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Abstract—A key requirement for seamless human-robot col-
laboration is for the robot to make its intentions clear to its
human collaborator. A collaborative robot’s motion must be
legible, or intent-expressive. Legibility is often described in the
literature as and effect of predictable, unsurprising, or expected
motion. Our central insight is that predictability and legibility
are fundamentally different and often contradictory properties
of motion. We develop a formalism to mathematically define and
distinguish predictability and legibility of motion. We formalize
the two based on inferences between trajectories and goals in
opposing directions, drawing the analogy to action interpretation
in psychology. We then propose mathematical models for these
inferences based on optimizing cost, drawing the analogy to the
principle of rational action. Our experiments validate our formal-
ism’s prediction that predictability and legibility can contradict,
and provide support for our models. Our findings indicate that for
robots to seamlessly collaborate with humans, they must change
the way they plan their motion.

Keywords—human-robot collaboration, motion planning, trajec-
tory optimization, formalism, manipulation, action interpretation

I. INTRODUCTION

In this paper, we explore the problem where a robot and a
human are working side by side to perform a tightly coupled
physical task together, like clearing a table (Fig.1, and a
running example in our paper).

The task amplifies the burden on the robot’s motion: it must
move in such a way that the human trusts and understands it.
In robotics and animation, this is often achieved by predictable
motion, that is expected – not surprising to a human, safe [1]
or stereotypical [2].

However, the robot is also faced with another, often more
critical burden of conveying its intent [3], e.g. which of the
two bottles it is going to pick up to clean in Fig.1. In robotics
and animation, this is often achieved by legible motion, that is
intent-expressive – it enables the inference of intentions [4], it
is “readable” [5], “anticipatory” [6], or “understandable” [7].

Predictable and legible motion can be correlated. For exam-
ple, in an unambiguous situation, where an actor’s observed
motion matches what is expected for a given intent (i.e. is
predictable), then this intent can be used to explain the motion.
If this is the only intent which explains the motion, the observer
can immediately infer the actor’s intent, meaning that the
motion is also legible. As a consequence, predictability and
legibility are often treated as an inseparable couple of desirable
properties of robot motion [1], [2], [8]–[10].

The writing domain, however, clear distinguishes the two.
The word legibility, traditionally an attribute of written text
[11], refers to the quality of being easy to read. When we write
legibly, we try consciously, and with some effort, to make our
writing clear and readable to someone else, like in Fig.1(top,
right). The word predictability, on the other hand, refers to the

Fig. 1. Above: Predictable, day-to-day, expected handwriting vs. legible
handwriting. Center: A predictable and a legible trajectory of a robot’s hand
for the same task of grasping the green object. Below: Predictability and
legibility stem from inferences in opposing directions.

quality of matching expectation. When we write predictably,
we fall back to old habits, and write with minimal effort, as
in Fig.1(top, left).

As a consequence, our legible and predictable writings are
different: our friends do not expect to open our diary and see
our legible writing style. They rightfully assume the diary will
be written for us, and expect our usual, day-to-day style.

In this paper, we show that legibility and predictability
are different in motion as well. Our main contribution is a
formalism that emphasizes this difference, showing that the
two properties stem from inferences in opposing directions
(Fig.1,below): expressing intent means enabling an observer to
infer the goal of the motion (an inference from a trajectory to a
goal), while matching expectation means matching the motion
inferred by an observer based on knowledge of the goal (an
inference from a goal to a trajectory). This opposition leads to
our central insight:

Predictability and legibility are fundamentally differ-
ent and often contradictory properties of motion.

Ambiguous situations, occurring often in daily tasks, make
this opposition clear: more than one possible intent can be
used to explain the motion observed so far, rendering the pre-
dictable motion illegible. Fig.1(center) exemplifies the effect
of this contradiction. The robot hand’s motion on the left is
predictable in that it matches expected behavior. The hand
reaches out directly towards the target. But, it is not legible,
failing to make the intent of grasping the green object clear. In
contrast, the trajectory on the right is more legible, making it
clear that the target is the green object by deliberately bending
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away from the red object. But it is less predictable, as it does
not match the expected behavior of reaching directly. We will
show in Sections III and IV how we can quantify this effect
with Bayesian inference, which allows us to derive, among
other things, the online probabilites of the motion reaching for
either object, illustrated as bar graphs in Fig.1.

Our work makes the following three contributions:

1. We formalize legibility and predictability in the context of
goal-directed motion in Section II as stemming from inferences
in opposing directions. The formalism emphasizes their differ-
ence, and directly relates to the theory of action interpretation
[12] and the concepts of “action-to-goal” and “goal-to-action”
inference. Our formalism also unifies previous descriptions
of legibility, quantifying readability and understandability, and
encouraging anticipation as a direct consequence of our defi-
nitions.

2. Armed with mathematical definitions of legibility and pre-
dictability, we propose a way in which a robot could model
these inferences in order to evaluate and generate motion that
is legible or predictable (Sections III and IV). The models are
based on cost optimization, and resonate with the principle of
rational action [13], [14].

3. We demonstrate that legibility and predictability are con-
tradictory not just in theory, but also in practice. We present
an extensive experiment for three characters that differ in
their complexity and anthropomorphism: a simulated point
robot, the bi-manual mobile manipulator HERB [15], and a
human (Section V). The experiment confirms the contradiction
between predictable and legible motion, and reveals interesting
challenges (Section VI). We found, for instance, that different
people expect a complex robot like HERB to act in different
ways: for a robot to be predictable, it must adapt to the
particulars of the observer.

The difference between legibility and predictability of
motion is crucial for human-robot interaction, in particular for
collaboration between humans and robots. Collaboration is a
delicate dance of prediction and action, where agents must
predict their collaborator’s intentions as well as make their
own intentions clear – they must act legibly. We are excited
to be taking an essential step towards better human-robot
collaboration: by emphasizing the difference between legibility
and predictability, we advocate for a different approach to
motion planning, in which robots decide between optimizing
for legibility and optimizing for predictability, depending on
the context they are in.

II. FORMALIZING LEGIBILITY
AND PREDICTABILITY

So far, we have identified that legible motion is intent-
expressive, and predictable motion matches what is expected.
Here, we formalize these definitions for the context of goal-
directed motion, where a human or robot is executing a
trajectory towards one goal G from a set of possible goals G,
like in Fig.1. In this context, G is central to both properties:

Definition 2.1: Legible motion is motion that enables an
observer to quickly and confidently infer the correct goal G.

Definition 2.2: Predictable motion is motion that matches
what an observer would expect, given the goal G.

A. Formalism

1) Legibility: Imagine an observer watching the orange
trajectory from Fig.1. As the robot’s hand departs the starting
configuration and moves along the trajectory, the observer is
running an inference, predicting which of the two goals it
is reaching for. We denote this inference function that maps
(snippets of) trajectories from all trajectories Ξ to goals as

IL : Ξ→ G
The bar graphs next to the hands in Fig.1 signify the observer’s
predictions of the two likely goals. At the very beginning, the
trajectory is confusing and the observer has little confidence in
the inference. However, the observer becomes confident very
quickly – even from the second configuration of the hand along
the trajectory, it becomes clear that the green object is the
target. This quick and confident inference is the hallmark of
legibility.

We thus formalize legible motion as motion that enables
an observer to confidently infer the correct goal configuration
G after observing only a snippet of the trajectory, ξS→Q, from
the start S to the configuration at a time t, Q = ξ(t):

IL(ξS→Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

This formalizes terms like “readable” [5], or “understand-
able” [7], and encourages “anticipatory” motion [6] because it
brings the relevant information for goal prediction towards the
beginning of the trajectory, thus lowering t. The formalism can
also generalize to outcome-directed motion (e.g. gestures such
as pointing at, waving at, etc.) by replacing the notion of goal
with that of an outcome – here, legible motion becomes motion
that enables quick and confident inference of the desired
outcome.

2) Predictability: Now imagine someone knowing that the
hand is reaching towards the green goal. Even before the robot
has moved, the observer creates an expectation, making an
inference on how the hand will move – for example, that the
hand will start turning towards the green object as it is moving
directly towards it. We denote this inference function mapping
goals to trajectories as

IP : G → Ξ

We formalize predictable motion as motion for which the
trajectory ξS→G matches this inference:

IP (G) = ξS→G

The better the actual trajectory matches the inference, mea-
surable for example using a distance metric between IP (G)
and ξS→G, the more predictable the trajectory is.

B. Connection to Psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
[12], [16]–[20], a result stemming from studies observing in-
fants and how they show surprise when exposed to inexplicable
action-goal pairings. Csibra and Gergeley [12] summarize two
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(G) = argmin
ξ∈ΞS:G

C(ξ ) (ξS:Q ) = argmax
G∈G

P(G |ξS:Q )

(G)
ξ S:Q

G1
G2

G

ξ *S→G = argmin
ξ∈ΞS→G

C(ξ ) G* = argmax
G∈G

P(G |ξS→Q )

ξ *S→G ξ S→Q
G1

G2

G

Fig. 2. In our models, the observer expects the robot’s motion to optimize
a cost function C (left), and uses that expectation to identity which goal is
most probable given the robot’s motion so far (right)

B. Connection to Psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
[11], [15]–[19], a result stemming from studies observing in-
fants and how they show surprise when exposed to inexplicable
action-goal pairings. [11] ] summarize two types of inference
stemming from the interpretation of actions as goal directed:
“action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will
eventually hold a cup of coffee). “Action-to-goal” inference
answers the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers the
question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ⇠S!Q 7! G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G 7! ⇠S!G, relates
naturally to “goal-to-action”.

C. Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. In what follows, we introduce one way for a
robot to model these two inferences (summarize in Fig.2), and
present an experiment that emphasizes the difference between
the two properties in practice.

III. MODELING PREDICTABLE MOTION

A. The Trajectory Inference IP

To model IP is to model the observer’s expectation. One
way the robot could do so is by assuming that the human
observer expects it to be a rational agent acting efficiently
[11] or justifiably [13] to achieve a goal. This is known as

the principle of rational action [12], [13], and it has been
shown to apply to non-human agents, including robots [20].
The robot could model this notion of “efficiency” via a cost
function defining what it means to be efficient. For example,
if the observer expected the robot’s hand to move directly
towards the object it wants to grasp (as opposed to taking
an unnecessarily long path to it), then “efficiency” would be
defined by the cost function penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C:

C : ⌅ ! R+

with lower costs signifying more “efficient” trajectories.
The most predictable trajectory is then the most “efficient”:

IP (G) = arg min
⇠2⌅S!G

C(⇠) (1)

C represents what the observer expects the robot to opti-
mize, and therefore encompasses every aspect of the observer’s
expectation, including (when available) body motion, hand
motion, arm motion, and gaze.

B. Evaluating and Generating Predictability

Predictability can be evaluated based on C: the lower
the cost, the more predictable (expected) the trajectory. We
propose a predictability score normalized from 0 to 1:

predictability(⇠) = exp
�
�C(⇠)

�
(2)

Generating predictable motion means maximizing this
score, or equivalently minimizing the cost function C – as
in (1). This presents two major challenges: learning C, and
minimizing C.

First, the robot needs access to the cost function C that
captures how the human observer expects it to move. If the
human observer expects human-like motion, animation (e.g.
[21]) or biomechanics (e.g. [22], [23]) literature can serve to
provide approximations for C. Our experiment (Section V)
uses trajectory length as a proxy for the real C, resulting in
the shortest path to goal – but this is merely one aspect of
expected behavior. As our experiment will reveal, efficiency
of robot motion has different meanings for different observers.
If the observer were willing to provide examples of what they
expect, the robot could learn how to act via Learning from
Demonstration [24]–[26] or Inverse Reinforcement Learning
[27]–[29]. Doing so in a high-dimensional space, however, is
still an active area of research.

Second, the robot must find a trajectory that minimizes C.
This is tractable in low-dimensional spaces, or if C is convex.
While efficient trajectory optimization techniques do exist for
high-dimensional spaces and non-convex costs [30], they are
subject to local minima, and how to alleviate this issue in
practice remains an open research question [31], [32].

away from the red object. But it is less predictable, as it does
not match the expected behavior of reaching directly. We will
show in Sections III and IV how we can quantify this effect
with Bayesian inference, which allows us to derive, among
other things, the online probabilites of the motion reaching
for either object, illustrated as bar graphs in Fig.1.

Our work makes the following three contributions:
1. We formalize legibility and predictability in the context
of goal-directed motion in Section II as stemming from
inferences in opposing directions. The formalism emphasizes
their difference, and directly relates to the theory of action
interpretation [11] and the concepts of “action-to-goal” and
“goal-to-action” inference. Our formalism also unifies pre-
vious descriptions of legibility, quantifying readability and
understandability, and encouraging anticipation as a direct
consequence of our definitions.
2. Armed with mathematical definitions of legibility and
predictability, we propose a way in which a robot could model
these inferences in order to evaluate and generate motion that
is legible or predictable (Sections III and IV). The models are
based on cost optimization, and resonate with the principle of
rational action [12], [13].
3. We demonstrate that legibility and predictability are contra-
dictory not just in theory, but also in practice. We present
an extensive experiment for three characters that differ in
their complexity and anthropomorphism: a simulated point
robot, the bi-manual mobile manipulator HERB [14], and a
human (Section V). The experiment confirms the contradiction
between predictable and legible motion, and reveals interesting
challenges (Section VI). We found, for instance, that different
people expect a complex robot like HERB to act in different
ways: for a robot to be predictable, it must adapt to the
particulars of the observer.

The difference between legibility and predictability of mo-
tion is crucial for human-robot interaction, in particular for
collaboration between humans and robots. Collaboration is a
delicate dance of prediction and action, where agents must
predict their collaborator’s intentions as well as make their
own intentions clear – they must act legibly. We are excited
to be taking an essential step towards better human-robot
collaboration: by emphasizing the difference between legibility
and predictability, we advocate for a different approach to
motion planning, in which robots decide between optimizing
for legibility and optimizing for predictability, depending on
the context they are in.

II. FORMALIZING LEGIBILITY
AND PREDICTABILITY

So far, we have identified that legible motion is intent-
expressive, and predictable motion matches what is expected.
Here, we formalize these definitions for the context of goal-
directed motion, where a human or robot is executing a
trajectory towards one goal G from a set of possible goals G,
like in Fig.1. In this context, G is central to both properties:
the intent is reaching the goal G, and what is expected depends
on G:

Definition 2.1: Legible motion is motion that enables an
observer to quickly and confidently infer the goal.

Definition 2.2: Predictable motion is motion that matches
what an observer would expect, given the goal.

A. Formalism

1) Legibility: Imagine someone observing the orange tra-
jectory from Fig.1. As the robot’s hand departs the starting
configuration and moves along the trajectory, the observer is
running an inference, predicting which of the two goals it
is reaching for. We denote this inference function that maps
(snippets of) trajectories from all trajectories ⌅ to goals as

IL : ⌅ ! G

The bar graphs next to the hands in Fig.1 signify the observer’s
predictions of the two likely goals. At the very beginning, the
trajectory is confusing and the observer has little confidence in
the inference. However, the observer becomes confident very
quickly – even from the second configuration of the hand along
the trajectory, it becomes clear that the green object is the
target. This quick and confident inference is the hallmark of
legibility.

We thus formalize legible motion as motion that enables an
observer to confidently infer the correct goal configuration G
after observing only a snippet of the trajectory, ⇠S!Q, from
the start S to the configuration at a time t, Q = ⇠(t):

IL(⇠S!Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

This formalizes terms like “readable” [4], or “understand-
able” [6], and encourages “anticipatory” motion [5] because it
brings the relevant information for goal prediction towards the
beginning of the trajectory, thus lowering t. The formalism can
also generalize to outcome-directed motion (e.g. gestures such
as pointing at, waving at, etc.) by replacing the notion of goal
with that of an outcome – here, legible motion becomes motion
that enables quick and confident inference of the desired
outcome.

2) Predictability: Now imagine someone knowing that the
hand is reaching towards the green goal. Even before the robot
starts moving, the observer creates an expectation, making an
inference on how the hand will move – for example, that the
hand will start turning towards the green object as it is moving
directly towards it. We denote this inference function mapping
goals to trajectories as

IP : G ! ⌅

We formalize predictable motion as motion for which the
trajectory ⇠S!G matches this inference:

IP (G) = ⇠S!G

The more the trajectory matches the inference, measurable
for example using a distance metric between IP (G) and
⇠S!G, the more predictable the trajectory is.

ξ *S→G = argmin
ξ∈ΞS→G

C(ξ ) G* = argmax
G∈G

P(G |ξS→Q )

ξ *S→G ξ S→Q
G1

G2

G

Fig. 2. In our models, the observer expects the robot’s motion to optimize
a cost function C (left), and uses that expectation to identity which goal is
most probable given the robot’s motion so far (right)

B. Connection to Psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
[11], [15]–[19], a result stemming from studies observing in-
fants and how they show surprise when exposed to inexplicable
action-goal pairings. [11] ] summarize two types of inference
stemming from the interpretation of actions as goal directed:
“action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will
eventually hold a cup of coffee). “Action-to-goal” inference
answers the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers the
question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ⇠S!Q 7! G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G 7! ⇠S!G, relates
naturally to “goal-to-action”.

C. Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. In what follows, we introduce one way for a
robot to model these two inferences (summarize in Fig.2), and
present an experiment that emphasizes the difference between
the two properties in practice.

III. MODELING PREDICTABLE MOTION

A. The Trajectory Inference IP

To model IP is to model the observer’s expectation. One
way the robot could do so is by assuming that the human
observer expects it to be a rational agent acting efficiently
[11] or justifiably [13] to achieve a goal. This is known as

the principle of rational action [12], [13], and it has been
shown to apply to non-human agents, including robots [20].
The robot could model this notion of “efficiency” via a cost
function defining what it means to be efficient. For example,
if the observer expected the robot’s hand to move directly
towards the object it wants to grasp (as opposed to taking
an unnecessarily long path to it), then “efficiency” would be
defined by the cost function penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C:

C : ⌅ ! R+

with lower costs signifying more “efficient” trajectories.
The most predictable trajectory is then the most “efficient”:

IP (G) = arg min
⇠2⌅S!G

C(⇠) (1)

C represents what the observer expects the robot to opti-
mize, and therefore encompasses every aspect of the observer’s
expectation, including (when available) body motion, hand
motion, arm motion, and gaze.

B. Evaluating and Generating Predictability

Predictability can be evaluated based on C: the lower
the cost, the more predictable (expected) the trajectory. We
propose a predictability score normalized from 0 to 1:

predictability(⇠) = exp
�
�C(⇠)

�
(2)

Generating predictable motion means maximizing this
score, or equivalently minimizing the cost function C – as
in (1). This presents two major challenges: learning C, and
minimizing C.

First, the robot needs access to the cost function C that
captures how the human observer expects it to move. If the
human observer expects human-like motion, animation (e.g.
[21]) or biomechanics (e.g. [22], [23]) literature can serve to
provide approximations for C. Our experiment (Section V)
uses trajectory length as a proxy for the real C, resulting in
the shortest path to goal – but this is merely one aspect of
expected behavior. As our experiment will reveal, efficiency
of robot motion has different meanings for different observers.
If the observer were willing to provide examples of what they
expect, the robot could learn how to act via Learning from
Demonstration [24]–[26] or Inverse Reinforcement Learning
[27]–[29]. Doing so in a high-dimensional space, however, is
still an active area of research.

Second, the robot must find a trajectory that minimizes C.
This is tractable in low-dimensional spaces, or if C is convex.
While efficient trajectory optimization techniques do exist for
high-dimensional spaces and non-convex costs [30], they are
subject to local minima, and how to alleviate this issue in
practice remains an open research question [31], [32].

Fig. 2. Our models for IP and IL: the observer expects the robot’s motion to optimize a cost function C (IP , left), and identifies based on C which goal is
most probable given the robot’s motion so far (IL, right).
types of inference stemming from the interpretation of actions
as goal directed: “action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will eventu-
ally hold a cup of coffee). “Action-to-goal” inference answers
the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers the
question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ξS→Q 7→ G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G 7→ ξS→G, relates
naturally to “goal-to-action”.

C. Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. In what follows, we introduce one way for a
robot to model these two inferences (summarized in Fig.2), and
present an experiment that emphasizes the difference between
the two properties in practice.

III. MODELING PREDICTABLE MOTION

A. The Trajectory Inference IP
To model IP is to model the observer’s expectation. One

way the robot could do so is by assuming that the human
observer expects it to be a rational agent acting efficiently
[12] or justifiably [14] to achieve a goal. This is known as
the principle of rational action [13], [14], and it has been
shown to apply to non-human agents, including robots [21].
The robot could model this notion of “efficiency” via a cost
function defining what it means to be efficient. For example,
if the observer expected the robot’s hand to move directly
towards the object it wants to grasp (as opposed to taking
an unnecessarily long path to it), then “efficiency” would be
defined by the cost function penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C:

C : Ξ→ R+

with lower costs signifying more “efficient” trajectories.

The most predictable trajectory is then the most “efficient”:

IP (G) = arg min
ξ∈ΞS→G

C(ξ) (1)

C represents what the observer expects the robot to opti-
mize, and therefore encompasses every aspect of the observer’s
expectation, including (when available) body motion, hand
motion, arm motion, and gaze.

B. Evaluating and Generating Predictability

Predictability can be evaluated based on C: the lower
the cost, the more predictable (expected) the trajectory. We
propose a predictability score normalized from 0 to 1:

predictability(ξ) = exp
(
−C(ξ)

)
(2)

Generating predictable motion means maximizing this
score, or equivalently minimizing the cost function C – as
in (1). This presents two major challenges: learning C, and
minimizing C.

First, the robot needs access to the cost function C that
captures how the human observer expects it to move. If the
human observer expects human-like motion, animation (e.g.
[22]–[24]) or biomechanics (e.g. [25], [26]) literature can serve
to provide approximations for C. Our experiment (Section V)
uses trajectory length as a proxy for the real C, resulting in
the shortest path to goal – but this is merely one aspect of
expected behavior. As our experiment will reveal, efficiency
of robot motion has different meanings for different observers.
If the observer were willing to provide examples of what they
expect, the robot could learn how to act via Learning from
Demonstration [27]–[29] or Inverse Reinforcement Learning
[30]–[32]. Doing so in a high-dimensional space, however, is
still an active area of research.

Second, the robot must find a trajectory that minimizes C.
This is tractable in low-dimensional spaces, or if C is convex.
While efficient trajectory optimization techniques do exist for
high-dimensional spaces and non-convex costs [33], they are
subject to local minima, and how to alleviate this issue in
practice remains an open research question [34], [35].

IV. MODELING LEGIBLE MOTION

A. The Goal Inference IL
To model IL is to model how the observer infers the goal

from a snippet of the trajectory ξS→Q. One way to do so is by
assuming that the observer compares the possible goals in the
scene in terms of how probable each is given ξS→Q. This is
supported by action interpretation: Csibra and Gergeley [12]
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argue, based on the principle of rational action, that humans
assess which end state would be most efficiently brought about
by the observed ongoing action.Taking trajectory length again
as an example for the observer’s expectation, this translates to
predicting a goal because ξS→Q moves directly toward it and
away from the other goals, making them less probable.

One model for IL is to compute the probability for each
goal candidate G and to choose the most likely:

IL(ξS→Q) = arg max
G∈G

P (G|ξS→Q) (3)

To compute this probability, we start with Bayes’ Rule:

P (G|ξS→Q) ∝ P (ξS→Q|G)P (G) (4)

where P (G) is a prior on the goals which can be uniform
in the absence of prior knowledge, and P (ξS→Q|G) is the
probability of seeing ξS→Q when the robot targets goal G.

We compute P (ξS→Q|G) as the ratio of all trajectories
from S to G that pass through ξS→Q to all trajectories from
S to G (Fig.3):

P (ξS→Q|G) =

∫
ξQ→G

P (ξS→Q→G)
∫
ξS→G

P (ξS→G)
(5)

Following [32], we assume trajectories are separable, i.e.
P (ξX→Y→Z) = P (ξX→Y )P (ξY→Z), giving us:

P (ξS→Q|G) =
P (ξS→Q)

∫
ξQ→G

P (ξQ→G)
∫
ξS→G

P (ξS→G)
(6)

At this point, the robot needs a model of how probable
a trajectory ξ is in the eye of an observer. The observer
expects the trajectory of minimum cost under C. It is unlikely,
however, that they would be completely surprised (i.e. assign
0 probability) by all other trajectories, especially by one ever
so slightly different. One way to model this is to make
suboptimality w.r.t. C still possible, but exponentially less
probable, i.e. P (ξ) ∝ exp

(
−C(ξ)

)
, adopting the principle of

maximum entropy [32]. With this, (6) becomes:

P (ξS→Q|G) ∝
exp
(
−C(ξS→Q)

) ∫
ξQ→G

exp
(
−C(ξQ→G)

)
∫
ξS→G

exp
(
−C(ξS→G)

)

(7)

Computing the integrals is still challenging. In [36], we
derived a solution by approximating the probabilities using
Laplace’s method (also proposed independently in [37]). If
we approximate C as a quadratic, its Hessian is constant
and according to Lapace’s method,

∫
ξX→Y

exp
(
−C(ξX→Y )

)
≈

kexp
(
−C(ξ∗X→Y )

)
(with k a constant and ξ∗X→Y the optimal

trajectory from X to Y w.r.t. C). Plugging this into (7) and
using (4) we get:

P (G|ξS→Q) ∝
exp
(
−C(ξS→Q)− C(ξ∗Q→G)

)

exp
(
−C(ξ∗S→G)

) P (G) (8)

Much like the action interpretation theory suggests [12],
this evaluates how efficient (w.r.t. C) going to a goal is through
the observed trajectory snippet ξS→Q relative to the most
efficient (optimal) trajectory, ξ∗S→G. In ambiguous situations
like the one in Fig.1, a large portion of ξ∗S→G is also optimal

S 

G 

Q 

Fig. 3. ξS→Q in black, examples of ξQ→G in green, and further examples
of ξS→G in orange. Trajectories more costly w.r.t. C are less probable.

(or near-optimal) for a different goal, making both goals almost
equally likely along it. This is why legibility does not also
optimize C — rather than matching expectation, it manipulates
it to convey intent.

B. Evaluating and Generating Legibility

A legible trajectory is one that enables quick and confident
predictions. A score for legibility therefore tracks the prob-
ability assigned to the actual goal G∗ across the trajectory:
trajectories are more legible if this probability is higher, with
more weight being given to the earlier parts of the trajectory
via a function f(t) (e.g. f(t)=T-t, with T the duration of the
trajectory):

legibility(ξ) =

∫
P (G∗|ξS→ξ(t))f(t)dt∫

f(t)dt
(9)

with P (G∗|ξS→ξ(t)) computed using C, as in (8).

In situations with multiple possible goals, a robot can make
trajectory more and more legible, never reaching a score of 1,
and increasing the cost w.r.t. to C more and more. To prevent
the robot from going too far away from what the observer
expects, we add a regularizer:

L(ξ) = legibility(ξ)− λC(ξ) (10)

This brings similar challenges to predictability: knowing
the same C, and optimizing a non-convex function (now the
maximization of L as opposed to the minimization of C) in
high-dimensional spaces.

V. A STUDY OF LEGIBLE AND
PREDICTABLE MOTION

The mathematics of predictability and legibility imply
that being more legible can mean being less predictable and
vice-versa. We set out to verify that this is also true in
practice, when we expose subjects to robot motion. We ran
an experiment in which we evaluated two trajectories – a
theoretically more predictable one ξP and a theoretically more
legible one ξL – in terms of how predictable and legible they
are to novices.

A. Hypothesis

There exist two trajectories ξL and ξP for the same task
such that ξP is more predictable than ξL and ξL is more legible
than ξP .
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Fig. 4. The trajectories for each character.

B. Experimental Setup

1) Task: We chose a task like the one in Fig.1: reaching
for one of two objects present in the scene. The objects were
close together in order to make this an ambiguous task, in
which we expect a larger difference between predictable and
legible motion.

2) Manipulated Variables: Character: We chose to use
three characters for this task – a simulated point robot, a bi-
manual mobile manipulator named HERB [15], and a human –
because we wanted to explore the difference between humans
and robots, and between complex and simple characters.

Trajectory: We hand designed (and recorded videos of)
trajectories ξP and ξL for each of the characters such that
predictability(ξP ) > predictability(ξL) according to (2), but
legibility(ξP ) < legibility(ξL) according to (9). Verifying for
a pair of trajectories that this is true requires assuming a
cost function C, and we chose trajectory length (or rather,
its quadratic counterpart) in the workspace as a natural rep-

Fig. 5. The end effector trace for the HERB predictable (gray) and legible
(orange) trajectories.

resentation of efficiency – penalize the robot from taking
unnecessarily long paths when the direct one is available. We
represent trajectories as vectors of waypoints, and set

Capprox =
∑

t

||ξ(t+ 1)− ξ(t)||2

While we expect this to be appropriate for the point robot
because of its simplicity, we only expect this function to
correlate with the real C people expect for the other characters.
We describe below several steps we took to eliminate potential
confounds arising from this and ensure that the effects we see
are actually due to the theoretical difference in the score.

With the HERB character, we controlled for effects of
timing, elbow location, hand aperture and finger motion by
fixing them across both trajectories. For the orientation of the
wrist, we chose to rotate the wrist according to a profile that
matches studies on natural human motion [26], [38]), during
which the wrist changes angle more quickly in the beginning
than it does at the end of the trajectory. Fig.5 plots the end
effector trace for the HERB trajectories: the gray one has a
larger predictability score (0.54 > 0.42), while the orange one
has a higher legibility score (0.67 > 0.63).

With the human character, we used a natural reach for the
predictable trajectory, and we used a reach that exaggerates
the hand position to the right for the legible trajectory (much
like with HERB or the point robot). We cropped the human’s
head from the videos to control for gaze effects.

3) Dependent Measures: Predictability: Predictable tra-
jectories match the observer’s expectation. To measure how
predictable a trajectory is, we showed subjects the character
in the initial configuration and asked them to imagine the
trajectory they expect the character will take to reach the goal.
We then showed them the video of the trajectory and asked
them to rate how much it matched the one they expected, on a
1-7 Likert scale. To ensure that they take the time to envision
a trajectory, we also asked them to draw what they imagined
on a two-dimensional representation of the scene before they
saw the video. We further asked them to draw the trajectory
they saw in the video as an additional comparison metric.

Legibility: Legible trajectories enable quick and confident
goal prediction. To measure how legible a trajectory is, we
showed subjects the video of the trajectory and told them to
stop the video as soon as they knew the goal of the character.
We recorded the time taken and the prediction.

4) Subject Allocation: We split the experiment into two
sub-experiments with different subjects: one about measuring
predictability, and the other about measuring legibility.
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For the predictability part, the character factor was
between-subjects because seeing or even being asked about
trajectories for one character can bias the expectation for
another. However, the trajectory factor was within-subjects
in order to enable relative comparisons on how much each
trajectory matched expectation. This lead to three subject
groups, one for each character. We counter-balanced the order
of the trajectories within a group to avoid ordering effects.

For the legibility part, both factors were between-subjects
because the goal was the same (further, right) in all conditions.
This leads to six subject groups.

We recruited a total of 432 subjects (distributed approxi-
mately evenly between groups) through Amazon’s Mechanical
Turk, all from the United States and with approval rates higher
than 95%. To eliminate users that do not pay attention to the
task and provide random answers, we added a control question,
e.g. ”What was the color of the point robot?” and disregarded
the users who gave wrong answers from the data set.

C. Analysis

1) Predictability: In line with our hypothesis, a factorial
ANOVA revealed a significant main effect for the trajectory:
subjects rated the predictable trajectory ξP as matching what
they expected better than ξL, F (1, 310) = 21.88, p < .001.
The main effect of the character was only marginally signif-
icant, F (1, 310) = 2, 91, p = .056. The interaction effect
was significant however, with F (2, 310) = 10.24, p < .001.
The post-hoc analysis using Tukey corrections for multiple
comparisons revealed, as Fig.6(a) shows, that our hypothesis
holds for the point robot (adjusted p < .001) and for the human
(adjusted p = 0.28), but not for HERB.

The trajectories the subjects drew confirm this (Fig.7):
while for the point robot and the human the trajectory they
expected is, much like the predictable one, a straight line, for
HERB the trajectory they expected splits between straight lines
and trajectories looking more like the legible one.

For HERB, ξL was just as (or even more) predictable than
ξP . We conducted an exploratory follow-up study with novice
subjects from a local pool to help understand this phenomenon.
We asked them to describe the trajectory they would expect
HERB to take in the same scenario, and asked them to motivate
it. Surprisingly, all 5 subjects imagined a different trajectory,
motivating it with a different reason.

Two subjects thought HERB’s hand would reach from the
right side because of the other object: one thought HERB’s
hand is too big and would knock over the other object, and the
other thought the robot would be more careful than a human.
This brings up an interesting possible correlation between
legibility and obstacle avoidance. However, as Fig.8 shows, a
legible trajectory still exaggerates motion away from the other
candidate objects even in if it means getting closer to a static
obstacle like a counter or a wall.

Another subject expected HERB to not be flexible enough
to reach straight towards the goal in a natural way, like a human
would, and thought HERB would follow a trajectory made out
of two straight line segments joining on a point on the right.
She expected HERB to move one joint at a time. We often saw
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Fig. 7. The drawn trajectories for the expected motion, for ξP (predictable),
and for ξL (legible).

Fig. 8. Legibility is not obstacle avoidance. Here, in the presence of an
obstacle that is not a potential goal, the legible trajectory still moves towards
the wall, unlike the obstacle-avoiding one (gray trace).

this in the drawn trajectories with the original set of subjects
as well (Fig.7, HERB, Expected).

The other subjects came up with interesting strategies: one
thought HERB would grasp the bottle from above because that
would work better for HERB’s hand, while the other thought
HERB would use the other object as a prop and push against
it in order to grasp the bottle.

Overall, that ξP was not more predictable than ξL despite
what the theory suggested because the cost function we
assumed did not correlate to the cost function the subjects
actually expected. What is more, every subject expected a
different cost function, indicating that a predictable robot
would have to adapt to the particulars of a human observer.

2) Legibility: We collected from each subject the time at
which they stopped the trajectory and their guess of the goal.
Fig.6(b) (above) shows the cumulative percent of the total
number of subjects assigned to each condition that made a
correct prediction as a function of time along the trajectory.
With the legible trajectories, more of the subjects tend to make
correct predictions faster.
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(b) Legibility Measures

Fig. 6. (a) Ratings (on Likert 1-7) of how much the trajectory matched the one the subject expected. (b) Cumulative number of users that responded and were
correct (above) and the approximate probability of being correct (below).

To compare the trajectories statistically, we unified time
and correctness into a typical score inspired by the Guttman
structure (e.g. [39]): guessing wrong gets a score of 0, and
guessing right gets a higher score if it happens earlier.A
factorial ANOVA predicting this score revealed, in line with
our hypothesis, a significant effect for trajectory: the legi-
ble trajectory had a higher score than the predictable one,
F (1, 241) = 5.62, p = .019. The means were 6.75 and
5.73, much higher than a random baseline of making a guess
independent of the trajectory at uniformly distributed time,
which would result in a mean of 2.5 – the subjects did not
act randomly. No other effect in the model was significant.

Although a standard way to combine timing and correct-
ness information, this score rewards subjects that gave an
incorrect answer 0 reward. This is equivalent to assuming
that the subject would keep making the incorrect prediction.
However, we know this not to be the case. We know that at the
end (time T ), every subject would know the correct answer.
We also know that at time 0, subjects have a probability of
0.5 of guessing correctly. To account for that, we computed
an approximate probability of guessing correctly given the
trajectory so far as a function of time – see Fig.6(b)(below).
Each subject’s contribution propagates (linearly) to 0.5 at time
0 and 1 at time T. The result shows that indeed, the probability
of making a correct inference is higher for the legible trajectory
at all times.

This effect is strong for the point robot and for HERB,
and not as strong for the human character. We believe that
this might be a consequence of the strong bias humans have
about human motion – when a human moves even a little
unpredictably, confidence in goal prediction drops. This is
justified by the fact that subjects did have high accuracy
when they responded, but responded later compared to other
conditions. Thus, legible human trajectories would need a
stronger emphasis on optimality w.r.t. C (i.e. larger λ in (10)).

VI. DISCUSSION

Limitations: Our work is limited in many ways. Because
of the large number of required subjects, our experiment
was conducted with videos, instead of exposing subjects to
the characters in real life. We made a choice to evaluate
legibility by letting users decide when to provide a goal
prediction, but it would also be interesting to ask for their
prediction and confidence at various points along the trajectory
and compare the two. Also, in evaluating predictability, it is
possible that when people are asked to make a prediction about
how a complex robot like HERB would move, the question
itself biases their expectation and they end up building more
complex expectations than the obvious, immediate one.

We focused on goal-directed motion only, and did not
include other types of motion like emotion expression or
gestures, nor other important aspects, like gaze. We also
focused our examples as scenes with only two possible goals,
and it is true that how legible motion can be is limited in the
presence of too many possible goals (as opposed to clutter the
observer knows is not a possible goal).

Our experiment was targeted at emphasizing the difference
between legibility and predictability in practice, as a confirma-
tion of there difference in theory. Although our results come in
support of the models, more experimentation is need in order
to attest to their practical utility. Acquiring the cost function
C defining user expectation is a still research challenge.

Another limitation and exciting area of future work is that
we lack the long-term effects part of the story: since what is
predictable can change over time by observing the robot, does
legible motion become predictable?

Implications: Collaborative robots must be legible in all
collaboration paradigms. They must be legible in shared-
workspace collaboration: as the robot reaches for the empty
mug, the collaborator should be able to tell early on and
reach for the stack of plates instead. They must be legible in
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robot learning: as the robot is performing the learned task, the
teacher should be able to tell early on what the robot will do
next and correct the robot when necessary. Finally, they must
be legible in assistive teleoperation: as the robot starts using
its autonomy to assist in task completion, the operator should
be able to tell early on that the robot is correct in what it is
doing [36]. Because legibility is fundamentally different (and
at times contradictory) from predictability, motion planning for
these contexts must switch from a focus on predictability to a
focus on legibility, from the cost function that defines what is
expected to the one that defines what is intent-expressive.
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