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Abstract—We describe CHISEL: a system for real-time house-
scale (300 square meter or more) dense 3D reconstruction
onboard a Google Tango [1] mobile device by using a dynamic
spatially-hashed truncated signed distance field[2] for mapping,
and visual-inertial odometry for localization. By aggressively
culling parts of the scene that do not contain surfaces, we avoid
needless computation and wasted memory. Even under very noisy
conditions, we produce high-quality reconstructions through the
use of space carving. We are able to reconstruct and render very
large scenes at a resolution of 2-3 cm in real time on a mobile
device without the use of GPU computing. The user is able to
view and interact with the reconstruction in real-time through an
intuitive interface. We provide both qualitative and quantitative
results on publicly available RGB-D datasets [3], and on datasets
collected in real-time from two devices.

I. INTRODUCTION

Recently, mobile phone manufacturers have started adding
high-quality depth and inertial sensors to mobile phones and
tablets. The devices we use in this work, Google’s Tango [1]
phone and tablet have very small active infrared projection
depth sensors combined with high-performance IMUs and
wide field of view cameras (Section IV-A). Other devices, such
as the Occiptal Inc. Structure Sensor [4] have similar capabil-
ities. These devices offer an onboard, fully integrated sensing
platform for 3D mapping and localization, with applications
ranging from mobile robots to handheld, wireless augmented
reality.

Real-time 3D reconstruction is a well-known problem in
computer vision and robotics [5]. The task is to extract the
true 3D geometry of a real scene from a sequence of noisy
sensor readings online. Solutions to this problem are useful for
navigation, mapping, object scanning, and more. The problem
can be broken down into two components: localization (i.e.
estimating the sensor’s pose and trajectory), and mapping (i.e.
reconstructing the scene geometry and texture).

Consider house-scale (300 square meter) real-time 3D map-
ping and localization on a Tango-like device. A user (or robot)
moves around a building, scanning the scene. At house-scale,
we are only concerned with features with a resolution of
about 2-3 cm (walls, floors, furniture, appliances, etc.). To
facilitate scanning, real-time feedback is given to the user on
the device’s screen. The user can export the resulting 3D scan
without losing any data. Fig.1 shows an example of this use

(a) CHISEL creating a map of an entire office building floor on a
mobile device in real-time.

(b) Reconstructed apartment scene at a voxel resolution of 2cm.

Fig. 1: CHISEL running on Google’s Tango [1] device.

case (Section III) in progress.
House-scale mapping requires that the 3D reconstruction

algorithm run entirely onboard; and fast enough to allow real-
time interaction. Importantly, the entire dense 3D reconstruc-
tion must fit inside the device’s limited (2-4GB) memory
(Section IV-A). Because some mobile devices lack sufficiently
powerful discrete graphics processing units (GPU), we choose
not to rely on general purpose GPU computing to make
the problem tractable in either creating or rendering the 3D
reconstruction.

3D mapping algorithms involving occupancy grids [6],
keypoint mapping [7] or point clouds [8–10] already exist for
mobile phones at small scale. But most existing approaches
either require offline post-processing or cloud computing to
create high-quality 3D reconstructions at the scale we are
interested in.

Many state-of-the-art real-time 3D reconstruction algo-



rithms [2, 11–14] compute a truncated signed distance field
(TSDF) [15] of the scene. The TSDF stores a discretized esti-
mate of the distance to the nearest surface in the scene. While
allowing for very high-quality reconstructions, the TSDF is
very memory-intensive. Previous works [12, 13] have extended
the TSDF to larger scenes by storing a moving voxelization
and throwing away data incrementally – but we are interested
in preserving the volumetric data for later use. The size of the
TSDF needed to reconstruct an entire house may be on the
order of several gigabytes (Section IV-D), and the resulting
reconstructed mesh has on the order of 1 million vertices.

In this work, we detail a realtime house-scale TSDF 3D
reconstruction system (called CHISEL) for mobile devices.
Experimentally, we found that most ( ∼ 93%) of the space in
a typical scene is in fact empty (Table I). Iterating over empty
space for the purposes of reconstruction and rendering wastes
computation time; and storing it wastes memory. Because of
this, CHISEL makes use of a data structure introduced by
Nießner et al. [2], the dynamic spatially-hashed [16] TSDF
(Section III-F), which stores the distance field data as a two-
level structure in which static 3D voxel chunks are dynamically
allocated according to observations of the scene. Because the
data structure has O(1) access performance, we are able to
quickly identify which parts of the scene should be rendered,
updated, or deleted. This allows us to minimize the amount of
time we spend on each depth scan and keep the reconstruction
running in real-time on the device (Table 9e).

For localization, CHISEL uses a mix of visual-inertial odom-
etry [17, 18] and sparse 2D keypoint-based mapping [19] as
a black box input (Section III-J), combined with incremental
scan-to-model ICP [20] to correct for drift.

We provide qualitative and quantitative results on publicly
available RGB-D datasets [3], and on datasets collected in
real-time from two devices (Section IV). We compare dif-
ferent approaches for creating (Section IV-C) and storing
(Section IV-D) the TSDF in terms of memory efficiency, speed,
and reconstruction quality. CHISEL, is able to produce high-
quality, large scale 3D reconstructions of outdoor and indoor
scenes in real-time onboard a mobile device.

II. RELATED WORK

Mapping paradigms generally fall into one of two cat-
egories: landmark-based (or sparse) mapping, and high-
resolution dense mapping [19]. While sparse mapping gen-
erates a metrically consistent map of landmarks based on key
features in the environment, dense mapping globally registers
all sensor data into a high-resolution data structure. In this
work, we are concerned primarily with dense mapping, which
is essential for high quality 3D reconstruction.

Because mobile phones typically do not have depth sensors,
previous works [9, 21, 22] on dense reconstruction for mobile
phones have gone to great lengths to extract depth from
a series of registered monocular camera images. Since our
work focuses on mobile devices with integrated depth sensors,
such as the Google Tango devices [1], we do not need to
perform costly monocular stereo as a pre-requisite to dense

reconstruction. This allows us to save our memory and CPU
budget for the 3D reconstruction itself.

One of the simplest means of dense 3D mapping is storing
multiple registered point clouds. These point-based methods
[8–10, 22] naturally convert depth data into projected 3D
points. While simple, point clouds fail to capture local scene
structure, are noisy, and fail to capture negative (non-surface)
information about the scene. This information is crucial to
scene reconstruction under high levels of noise [23].

Elfes [6] introduced Occupancy Grid Mapping, which
divides the world into a voxel grid containing occupancy
probabilities. Occupancy grids preserve local structure, and
gracefully handle redundant and missing data. While more
robust than point clouds, occupancy grids suffer from aliasing,
and lack information about surface normals and the inte-
rior/exterior of obstacles. Occupancy grid mapping has already
been shown to perform in real-time on Tango [1] devices using
an Octree representation [24].

Curless and Levoy [15] created an alternative to occupancy
grids called the Truncated Signed Distance Field (TSDF),
which stores a voxelization of the signed distance field of the
scene. The TSDF is negative inside obstacles, and positive
outside obstacles. The surface is given implicitly as the zero
isocontour of the TSDF. While using more memory than oc-
cupancy grids, the TSDF creates much higher quality surface
reconstructions by preserving local structure.

In robotics, distance fields are used in motion planning
[25], mapping [26], and scene understanding. Distance fields
provide useful information to robots: the distance to the nearest
obstacle, and the gradient direction to take them away from
obstacles. A recent work by Wagner et al. [27] explores the
direct use of a TSDF for robot arm motion planning; making
use of the gradient information implicitly stored in the TSDF
to locally optimize robot trajectories. We are interested in
similarly planning trajectories for autonomous flying robots
by directly using TSDF data. Real-time onboard 3D mapping,
navigation and odometry has already been achieved on flying
robots [28, 29]using occupancy grids. CHISEL is complimen-
tary to this work.

Kinect Fusion [11] uses a TSDF to simultaneously extract
the pose of a moving depth camera and scene geometry in
real-time. Making heavy use of the GPU for scan fusion
and rendering, Fusion is capable of creating extremely high-
quality, high-resolution surface reconstructions within a small
area. However, like occupancy grid mapping, the algorithm
relies on a single fixed-size 3D voxel grid, and thus is not
suitable for reconstructing very large scenes due to memory
constraints. This limitation has generated interest in extending
TSDF fusion to larger scenes.

Moving window approaches, such as Kintinuous [12] extend
Kinect Fusion to larger scenes by storing a moving voxel grid
in the GPU. As the camera moves outside of the grid, areas
which are no longer visible are turned into a surface represen-
tation. Hence, distance field data is prematurely thrown away
to save memory. As we want to save distance field data so
it can be used later for post-processing, motion planning, and



Fig. 2: CHISEL system diagram

other applications, a moving window approach is not suitable.
Recent works have focused on extending TSDF fusion to

larger scenes by compressing the distance field to avoid storing
and iterating over empty space. Many have used hierarchal
data structures such as octrees or KD-trees to store the
TSDF [30, 31]. However, these structures suffer from high
complexity and complications with parallelism.

An approach by Nießner et al. [2] uses a two-layer hierar-
chal data structure that uses spatial hashing [16] to store the
TSDF data. This approach avoids the needless complexity of
other hierarchical data structures, boasting O(1) queries, and
avoids storing or updating empty space far away from surfaces.

CHISEL adapts the spatially-hashed data structure of
Nießner et al. [2] to Tango devices. By carefully considering
what parts of the space should be turned into distance fields
at each timestep, we avoid needless computation (Table II)
and memory allocation (Fig.5a) in areas far away from the
sensor. Unlike [2], we do not make use of any general purpose
GPU computing. All TSDF fusion is performed on the mobile
processor, and the volumetric data structure is stored on
the CPU. Instead of rendering the scene via raycasting, we
generate polygonal meshes incrementally for only the parts
of the scene that need to be rendered. Since the depth sensor
found on the Tango device is significantly more noisy than
other commercial depth sensors, we reintroduce space carving
[6] from occupancy grid mapping (Section III-E) and dynamic
truncation (Section III-D) into the TSDF fusion algorithm to
improve reconstruction quality under conditions of high noise.
The space carving and truncation algorithms are informed by a
parametric noise model trained for the sensor using the method
of Nguyen et al. [32], which is also used by [2].

III. SYSTEM IMPLEMENTATION

A. Preliminaries
Consider the geometry of the ideal pinhole depth sensor.

Rays emanate from the sensor origin to the scene. Fig.3a is
a diagram of a ray hitting a surface from the camera, and a
voxel that the ray passes through. Call the origin of the ray
o, and the endpoint of the ray x. The length of the ray is

given by z = ‖o − x‖. The direction of the ray is given by
r̂ = o−x

z . The endpoint of each ray represents a point on the
surface. We can also parameterize the ray by its direction and
endpoint, using an interpolating parameter u:

v(u) = x− ur̂ (1)

At each timestep t we have a set of rays Zt. In practice,
the rays are corrupted by noise. Call d the true distance from
the origin of the sensor to the surface along the ray. Then
z is actually a random variable drawn from a distribution
dependent on d called the hit probability (Fig.3b). Assuming
the hit probability is Gaussian, we have:

z ∼ N (d, σd) (2)

where σd is the standard deviation of the depth noise for a true
depth d. We train this model using a method from Nguyen et
al. [32].

Since depth sensors are not ideal, an actual depth read-
ing corresponds to many possible rays through the scene.
Therefore, each depth reading represents a cone, rather than
a ray. The ray passing through the center of the cone closely
approximates it near the sensor, but the approximation gets
worse further away.

B. The Truncated Signed Distance Field
We model the world [15] as a volumetric signed distance

field Φ : R3 → R. For any point in the world x, Φ(x) is
the distance to the nearest surface, signed positive if the point
is outside of obstacles and negative otherwise. Thus, the zero
isocontour (Φ = 0) encodes the surfaces of the scene.

Since we are mainly interested in reconstructing surfaces,
we use the Truncated Signed Distance Field (TSDF) [15]:

Φτ (x) =

{
Φ(x) if|Φ(x)| < τ

undefined otherwise
(3)

where τ ∈ R is the truncation distance. Curless and Levoy
[15] note that very near the endpoints of depth rays, the TSDF
is closely approximated by the distance along the ray to the
nearest observed point.
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Fig. 3: Computing the Truncated Signed Distance Field (TSDF).

Algorithm 1 Truncated Signed Distance Field

1: for t ∈ [1 . . . T ] do . For each timestep
2: for {ot,xt} ∈ Zt do . For each ray in scan
3: z ← ‖ot − xt‖
4: r← xt−ot

z
5: τ ← T (z) . Dynamic truncation distance
6: vc ← xt − ur
7: for u ∈ [τ + ε, z] do . Space carving region
8: if Φτ (vc) ≤ 0 then
9: Φτ (vc)← undefined

10: W (vc)← 0

11: for u ∈ [−τ, τ ] do . Hit region
12: Φτ (vc)← W (vc)Φτ (vc)+ατ (u)u

W (vc)+ατ (u)

13: W (vc)←W (vc) + ατ (u)

The algorithm for updating the TSDF given a depth scan
used in [15] is outlined in Alg.1. For each voxel in the scene,
we store a signed distance value, and a weight W : R3 → R+

representing the confidence in the distance measurement. Cur-
less and Levoy show that by taking a weighted running average
of the distance measurements over time, the resulting zero-
isosurface of the TSDF minimizes the sum-squared distances
to all the ray endpoints.

We initialize the TSDF to an undefined value with a weight
of 0, then for each depth scan, we update the weight and
TSDF value for all points along each ray within the truncation
distance τ . The weight is updated according to the scale-
invariant weighting function ατ (u) : [−τ, τ ]→ R+.

It is possible [32] to directly compute the weighting function
ατ from the hit probability (2) of the sensor; but in favor of
better performance, linear, exponential, and constant approxi-
mations of ατ can be used [11, 12, 14, 15]. We use the constant
approximation ατ (u) = 1

2τ . This results in poorer surface
reconstruction quality in areas of high noise than methods
which more closely approximate the hit probability of the
sensor.

C. Colorization
As in [12, 14], we create colored surface reconstructions by

directly storing color as volumetric data. Color is updated in
exactly the same manner as the TSDF. We assume that each
depth ray also corresponds to a color in the RGB space. We
step along the ray from u ∈ [−τ, τ ], and update the color of

each voxel and its weight:

C(v)← Wc(v)C(v) + αc(u)c

Wc(v)
(4)

Wc(v)←Wc(v) + αc(u) (5)

where v = x − ur̂, c ∈ R3+ is the color of the ray in color
space, and αc is a color weighting function. As in [14], we
have chosen RGB color space for the sake of simplicity, at the
expense of color consistency with changes in illumination.

D. Dynamic Truncation Distance
As in[2, 32], we use a dynamic truncation distance based

on the noise model of the sensor rather than a fixed truncation
distance to account for noisy data far from the sensor. The
truncation distance is given as a function of depth, T (z) =
βσz , where σz is the standard deviation of the noise for a
depth reading of z (2), and β is a scaling parameter which
represents the number of standard deviations of the noise we
are willing to consider. Algorithm 1, line 5 shows how this is
used.

E. Space Carving
When depth data is very noisy and sparse, the relative

importance of negative data (that is, information about what
parts of the scene do not contain surfaces) increases over
positive data [6, 23]. Rays can be viewed as constraints on
possible values of the distance field. Rays passing through
empty space constrain the distance field to positive values all
along the ray. The distance field is likely to be nonpositive
only very near the endpoints of rays.

We augment our TSDF algorithm with a space carving [6]
constraint. Fig.3b shows a hypothetical plot of the hit probabil-
ity of a ray P (z − d = u), the pass probability P (z − d < u),
vs. u, where z is the measurement from the sensor, and d is
the true distance from the sensor to the surface. When the
pass probability is much higher than the hit probability in a
particular voxel, it is very likely to be unoccupied. The hit
integration region is inside [−τ, τ ], whereas regions closer to
the camera than τ + ε are in the space carving region. Along
each ray within the space carving region, we CHISEL away
data that has a nonpositive stored SDF. Algorithm 1, line 8
shows how this is accomplished.
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Fig. 4: Fig.4a: chunks are spatially-hashed [16] into a dynamic hash map.

Voxel Class Voxel Count % of Bounding Box

Unknown Culled 62,105,216 77.0
Unknown 12,538,559 15.5

Outside 3,303,795 4.1
Inside 2,708,430 3.4

TABLE I: Voxel statistics for the Freiburg 5m dataset.

Space carving gives us two advantages: first, it dramatically
improves the surface reconstruction in areas of very high noise
(especially around the edges of objects: see Fig.9), and second,
it removes some inconsistencies caused by moving objects
and localization errors. For instance, a person walking in front
of the sensor will only briefly effect the TSDF before being
removed by space carving.

F. The Dynamic Spatially-Hashed TSDF
Each voxel contains an estimate of the signed distance field

and an associated weight. In our implementation, these are
packed into a single 32-bit integer. The first 16 bits are a
fixed-point signed distance value, and the last 16 bits are an
unsigned integer weight. Color is similarly stored as a 32 bit
integer, with 8 bits per color channel, and an 8 bit weight. A
similar method is used in [2, 11, 12, 14] to store the TSDF. As
a baseline, we could consider simply storing all the required
voxels in a monolithic block of memory. Unfortunately, the
amount of memory storage required for a fixed grid of this
type grows as O(N3), where N is the number of voxels per
side of the 3D voxel array. Additionally, if the size of the scene
isn’t known beforehand, the memory block must be resized.

For large-scale reconstructions, a less memory-intensive and
more dynamic approach is needed. Some works have either
used octrees [24, 30, 31], or use a moving volume[12]. Neither
of these approaches is desirable for our application. Octrees,
while maximally memory efficient, have significant drawbacks
when it comes to accessing and iterating over the volumetric
data [2, 33]. Like [2], we found that using an octree to store
the TSDF data to reduce iteration performance by an order of
magnitude when compared to a fixed grid.

Instead of using an Octree, moving volume, or a fixed grid,
CHISEL uses a hybrid data structure introduced by Nießner
et al. [2]. We divide the world into a two-level tree. In the

Fig. 6: Only chunks which intersect both intersect the camera frustum and
contain sensor data (green) are updated/allocated.

first level we have chunks of voxels (Fig.4a). Chunks are
spatially-hashed [16] into a dynamic hash map. Each chunk
consists of a fixed grid of Nv3 voxels, which are stored in a
monolithic memory block. Chunks are allocated dynamically
from a growing pool of heap memory as data is added,
and are indexed in a spatial 3D hash map based on their
integer coordinates. As in [2, 16] we use the hash function:
hash(x, y, z) = p1x⊕ p2y⊕ p3z mod n, where x, y, z are the
3D integer coordinates of the chunk, p1, p2, p3 are arbitrary
large primes, ⊕ is the xor operator, and n is the maximum
size of the hash map.

Since chunks are a fixed size, querying data from the
chunked TSDF involves rounding (or bit-shifting, if Nv is
a power of two) a world coordinate to a chunk and voxel
coordinate, and then doing a hash-map lookup followed by
an array lookup. Hence, querying is O(1) [2]. Further, since
voxels within chunks are stored adjacent to one another
in memory, cache performance is improved while iterating
through them. By carefully selecting the size of chunks so
that they corresponding to τ , we only allocate volumetric data
near the zero isosurface, and do not waste as much memory
on empty or unknown voxels.

G. Frustum Culling and Garbage Collection
To determine which chunks should be allocated, updated by

a depth scan and drawn, we use frustum culling (a well known
technique in computer graphics). We create a camera frustum
with a far plane at the maximum depth reading of the camera,
and the near plane at the minimum depth of the camera. We
then take the axis-aligned bounding box of the camera frustum,
and check each chunk inside the axis-aligned bounding box
for intersection with the camera frustum. Only those which
intersect the frustum are updated. Chunks are allocated when
they first interesect a camera frustum.

Since the frustum is a conservative approximation of the
space that could be updated by a depth scan, some of the
chunks that are visible to the frustum will have no depth data
associated with them. Fig.6 shows all the TSDF chunks which
intersect the depth camera frustum and are within τ of a hit
as green cubes. Only these chunks are updated when new data
is received. Chunks which do not get updated during a depth
scan are garbage collected (deleted from the hash map). Since
the size of the camera frustum is in a fixed range, the garbage
collection process has O(1) performance. Niessner et al. [2]
use a similar approach for deciding which voxel chunks should
be updated using raycasting rather than geometric frustum
culling. We found frustum culling faster than raycasting on
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the mobile CPU.

H. Depth Scan Fusion
To fuse a depth scan into the TSDF (Alg.1), it is necessary to

consider each depth reading in each scan and upate each voxel
intersecting its visual cone. Most works approximate the depth
cone with a ray through the center of the cone [2, 11], and
use a fast rasterization algorithm to determine which voxels
intersect with the rays [34]. We will call this the raycasting
approach. Its performance is bouned by O(Nray× lray), where
Nray is the number of rays in a scan, and lray is proportional
to the length of a ray being integrated. If we use a fixed-size
truncation distance and do not perform space carving, lray = τ .
However, with space-carving (Section III-E), the length of a
ray being integrated is potentially unbounded.

A useful alternative to raycasting is projection mapping.
Used in [11, 14, 23, 32], projection mapping works by
projecting the visual hull of each voxel onto the depth image
and comparing the depth value there with the geometric range
from the voxel to the camera plane. Alg.2 describes projec-
tion mapping. Instead of iterating over each ray, projection
mapping iterates over each voxel. Like most other works,
we approximate each voxel’s visual hull by a single point
at the center of the voxel. Projection mapping’s performance
is bounded by O(Nv), where Nv is the number of voxels
affected by a depth scan. This value is nearly constant over
time, and depending on the resolution of the TSDF, may be
significantly less than the number of rays in a scan. However,
projection mapping suffers from resolution-dependent aliasing
errors, because the distance to the center of a voxel may differ
from the true length of the ray passing through the voxel by
up to half the length of the diagonal of the voxel. Further,
by ignoring the visual hull of the voxel and only projecting
its center, we ignore the fact that multiple depth cones may
intersect a voxel during each scan. Section IV-C compares the
performance and quality of these methods.

I. Rendering
Most other TSDF fusion methods [2, 11] render the scene

by directly raytracing it on the GPU. This has the advantage of
having rendering time independent of the reconstruction size,
but requires TSDf data to be stored on the GPU. Since all of
our computation is performed on the CPU, we instead use an
approach from computer graphics for rendering large terrains

Algorithm 2 Projection Mapping

1: for vc ∈ V do . For each voxel
2: z ← ‖ot − vc‖
3: zp ← InterpolateDepth(Project(vc))
4: u← zp − z
5: τ ← T (zp) . Dynamic truncation
6: if u ∈ [τ + ε, zp] then . Space carving region
7: if Φτ (vc) ≤ 0 then
8: Φτ (vc)← undefined
9: W (vc)← 0

10: if u ∈ [−τ, τ ] then . Hit region
11: Φτ (vc)← W (vc)Φτ (vc)+α(u)u

W (vc)+α(u)

12: W (vc)←W (vc) + α(u)

Fig. 7: System pose drift in a long corridor.

[35] using incremental Marching Cubes [36]. For each chunk,
we store a triangle mesh segment (Fig.4a). Meshing is done
asynchronously with the depth scan fusion, and is performed
lazily (i.e., only when chunks need to be rendered).

Triangle meshes are generated at the zero isosurface of the
TSDF whenever the chunk has been updated by a depth scan.
As in [12, 14], colors are computed for each vertex by trilinear
interpolation. At the borders of chunks, vertices are duplicated.
Only those meshes which are visible to the virtual camera
frustum are rendered. Meshes that are very far away from the
camera are rendered as a colored bounding box. Meshes far
away from the user are destroyed once the number of allocated
meshes exceeds some threshold. In this way, only a very small
number of mesh segments are being updated and/or sent to the
GPU in each frame.

J. Online Pose Estimation
Pose data is estimated first from an onboard visual-inertial

odometry (VIO) system that fuses data from a wide-angle



camera, an inertial measurement unit, and a gyroscope at
60 Hz using 2D feature tracking and an Extended Kalman
Filter. A more detailed discussion of this system can be found
in [17, 18]. We treat the VIO system as a black box, and
do not feed any data back into it. Unlike most other TSDF
fusion methods [2, 11, 12, 14] , we are unable to directly
estimate the pose of the sensor using the depth data and scan
to model iterative closest point (ICP)[20], since the depth
data is hardware-limited to only 3-6Hz, which is too slow to
directly estimate the pose. Instead, we incrementally adjust the
VIO pose estimate by registering each new depth scan with to
model built up over time. Given a pose estimate of the sensor
at time t, Ht, we can define a cost function of the pose and
scan Zt:

c(Ht, Zt) =
∑

xi∈Zt

Φτ (Htxi)
2 (6)

this cost function implies that each of the data points in the
scan are associated with its nearest point on the surface of
the reconstruction Φτ (which has distance 0). This is similar
to the ICP cost function, where the corresponding point is
implicitly described by the signed distance function. Using a
first order Taylor approximation of the signed distance field,
we can estimate th nearest point on the surface to zi by looking
at the gradient of the signed distance function, and stepping
along the direction of the gradient once to directly minimize
the distance:

mi ≈ −
∇Φτ (Htzi)

‖∇Φτ (Htzi)‖
Φτ (Htzi) (7)

then, to align the current depth scan with the global model, we
use this first-order approximation as the model to register the
point cloud against. The gradient of the TSDF is recomputed
at each step of ICP using central finite differencing, which
has O(1) performance. We then iterate until c is minimized.
Corrective transforms are accumulated as each depth scans
arrives.

By registering each new depth scan to the global model,
we can correct for small frame-to-frame errors in system drift
in a small area. However, as the trajectory becomes longer ,
the system can still encounter drift. Fig.7 shows a top down
view of a ∼ 175 meter long corridor reconstructed by a user
holding the device. The left figure shows the reconstruction
achieved by visual odometry and dense alignment alone, with
∼ 5 meter drift present at the end of the corridor. The right
figure shows the reconstruction after the trajectory has been
globally optimized offline using bundle adjustment, overlaid
on the floorplan of the building.

IV. EXPERIMENTS AND RESULTS

A. Hardware
We implemented CHISEL on two devices: a Tango “Yel-

lowstone” tablet device, and a Tango “Peanut” mobile phone
device. The phone device has 2GB of RAM, a quadcore
CPU, a six-axis gyroscope and accelerometer, a wide-angle

Fig. 8: Outdoor scene reconstruction.

(a) Projection, No Carving (b) Projection, Carving

(c) Raycast, No Carving (d) Raycast, Carving
Method Color Carving Desktop (ms.) Tablet (ms.)

Raycast

× × 14± 02 62± 13
X × 20± 05 80± 16
× X 53± 10 184± 40
X X 58± 16 200± 37

Project

× × 33± 05 106± 22
X × 39± 05 125± 23
× X 34± 04 116± 19
X X 40± 05 128± 24

(e) Single scan fusion time.

Fig. 9: Scan fusion methods are compared in the apartment Fig.1b dataset.
Fig.9e reports the amount of time required to fuse a single frame for each
scan fusion method.

120◦ field of view tracking camera which refreshes at 60Hz,
a projective depth sensor which refreshes at 6Hz, and a 4
megapixel color sensor which refreshes at 30Hz. The tablet
device has 4GB of ram, a quadcore CPU, an Nvidia Tegra
K1 graphics card, an identical tracking camera to the phone
device, a projective depth sensor which refreshes at 3Hz, and
a 4 megapixel color sensor which refreshes at 30Hz (Fig.2).



TSDF Method Meshing Time (ms.) Update Time (ms.)

2563 Fixed Grid 2067 ± 679 3769 ± 1279
163 Spatial Hashing 102 ± 25 128 ± 24

TABLE II: The time taken per frame in milliseconds to generate meshes
(Section III-I), and update the TSDF using colorization, space carving, and
projection mapping are shown for the “Room” (Fig.1b) dataset.

B. Use Case: House Scale Online Mapping
Using CHISEL we are able to create and display large scale

maps at a resolution as small as 2cm in real-time on board
the device. Fig.1a shows a map of an office building floor
being reconstructed in real-time using the phone device. This
scenario is also shown in a video here [37]. Fig.7 shows a
similar reconstruction of a ∼ 175m office corridor. Using
the tablet device, we have reconstructed (night time) outdoor
scenes in real-time.Fig.8 shows an outdoor scene captured at
night with the yellowstone device at a 3cm resolution. The
yellow pyramid represents the depth camera frustum. The
white lines show the trajectory of the device. While mapping,
the user has immediate feedback on model completeness, and
can pause mapping for live inspection. The system continues
localizing the device even while the mapping is paused. After
mapping is complete, the user can save the map to disk.

C. Comparing Depth Scan Fusion Algorithms
We implemented both the raycasting and voxel projection

modes of depth scan fusion (Section III-H), and compared
them in terms of speed and quality. Table 9e shows timing
data for different scan insertion methods is shown for the
“Room” dataset (Fig.1b) in milliseconds. Raycasting (Alg.1)
is compared with projection mapping (Alg.2) on both a
desktop machine and a Tango tablet. Results are shown with
and without space carving (Section III-E) and colorization
(Section III-C).The fastest method in each category is shown
in bold. We found that projection mapping was slightly more
efficient than raycasting when space carving was used, but
raycasting was nearly twice as fast when space carving was
not used. At a 3cm resolution, projection mapping results
undesirable aliasing artifacts; especially on surfaces nearly
parallel with the camera’s visual axis. The use of space
carving drastically reduces noise artifacts, especially around
the silhouettes of objects (Fig.9).

D. Memory Usage
Table I shows voxel statistics for the Freiburg 5m (Fig.5c)

dataset. Culled voxels are not stored in memory. Unknown
voxels have a weight of 0. Inside and Outside voxels have a
weight > 0 and an SDF than is ≤ 0 and > 0 respectively.
Measuring the amount of space in the bounding box that is
culled, stored in chunks as unknown, and stored as known, we
found that the vast majority (77%) of space is culled, and of
the space that is actually stored in chunks, 67.6% is unknown.
This fact drives the memory savings we get from using the
spatial hashmap technique from Niessner et al. [2].

We compared memory usage statistics of the dynamic
spatial hashmap (SH) to a baseline fixed-grid data structure
(FG) which allocates a single block of memory to tightly fit
the entire volume explored (Fig.5a). As the size of the space

explored increases, spatial hashing with 16× 16× 16 chunks
uses about a tenth as much memory as the fixed grid algorithm.
Notice that in Fig.5a, the baseline data structure uses nearly
300MB of RAM whereas the spatial hashing data structure
never allocates more than 47MB of RAM for the entire scene,
which is a 15 meter long hallway.

We tested the spatial hashing data structure (SH) on the
Freiburg RGB-D dataset [3], which contains ground truth pose
information from a motion capture system (Fig.5d). In this
dataset, a Kinect sensor makes a loop around a central desk
scene. The room is roughly 12 by 12 meters in area. Memory
usage statistics (Fig. 5b) reveal that when all of the depth data
is used (including very far away data from the surrounding
walls), a baseline fixed grid data structure (FG) would use
nearly 2GB of memory at a 2cm resolution, whereas spatial
hashing with 16× 16× 16 chunks uses only around 700MB.
When the depth frustum is cut off at 2 meters (mapping
only the desk structure without the surrounding room), spatial
hashing uses only 50MB of memory, whereas the baseline data
structure would use nearly 300MB. We also found that running
marching cubes on a fixed grid rather than incrementally on
spatially-hashed chunks (Section III-I) to be prohibitively slow
(Table II).

V. LIMITATIONS AND FUTURE WORK

Admittedly, CHISEL’s reconstructions are much lower res-
olution than state-of-the-art TSDF mapping techniques, which
typically push for sub-centimeter resolution. In particular,
Nießner et al. [2] produce 4mm resolution maps of com-
parable or larger size than our own through the use of
commodity GPU hardware and a dynamic spatial hash map.
Ultimately, as more powerful mobile GPUs become available,
reconstructions at these resolutions will become feasible on
mobile devices.

CHISEL cannot guarantee global map consistency, and drifts
over time. Many previous works [38, 39] have combined
sparse keypoint mapping, visual odometry and dense recon-
struction to reduce pose drift. Future research must adapt
SLAM techniques combining visual inertial odometry, sparse
landmark localization and dense 3D reconstruction in a way
that is efficient enough to allow real-time relocalization and
loop closure on a mobile device.

We have implemented an open-source ROS-based reference
implementation of CHISEL intended for desktop platforms
(link omitted for double-blind review).
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