
identify the best choice of similarity measure and clustering algorithm. In this paper we utilised a validity
index in addition to the external biological validation.
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Table 3
Summary of the Dunn’s Index for FSTS, FCM, KM, HC and random clustering of first simulated data

Mean Median SD Coef. of var.

FSTS 1.4660 1.4660 0 0
FCM 1.1890 1.4660 0.5598 0.4708
KM 0.9071 1.4660 0.6864 0.7566
HC 1.4660 1.4660 0 0
Random 0.0388 0.0384 0.002 0.0515

Table 4
Summary of the Dunn’s Index for FSTS, FCM, KM, HC and random clustering of second simulated data

Mean Median SD Coef. of var.

FSTS 0.6614 0.6614 0 0
FCM 0.6614 0.6614 0 0
KM 0.4794 0.4898 0.131 0.2732
HC 0.4843 0.4843 0 0
Random 0.2445 0.2388 0.0190 0.0777

Cluster validity measures the goodness of a clustering relative to others created by other clustering al-
gorithms, or by the same algorithms using different parameter values. In this study the correctness of the
clustering results is quantitatively evaluated by one of the well-established validity methods that has
been used for gene expression data. In addition, random clustering3 is utilised as a control in the
comparison[25].

The Dunn’s validity index[9] identifies clusters that are “compact and well separated’’. The index for
a specific number of clustersnc is defined as

Dnc = min
1� i �nc


 min

1�j �nc,j �=i


 �(ci, cj )

max
1�k�nc

�(ck)





 , (8)

where�(ci, cj ) defines the distance between clustersci andcj (intercluster distance);�(ck) represents the
intracluster distance of clusterck. The distance function used in this study is the proposed STS distance,
as it is relevant to the clustering of unevenly sampled time-series. This validity index has been used as a
meaningful validation method for gene expression data by Bolshakova and Azuaje (2003). Large values
of the index indicate the presence of compact and well-separated clusters, in this case, the compactness
and separation refer to the slopes formed between time points.

The index was used to evaluate the results of the simulated data sets of the previous section. Tables
3–5 show the results.

3 Random clustering is a random grouping of the data into a predefined number of clusters.
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Table 5
Summary of the Dunn’s Index for FSTS, FCM, KM, HC and random clustering of third simulated data

Mean Median SD Coef. of var.

FSTS 0.8093 0.8093 0 0
FCM 0.1833 0.1581 0.0551 0.3006
KM 0.3384 0.1581 0.3050 0.9013
HC 0.1520 0.1520 0 0
Random 0.0282 0.0275 0.0012 0.0425

Table 6
Summary of the Dunn’s Index for FSTS, FCM, KM, HC and random clustering of experimental data

Mean Median SD Coef. of var.

FSTS 0.132 0.132 0.004 0.028
FCM 0.111 0.106 0.007 0.063
KM 0.090 0.080 0.026 0.285
HC 0.113 0.113 0 0
Random 0.024 0.024 0.001 0.067

4.2. Methods and results

First, the data set is standardised to remove shifting and scaling factors. Next, it is clustered using
FSTS, FCM, KM, the average linkage HC algorithm and random clustering. The clustering parameters
arew = 1.6 and� = 0.4 for the two fuzzy algorithms. As for the simulated data set, the Euclidean
distance was used for KM and the correlation coefficient for HC. The number of clusters is set to seven,
since that is the number of model profiles constituting the data set. The data set is clustered by all the
above algorithms for 50 times and the Dunn’s index value of each method is calculated as described in
(8). Table6 summarises the results showing that the Dunn’s index for the FSTS results have the highest
value.

Although the validity measures are a useful tool for assessing clustering results, the results are discussed
in the following using the external biological criteria. Fig.8 presents the FSTS clustering results using
a membership plot. The genes are ordered based on Table2. In Figs.9–12, the horizontal axis denotes
time and the vertical axis denotes the normalised log10(expression ratio).

Metabolic model profile. Four (PYC1, SIP4, CAT2,YOR100C) of the six genes defined for this profile
are clustered together forming cluster 1. CAR1 has a higher membership degree to cluster 2, which is
formed by Early I genes. Cluster 2 is illustrated in Fig.9(a). CAR1 is not induced rapidly and transiently
after transfer to sporulation medium, instead it has a sustained induction after 0.5 h, peaking at time 5 h.
ACS1 does not show a high membership for a single cluster as illustrated in Fig.8(gene 1), its membership
is mainly distributed between cluster 2 and cluster 6, both formed by Early I genes.

Early I model profile. The genes forming this model profile are characterised by an early induction,
detectable 0.5 h after transfer to sporulation medium, and sustained expression throughout the rest of
the time course. Three (DMC1, HOP1, and IME2) of the five genes defined for this model profile were
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Fig. 8. FSTS clustering results, the membership degree of each gene to each cluster is mapped into a greyscale. The genes are
ordered based on Table2.
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Fig. 9. Early I model profiles. (a) Cluster 2, (b) ZIP1 and YDR374 in cluster 6.

clustered together in cluster 2, illustrated in Fig.9(a). The other two genes which form this model, ZIP1
and YDR374C shown in Fig.9(b), are grouped together in cluster 6. These two genes are very similar
to each other and well separated from most of the other genes, as illustrated in Fig.8 (genes 7 and 8).
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Fig. 10. Cluster 4 is formed by genes belonging to the Early II and Early-mid model profiles. (a) Cluster 4, (b) Early II profiles
in (a), (c) Early-mid profiles in (a).
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Fig. 11. Clusters 3 is formed by genes belonging to the Early II (MRD1 and SPO16), Early-mid and Middle model profiles.
(a) Cluster 3, (b) MRD1 and SPO16 in (a), (c) Early-mid profiles in (a), (d) Middle profiles in (a).
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Fig. 12. Cluster 7 contains the genes belonging to the Middle and Mid-Late model profiles. (a) Cluster 7, (b) Middle profiles in
(a), (c) Mid-Late profiles in (a).

The difference between the Early I genes in clusters 6 and 2 is that the formers present an increase in
expression until the 7 h rather than an early sustained one.

Early II model profile. This group is defined by a slightly delayed increase in transcript levels compared
to the Early I. These genes were clustered together in cluster 4 illustrated in Fig.10, except for two genes.
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MRD1 and SPO16 are contained in cluster 3 which is formed by Early-mid and Middle genes and is
shown in Fig.11. These two genes follow a continuously increasing induction until the 7th h. followed
by a decrease of expression. In contrast, the Early II genes belonging to cluster 4 show an fast induction
at time 2 h. and a sustained expression throughout the rest of the time course.

Early-mid model profile. This group has an early and a posterior middle induction around times 2 h. and
5–7 h. These genes were cluster together in cluster 4 (QRI1 and KNR4) and cluster 3 (PDS1,APC4, STU2,
YNL013C and EXO1), illustrated in Figs.10 and11, respectively. QRI1 and KNR4 have a repressed or
low expression after transfer to sporulation medium while the Early-mid genes in cluster 3 are induced
at this time. YBL078C does not show a high membership for a single cluster, its membership is mainly
distributed between cluster 3 and cluster 5 as illustrated in Fig.8 (gene 19).

Middle model profile. The genes were strongly induced between 2 and 5 h. These genes are found in
clusters 3 (YSW1, ORC3, YLL005C and YLL012W) and 7 (SPR28, SPS2 and YLR227C), illustrated in
Figs.11and12, respectively. The difference between the Middle genes in cluster 3 and cluster 7 is in the
first three time points; the genes in cluster 3 are induced earlier that those in cluster 7.

Mid-Late model profile. The genes were induced between 5 and 7 h. The three genes which form this
model profile are clustered together in cluster 7 as shown in Fig.12.

Late model profile. These genes were induced between 7 and 11.5 h. SPS100 does not show a high
membership for a single cluster, its membership is mainly distributed between cluster 4 and cluster 7, as
illustrated in Fig.8 (gene 37). YKL050, YMR322C and YOR391C are clustered together in cluster 5.

The FSTS clustering algorithm was able to cluster the 40 genes which form the above seven temporal
profiles into seven groups of similar expressions. Several clusters overlap and others are well differentiated.
The Chu et al. data set has being previously analysed by several authors. In[16], the clustering method of
[5] is modified to incorporate bootstrapping and assess the reliability of the results in terms of the stability
of the genes. The authors observed high correlation between profiles, specially between Early-Middle and
Middle profiles and conclude that these two clusters are too similar to be readily distinguished. These high
correlations can be observed in the FSTS clustering results. Early II and Mid-Early profiles are combined
in cluster 4, Mid-Early and Middle profiles are combined in cluster 3 and Middle and Mid-Late profiles
are combined in cluster 7. It can be observed in Fig.8 that the elements belonging to these profiles show a
spread membership among clusters 3, 4 and 7, while metabolic and Early I profiles are well distinguished
in clusters one and two.

5. Discussion

The STS distance is not sensitive to shifting but it is sensitive to scaling, which can be solved by
standardising the data set. However, the length of the sampling interval between the last fixed time point
and the first real time point acts as a weight to the first time point. If two series are identical but have
an offset, this offset will be measured indirectly by the slope between the last fixed time point and the
first real time point. So, future work could involve the study of the meaning of “parallel’’ series after
standardisation. A simple solution to avoid weighting the first time point could be the normalisation of
the data set by the first value.

In fuzzy clustering, the crisp clustering results are dependent on the cutoff point�. One possible
solution for the impact of the selection of a global� could be the choice of local� values, that is, different
thresholds for different clusters. With the membership plot presented in this paper it is possible to globally
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visualise the clustering results, so helping the selection of�. Fig.8 shows the genes ordered by classes in
the horizontal axis because the classes are already known. When the classes are unknown, a hierarchical
clustering of the membership degrees can be performed to order the genes and obtain a better visualisation
of the results. In this way, the membership plot can be utilised to identify genes with similar distribution
of membership degree across all the clusters.

One of the advantages of fuzzy clustering is that it provides useful tools for evaluating the results by
the use of the membership matrix. In this paper, the number of clusters was known in advance in both
simulated and real cases, nevertheless, there are several well established methods to estimate the number
of clusters, in particular for fuzzy clustering, see for example[24].

6. Conclusions

Clustering algorithms have been developed for various applications and within a range of disciplines.
In order to choose the most suitable algorithm for a particular application, the type of experiment and
the specific purposes of the research have to be considered. The concept of similarity is at the core of
any clustering algorithm and terms such as co-expression and “similar profiles’’ have to be well defined
within the biological context. In this paper we have introduced a metric in which the similarity is based
on the rate of change of expression levels across time, which is an intuitive biological idea of similar
behaviour across time.

Conventional clustering algorithms, based in the Euclidian distance or correlation coefficient are not
able to properly reflect the temporal information embedded in the distance metric. We tackled the problem
by considering the time-series as piecewise linear functions and measuring the difference of slopes
between the functions. Fitting a higher order function will be restricted by the few number of time
points. The proposed criterion is intended to provide a simple metric which can be easily interpreted and
addresses the particular characteristics of these time-series. Based on the advantages of fuzzy clustering
for identifying distinct features of genetic function and regulation[12], we have developed the FSTS
algorithm incorporating the new distance measure in the fuzzy-c-means clustering scheme. The FSTS
clustering algorithm presents a new approach to cluster time-series. It is particularly suited for short and
unequally sampled time-series, a situation that commonly occurs in many practical situations, particularly
in biological experiments.

We illustrated the algorithm with simulated data sets and validated it using a subset of the microarray
data on the transcriptional program of sporulation in budding yeast. The FSTS algorithm was able to
cluster in a biologically meaningful way the genes which define the model profiles defined in[5]. In
addition, the FSTS clustering algorithm showed better performance than the conventional algorithms in
the clustering of similar rates of change of expression across unevenly distributed time points.
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