Pregrasp Manipulation as Trajectory Optimization

Jennifer King, Matthew Klingensmith, Christopher Dellin,
Mehmet Dogar, Prasanna Velagapudi, Nancy Pollard and Siddhartha Srinivasa
The Robotics Institute, Carnegie Mellon University
{jeking,mklingen,cdellin,mdogar,pkv,nsp,siddhj@cs.cmu.edu

Abstract—We explore the combined planning of pregrasp
manipulation and transport tasks. We formulate this problem
as a simultaneous optimization of pregrasp and transport
trajectories to minimize overall cost. Next, we reduce this
simultaneous optimization problem to an optimization of the
transport trajectory with start-point costs and demonstrate
how to use physically realistic planners to compute the cost
of bringing the object to these start-points. We show how
to solve this optimization problem by extending functional
gradient-descent methods and demonstrate our planner on
two bimanual manipulation platforms.

I. INTRODUCTION

We address the problem of pregrasp manipulation,
where an object must be manipulated to a feasible
or convenient location before it can be grasped. Such
situations occur often in the real world where objects
are inaccessible or inconveniently placed: a thin book
that must be slid to the edge of a table to be grasped
and placed in a bookshelf, or a heavy drill that must be
pulled close to be grasped and lifted (Fig.1). Pregrasp
manipulation makes impossible manipulation tasks pos-
sible and hard tasks easier.

In addition to the complexity of motion planning
in high-dimensional manipulator configuration spaces,
pregrasp manipulation is further complicated by the
tight coupling between the two phases of reconfiguration,
where the object is moved to a grasp, and transport,
where the grasped object is moved to its goal.

As a consequence, prior work ([27], detailed in Sec-
tion II) has focused on producing feasible solutions to
the pregrasp manipulation problem. Some work [4] does
explore optimality, but only in a restricted setting of the
single pose of the object just before it is being grasped.

Furthermore, these works all rely on the object being
rigidly grasped at all times. But, as we saw in the above
examples, pregrasp manipulation is often achieved not
just by grasping but by pulling, pushing, sliding, or other
nonprehensile physics-based actions, using the support
surface to provide stability.

In this paper, we strive to overcome both of these
limitations by developing algorithms to produce optimal
pregrasp manipulation motion that allow nonprehensile
reconfiguration motion.

Optimality. Our first contribution is a formulation of
pregrasp manipulation as trajectory optimization (Sec-
tion III). Through a series of reductions, we demonstrate
how the coupled reconfiguration and transport problem

Fig. 1. The robot slides a book to the edge of a table, grasps the book
spine, and places it into a bookshelf (top). The robot reconfigures a
heavy drill to pick it up from a table (bottom).

can be reduced to a single constrained trajectory opti-
mization problem.

Our second contribution is to solve this constrained
trajectory optimization problem by extending functional
gradient optimization techniques [8, 26] to address con-
straints and costs on starting configurations (Section 1V).
Nonprehensile actions. Our third contribution is a for-
mulation of reconfiguration with nonprehensile quasi-
static pushing actions (Section V). This allows us to
derive analytical bounds on the types of actions we can
perform on the object. We exploit one such interesting
bound: that the motion of a pushed or pulled object like
a book by the fingertips can be modeled as a bounded-
curvature Dubins car. This allows us to use extremely
efficient lattice-style planners [18] used on ground vehi-
cles for pushing.

We demonstrate an implementation of our algorithm
on two bimanual manipulation platforms for the two dif-
ferent pregrasp manipulation tasks mentioned initially:
pushing a book to the edge of a table, grasping it, and
placing it to a bookshelf; and reconfiguring a heavy drill
to pick it up from a table. Our experiments (Section VI)
show that our algorithm has a significantly greater suc-
cess rate and lower cost compared to a planner that only
optimizes transport cost. This does come at the slight
computational cost of solving the joint problem.

Our work takes a step towards incorporating physics-
based reconfiguration actions into trajectory optimiza-

&+(1)

|:[@Goal

A
/

Transport

Fig. 2. An example manipulation problem involving a reconfiguration
trajectory, a grasp, and a transport trajectory.

tion techniques. We are encouraged by our results.

II. RELATED WORK

This work builds on trajectory-optimization ap-
proaches for arm motion planning, such as those in-
volving elastic bands [25], or covariant Hamiltonian
optimization [26]. General frameworks for trajectory op-
timization with contact constraints also exist [10, 24].
Our method takes advantage of the structure of pregrasp
manipulation by identifying the points of regrasping
and reducing the dimensionality of the search space.
We use these points of regrasping as constraints during
optimization [8].

Sampling-based approaches to arm planning, based on
roadmaps [15], or trees [16] exist as well, for both free
and constrained [3] spaces. Simeon [27] uses roadmaps
to study the problem of manipulating objects constrained
such that they require multiple pick and place operations
to move to desired goal configurations. The proposed
method produces long chains of pick and place opera-
tions, but does not consider optimality.

Several studies explore grasp metrics which consider
both the grasp itself [5, 11] and the resulting transport
trajectory [4, 14]. Such works attempt to solve the same
class of problems as this work.

The general problem of nonprehensile manipulation
has also been explored at length, whether by pushing in
the plane [7, 19], tipping [22], pivoting [1], or caging [6].
These works focus on producing a desired change in the
object of interest without considering potential subse-
quent prehensile manipulations.

III. PREGRASP MANIPULATION AS TRAJECTORY
OPTIMIZATION

Consider the problem presented in Fig.2, where a ma-
nipulator must move an object which cannot be grasped
in its initial configuration. Instead, the manipulator per-
forms some reconfiguration to get the object to a graspable
location, grasps it, then transports the object to its final
location. In this work we consider this general class
of problem, in which manipulation is decomposed into
reconfiguration and transport trajectories. Starting from
a general formulation of trajectory optimization with
pregrasp manipulation, we apply a series of reductions
to find a form that is easily accessible to functional
gradient optimization methods.

A. Functional gradient optimization

We define state x = (g,0) € X = C x SE(3) as
the configuration of the robot 4 € C and the pose of
the object 0 € SE(3). We control the motion of the
robot, and the robot can move the object. It can do this
by grasping, pulling, pushing, or loosely caging it. We
define the mechanics of this manipulation in more detail
in Section V.

Our objective is to get the object from some start os
to some goal 0,. We seek to find the best trajectory ¢ :
[0,1] — X that achieves this. To do this, we define a
cost functional (a function of a function) U : & — R to
minimize, where = is a Hilbert space of trajectories:

& = argminU] st 2(0) = (00); £(1) = (05) ()

Note that here, and henceforth, we use - to mean any
feasible g € C, e.g. an element from the set of all inverse
kinematic solutions of the arm that grasp o. Also, while
our examples consider reconfiguration actions before the
transport, the approach is equally applicable to such
actions after transport.

B. Pregrasp manipulation

We consider the class of pregrasp manipulation prob-
lems where the object is manipulated once before it
is grasped. Thus, motion decomposes into two phases:
reconfiguration (R), and transport (T):

¢ =¢r[0, 7] @ ¢r[T, 1] 2)

This allows us to rewrite (1) as:
&= argmgin U[Cr ®Gr] = argg:ig;(u[é’zz] +Ufgr])
s.t. Cr(0) = (+,05); (1) = (-, 0g); Cr(T) = &r(T)

Unfortunately, the two optimizations are tightly cou-
pled at ¢(7), the state at which the two trajectories meet.
Our second reduction loosens this coupling by allow-
ing the robot to release and grasp the object between the
two phases for free. As a consequence, the only coupling
between the two phases is the pose of the object, i.e.

®)

¢r(t) = (-,0¢) and ¢r(7) = (-, 0¢), where o is the pose
of the object when it is grasped.

This restricts 0 to the much smaller set S C SE(3)
which are (1) a stable resting configuration for the object,
(2) reachable by reconfiguration, and (3) accessible to
grasping for transport.

This allows us to tease apart (3). Our next reduc-
tion is driven by computational efficiency. We restrict
reconfiguration cost to functions only of object pose:
U[¢r] £ Ulog], where the trajectory &g = (qg,0r)- This
reduction enables us to compute reconfiguration cost
extremely quickly. We then use standard graph-search
techniques (explained in detail in Section V) to find the
minimum reconfiguration cost of bringing the object to
a particular o:

gR(O) = ('/OS)
¢r(7) = (-, 00)
This allows us to rewrite (3) in its final form as an

optimization of the transport trajectory which also takes
into account the reconfiguration cost:

ug(or) :rrgin U[Er] st { 4)

ér = arg min (U[¢r] +ug(or)) st &r(t) = (00 €5)
®)

We have finally reduced our problem to a solitary tra-
jectory optimization problem with a constraint on the
starting configuration of the trajectory. In the following
section, we describe an extension of CHOMP, a func-
tional gradient optimization technique used often in arm
motion planning [26], to solve this problem.

IV. CHOMP writH START COSTS
A. CHOMP

CHOMP [26] solves the unconstrained functional op-
timization problem (1). Given a norm A in the Hilbert
space &, CHOMP minimizes the regularized Taylor se-
ries approximation of U about the current trajectory ¢;:

£ = argmin (UG + VUT(E - &)+ 5118~ &I} ©

This can be minimized exactly to give the update rule:

G = G-y ATVU @)

with the functional gradient operator:

9 _do
o¢ dtag’

CHOMP models the cost function, U [¢], as a trade-
off between a “prior” smoothness cost, fyi,r, and an

obstacle cost, fy;s, bending the trajectory away from
obstacles:

V= 8

u [(ﬂ = fprior [g] + fobs [g])

A variant of CHOMP that addresses trajectory-wide
constraints, called GSCHOMP [8] solves the problem:

¢* = argminU [¢] s.t. hy =0 (10)

By additionally linearizing the constraint about the
current trajectory ¢; as h(¢) = C(¢ — &;) + b, GSCHOMP
obtains a simple Newton’s method-style update:

1

Gin1 =Gi— yAT'VU (11a)
+ %A‘lcT(CA‘lcT)‘lCA‘lvu (11b)
—A7icT(cAa~ichp (11c)

where (11a) is the unconstrained update (7), (11b) is the
projection onto the zero set C(¢ — ¢;) = 0 and (11c) is the
offset correction to further project onto C({ —¢&;) +b = 0.

B. Start Costs

Our final reduction (5) posed the reconfiguration prob-
lem as optimizing a functional with a start constraint,
which GSCHOMP addresses, but also a start cost, which
we address now.

A key issue with start costs uy(o¢) is that they are
only defined on the configuration space submanifold
where the object is in 5. As a result, there is no gradient
information available when the optimizer is not on the
manifold, which happens very often due to linearization
and numerical precision.

We address this by lifting the function and its gradient
into C by projecting any configuration onto the subman-
ifold and using that cost uj(q) = ug(proj(q)). Further-
more, we use the workspace projection for efficiency.

Once lifted, we can define the start cost functional as:

UR[¢] = ur(S(7)) (12)

This cost functional is then added to U[¢] (9).

A “‘good’ projection would ideally lift the cost onto the
tangent space of the linearized constraint, and thereby
result in no component along (11b). However, the com-
putational cost of finding this projection overwhelms the
simplicity of just eliminating the component with (11b).

C. Representing the Constraint

While the above formulation is general and will work
for a wide variety of pregrasp manipulation actions, in
this study we focus on the class of problems where
reconfiguration is accomplished via nonprehensile ac-
tions such as pushing and rotating the object on a table.
Therefore, we have the constraint, k¢, that the transport
trajectory starts by grasping the object off the plane
described by the table.

At the starting point, {r(7) = (g,0¢), the robot con-
figuration and the object pose is related by:

or = FK(q) T, (13)

(a)

Fig. 3.

-\}j ()

(e)

Pushing model. (a) Friction cones at the contacts. (b) The limit surface. (c) The cone of all possible forces that can be applied by the

hand. (d) A subset of the forces which create linear velocity along a single direction and a bounded range of angular velocities. () The Dubins

car model.

where T is the grasp transform representing the relative
pose of the object in the robot end-effector, and FK is the
forward-kinematics of the robot giving the end-effector
pose in the world.

We describe the table using the xy-plane of the coor-
dinate frame T;. Then, using (13), we can represent the
constraint that the object must be on this plane:

h(Gr) = ST FK(q) Ty

where S is a selector matrix

001000
S=|000100 (14)
000010

which selects the z-axis, the rotation around x, and the
rotation around y. The result is a 3-dimensional vector
which is 0 on the constraint.

We can find C through straightforward differentiation.
Since S, T and Ty are constant, we have:

C=ST;'J(q) T, (15)

where J(g) is the Jacobian of the end effector motion
evaluated at 4.

V. THE MECHANICS OF PREGRASP MANIPULATION

We build our reconfiguration planner based on the
analysis of the quasi-static interactions between the robot
hand and a pushed object. We illustrate the robot hand
and an object in Fig.3-(a). Using the coefficient of friction
between the hand and the object, j1, we can draw friction
cone [23] edges at an angle tan~!(u) with the contact
normal at the contact points. Coulomb’s law dictates that
the possible pushing forces that the hand can apply are
limited by the friction cones.

The limit surface [12, 13] relates the generalized forces
applied on an object to the resulting generalized velocity.
We assume that the object applies finite pressure to the
underlying surface and the friction between the two is
also finite. Then the limit surface is smooth and strictly
convex, similar in shape to a three-dimensional ellipsoid
(Fig.3-(b)) where the dimensions are fy, f;, and m, the
force along x-direction, the force along y-direction, and
the moment respectively. During quasi-static pushing the

generalized forces applied to the object are exactly on the
limit surface. Given such a generalized force we can find
the object’s generalized velocity using the normal to the
limit surface at that point, and replacing the dimensions
to be vy, vy, and w, the linear velocity along x, the linear
velocity along y, and the angular velocity, respectively.

In Fig.3-(c) we illustrate the three-dimensional cone
which corresponds to all the combined forces that can
be applied by the forces in the friction cones. The
corresponding cone of generalized velocities gives the
possible velocities the object can move with [9]. Several
studies use this analysis to study the controllability and
planning of pushing [2, 20, 21]. In this study we use
a subset of these velocities, shown in Fig.3-(d), which
correspond to a single linear velocity and a bounded
range of angular velocities. This simplifies our pushing
system to a Dubins car [17] for planning purposes (Fig.3-
(e)). This model allows us to take advantage of a wide
range of research done in motion planning for car-like
vehicles. In particular, we choose to perform a graph
search over a lattice state space [18].

Our action space includes the pushing actions and
additionally switching actions where the robot changes
the side of the object it is pushing on. In this sense, we
model each object as a Dubins car that can move along
the four primary directions. During planning, we check
each action for collision between the pushed object and
obstacles. We also check for collision between the end-
effector and obstacles.

We define the cost of reconfiguration, uy(or), as the
distance the object must travel from its starting pose,
05, to the grasp pose, o;. Using such a planner in
the low-dimensional state space enables us to generate
the reconfiguration cost for an intermediate pose, o,
very quickly. This formulation associates zero cost with
switching pushing sides, as the object does not move
during this action.

While this planner is very fast and physically realistic,
it produces only the trajectory of the end-effector and
the object. We find the corresponding arm trajectory
separately. This step can fail due to the arm’s kinematic
infeasibility, in which case we re-run our planner remov-
ing the offending action edges from our search graph.

Fig. 4. The 9 scenes used to test the algorithm. In each scene, the
green object represents the book to be reconfigured. The blue objects
represent obstacles.

2—N

Fig. 5. Valid push paths for two initial configurations of the book.
In the left configuration, the book is first pushed around the obstacle.
The hand must then change sides of the book to continue the push to
the edge of the table. In the right configuration, the book is pushed
directly to the edge of the table.

VI. EXPERIMENTS

A. Book Manipulation

We compare our algorithm Reconfiguration CHOMP
with two alternatives, each of which optimizes the
two costs sequentially instead of jointly: (A) Pre-Grasp
CHOMP, which first computes the object pose that min-
imizes reconfiguration cost, and then fixes that pose
and optimizes the transport cost via CHOMP; (B) Start-
Set CHOMP, which optimizes transport cost by setting
reconfiguration cost, u} (o) to zero in (5) but is seeded
at the optimum of the reconfiguration cost.

We validate two key hypotheses:

(H1) Planning time vs. solution cost: Reconfiguration
CHOMP significantly lowers path cost and increases
success rate, but at a significant increase in planning
time. However, the positive effect on path cost and
success rate persists even when other planners are given
this extra time to improve their solutions.

(H2) Reconfiguration vs. transport cost tradeoff: Recon-
figuration CHOMP behavior is sensitive to the relative
weighting between reconfiguration and transport costs.
Problem setup. We first consider a book manipulation
scenario, where we task our robot to place a book lying
in the middle of a table into a bookshelf (Fig.4). The book
must first be reconfigured to the table edge, where it can
then be stably grasped and transported to the bookshelf.
The reconfiguration path of the book must avoid contact
with any obstacles on the table.

Il Start-Set

I Full Reconf
Computation Time
6.643

Success Rate

Cost
606.67

100 700
%0 83.33

80
s 64.28

i 391

(a) (b) (9

40
30
20
10

Percentage (%)
Seconds (s)

Fig. 6. A comparison between success rate, cost and computation
time between Start-Set CHOMP and Full Reconfiguration CHOMP. In
(c), the light green shows the extra cost required to generate the full
reconfiguration cost function.

Fig.5 shows examples of reconfiguration plans auto-
matically computed by our planner, with object paths
as well as pushing directions. Our constraint surface is
defined by reachable poses of the book which lie on
edges of the table. To construct the lattice graph, we
discretize the table’s surface into 1 cm by 1 cm axis-
aligned grid cells. We then use numerical differentiation
to compute the reconfiguration cost gradient. During
CHOMP iterations, we use linear interpolation to com-
pute the continuous gradient.

We construct 9 test scenes, shown in Fig.4, which vary
in number of obstacles and start location of the book. For
each test scene, we define 14 initialization trajectories,
resulting in 126 test cases for each of the 3 algorithms.
The seed trajectory is a straight line trajectory in config-
uration space with start point uniformly sampled from
our constraint surface. All 14 seed trajectories share a
common goal.

Dependent measures. We compare end-to-end planning
time, solution cost, and success rate. We define success
as a feasible collision-free trajectory.

1) (H1) Planning time vs. solution cost: Our results are
shown in Fig.6. In every case, we allow all algorithms
to run multiple times (with random restarts) until the
slowest algorithm has completed.

Our planner shows a 29% improvement in success rate.
The most common cause of failure is selection of an
intermediate pose that is infeasible to achieve because
it is occupied by an obstacle.

We compare total path cost across all tests where both
algorithms were successful. Our algorithm demonstrates
a 12% improvement over Start-Set CHOMP. A t-test
shows this difference is in fact statistically significant
(#(50) = 16.58,p < 0.001). We note that the size of
the cost improvement is sensitive to the scale of the
reconfiguration cost relative to the transport cost. This
will be further discussed in Section VI-A2.

Next, we consider single-run performance time. The
increased difference between planning time is statisti-
cally significant (t(50) = 36.03, p < 0.001). Much of this
increase can be attributed to calculating the reconfigura-
tion cost function.

Total Cost:
157.81

1200

1000 7 Total Cost: (b)
; 764

f 800
/

11200

111000

b

f 800
f

| Total Cost:
| 109.84

Total Cost:
1041.7

Reconfiguration

] Total Cost: . Transport
1 1089

Reconfiguration

Total Cost: [l Transport
804.9

200

F w0
i

Fig. 7. Comparison of reconfiguration and transport trajectories for a single scene between three algorithms: (a) Pre-Grasp CHOMP (b) Start-Set
CHOMP (c) Reconfiguration CHOMP. The top images show the results when transport cost is weighted high. The bottom images show results

when reconfiguration cost is weighted high.

% 102 1
S
o
[Pre-Grasp
M Start-Set
W Full Reconf
10!
0 Reconfiguration Cost Weighting (o) 1

Fig. 8. Comparative performance of algorithms as cost is weighted
between pure reconfiguration (x = 1) and pure transport cost (« = 0).

2) (H2) Reconfiguration vs. transport cost tradeoff: To test
this hypothesis we use a subset of a our 126 test cases.
In particular, we examine only the test cases where the
seed trajectory starts at a configuration corresponding
to the optimal reconfiguration pose. Using this subset
allows us to create a reconfiguration-informed Start-Set
CHOMP algorithm. It now starts from a point of optimal
reconfiguration, but still optimizes only over transport
cost.

Fig.7 shows the selected intermediate location and
associated object path and transport trajectory for each of
the three algorithms for a single scenario. The top three
images show a scenario where transport cost is large rel-
ative to reconfiguration cost. The bottom row of images
show a scenario with reconfiguration cost increased. As
can be seen, Reconfiguration CHOMP selects a shorter
reconfiguration trajectory when reconfiguration cost has

large weight. Conversly, the trajectories selected by the
other two algorithms are unaffected.

We further explore the performance of the three al-
gorithms as we trade importance between reconfigu-
ration and transport cost in Fig.8. Here we show the
change in total path cost as the relative weight of the
reconfiguration cost is increased. When relative weight
is very small, our algorithm reduces to Start-Set CHOMP,
optimizing only transport cost. As reconfiguration cost
becomes more important, our algorithm tends toward
performance of Pre-Grasp CHOMP, optimizing only re-
configuration cost.

The best performing algorithm varies with «. Predict-
ing which algorithm will perform best for a given « is
difficult, as this varies by task. One obvious alternative
to Reconfiguration CHOMP is to run Pre-Grasp CHOMP
and Start-Set CHOMP for a given a and use the mini-
mum cost trajectory. We note that while in some cases
this technique will provide a lower cost solution, it comes
with the time penalty incurred by running two planners.

B. Lifting a Drill

Problem Setup We next examine a scenario where the
robot is tasked with using a small impact drill (Fig.1-
bottom) to remove lugnuts from a wheel hub. In order
to use the drill, the robot must first lift it off the table.
Often the pose and weight of the drill make it impossible
to find a valid grasp due to joint torque limits. Instead,
the robot must first reconfigure the drill by sliding it to a
pose where a feasible lift trajectory can be found.

In these experiments, our constraint surface is defined
by reachable poses of the drill on the table. We assume
the drill can slide and rotate in the plane of the table.
Like with the book task described previously, we wish
to define a reconfiguration cost function that penalizes

a trajectory based on the length of the reconfiguration.
In addition, we wish to penalize poses which requires
large joint torques when lifting the drill. Thus we define
a two part reconfiguration cost function:

ug(or) = Brus(or) + Baua(or)

where 1 (07) represents the joint torque penalty, u4(0z)
represents the cost based on the length of the reconfigu-
ration trajectory and B, B € R are weighting constants.

We define u;(0r) as the translational distance between
o7 (the pose of the object at the start of the lift) and
the initial pose, 0;. The gradient of this cost function
is straightforwardly computed as the vector from o to
0s passed through the pseudo-inverse of the kinematic
Jacobian of the robot.

For the second part of our reconfiguration cost func-
tion, we consider joint torques. If we assume that the
drill, when grasped by the end-effector, produces a force
F due to gravity, the joint torque can be calculated by
J(9)TF, where](q) is the kinematic translational Jacobian
at configuration g. Using this information, we can define
a cost function which represents the sum squared joint
torques:

(16)

ug(oc) = FTJ(q0)"J(q)F 17)

where g is a valid configuration of the manipulator
when grasping the drill at pose o;. Here poses which
require high torque for the drill to be lifted are penalized
with higher reconfiguration cost. The gradient of this
function contains the kinematic Hessian, and is difficult
to compute directly. Instead, we use finite differencing
to approximate the gradient.

For each experiment, we randomly select the initial
pose for the drill from the set of reachable poses. The
robot is given a goal of lifting the object and then
extending its arm outward. Other than the table, no other
obstacles exist in the environment. Fig.9 shows an exam-
ple solution. As can be seen, the optimal reconfiguration
pose, o is closer to the robot than the initial pose, os.

Also shown in the figure is the effect of varying the
parameters B (the weight on the torque cost function),
and B, (the weight on the reconfiguration cost function)
given some initial starting pose (green). The resulting
steps of optimization (orange) push the object toward a
local minimum of the feasibility cost function given the
weights on each component. As ¢ increases relative to
B4, the drill is pushed closer to the robot so that the joints
use the minimal energy to lift the drill. In contrast, as B
increases, the drill’s configuration is pushed closer and
closer to its initial configuration. At very high values
of By, the resulting reconfiguration motion is a pure
rotation.

In each of these experiments, the performance of
CHOMP was not very adversely limited by incorporat-
ing constraints and additional loss functions. Average
per-iteration time increased from 30 ms to 38 ms from

single-goal CHOMP [26], and total planning time in-
creased from 3.1 seconds to 3.9 seconds (for 100 itera-
tions).

VII. DiscussioN AND FUTURE WORK

Trajectory optimization is a powerful tool to generate
intelligent behavior from simple costs. Pregrasp manip-
ulation, however, requires planning for multiple modes
of prehensile and nonprehensile interaction, e.g. pick-
and-place, pushing, pulling, toppling. These modes often
have very different system dynamics, meaning optimiza-
tion over the complete manipulation trajectory requires
a very high-dimensional state space and a complicated
joint description of the system dynamics. Instead, we
observe that the complete manipulation trajectory can be
divided into steps at the regrasp points. This enables us
to run specialized, lower-dimensional planners for each
different mode of interaction, while still sharing the cost
of each mode with neighboring modes at the regrasp
points.

In this paper we present results on tasks which require
only two modes of interactions: pushing and pick-and-
place. However, our general formulation can easily be
extended to work with other modes of interactions, e.g.
toppling. Similarly, it can be extended for tasks which
require more than two steps of interaction.

Planning multiple steps of open-loop manipulation
actions makes them vulnerable to growing uncertainty
during the execution of these actions. For example, after
multiple pushing actions, an object might end up in a
different spot than the original goal, breaking the con-
nection to subsequent transport trajectories which have
already been planned. An interesting extension would
be to integrate a cost for uncertainty-inducing actions
into the optimization process to increase the robustness
of the resulting plans.

Our optimization process uses the gradient of the
reconfiguration costs computed for possible object grasp
poses at a high resolution. This computation creates an
overhead in computation time. In future work we aim
for a tighter integration between the transport trajectory
optimization and the reconfiguration planning, such that
reconfiguration planning can be dynamically invoked as
needed by the optimizer.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF
Grant No. 1208388, NSF-EEC-0540865, DARPA-BAA-10-
28 and the Toyota Motor Corporation. We thank the
members of the Personal Robotics Lab for very helpful
discussion and advice.

REFERENCES

[1] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A new method of graspless
manipulation of object by robot fingers. In IEEE/RS] IROS, 1993.

[2] S. Akella and M. T. Mason. Posing polygonal objects in the plane by
pushing. International Journal of Robotics Research, 17(1):70-88, January 1998.

[3]
[4]
[5]
[6]
(71

(8]
9]
[10]
[11]
[12]
[13]

[14]

[15]

Lifting Trajectory
Low Torque
Solution

B

Distance Weight S

L
<
s

o No Feasability Cost

T
(I Torque Weight \A

-~ < N
e f’—s')'\:’_‘j S e s J

o '

Distance Weight

Fig. 9. Comparison of solutions as torque and distance cost weighting is varied.

D. Berenson, S. Srinivasa, and J. Kuffner. Task Space Regions: A framework
for pose-constrained manipulation planning. IJRR, 30(12):1435-1460, 2011.
L. Chang, S. Srinivasa, and N. Pollard. Planning pre-grasp manipulation
for transport tasks. In IEEE ICRA, 2010.

L. Y. Chang and N. Pollard. Posture optimization for pre-grasp interaction
planning. In IEEE ICRA, Workshop on Manipulation Under Uncertainty, 2011.
R. Diankov, S. Srinivasa, D. Ferguson, and J. Kuffner. Manipulation planning
with caging grasps. In IEEE-RAS Humanoids, 2008.

M. Dogar and S. Srinivasa. A planning framework for non-prehensile
manipulation under clutter and uncertainty. Autonomous Robots, 33(3):217-
236, 2012.

A. Dragan, N. Ratliff, and S. Srinivasa. Manipulation planning with goal
sets using constrained trajectory optimization. In IEEE ICRA, 2011.

M. Erdmann. On a representation of friction in configuration space.
International Journal of Robotics Research, 13(3), 1994.

T. Erez and E. Todorov. Trajectory optimization for domains with contacts
using inverse dynamics. In IEEE/RS] IROS, pages 4914-4919. IEEE, 2012.
M. Gienger, M. Toussaint, and C. Goerick. Task maps in humanoid robot
manipulation. In IEEE/RS] IROS, 2008.

S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding with dry friction.
Part 1. Limit surface and moment function. Wear, (143):307-330, 1991.

R. D. Howe and M. R. Cutkosky. Practical Force-Motion Models for Sliding
Manipulation. IJRR, 15(6):557-572, 1996.

D. Kappler, L. Y. Chang, M. Przybylski, N. Pollard, T. Asfour, and R. Dill-
mann. Representation of pre-grasp strategies for object manipulation. In
IEEE-RAS Humanoids, December 2010.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic

[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]

[24]

[25]
[26]

[27]

roadmaps for path planning in high-dimensional configuration spaces. In
IEEE ICRA, 199%6.

S. LaValle and J. Kuffner.
20(5):378-400, 2001.

S. M. LaValle. Planning Algorithms. Cambridge University Press, New York,
NY, USA, 2006.

M. Likhachev and D. Ferguson. Planning long dynamically-feasible ma-
neuvers for autonomous vehicles. In RSS, 2008.

K. Lynch and M. T. Mason. Controllability of pushing. In IEEE ICRA, 1995.
K. M. Lynch. Locally controllable manipulation by stable pushing. 15(2):318
- 327, April 1999.

K. M. Lynch and M. T. Mason. Stable Pushing: Mechanics, Controllability,
and Planning. 15(6):533-556, 1996.

Y. Maeda, H. Kijimoto, Y. Aiyama, and T. Arai. Planning of graspless
manipulation by multiple robot fingers. In IEEE ICRA, 2001.

M. T. Mason. Mechanics and Planning of Manipulator Pushing Operations.
IJRR, 5(3):53-71, 1986.

M. Posa and R. Tedrake. Direct trajectory optimization of rigid body
dynamical systems through contact. In WAFR, pages 527-542. Springer,
2013.

S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
control. In IEEE ICRA, 1993.

N. Ratliff, M. Zucker,]. Bagnell, and S. Srinivasa. CHOMP: Gradient
optimization techniques for efficient motion planning. In IEEE ICRA, 2009.
T. Simeon, J.-P. Laumond,]J. Cortes, and A. Sahbani. Manipulation planning
with probabilistic roadmaps. IJRR, 23(7-8):729-746, 2004.

Randomized kinodynamic planning. IJRR,

	I Introduction
	II Related Work
	III Pregrasp Manipulation as Trajectory Optimization
	III-A Functional gradient optimization
	III-B Pregrasp manipulation

	IV CHOMP with Start Costs
	IV-A CHOMP
	IV-B Start Costs
	IV-C Representing the Constraint

	V The Mechanics of Pregrasp Manipulation
	VI Experiments
	VI-A Book Manipulation
	VI-A1 (H1) Planning time vs. solution cost
	VI-A2 (H2) Reconfiguration vs. transport cost tradeoff

	VI-B Lifting a Drill

	VII Discussion and Future Work

