W) Check for updates

Article

The International Journal of

Robotics Research

32(9-10) 1164-1193

© The Author(s) 2013

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364913488805
ijr.sagepub.com

®SAGE

CHOMP: Covariant Hamiltonian
optimization for motion planning

Matt Zucker!, Nathan Ratliff2, Anca D. Dragan®, Mihail Pivtoraiko?,
Matthew Klingensmith3, Christopher M. Dellin3, J. Andrew Bagnell® and
Siddhartha S. Srinivasa®

Abstract

In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory
optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality
of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component.
CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to
low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of
convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints
along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-

degree-of-freedom manipulators and a rough-terrain quadruped robot.

Keywords
Motion planning, constrained optimization, distance fields

1. Introduction

We propose a trajectory optimization technique for motion
planning in high-dimensional spaces. The key motiva-
tion for trajectory optimization is the focus on producing
optimal motion: incorporating dynamics, smoothness, and
obstacle avoidance in a mathematically precise objective.
Despite a rich theoretical history and successful applica-
tions, most notably in the control of spacecraft and rockets,
trajectory optimization techniques have had limited success
in motion planning. Much of this may be attributed to two
causes: the large computational cost for evaluating objec-
tive functions and their higher-order derivatives in high-
dimensional spaces, and the presence of local minima when
considering motion planning as a (generally non-convex)
continuous optimization problem.

Our algorithm CHOMP, short for covariant Hamiltonian
optimization for motion planning, is a simple variational
strategy for achieving good trajectories. This approach to
motion planning builds on two central tenets:

e Gradient information is often available and can be
computed inexpensively. Robot motion planning prob-
lems share a common objective of producing smooth
motion while avoiding obstacles. We formalize this
notion in terms of two objective functionals: a smooth-
ness term Ugsmooth[€] Which captures dynamics of the
trajectory, and an obstacle functional Ugps[€] which

captures the requirement of avoiding obstacles and
preferring margin from them.

We define the smoothness functional naturally in
terms of a metric in the space of trajectories. By
doing so, we generalize many prior notions of trajec-
tory smoothness, including springs and dampers mod-
els of trajectories (Quinlan and Khatib, 1993). Each
of these prior notions are just one type of valid met-
ric in the space of trajectories. With this generaliza-
tion, we are able to include higher-order derivatives or
configuration-dependent metrics to define smoothness.
The obstacle functional is developed as a line integral of
a scalar cost field c, defined so that it is invariant to re-
timing. Consider a robot arm sweeping through a cost
field, accumulating cost as is moves. Regardless of how
fast or slow the arm moves through the field, it must
accumulate the exact same cost.

1Department of Engineering, Swarthmore College, Swarthmore, PA, USA
2Google, Inc., Pittsburgh, PA, USA

3The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
4Department of Mechanical Engineering and Applied Mechanics, Univer-
sity of Pennsylvania, Pittsburgh, PA, USA

Corresponding author:

Mihail Pivtoraiko, Department of Mechanical Engineering and Applied
Mechanics, University of Pennsylvania, 3330 Walnut Street, Philadelphia,
PA 19104, USA.

Email: mihailp@seas.upenn.edu

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364913488805&domain=pdf&date_stamp=2013-09-13

Zucker et al.

1165

As a consequence, the two functionals are complemen-
tary: the obstacle functional governs the shape of the
path, and the smoothness functional governs the timing
along the path.

The physical intuition of an arm sweeping through
a cost field, hints at a further simplification. Instead of
computing the cost field in the robot’ high-dimensional
configuration space, we compute it in its workspace
(typically two or three dimensional) and use body points
on the robot to accumulate workspace cost to compute
Uops[€]- By framing the obstacle cost in terms of obsta-
cle distance fields in the robot’s workspace, we are able
to exploit several recent innovations in the computation
of Euclidean distance transforms (EDTSs). With this, we
are able to compute functional gradients efficiently for
complex real-world scenes (Section 4) to enable online
replanning.

e Trajectory optimization should be invariant to

parametrization. Our central tenet is that a trajectory
is a geometric object unencumbered by parametrization.
We treat it as a point in a possibly infinite-dimensional
space (here, a Hilbert space, but easily generalizable
to a Riemannian manifold, see Section 3). Invariance
guarantees identical behavior independent of the type
of parametrization used, and ensures the algorithms we
chose respect the underlying problem geometry.
This motivates our choice of variational methods for
optimization. Here, a trajectory & is expressed a func-
tion, mapping time t to configurations g, for example,
and the optimization objective U is expressed as a func-
tional: a function U[£] of the trajectory function &. The
functional gradient is then the gradient of the functional
U with respect to the trajectory &, another geomet-
ric term. The metric structure of the trajectory space
enables us to precisely define perturbations of the tra-
jectory in terms of the endowed norm. This gives us a
clearly defined rule for modifying the gradient making
it covariant to reparametrization.

Like other optimization techniques for non-convex
objectives, functional gradient optimization will descend to
a local minimum. We use the Hamiltonian Monte Carlo
(HMC) algorithm to perturb the minimal trajectory to
restart the process, as well as to provide a sampling proce-
dure for a natural distribution over trajectories. In keeping
with our central tenet, HMC is made parametrization invari-
ant, and adds a momentum term, to perturb the trajectory
out of its current basin of attraction (Section 5). Imagine
the trajectory to be a ball sliding in an uneven landscape.
Instead of a random restart, which would pick up the ball
from its local minimum and randomly place it elsewhere,
HMC gives the ball a little kick of momentum, pushing it
out of its current basin to explore elsewhere.

Our machinery also allows us to generalize our algorithm
to constraints on the entire trajectory which, like keeping a
coffee mug upright, are crucial in robotics applications. We
show in Section 6 how the constrained functional gradient

can be naturally formulated as an unconstrained step to min-
imize the objective followed by a Newton’s method-style
descent back onto the constraint manifold. For the specific
case of goal manifolds, for example those induced by the
rotational symmetry of objects for grasping, this reduces to
a simple and efficient update that makes the algorithm faster
still in practice.

CHOMP has been successfully implemented on sev-
eral robotic platforms (Figure 1) including the HERB
1.0 and 2.0 mobile manipulation platforms (Srinivasa
et al., 2010), the LittleDog quadruped (Zucker et al.,
2011), Carnegie Mellon’s Andy Autonomous Robotics
Manipulation-Software (ARM-S) platform, and the Willow
Garage PR2 robot. In our research on these platforms, we
have come to see CHOMP as the planning algorithm of first
resort, surpassing randomized planners in performance for
typical problems. We describe our extensive experiments
in several different simulated environments with varying
clutter, comparing CHOMP with the bidirectional RRT and
RRT* algorithms in Section 7 and our experience with run-
ning CHOMP on the LittleDog platform in greater detail in
Section 8.

Our experience and successes with implementing
CHOMP on several robot platforms suggests that many
real-world problems are, in fact, not hard to solve, espe-
cially with gradient information. For example, although
LittleDog traversed extremely challenging terrain, nearly
all terrains shared the commonality that moving a foot
upward could remove it from collision. This simple gradient
information is automatically conveyed to CHOMP via the
obstacle functional. Likewise, most ARM-S tests involved
objects placed on a table. Here again, moving up sufficiently
above the table succeeds in getting the robot out of colli-
sion. In both cases gradient information makes a seemingly
tricky motion planning problem relatively easy to solve.

Without question, trajectory planning methods, even with
the probabilistically complete generalization we present,
are not a panacea. They play a limited role in high-
dimensional motion planning, and we would not advocate
them as a complete solution for robotics problems. Rather,
we propose that such techniques play a complementary role
by solving simple problems quickly and effectively, and
acting to smooth and improve the results of other tech-
niques locally. Our focus on understanding the structure and
geometry of motion planning problems in the real world,
and developing a set of algorithms that respect natural
parametrization invariances has enabled us to demonstrate
good and fast performance on many problems.

2. Prior work

The problem of high-dimensional motion planning has
been studied in great detail over the last several decades.
We discuss below several types of approaches and their
relationship to CHOMP.

1166

The International Journal of Robotics Research 32(9-10)

Fig. 1. From left: CHOMP running on the Willow Garage PR2, CMU ARM-S Andy, LittleDog, and HERB platforms. The top row
illustrates the simulation environments and planned trajectories, and the bottom row demonstrates real-world experiments executing the

planned trajectories.

2.1. Sampling-based planning

Sampling-based approaches have become popular in the
domain of high-dimensional motion planning, including
manipulation planning. Seminal works by Barraquand
and Latombe (1990) and others demonstrated solvers for
impressively difficult problems. The probabilistic roadmap
(PRM) and expansive space trees (Hsu et al., 1997) meth-
ods were shown to be well suited for path planning in
C-spaces with many degrees of freedom (DOFs) (Kavraki
et al., 1996), and with complex constraints, including kino-
dynamic (Kuffner, 1999; Hsu, 2000; Casal, 2001; Kindel,
2001). Rapidly-exploring random trees (RRT) (LaValle
and Kuffner, 2001) have also been applied to differential
constraints, and were shown to be successful for general
high-dimensional planning (Kuffner and LaValle, 2000).

These approaches typically work in a two-step fashion:
first, a collision-free path is discovered without regard for
any measure of cost, and then, second, it is improved by
applying certain heuristics. One popular approach is the
so-called “shortcut” heuristic, which picks pairs of configu-
rations along the path and invokes a local planner to attempt
to replace the intervening sub-path with a shorter one (Chen
and Hwang, 1998; Kavraki and Latombe, 1998). Methods
such as medial axis and “partial” shortcuts have also proven
effective (Geraerts and Overmars, 2006).

Randomized approaches are understood to be probabilis-
tically complete (LaValle and Kuffner, 2001), but capable of
solving many challenging problems quite efficiently (Bran-
icky et al., 2001). Such approaches typically do not explic-
itly optimize an objective function, although Karaman and
Frazzoli (2011) suggest such optimization in the asymptotic
sense. As the sampling-based planners became increas-
ingly well understood in recent years, it was suggested that
randomization may not, by itself, account for their effi-
ciency (LaValle et al., 2004). Branicky et al. (2001)
show that quasi-random sampling sequences can accom-
plish similar or better performance than their randomized
counterparts.

The method proposed here represents a departure from
this motion planning paradigm in that sampling is per-
formed directly in the space of trajectories, and numeri-
cal optimization is performed explicitly given the relevant
measures of optimality. A complementary sampling process
attempts to achieve a similar degree of exploration to that
attainable by classical sampling based methods.

Similar to sampling-based and search-based methods
(Likhachev and Stentz, 2008), CHOMP may benefit from
pre-computed, compositional representations of the envi-
ronment (Gilbert et al., 1988; Bobrow, 1989; Lin and
Canny, 1991). Efficient hierarchical representations have
also been proposed by Faverjon (1989), Quinlan (1994) and
others. It is also straightforward to pre-compute accurate,
high-resolution distance fields and gradients for the known
objects in the environment. The computer graphics com-
munity has developed an array of high-performance meth-
ods for computing distance fields and proximity queries for
arbitrary meshes, including parallelized algorithms imple-
mented using graphics hardware (Sigg et al., 2003; Sud
et al., 2006; Eisemann and Decoret, 2008; Lauterbach et al.,
2010). Recent methods are capable of processing dynamic
scenes in real-time. The performance of the CHOMP algo-
rithm can be trivially improved by leveraging these comple-
mentary research efforts.

2.2. Resolution complete approaches

Although naive application of A* is typically unsuitable for
high-dimensional planning problems, current research has
made advances in applying forward search to systems with
many DOFs. Until recently, a major problem with A* and
related algorithms had been that admissible heuristics result
in examination of prohibitively large portions of the con-
figuration space, whereas inflated heuristics cause signifi-
cantly suboptimal behavior. Likhachev et al. (2004) present
a framework for efficiently updating an A* search while
smoothly reducing heuristic inflation, allowing resolution

Zucker et al.

1167

complete search in an anytime fashion on a broader variety
of problems than previously computable. Additional work
has examined inducing smoother motion while reducing the
cardinality of the action set (Cohen et al., 2010), as well as
re-using partial plans discovered by past searches (Phillips
etal., 2012).

The choice of discretization made by these approaches
presents a clear contrast with CHOMP. While resolution
complete approaches necessarily discretize states, actions
and time, CHOMP allows states to vary continuously. We
believe this is a key benefit insofar as gradient information
from the workspace can be used to continuously deform
trajectories around obstacles, and trajectory smoothness
is directly related to the resolution of the underlying
state and action discretizations in the resolution complete
setting. Again, we stress that CHOMP is not suitable
for all tasks. Difficult problems featuring bottlenecks and
other such “narrow passages” may indeed require complete
planners; however, we believe that CHOMP is well suited
for solving the types of problems described in Sections 7
and 8.

2.3. Trajectory optimization

A number of numerical trajectory optimization techniques
have also been applied in this domain. Khatib (1986) pio-
neered the application of the artificial potential field for
real-time obstacle avoidance. The method’s sensitivity to
local minima has been addressed in a range of related work.
Analytical navigation functions that are free of local min-
ima have been proposed for some specific environments by
Rimon and Koditschek (1988).

Quinlan and Khatib (1993) further extended numerical
methods in motion replanning by modeling the trajectory
as a mass—spring system, an elastic band, and performing
replanning by scanning back and forth along the elastic,
while moving one mass particle at a time. An extensive
effort is made to construct a model of the free space, and
the cost function contains terms that attempt to control the
motion of the trajectory particles along the elastic. Brock
and Khatib (2002) further extend this technique. Much of
the complexity of explicit simulation of physical quantities
is alleviated by the method proposed herein via covariant
gradient descent, introduced by Ratliff et al. (2009). Obsta-
cles are considered directly in the workspace of the robot,
where the notions of distance and inner product are more
natural.

Kalakrishnan et al. (2011b) apply motion sampling tech-
niques in a context similar to ours. Their method, STOMP,
obtains gradient information using trajectory samples. In
contrast, our approach exploits the availability of the gradi-
ent. Our assumption that it exists is satisfied in most relevant
cases and does not hinder the application of the method in a
variety of relevant contexts, such as collision avoidance and
workspace constraint satisfaction, as we demonstrate later
on.

Functional gradient-based approaches have also been
studied by Zefran et al. (1996) in the context of motion plan-
ning for systems in which the dynamic equations describing
the evolution of the system change in different regions of
the state space. They utilize a control theory point of view
and focus on the planning of open loop trajectories that can
be used as nominal inputs for control.

2.4. Objective learning

A number of methods approach difficult, high-dimensional
planning problems by learning the structure of the objec-
tive function in order to simplify the problem. Dalibard and
Laumond (2009) use principal components analysis (PCA)
to discover promising directions for exploring a RRT. Ver-
naza and Lee (2011) propose a method, similar to block-
coordinate descent in finite-dimensional optimization, that
optimizes a trajectory over a lower-dimensional subspace
while leaving other dimensions intact. While our approach
also lends itself well to learning techniques by virtue of its
formal mapping between planner parameters and its perfor-
mance, it does not make any assumptions on the structure
of the objective function and therefore can perform well
even in the cases where other techniques that rely on struc-
ture would not be readily applicable. CHOMP, nevertheless,
can exploit the parameter-performance mapping to train the
cost function in a manner reminiscent of imitation learning
techniques (Ratliff et al., 2006a,b).

Jetchev and Toussaint (2010) seek to train a regressor
to predict trajectories given information about a problem
instance. Here, problem instance denotes a combination of
task-specific information, such as initial and goal poses,
and environment information, such as a coarse occupancy
grid enumerating free workspace. The authors show that
informed predictions greatly boost the performance and
convergence time of optimization algorithms. Although the
authors in this case used a variety of other optimizers such
as DDP (Mayne and Jacobson, 1970), AICO (Toussaint,
2009) and RPROP (lgel et al., 2005), we view the trajec-
tory prediction research as complementary in that it estab-
lishes that informed priors can overcome local minima and
trade-off offline learning for online optimization.

2.5. Optimal control

CHOMP is also related to optimal control of robotic sys-
tems. Instead of focusing on computing feasible paths, how-
ever, our goal is to directly construct trajectories which
optimize over a variety of dynamic and task-based crite-
ria. Few current approaches to optimal control are equipped
to handle obstacle avoidance, though. Differential dynamic
programming (Mayne and Jacobson, 1970) is a popular
approach in this category and has been applied to a number
of complex systems. The techniques presented herein may
enable such methods to naturally consider obstacle avoid-
ance as part of optimizing the control. We also note that by

1168

The International Journal of Robotics Research 32(9-10)

virtue of avoiding the explicit computation of second-order
dynamics, CHOMP is likely to be more efficient in many
relevant scenarios.

In some similarity to the proposed approach, ILQG
(Todorov and Li, 2005) uses quadratic approximations to
the objective function and is able to incorporate nonlinear
control constraints. However, many high-dimensional plan-
ning problems, such as in manipulation, pose computational
challenges to such methods. Moreover, ILQG and similar
approaches design an affine feedback control law, whereas
CHOMP owes much of its runtime efficiency to producing
a single trajectory that satisfies constraints.

Other optimal control approaches, such as that of Shiller
and Dubowsky (1991), require a description of configura-
tion space obstacles, which can be prohibitive to create in
the context of high-dimensional planning problems. Many
optimal controllers which do handle obstacles are framed in
terms of mixed integer programming, which is known to be
an NP-hard problem (Schouwenaars et al., 2001). Approxi-
mate optimal algorithms exist, but so far, only consider very
simple obstacle representations. As our results illustrate,
CHOMP demonstrates attractive computational efficiency
and convergence even in cluttered obstacle environments.

3. Theory

CHOMP is designed to produce high-quality trajectories for
complex robotic systems with many DOFs which are both
smooth, eliminating unnecessary motion, and collision free.
Our goal was to develop an algorithm that produces short,
dynamically sound (low-acceleration and low-jerk) trajec-
tories efficiently in a way that is not affected by the arbitrary
choice of trajectory representation. CHOMP satisfies these
properties and can be viewed as a generalization of earlier
work leveraging analogies to masses, springs, and repulsive
forces in trajectory optimization developed by, e.g., Quinlan
(1994) and Brock and Khatib (2002).

In this work, we consider a trajectory & : [0,1] —
€ < RY as a smooth function mapping time to robot
configurations.? Since £ is a function, any objective crite-
rion that we may like to optimize is best represented as an
objective functional U : & — R which maps each tra-
jectory & in our space of trajectories E to a real number.
Ideally, we want our objective to account for obstacle prox-
imity or collision criteria as well as dynamical quantities of
the trajectory such as smoothness.

Our approach, which we discuss in detail in Section 3.3,
is to define the mathematical properties of our space of tra-
jectories (quantities such as norm and inner product) and
our objective functional entirely in terms of physical aspects
of the trajectory so that mathematical objects and calcula-
tions (e.g. gradients and algorithmic convergence criteria)
depend only on the physics of the trajectory and not on
subtle representational nuances of the problem. Leveraging
the idea of covariance to reparametrization from Rieman-
nian geometry (see Hassani, 1999) we derive CHOMP as

a steepest descent optimization algorithm that in princi-
ple operates directly on the trajectories themselves, and not
on particular representations of those mathematical objects.
Changing trajectory parametrization, therefore, does not
change the algorithm’s behavior.

In practice, we work with a simple discretized waypoint
representation of the trajectory for its computational effi-
cacy. By design, the covariant notion of gradient ensures
that the behavior of our implementation, modulo approxi-
mation error induced by the reduction to finite dimensions,
closely matches the theoretically prescribed behavior.

In addition to this representational invariance, another
key contribution of CHOMP is the use of workspace gra-
dient information to allow obstacles to “push” the robot
into collision-free configurations. Approaches to trajectory
optimization traditionally rely on separate planners to find a
feasible trajectory first before attempting any optimization
(LaValle, 2006). CHOMP, however, uses this workspace
gradient information to find solutions even when the initial
trajectory is infeasible.

CHOMP can be conceptualized as minimizing an objec-
tive over a set of paths through the workspace, all jointly
constrained by the configuration space trajectory and the
robot kinematics, along with a potential measuring the size
of the configuration space trajectory itself. In this view, and
each path corresponds to the motion of a single point u on
the robot’s body, and the objective function acts to push
these workspace paths away from obstacles. See Figure 2
for an illustration.

3.1. The objective functional

Our objective functional separately measures two comple-
mentary aspects of the motion planning problem. It first
penalizes a trajectory based on dynamical criteria such as
velocities and accelerations to encourage smooth trajecto-
ries. Simultaneously, it penalizes proximity to objects in the
environment to encourage trajectories that clear obstacles
by a prescribed amount. We denote these two terms in our
presentation as Fsmooth and Fops, respectively, and define our
objective simply as their weighted sum:

U[E] = Fops [‘i‘-] + AFsmooth [E] (1)

As stated above, the trajectory & is a function mapping time
to robot configurations. In this section we assume the initial
configuration £(0) = qo and final configuration £(1) = q;
are fixed, although Section 6 relaxes this assumption to
allow the final configuration to lie anywhere on a smooth
manifold of goal points.

Here Fsmooth Measures dynamical quantities across the
trajectory such as, for example, the integral over squared
velocity norms:

1 1
3~smooth[ﬂ = E/(;

d

2
& dt @)

£(1)

Zucker et al.

1169

obstacle

.
iDe)..,

Fig. 2. Trajectory optimization for a robot can be considered as minimizing a potential over a set of workspace paths which are jointly
constrained by the robot kinematics. Left: CHOMP seeks to minimize the obstacle potential c¢(x), where x(&(t),u) is a workspace
position indexed by the configuration &(t) at time t and robot body position u. Right: A single body point x(&(t), u) is examined, and
its velocity x’ is shown, along with the minimum distance to an obstacle D(x), and the gradient of the collision cost at the body point

Ve(x), with orthogonal projection to the trajectory ¢ .

Our theory extends straightforwardly to higher-order
derivatives such as accelerations or jerks, although we sim-
plify the notation and presentation here by dealing only with
squared velocities.

While Fsmooth €NCOUrages smooth trajectories, the objec-
tive’s other term JFops, €encourages collision-free trajectories
by penalizing parts of the robot that are close to obstacles,
or already in collision. Let B C R® be the set of points on
the exterior body of the robot and let x : € x B — R3
denote the forward kinematics, mapping a robot configura-
tion g € Q and a particular body point u € B to a point
x(q, u) in the workspace. Furthermore, let ¢ : R® — R be
a workspace cost function that penalizes the points inside
and around the obstacles. As discussed in Section 3.4 we
typically define this workspace cost function in terms of the
Euclidean distance to the boundaries of obstacles.

Accordingly, the obstacle objective Fops is an integral
that collects the cost encountered by each workspace body
point on the robot as it sweeps across the trajectory. Specif-
ically, it computes the arc length parametrized line integral
of each body point’s path through the workspace cost field
and integrates those values across all body points:

! d
Foulé] = [[cx(e(0.0) | 5xe0,0)| et @

Here, the workspace cost function ¢ is multiplied by the
norm of the workspace velocity of each body point, trans-
forming what would otherwise be a simple line integral
into its corresponding arc-length parametrization. The arc-
length parametrization ensures that the obstacle objective is
invariant to re-timing the trajectory (i.e. moving along the
same path at a different speed).

Quinlan and Khatib (1993) used a similar obstacle objec-
tive in his foundational elastic bands work, and a useful
introduction with derivations of similar gradients was pro-
vided in Quinlan (1994); however our obstacle objective,
unlike Quinlan and Khatib’s, integrates with respect to arc-
length in the workspace as opposed to the configuration

space. This simple modification represents a fundamental
change: instead of assuming the geometry in the configura-
tion space is Euclidean, we compute geometrical quantities
directly in the workspace where Euclidean assumptions are
more natural. Intuitively, this observation means that the
objective functional has no incentive to directly alter the tra-
jectory’s speed through the workspace for any point on the
robot. Section 3.2 discusses this property in terms the role
the workspace gradient plays in perturbing the trajectory
during a steepest descent update.

Alternatively, it may be useful to define Fops to choose the
maximum cost over the body rather than the integral over the
body:

! d
Funlé] = [maxe(x(e(0.0)) | 0.0

Intuitively, this formulation minimizes the largest violation
of the obstacle constraint at each iteration. From iteration to
iteration, this maximally colliding point may shift to other
body elements as the algorithm incrementally decreases
these large violations with each step. While this formula-
tion is less demanding computationally per iteration, it may
require a greater number of iterations, since each of these
iteration is less informed.

dt (4)

3.2. Functional gradients

Gradient methods are natural candidates for optimizing
such objective criteria since they leverage crucial first-order
information about the shape of the objective functional.
In our case, we consider the functional gradient: the gen-
eralization of the notion of a direction of steepest ascent
in the functional domain. That is, VU is the perturbation
¢ : [0,1] — RY that maximizes VU[¢ + e¢] as € — 0.
Here, we summarize the functional gradient for a particular
family of functionals, following the derivation of Quinlan
(1994).

Let our functional take the form U[§] = [Vv(&(1),
&’(t)) dt. Consider the perturbation ¢ applied to & by a

1170

The International Journal of Robotics Research 32(9-10)

scalar amount e to arrive at the new function & = §+e€o.
Then, holding & and ¢ constant, we may regard U[£] to be
a function f (¢), with

df f v o0& N

de dE e
Consider the second term in the parentheses above. Inte-
grating by parts, and applying the constraint that ¢(0) =

#(1)= 0 (i.e. the displacement leaves the endpoints of &
fixed), we find

ov g d (ov) 0F
[Gee=-[a(E) 5 o

So overall,
Co[(Eotm) s g
de 06 dtag’) Ode
When € = 0, we are essentially taking a directional deriva-
tive of U[£] in the direction ¢, and the equation above

becomes
av d av
= — ———)-pdt 8
0 /(35 dtaf’) ? ®
The perturbation ¢ that maximizes this integral (subject to,
say, a finite Euclidean norm) is the one which is propor-

tional to the quantity in the parentheses above, and hence
the functional gradient is defined as

v €
0 ¥> dt (5)

df
de

v d av

VU[¢] = 9% dtoE

9)
As shown by Quinlan (1994), this can naturally be extended
to incorporate higher derivatives of &. Furthermore, the
functional gradient vanishes at critical points of U, which
include the minima we seek. In fact, the criterion VU = 0 is
the Euler-Lagrange equation, which is central in the study
of calculus of variations (Gelfand and Fomin, 1963). Hence,
we can run steepest descent on the objective functional
by iteratively taking steps in the direction of the negative
functional gradient:

Eir1 = & — niVU[E]

until we reach a local minimum.

Since the objective is the sum of the prior and obstacle
terms, we have VU = VFgbs + AV TFsmootn. The functional
gradient of the smoothness objective in (2) is given by

(10)

d2
dt?
and the functional gradient of the obstacle objective in (3)
is given by

Vsmoon[61(1) = ——5&(1) (11)

VFons[£] = /B ITIXI[(r —=&&T) Ve —ck] du (12)

A

where k = |X[|7?(1 — &%T)x” is the curvature vector
along the workspace trajectory traced by a particular body
point, X’ and X" are the velocity and acceleration of a body
point, & is the normalized velocity vector, and J is the
kinematic Jacobian at that body point. To simplify nota-
tion, we suppress dependencies on time t and body point
u in these expressions. The matrix (1 — X&), is a projec-
tion matrix that projects workspace gradients orthogonally
to the trajectory’ direction of motion. It acts to ensure
that the workspace gradient, as an update direction, does
not directly manipulate the trajectory’s speed profile (see
Figure 2 for an illustration).?

3.3. Functionals and covariant gradients for tra-
jectory optimization

Our objective functional defined in Section 3.1 is manifestly
invariant to the choice of parametrization since both the
obstacle term Fy,s and the smoothness term Fgmeotn depend
only on physical traits of the trajectory. However, the steep-
est descent algorithm portrayed in Section 3.2, while attrac-
tive in its simplicity, unfortunately does depend on the tra-
jectory’s representation since the functional gradient at its
core is derived from a Euclidean norm. (Specifically, it
assumes the trajectory function is represented in terms of
a basis of Dirac delta functions so that the tth component is
(f, &) = [f(7)8(t—7) dr = f(1)).

This section discusses at an abstract functional level
the principle behind removing this dependence on the
parametrization. Our approach revolves around properly
defining a norm on trajectory perturbations to depend solely
on the dynamical quantities of the trajectory, in terms of an
operator A:

k
lel = [Do an(D"e(n)? dt 13)
n=1

where D" is the nth-order derivative operator and a, € R is
a constant. More concretely, for k = 1, since D' operates
simply by taking the first derivative, the norm in Equation
(13) reduces to [|£ 12 = [&'(t)? dt. Similarly, we can define
an inner product on the space of trajectories by measuring
the correlation between trajectory derivatives:

k
&) = [Y an(Du())(O0)d (14)
n=1

A at this point serves primarily to distinguish this norm
and inner product from the Euclidean norm, but its nota-
tional purpose is clarified below in Sections 3.4 and 3.5
the concrete context of our finite-dimensional waypoint
parametrization. For simplicity of presentation, we will not
discuss the role of A in its general form beyond saying that
it is an abstract operator formed of constituent differen-
tial operators D as A = DD so that ||f |3 = (f, Af) =
[(Df(t))? dt (Hassani, 1999).2

Zucker et al.

1171

Our experiments primarily use the k = 1 (total squared
velocity) variant. In other words, we measure perturba-
tions to a trajectory in terms of how much the perturba-
tion changes the overall velocity profile of the trajectory.
Functional gradients taken with respect to this definition of
norm are covariant to re-parametrization of the trajectory
in the sense that if we change the trajectory’s parametriza-
tion, we have a clearly defined rule for changing the norm
as well so that it still measures the same physical quantity.
Functional gradients computed under this norm, which we
denote by VAU, therefore, constitute update directions fun-
damental to trajectories, themselves, and not their choice of
representation.

The functional gradient that arises under this invariant
norm | - || differs from the Euclidean functional gradient
only in that it is transformed by the inverse of A:

VAU[E] = AT VU[E] (15)

For much of what follows, both in this section and in
Section 6, we simplify the mathematical presentation by
deriving results in terms of their finite-dimensional coun-
terparts in a waypoint parametrization (see Section 3.4).
Borrowing techniques from the analysis of direct meth-
ods in the calculus of variations (particularly the method
of finite differences (Gelfand and Fomin, 1963)), one can
show that the limit of these results as our discretization
becomes increasingly fine converges to the prescribed func-
tional variants; however, finite-dimensional linear algebra
(such as matrix inversion) is often substantially simpler
than its infinite-dimensional counterpart (such as deriving
an operator’s Green’s function). We emphasize here, how-
ever, that the infinite-dimensional theory behind CHOMP
constitutes a theoretical framework that facilitates deriving
these algorithms for very different forms of trajectory rep-
resentation such as spline parametrization or reproducing
kernel Hilbert space parametrization (Schlkopf and Smola,
2001).

3.4. Waypoint trajectory parametrization

Although so far we have remained unencumbered by a
particular parametrization of the trajectory &, numerically
performing functional gradient descent on (1) mandates
a parametrization choice. As mentioned above, there are
many valid representations, but we choose a uniform dis-
cretization which samples the trajectory function over equal
time steps of length At: & ~(q],q7,...,q7)" € R™9, with
Jo and gny1 the fixed starting and ending points of the
trajectory.

Using this waypoint parametrization, we can write the
smoothness objective (2) as a series of finite differences:

n+1

1
C‘Fsmooth[g] = E Z
t=1

Ot+1 — Ot 2

At (16)

With a finite differencing matrix K and vector e (which han-
dles boundary conditions go and gn41), we can rewrite (16)
as

1 1
gsmooth[‘i"] = z ||K§ +e”2 = E%-TAS +§Tb+c (17)

with A = KK, b = KTe, and ¢ = e"e/2. Hence, the prior
term is quadratic in & with Hessian A and gradient b. Here,
the matrix A can be shown to measure the total amount of
acceleration in the trajectory.

Computation of the obstacle gradient for the waypoint
parametrization is a relatively straightforward modification
of (12): the set B is discretized, and the integral is replaced
with a summation. Furthermore, to compute x" and x”, the
workspace velocity and position of a point, we use central
differences of the elements g; of & and map them through
the kinematic Jacobian J.

3.5. Gradient descent

Equipped with a finite-dimensional parametrization of the
trajectory & and the gradient of U with respect to each ele-
ment ¢ of &, we can now perform gradient descent. Here we
define an iterative update rule that starts from an initial tra-
jectory & and computes a refined trajectory &1 given the
previous trajectory &;. We typically start with a naive initial
trajectory &, consisting of a straight line path in configu-
ration space. As mentioned previously, this path is not in
general feasible; however, unlike prior trajectory optimiz-
ers, CHOMP is often able to find collision-free trajectories
nonetheless.

To derive the update rule, we will solve the Lagrangian
form of an optimization problem (Amari and Nagaoka,
2000) that attempts to maximize the decrease in our objec-
tive function subject to keeping the difference between &;
and &1 small. As discussed in Section 3.3, the choice of a
metric on the space of trajectories (i.e. determining what
“small” means) is critical. The covariant update rule we
define seeks to make small changes in the average accel-
eration of the resulting trajectory, instead of simply making
small changes in the (arbitrary) parameters that define it.

We begin by linearizing U around &; via a first-order
Taylor series approximation:

ULE] ~ ULE]+(& — &) VULE]

The optimization problem is now defined as
fiv1 = arg minULg]+(& ~6)" YU+ S 16 &l (18)

The term [|€ — &2, =(& — &)" M(& — &) is the squared
norm of the change in trajectory with respect to a metric
tensor M, and the regularization coefficient n determines
the trade-off between minimizing U and step size. In the
typical Euclidean case we would have M = I; instead, we
choose M to be the matrix A defined in the previous subsec-
tion. Again, this means we prefer perturbations which add

1172

The International Journal of Robotics Research 32(9-10)

only small amounts of additional acceleration to the overall
trajectory. If we differentiate the term on the right-hand side
of (18) above with respect to & and set the result to zero, we
arrive at the update rule

1 .
Eiy1 =& — ;A_lvu[fi] (19)

This update rule is covariant in the sense that the change to
the trajectory that results from the update is a function only
of the trajectory itself, and not the particular representation
used (e.g. waypoint based), at least in the limit of small step
size and fine discretization.

We gain additional insight into the computational ben-
efits of the covariant gradient-based update by consid-
ering the analysis tools developed in the on-line learn-
ing/optimization literature, especially Zinkevich (2003) and
Hazan et al. (2006). Analyzing the behavior of the CHOMP
update rule in the general case is very difficult to char-
acterize. However, by considering in a region around a
local optimum sufficiently small that Fops is convex we can
gain insight into the performance of both standard gradient
methods (including those considered by, e.g., Quinlan and
Khatib (1993)) and the CHOMP rule.

Under these conditions, the overall CHOMP objec-
tive function is strongly convex; that is, it can be lower-
bounded over the entire region by a quadratic with curvature
A (Ratliff et al., 2007). Hazan et al. (2006) showed how
gradient-style updates can be understood as sequentially
minimizing a local quadratic approximation to the objec-
tive function. Gradient descent minimizes an uninformed,
isotropic quadratic approximation while more sophisticated
methods, such as Newton steps, compute tighter lower
bounds using a Hessian. In the case of CHOMP, the Hes-
sian need not exist as our obstacle objective Fops may not
even be twice differentiable, however we may still form a
quadratic lower bound using A. This is much tighter than an
isotropic bound and leads to a correspondingly faster mini-
mization of our objective. In particular, in accordance with
the intuition of adjusting large parts of the trajectory due to
the impact at a single point we would generally expect it to
be O(n) times faster to converge than a standard, Euclidean
gradient-based method that adjusts a single point due an
obstacle.

We have used a variety of termination criteria for
CHOMP, but the most straightforward is to terminate when
the magnitude of the gradient VU[£] falls below a prede-
termined threshold. Of course, the algorithm may terminate
with a trajectory that is not feasible (i.e. there remain colli-
sions), and furthermore CHOMP will fail to report if no fea-
sible path exists. Despite the lack of completeness, deciding
whether any particular path is feasible is straightforward
since the workspace cost function (which must be evalu-
ated at each point over the trajectory at each iteration) is
aware of distances to obstacles. After CHOMP terminates,
a higher-level planner or coordination scheme may decide

how to proceed based on the quality and feasibility of the
path.

Finally, we note that although the A matrix may be quite
large, it is also sparse, with a very simple band diagonal
structure. Hence, we can use an algorithm such as Thomas’
backsubstitution method for tridiagonal matrices (Conte
and de Boor, 1972) to solve the system Ax = b in time O(n)
rather than a naive matrix inverse which requires O(n?®)
time.

3.6. Cost weight scheduling

The weights in the sum in Section 3.1 are useful for vary-
ing the emphasis on either of the sum components during
optimization via a process referred to as weight schedul-
ing, similar to gain scheduling in non-linear control (Khalil,
2001). Early in optimization, it is beneficial to give most
of the weight to collision avoidance and similar costs and
nearly remove the influence of the smoothness cost. As
optimization progresses and trajectory obstacle cost sig-
nificantly reduces, the weight is shifted to the smooth-
ness cost to ascertain that the trajectory remains attrac-
tive with respect to dynamics measures. Even while the
optimizer focuses on obstacle avoidance, the covariant tra-
jectory updates still maintain smoothness, as discussed in
Section 3.5.

This measure may make the overall cost function more
robust to local minima. For example, if the initial trajec-
tory is already smooth but in collision, then the action of
the collision cost will be to modify the trajectory to bring
it out of collision. If this modification would cause the tra-
jectory to be less smooth, the smoothness cost will in fact
try to undo that change and to restore smoothness, thereby
bringing the trajectory back into collision. Indeed, the opti-
mization may be at a local minimum of this sort right at
the outset, for example if the initial trajectory is a line in
joint space. Experimental results in Figure 23 suggest that
weight scheduling indeed improves performance in prac-
tice: both in terms of better planner convergence and the
reduced number of required iterations.

4. CHOMP obstacle cost

For many robotic applications, obtaining the CHOMP col-
lision cost is straightforward. Consider the case of a many-
linked robot in the workspace RY. Assume that the robot’s
configuration can be fully described by d parameters, that
is, the robot’s configuration is g € RY. Assume also that
obstacles are well-defined subsets of the workspace . Now,
given a trajectory through space, we are able to define its
cost by considering the configuration of the robot at each
point in time, and looking at the distance from points on the
robot’s body to obstacles.

Zucker et al.

1173

Fig. 3. Asimplified representation of the HERB Robot used in our
experiments. We simply fit a small set of spheres over the links of
the robot arm.

4.1. Modeling the robot and obstacles

To make the optimization problem tractable, we must first
develop an efficient representation of the robot and obsta-
cles in the environment. We do this by making simplifying
assumptions about the robot’s structure, and the structure of
obstacles.

4.1.1. Simplified robot model The robot’ body is made up
of a set of points, B € RY. Now, let the forward kinematics
function x(q,u): RY — B give the point u € B of the
robot, given its configuration q.

In practice, the set B can be approximated by a set of geo-
metric primitives which enclose the body of the robot, such
as spheres, capsules and polyhedra. For our experiments, we
fit a swept-sphere capsule to each link of the robot manip-
ulator, and then generate a discrete set of spheres for each
capsule (Figure 3). In this way, the nearest distance to any
point in B can be made simple to compute. For spheres, the
distance to any point is given by the distance to the center
of the sphere minus its radius.

A trajectory & is collision-free if for every configuration
gi € &, for each point x, € x(q;, u), the distance from that
point to any obstacle is greater than some threshold € > 0.

4.1.2. Obstacle representations Let the function D

RY — R provide the distance from any point in the
workspace to the surface of the nearest obstacle. Assum-
ing all obstacles are closed objects with finite volume, if
the point x € RY is inside of an obstacle, D(x) is negative,

Obstacle Field

Obstacle Field Complement

- ‘ ‘ ‘ Signed Distance Field Dix) = dix) - d™(x)
v, [] 100

AP |

) Distance Field Camplement d(x)

Fig. 4. (a) Field construction. (b) Signed distance field. The
signed distance field is created as the difference between two dis-
tance transforms created over a binary grid where obstacles are set
to 1, and its complement, where obstacles are set to zero, so that
D(x) = d(x) —d(x). Here, brighter colors represent higher values.

whereas if x is outside of all obstacles, D(x) is positive,
and D(x) is zero if the point x lies on the boundary of an
obstacle.

In practice, the distance function D can be implemented
using geometric obstacle primitives (such as boxes, spheres
and cylinders), or it can be pre-computed and stored as
a discrete array of distance values using a EDT algo-
rithm. Efficient algorithms to compute the discrete EDT
include the O(n) algorithm of Felzenszwalb and Hutten-
locher (2004), and a O(nlogn) algorithm from Gelenbe
et al. (2001), starting from a boolean obstacle grid. We
compute the EDT for both the obstacle grid d and its com-
plement d. The signed distance field (SDF) is given by the
difference of these two fields, i.e. D(x)= d(x) —d(x), as
shown in Figure 4. These algorithms also provide a straight-
forward way to store an approximation to the gradient of the
distance field, VD(x) via finite differencing over the field’s
contents.

Many of the objects with which robots must interact can-
not be easily represented as collections of geometric prim-
itives. The objects are almost never convex and typically
have complex shape, as illustrated in Figure 5. In addition,
we note that the efficiency of many modern robot percep-
tion systems is due to leveraging certain domain knowledge
of the problem, frequently involving detailed models of the
known objects in the environment. In an effort to leverage a
symbiotic relationship of planning and perception, we pro-
pose utilizing the same object models for efficient distance
field computation.

In particular, we note and exploit the fact that the envi-
ronment representations based on distance fields are com-
positional under the min operation. For every available
object model, a high-resolution distance field and its gra-
dients are computed via an extensive, but off-line compu-
tation in free space and with respect to a certain frame
of reference of the object, Fo. During planning, a percep-
tion process generates a model of the environment which

1174 The International Journal of Robotics Research 32(9-10)
£
(&)
0
0 €
(a) (b) (c) (d) d(x)

Fig. 5. Two examples of objects with complex, non-convex shapes
that would be difficult to represent accurately with simple geomet-
ric primitives. The corresponding object distance primitives are
shown on the right in the figure.

includes a set O of objects and their poses, expressed with
homogeneous transforms TFFg’ in world frame Fy. Then
the distance field computation is reduced to a minimization
across a set of distance field primitives pre-computed for
each object in O:
D(x) = min (TFW)_lx (20)
oeo \ Fo
Hierarchical representations, such as the k-d tree (Bentley,
1975), may be utilized to speed up this computation.

For our experiments, we use a combination of these
approaches. For static elements of the environment, we pre-
compute and store a distance field, and for dynamic or
sensed objects, we use oriented bounding boxes as well as
pre-computed distance fields. For raw sensor data such as
point clouds, we simply keep track of an occupancy grid
over the entire workspace, and use this occupancy grid to
generate a distance field. Depending on the relative speeds
of the distance transform algorithm, reading files from the
hard disk, and analytic distance computations to primitives,
using any one of these methods in place of the other may
provide a performance boost.

4.2. Obstacle cost formulation

Now, we define a obstacle cost function which penalizes the
robot for being near obstacles. As in Ratliff et al. (2009), we
define the general cost function ¢ : RY — R (the general
cost of any point in the workspace) as

—D(X)+3e, ifD(X)<0
c()=1{Z(D(x)—¢)?, ifO<D(X)=<e (21)
0 otherwise

and define V¢ : RY — R" as the gradient % Note
that since ¢ depends only on D and X, V(c) can easily be
computed via finite differencing in the distance field. We
provide a plot of (21) in Figure 6.

Fig. 6. A plot of (21). Note that the cost of a point in the
workspace smoothly drops to zero as a distance of the allowable
threshold ¢ is reached.

It is also possible to modify our workspace cost func-
tion to attain some arbitrary desired Euclidean motion. For
example, given a certain point on the robot body, u € B,
it is natural to define a cost function that evaluates to O if
an element of u’s position and orientation vectors satisfies
the desired constraint and to quadratic error if it does not.
Using the z-dimension of position as an example, and sup-
posing we desire to limit u’s pose such that its z-coordinate
is greater than zmin, we can define a workspace cost potential
similar to (21):

if Z < Zmin

(z— Zmin)2
0 otherwise

c(2) = (22)

If the desired interval is closed, another instance of (22) can
be used for the other boundary, e.9. Zmax. We can now define
the obstacle cost of a trajectory &. Assume that £ can be
expressed as a continuous time function £(t): [0, 1] — RY,
which gives the configuration of the robot at time t. We can
then express the obstacle cost as a functional over &.

One formulation of the obstacle cost might be as the inte-
gral over the entire trajectory of the collision cost of each
trajectory point. While intuitive, this formulation ignores
the velocity of points through obstacles (which prevents the
obstacle cost from being invariant to reparametrization), so
instead we must define the obstacle cost as

1
Fopslél = [[olxte(v.v) ”%x(s(o,u) ‘ dudt

We then compute the functional gradient of the obstacle

cost as
ov d av

95 dtog
where v is everything in the time integral in (23) (Ratliff
et al., 2009). Applying to (23), we obtain

6‘rflyobs, [E] = (24)

VT opslé] = / JT<||x’|| (= xx") Ve — cK)> (25)

ueB

Zucker et al.

1175

where X’ is the first derivative of x, x’ denotes the normalized
vector - Hx/l « is the curvature of the trajectory (Ratliff et al.,
2009), defined by

(1= xx")x" (26)

IEE
and J is the Jacobian of the point u € B on the robot given
its configuration %x(é(t) ,U). These terms are visualized

for a robot in R? in Figure 2.

Here, (25) represents an integration in time and
workspace positions over the entire trajectory, taking body-
point velocities into account. Note also that due to the cur-
vature term «, the gradient is orthogonal to the workspace
motion of each point on the robot’s body.

In practice, the obstacle cost and gradient are computed
by first by discretizing the time interval into T steps, with
AT = % time between them, iterating over the discrete set
of body primitives, summing all of the pre-computed obsta-
cle cost gradients (21), and passing the result through the
kinematic Jacobian at each discrete timestep along the tra-
jectory. Velocities are approximated via finite differencing,
and stored for each timestep in the trajectory.

That is, assume the time interval of the trajectory is
t = {to,t1,...,tr}, and assume that the set of body points
is a set of primitives: B = {uy, Uy, ..., Uy}, where the dis-
tance from the primitive i at timestep j to any obstacle
in the environment can be computed in constant time by
D(x(ui, tj)). Now, the workspace velocity of a body point
is simply x{yj = w The Jacobian for that body
point at time j can likewise be computed and stored, as J;,
as well as the collision cost and its gradient.

Then, the gradient term (25) can be approximated as

~ Y (nx.,u

uieB

v&f’ X iXi)VC., ci,,-x)) (27)

where vjﬂobs is a d-dimensional vector representing the
functional gradient of the trajectory at discrete timestep j.
In this way, the functional gradient ?Sﬂobs can be approx-
imated in its discrete form as a d x T matrix, where the
jth column is the discrete approximation of the functional
gradient over time interval j (see (27)).

Using this approximation of the obstacle term, for each
iteration of CHOMP, we first do forward kinematics calcu-
lations for each body point on the robot, and simultaneously
store the Jacobian evaluated at each point, as well as the
collision cost and its gradient. It then becomes straightfor-
ward to compute the vector in the configuration space which
pushes the robot out of collision.

4.2.1. Joint limits One practical concern is the fact that
after the gradient update described in Section 3.2, the
robot’s configuration might be outside of hard joint limits.
A naive way to solve this problem might be to clamp the
robot’ configuration such that it remains inside joint lim-
its. However, this is not ideal, as it makes the trajectory of

Fig. 7. The configuration space is shown as R2. The trajectory
& briefly exits the joint limit subspace (shown as a box), and re-
enters. The violation trajectory &y, is shown as a set of vectors
projecting & back onto the surface of the joint limit subspace. The
point with the largest violation, vmax is also shown. Note that &,
is zero whenever £ is inside the joint limit subspace. The resulting
trajectory & is also shown.

the robot non-smooth. As in Ratliff et al. (2009), we handle
joint limits by smoothly projecting joint violations using the
metric described in Section 3.

Suppose that the robot has joint limits defined by gy €
RY, and gmax € RY. Along each point in the trajectory £,
if the configuration is outside of the allowed bounds, we
compute the closest L; projection to the bounds defined by
{dmin- 9max}. Do this for each point in the trajectory. Call
this the violation trajectory, &,. See Figure 7.

Then, until we are inside the joint limits, or until we have
reached a maximum number of iterations for resolving joint
limits, we subtract a scaled version of the violation trajec-
tory from the current trajectory after passing it through the
smoothness metric, i.e.

E=6+¢ (28)
where £ = A~1£,, scaled in such a way so that it exactly
cancels out the largest joint violation along the original tra-
jectory. That is, the element of & with the largest absolute
value (called vmax) equals the element of &, with the largest
absolute value. We can do this and still retain smoothness
because of the invariance of the covariant gradient update
to the scale of the update vector.

5. Hamiltonian Monte Carlo

Many recent approaches to motion planning (LaValle,
2006) center around sampling to ensure probabilistic com-
pleteness. These methods choose the most promising solu-
tion from a set of feasible candidates sampled from an
implicitly defined distribution over paths. When a prob-
lem has many possible solutions, especially those distinct
homotopy classes of solutions, trajectory distributions offer
a more comprehensive representation of the breadth of the
solution space. Sampling from trajectory distributions can

1176

The International Journal of Robotics Research 32(9-10)

be a good way avoid the local optima that plague greedy
gradient procedures.

Modeling distributions over a space of paths is a problem
of fundamental significance to a number of fields such as
statistical physics (Chaichian and Demichev, 2001), finance
(Kleinert, 2009), human behavior modeling (Ziebart et al.,
2009, 2010), and robust and stochastic control (Bagnell,
2004; Todorov, 2006; Theodorou et al., 2010). In all of
these applications, Gibbs distributions over trajectories
p(&) o exp{—U(&)} play a central role since they may
be regarded as an optimal representation of the uncertainty
intrinsic to decision making (Ziebart, 2010).

In this section, we review the HMC method (Neal,
1993, 2010), a sampling technique that leverages gradient
information. The algorithm has strong ties to the simple
momentum-based optimization procedures commonly used
to avoid local minima in neural network training, and has
straightforward generalizations to simulated annealing that
re-frame it as an optimization procedure. This technique,
in the context of CHOMP, is an efficient way to better
explore the full space of solutions and to be more robust
to local minima. In addition, the sampling perspective
makes CHOMP probabilistically complete by entertaining
all options with probability dependent on the trajectory cost
assigned by the cost function.

5.1. Intuition

Given an objective U(&), we can construct an associated
probability distribution that respects the contours of the
function relative to its global minimum as
P(&;) o exp{—alU(§) }. (29)
This distribution reflects the cost tradeoffs among hypothe-
ses by assigning high probability to low-cost trajectories
and low probability to high-cost trajectories. The param-
eter « > 0 adjusts how flat the distribution is: as «
approaches O the distribution becomes increasingly uni-
form, and as « approaches oo the distribution becomes
increasingly peaked around the global minimum.*

HMC uses a combination of gradients and momenta
to efficiently search through the space of trajectories and
explicitly sample from the distribution p(&;«). To under-
stand how it works, imagine the graph of the scaled objec-
tive aU(&) as a landscape. Throughout this section, we
consider & to be a single point in an infinite-dimensional
space; momenta and dynamics act on this point within this
infinite-dimensional space analogously to their behavior on
a small ball in the more familiar three-dimensional space
of everyday life. We can start a ball rolling from any point
in this space with a particular initial velocity, and, in a per-
fect frictionless world, the ball will continue rolling forever
with constant total energy. At times the ball will transfer
that energy entirely to potential energy by pushing uphill
into higher cost regions, and at times the ball will convert
much of its energy into kinetic energy by plummeting down

into local minima, but the principle of energy conservation
dictates that its total energy always remain constant.

The total energy of the system, accordingly, is a function
of two things: how high the ball starts (its initial potential
energy), and how fast it starts (its initial kinetic energy).
By changing the amount of total energy the ball starts with,
we modulate the amount of time the ball spends moving
quickly through local minima relative to the amount of time
it spends pushing up into higher cost regions. If we set it off
with very little energy, either by starting it low or giving it
very little initial momentum (or both), the ball will easily
get stuck in some local bowl and not have enough energy
to escape. On the other hand, if we set it off will a lot of
energy, either by placing it very high in the beginning or by
throwing it very hard in some direction (or both), the ball
will have enough energy to shoot out of local minima and
visit many distinct regions as it travels.

The way we schedule these energy levels over time (i.e.
whether we choose them randomly, monotonically decrease
them to zero, or some combination of the two), dictates how
we may interpret the behavior of the ball and the distribu-
tion of locations the ball visits in its lifetime. If we randomly
catch the ball and send it off in some other direction with
a random (normally distributed) speed, then one can show
that the distribution of points where we catch the ball con-
verges to the Gibbs distribution p(&). On the other hand, if
we consistently decrease the ball’s energy by again catching
the ball randomly and but this time sending it off again in
random directions now with less energy on average, the ball
will consistently be losing energy over time which means
it will generally move downhill. Eventually, the ball will
have essentially no energy at all, at which point it must be
in a local minimum of the energy landscape. This energy
profile defines an optimization procedure, one which starts
by exploring a multitude of local minima before finally
converging with high probability on a relatively deep basin.

The following sections formalize these ideas as HMC
(Neal, 1993, 2010), in terms of both its use as a sampler
(Section 5.2) and as an optimizer using simulated annealing
(Section 5.4). Section 5.3 reviews some theoretical analysis
behind the general HMC algorithm and briefly derives the
algorithm for a constant metric A.

5.2. HMC

Let ¥ denote a variable that represents the momentum of
a trajectory £. As we note above, in this context we think
of the trajectory as a single infinite-dimensional point in
the space of trajectory functions. Accordingly, the momen-
tum refers to how the entire trajectory changes over time
(such as how quickly it morphs from a straight-line into an
S-shaped trajectory).

Following the analogy from above, the energy of the sys-
tem is defined by both its potential energy U(&) and its
kinetic energy X(y)= %y’y. We will review the basic
algorithm in terms of Euclidean metrics here, and then later
generalize it in Section 5.3.2 to arbitrary constant metrics

Zucker et al.

1177

A. Rather than addressing the marginal p(&) directly, HMC
(Neal, 1993) operates on the joint probability distribution
between the trajectory variable & and its momentum y:

P&, y) ocexp{-U(§) —X(y)} =exp{—H(&,y)} (30)

In this way, the probability of any given system
configuration is related to its total energy. Low-energy
configurations have high probability while high-energy
configurations have low probability. An algorithm that suc-
cessfully samples from the joint distribution also implic-
itly gives us samples from the marginal since the two
random variables are independent. Simply throwing away
the momentum samples leaves us with samples from the
desired marginal p(£).

In physics, U(&) and X(y) are the potential energy
and kinetic energy, respectively, and the combined function
H(&, y) is known as the Hamiltonian of the dynamical sys-
tem. H(&, y) reports the total energy of the system, and
since energy is conserved in a closed system physically
simulating the system is central to the algorithm. Physical
simulations move the system from one infinite-dimensional
point & to another &1, the latter likely in a very differ-
ent region of the space, without a significantly changing
the total energy H. Any observed change stems solely from
errors in numerical integration.

The following system of first-order differential equations
models the system dynamics:

L=y
t - 31

{ & — e 1
Throughout this presentation we refer to these equations
as the instantaneous update equations. Considering & as
a particle with momentum y, this system simply restates
the physical principles that a particle’s change in position
is given by its momentum, and its change in momentum
is governed by the force from the potential field, which
have defined as U(&) for our problem. A straightforward
analysis of this system demonstrates that all integral curves
conserve total energy (see Section 5.3.1). This observation
indicates that if (£(t),y(t)) is a solution to System (31)
the value of the Hamiltonian H(&(t), y(t)) is always the
same independent of t.

In terms of our joint distribution in Equation (30), this
constancy along solution paths implies these system solu-
tions also trace out isocontours of the Hamiltonian H(&, y).
Simulating the Hamiltonian dynamics of the system, there-
fore, moves us from one point (£(0),y(0)) to another
point (£(t),y(t)), where £(0) and &(t) may be very dif-
ferent from one another, without significantly changing the
probability p(&, y) oc exp{—H(&,7) }.

The HMC algorithm capitalizes on the system’ con-
servation of total energy by leveraging the decomposition
p(&,y) o exp{—U(&) }exp{—K(y)}. If computers were
able to simulate the dynamical system exactly, then the fol-
lowing sampling procedure would be exact: (1) sample the

momentum term from the Gaussian p(y) « exp{—%yTy};
and (2) simulate the system for a random number of itera-
tions from its current & to get the new sample &, 1. Unfortu-
nately, though, numerical inaccuracies in approximate inte-
gration may play a significant role. The HMC algorithm
is essentially the above procedure with an added rejection
step to compensate for the lost accuracy from numerical
integration.

Most presentations of HMC use the second-order
leapfrog method of numerical integration to simulate the
system dynamics because of its relative simplicity and its
reversibility property (running it forward for T iterations
and then backward for T iterations gets you back where you
started, up to floating point precision), the latter of which
is of theoretical importance for Markov chain Monte Carlo
algorithms (Neal, 1993). The leapfrog method updates are
given by

Ty = n— 5VU(&)
§tre = &t +€vgg
Vi+e = Vi+s — %VU(EHe)

(32)

It is common to see these equations written as presented,
but in practice it is more efficient when chaining multi-
ple leapfrog steps together to combine the last half-step
momentum update of the current iteration and the first half-
step update of the next iteration to void extraneous function
and gradient evaluations since those steps together simply
amount to a full step update.

The full numerically robust HMC sampling algorithm
therefore iterates the following three steps:

1. Sample an initial trajectory momentum y: Sample
a random initial trajectory momentum from the Gaus-
sian formed by the marginal kinetic energy term p(y) «
exp{—K(y)} = exp{—37"y}.

2. Simulate the system: Simulate the system for a ran-
dom number of iterations® using the leapfrog method of
numerical integration given in Equation (32).

3. Reject: Compensate for errors in numerical integra-
tion. If the final point is more probable than the initial
point, accept it without question. Otherwise, reject it

with probability p(&t1, 1t41) /P& 1)

5.3. Theoretical considerations

This section briefly explores some of the theoretical consid-
erations describing both why the instantaneous update rule
is correct and how we can properly account for arbitrary
constant metrics A on the space of trajectories.

5.3.1. Brief analysis By analyzing the time derivative of
H, one can see that the instantaneous update rule in System

1178

The International Journal of Robotics Research 32(9-10)

(31) does not change the Hamiltonian H(&, y):
d d& oH
FHEN = Z (s Tt

_ d&; 9E
a (at 9

dy; oH
dt 87/,

(o)

./ BE OE
<yi3_§i - 8_&%) =0, (33)

where we arrive at Equation (33) by use the instantaneous
update equations.

5.3.2. HMC with constant metric A Given the covariant
update rule with metric A, one might suspect that the fol-
lowing system is the analogous instantaneous HMC update
rule under a constant metric A:

{ d
We can see that this system is covariant using a sim-
ple change of variable argument. Using Ha(&,y)=
E(&)+3yTAy as the Hamiltonian, let & = A2t and

~

y = A%y be a change of variable transformation such
that Euclidean inner products in € and are A-inner prod-
ucts in the original space. The Euclidean update rules given
by Equation 31 of this modified Hamiltonian in the trans-

formed space are % = Jand ¥ = —%U(A*%E),

Substituting the identities

e

V4
— _AU(e) (34

D-Q.l
Il

t
V

2

d - 1
_’t’ and VzU(&) = A"2V,U(£),
(35)

into the covariant system 34 reduces it to the Euclidean
system in terms of £ and y. Therefore, under these instan-
taneous update equations, Ha never changes.

Moreover, in terms ofg and » HMC prescribes Euclidean
sampling of the momenta. So, in terms of our original vari-
ables & and y, since 3779 = 2y TAy, the analogous rule
under Hp is to sample from pa(&) o« exp{—%yTAy}. In ret-
rospect, this alteration is intuitive since this distribution pa
gives high probability to smooth momenta trajectories and
low probability to non-smooth trajectories.

The final altered algorithm reads

1. Sample an initial momentum: Sample 3 from
pa(y) o exp{—3y Ay }.

2. Simulate the system: Use to leapfrog method to simu-
late the system in Equation 34.

3. Reject: If the final point is more probable than the ini-
tial point, accept it without question. Otherwise, reject

it with probability pa(&1, vie1) /Pa(& 11)-

5.4. Optimization and simulated annealing

Finally, we can use simulated annealing to turn these effi-
cient gradient-based sampling algorithms into optimization
procedures that better explore the space of trajectories to
avoid bad local minima. Simulated annealing builds off
the observation that the family of distributions p(&, y; @)
exp{—aH (&, y)} ranges from the uniform distribution at
a = 0 to the true distribution at « = 1 and then toward
a distribution increasingly peaked around the global mini-
mum as &« — oo. As « increases, sampling from the distri-
bution should sample increasingly close to the global mini-
mum. In general, the larger o becomes, the regions around
the local/global minima become narrower which generally
increases the burn-in time of the sampler. However, simu-
lated annealing circumvents these long burn-in periods by
stepping from o = 0 toward larger «s in small steps to coax
the samples toward the minima incrementally over time (see
Neal, 1993).

Effective practical variants on this robust optimization
procedure may relax theoretical rigor in lieu of a sim-
ple strategy for combining momentum-based updates with
periodic perturbations to the momentum (including entire
resamplings thereof) to efficiently skip past local minima
and quickly converge on a globally strong solution.

6. Constraints

In many real-world problems, the ability to plan a trajectory
from a starting configuration to a goal configuration that
avoids obstacles is sufficient. However, there are problems
that impose additional constraints on the trajectory, such as
carrying a glass of water that should not spill, or lifting a
box with both hands without letting the box slip. In this sec-
tion, we derive an extension of the original CHOMP algo-
rithm that can handle trajectory-wide equality constraints,
and show its intuitive geometrical interpretation. We then
focus on a special type of constraint, which only affects the
endpoint of the trajectory. This type of constraint enables
the optimizer to plan to a set of possible goals rather than
the typical single goal configuration, which adds more flex-
ibility to the planning process and increases the chances of
converging to a low-cost trajectory.

6.1. Trajectory-wide constraints

We assume that we can describe a constraint on the Hilbert
space of trajectories in the form of a nonlinear differentiable
vector valued function H : & — RX, for which H[£] = 0
when the trajectory & satisfies the required constraints.

At every step, we optimize the regularized linear approx-
imation of U from (18), subject to the nonlinear constraints
HEET =0

s.+1—argmmU[st]wu[s.]T(s s.)+—||s &illa

st H[E] = 0 (36)

Zucker et al.

1179

We first observe that this problem is equivalent to the
problem of taking the unconstrained solution in (19) and
projecting it onto the constraints. This projection, however,
measures distances not with respect to the Euclidean met-
ric, but with respect to the Riemannian metric A. To show
this, we rewrite the objective:

min UL&] + VU[E]T(£ — &) +%||§ —H2 &
min VULE](¢ - &)+ (£ - &) A —) ©
: 1 .- T 1 .-
mm(a—;A vum—&) A(&—;A vu[&]—&)

The problem can thus be written as

unconstr. (19)

1
g = argmin (1§ —ATVULE] —£1 (37)
st. H[g]=0

This interpretation will become particularly relevant in the
next section, which uncovers the insight behind the update
rule we obtain by solving (36).

To derive a concrete update rule for (36), we linearize H
around &;: H[£] ~ H[&]+ 5 H[&](§ —&) = C(§ —&) +D
where C = %J{[gi] is the Jacobian of the constraint func-
tional evaluated at & and b = 3H[&]. The Lagrangian
of the constrained gradient optimization problem in (36),
now with linearized constraints, is L4[£,A] = U[&] +
VULE]T(& — &) +L1E — &3 + AT(C(& — &) -+b), and
the corresponding first-order optimality conditions are

{ VeLg = VU[E] + niA(E —&)+CTA=0

Vplg = C(E — &) +b=0 (38)

Since the linearization is convex, the first-order condi-
tions completely describe the solution, enabling the deriva-
tion of a new update rule in closed form. If we denote
A/ni = y, from the first equation we get & = & —
%A‘lﬁu[&] — A~1CTy. Substituting in the second equa-
tion, y =(CA-1CT)~! (b—(1/n;) CA~1VU]&]). Using y in
the first equation, we solve for &:

unconstrained (19)
—

1
E=§ —;A_lvu[éi]

zero set projection

1 _
+ ZA7ICT(cAicH) T cAtVU[E]
1i

offset

—A"IcT(cAicT)th (39)
The labels on the terms above hint at the goal of the next
section, which provides an intuitive geometrical interpreta-
tion for this update rule.

Fig. 8. The constrained update rule takes the unconstrained step
and projects it with respect to A onto the hyperplane through &
parallel to the approximated constraint surface (given by the lin-
earization C(& —&t) +b = 0). Finally, it corrects the offset between
the two hyperplanes, bringing &1 close to 3{[¢§] = 0. (Image
reproduced with permission from Dragan et al. (2011b).)

6.2. Geometrical interpretation

Looking back at the constrained update rule in (39), we can
explain its effect by analyzing each of its terms individually.
Gaining this insight not only leads to a deeper understand-
ing of the algorithm, and relates it to an intuitive procedure
for handling constraints in general. By the end of this sec-
tion, we will have mapped the algorithm indicated by (39) to
the projection problem in (37): take an unconstrained step,
and then project it back onto the feasible region.

We split the update rule into three parts, depicted in
Figure 8: take the unconstrained step, project it onto a
hyperplane that passes through the current trajectory and is
parallel to the approximation of the constraint surface and,
finally, correct the offset between these two hyperplanes:

1. The first term computes the unconstrained step:
smooth the unconstrained Euclidean gradient VU[&;]
through A~* and scale it, as in (19). Intuitively, the other
terms will need to adjust this step, such that the trajec-
tory obtained at the end of the iteration, &, 1, is feasible.
Therefore, these terms implement the projection onto
the constraint with respect to A, as shown in (37).

2. Linearizing H provides an approximation of the con-
straint surface, given by C(& — &) +b = 0. The current
trajectory, &, lies on a parallel hyperplane, C(§ — &) =
0. When ¢&; is feasible, b = 0 and the two are identi-
cal, intersecting the constraint surface at &. What the
second term in the update rule does is to project the
unconstrained increment onto the zero set of C(& — &)
with respect to the metric A, as depicted in Figure 8.
Formally, the term is the solution to the problem that
minimizes the adjustment to the new unconstrained
trajectory (with respect to A) needed to satisfy C(& —

st. C ((é;i - %A—lgt + As) — &) =0

(40)

1180

The International Journal of Robotics Research 32(9-10)

Therefore, the second term projects the unconstrained
step onto the zero set of C(& — §&;). If b #£ 0, the trajec-
tory is still not on the approximation to the constraint
surface, and the third step makes this correction.

3. The first two steps lead to a trajectory on C(& — &) =0,
at an offset from the hyperplane that approximates the
feasible region, C(& —&;) +b = 0. Even if the Euclidean
gradient VU[&] is 0 and the previous two terms had
no effect, the trajectory & might have been infeasible,
leading to b # 0. The third term subtracts this off-
set, resulting in a trajectory that lies on the approximate
constraint surface. It is the solution to the problem that
minimizes the adjustment to & (again, with respect to
the Riemmanian metric A) such that the trajectory gets
back onto the target hyperplane:

1)
min EIIAEIIA (41)

st. C((&+A8)—&)+b=0

As Figure 8 shows, adding the third term to the result
of the previous two steps (& when the unconstrained
step is zero, somewhere else along C(& — &)= 0 oth-
erwise) brings the trajectory onto the approximation of
the constraint surface.

Overall, the algorithm can be thought of as first taking an
unconstrained step in the direction dictated solely by the
cost function, and then projecting it onto its guess of the
feasible region in two steps, the last of which aims at cor-
recting previous errors. For the special case of endpoint
constraints, which the next section addresses, the projection
further simplifies to a purely Euclidean operator, which is
then smoothed through the matrix A.

6.3. Goal set constraints

Goal sets are omnipresent in manipulation: picking up
objects, placing them on counters or in bins, handing them
off: all of these tasks encompass continuous sets of goals.
Sampling-based planners do exist that can plan to a goal
set (Berenson et al., 2009). However, the CHOMP algo-
rithm described thus far plans to a single goal configuration
rather than a goal set. This single goal assumption limits its
capabilities: goal sets enlarge the space of candidate trajec-
tories and, as Section 7.3 will show, enable the optimizer
to converge to better solutions. In this section, we use the
trajectory parametrization from Section 3.4 to explain the
algorithm above in the context of goal sets.

In order to exploit goal sets, the trajectory endpoint,
which is a constant in the original CHOMP, becomes a vari-
able. That is, we use trajectory functions & defined on (0, 1]
as opposed to (0,1). When using vectors of waypoints as
a trajectory parametrization, this leads to a small change
in the finite differencing matrix K and the vector e from
Section 3.4.

The goal set variant of CHOMP thus becomes a version
of the constrained CHOMP from (36), in which the trajec-
tories satisfying (&)= 0 (the constraint function under
the waypoint parametrization) are those that end on the goal
set. Constraints that affect only the goal are a special case of
trajectory constraints, for which H(&) = Hn(qs) (the con-
straint is a function of only the final configuration of the
trajectory). Therefore, a large portion of the update rule will
focus on the last configuration. Since C = [0,...,0,C], in
this case C only affects the last block-row of A=, which
we denote by B, € RY*" . Also note that the last d x d
block in A=%, By, is in fact equal to Blg, since there are
no cross-coupling terms between the joints. Therefore, the
update rule becomes

E1 =& — %A—lvwa) +#BZ€T(66T)‘1 CB,VU(&)

1 e ~~
+EBICT(CCT)—1 b

Although not the simplest version of this update rule,
this form lends itself to an intuitive geometrical interpre-
tation. The goal set CHOMP algorithm, as depicted in Fig-
ure 9, follows the “take an unconstrained step and project
it” rule, only this time the projection is much simpler:
it is a configuration-space projection with respect to the
Euclidean metric, rather than a trajectory-space projection
with respect to the Riemmanian metric A. The same pro-
jection from Figure 8 now applies only to the end con-
figuration of the trajectory. To see this, note that %anu
gets the unconstrained step for the end configuration from
%A—lvu, ad xd vector,and C"(CC")~ C projects it onto
the row space of C. This correction is then propagated to
the rest of the trajectory, as illustrated by Figure 9, through
%BI. The entries of By, on each dimension, interpolate lin-

early from O to 8. Therefore, %BI linearly interpolates from
a zero change at the start configuration to the correction
at the end point. Since B] multiplies the last configura-
tion by g8, % scales everything down such that the endpoint
projection applies exactly.

So far in this section, we showed that the projection onto
a linearized version of the goal set constraint simplifies to a
two-step procedure. We first project the final configuration
of the trajectory onto the linearized goal set constraint with
respect to the Euclidean metric in the configuration space,
which gives us a desired perturbation Ag, of that final con-
figuration. We then smooth that desired perturbation lin-
early back across the trajectory so that each configuration
along the trajectory is perturbed by a fraction Aqy; in partic-
ular, for our prior, the perturbation at the configuration at t
is Agt = t/nAdy. One can show that the linearization of the
constraints is not required in general. For any goal set, the
projection of a trajectory onto the set may be decomposed
as prescribed above.’

Zucker et al.

1181

Fig. 9. One iteration of the goal set version of CHOMP: take an
unconstrained step, project the final configuration onto the con-
straint surface and propagate that change to the rest of the tra-
jectory. (Image reproduced with permission from Dragan et al.
(2011b).)

7. Experimental results on manipulator
planning tasks

In this section, we evaluate CHOMP’s performance on com-
mon motion planning problems for a typical robotic manip-
ulator. Such problems are posed in a high-dimensional state
space (e.g. that of seven-dimensional arm configurations),
but the distribution of obstacles in the robot’s workspace is
structured.

We begin by focusing on the problem of planning to a
pre-grasp pose among clutter (Section 7.1). We show that
CHOMP can solve most such tasks quickly and obtain good
solutions, and compare its performance to sampling-based
algorithms such as RRT or the more recent, optimality-
driven, RRT* (Karaman and Frazzoli, 2011). CHOMP has a
lower success rate than the RRT; however, when it succeeds
it does so more quickly, and directly produces a trajectory
of much lower cost. We also show that when initializing
the deterministic version of CHOMP with a straight-line
trajectory fails, using HMC leads to successful, low-cost
trajectories.

We then focus on extensions to CHOMP which allow it to
be used for a more general class of problems. In Section 7.3,
we apply the constrained planning approach formalized in
Section 6 to goal sets, enabling the algorithm to converge to
better solutions. In Section 7.5, we show that certain modifi-
cations for efficiency enable CHOMP to perform trajectory
replanning in dynamic environments.

7.1. Comparison on common motion planning
tasks for manipulation

Here, we focus on a motion planning problem which arises
in common manipulation tasks: planning to a pre-grasp
pose among clutter. A pre-grasp pose is an arm config-
uration which positions the hand in a pre-grasp position
relative to an object. To solve such problems in high-
dimensional spaces, a historical dichotomy exists between
trajectory optimization (e.g. CHOMP) and sampling-based
approaches (e.g. the RRT). Recently, algorithms such as

Fig. 10. Grasping in clutter scenes, with different starting config-
urations, target object locations, and clutter distribution (from left
to right: no clutter, low, medium and high clutter).

RRT* have brought optimization to sampling-based plan-
ners. We are interested in evaluating the performance of
CHOMP on motion planning problems commonly encoun-
tered in real-world manipulation domains, and comparing it
with such sampling-based approaches.

It is important to observe that the experiments presented
in this section are not “apples to apples” comparisons in
that we are juxtaposing a (local) optimization algorithm
with global randomized search algorithms. Obviously the
effectiveness of our approach depends strongly upon the
inherent structure underlying the planning problem, includ-
ing the sparsity and regularity of obstacles. Certainly, there
exist any number of maze-like motion planning problems
for which CHOMP is ill-suited. However, as we hypothesize
below, it can come to fill some of the space which has until
recently been occupied by sampling-based methods; hence,
we feel the comparison between heterogeneous systems is
well motivated.

7.1.1. Experimental design We explore day-to-day manip-
ulation task of grasping in cluttered environments. For the
majority of our experiments, we use a canonical grasp-
ing in clutter problem: the robot is tasked with moving to
grasp a bottle placed on a table among a varying number of
obstacles, as in Figure 10.

We test the following hypotheses:

H1: CHOMP can solve many structured, day-to-day manip-
ulation tasks, and it can do so very fast.

H2: For a large number of structured, day-to-day manipu-
lation tasks, CHOMP obtains a feasible, low-cost trajectory
in the same time that an RRT obtains a feasible, high-cost
trajectory.

We compare CHOMP, RRT and RRT*. To ensure fair-
ness of the comparison, we conduct the experiments in a
standard simulation environment, OpenRAVE (Diankov,
2010) version 0.6.4, and use the standard implementations
for RRT (bi-directional RRT-Connect) and RRT* from the
Open Motion Planning Library (OMPL) version 0.10.2.
We use HERB, the Home Exploring Robot Butler, as our
experimental platform. We run each algorithm on each
problem 20 times, for 20 seconds each (single-thread CPU
time). The RRT shortcuts the path (using the shortcutting
method available in OpenRAVE) until the final time is
reached. We measure at each time point if the algorithm

1182

The International Journal of Robotics Research 32(9-10)

Fig. 11. From left to right: a paired time comparison between RRT and CHOMP when both algorithms succeed, success rates for both
algorithms within the 20 s time interval and the planning time histograms for both algorithms. In the time comparison chart on the left,
each data point is one run of the RRT algorithm vs. the discrete run of CHOMP on a problem. Due to the large number of data points,

the standard error on the mean is very small.

has found a feasible solution, and we use the path length
for cost to ensure a fair comparison, biased towards the ran-
domized planners: this is the cost that the RRT shortcutting
method optimizes, but not directly the cost that CHOMP
optimizes. Instead, CHOMP minimizes sum squared veloc-
ities (which correlates to, but is different from, path length),
while pulling the trajectory far from obstacles.

We created grasping in clutter problems with varying
features: starting configurations, target locations and clut-
ter distributions. We split the problems into a training and
testing set, such that no testing problem has any common
features with a training one. This is important, as it tests true
generalization of the parameters to different problems. We
used the training set to adjust parameters for all algorithms,
giving each the best shot at performing well. We had 170
testing problems, leading to 3400 runs of each algorithm.
Below, we present the results for the deterministic version
of CHOMP versus RRT, and then discuss the benefits of
HMC and the comparison with RRT*.

7.1.2. Time to produce a feasible solution Validating H1,
CHOMP (the deterministic version) succeeded on about
80% of the problems, with an average time of 0.34 s (stan-
dard error of the mean (SEM)= 0.0174). On problems
where both CHOMP and RRT succeed, CHOMP found a
solution 2.6 seconds faster, and the difference is statistically
significant (as indicated by a paired t-test, t(2586) = 49.08,
p < 0.001). Overall, CHOMP has a lower success rate than
an RRT on these problems. When it does succeed, it does so
faster. See Figure 11 for the paired time comparison.

The CHOMP times do not include the time to com-
pute the SDF from the voxelized world (which the robot
acquires in practice through a combination of cached vox-
elized static environments and voxel grids obtained online
via laser scans). The SDF computation takes an average of
0.1 seconds.

7.1.3. Collision checking: the grain of salt The time taken
by the RRT heavily depends on the time it takes to perform

) 1 |/\|
0 200 400 600 800 1000

RRT-Connect Coll-Check Time (p-sec)

Fig. 12. Distribution of per-problem average collision times over
all test problems.

collision checks. Our implementation uses OpenRAVE for
collision checking, and the average time for a check was
approximately 444 s (averaged over 174 million checks);
see Figure 12 for the distribution. This is faster than the
times reported in the benchmark comparison from Reg-
giani et al. (2002) for an easier problem, indicating that our
results for the RRT are indicative of its typical performance.
However, the RRT may be improved with recent, more
advanced collision checkers (e.g. FCL (Pan et al., 2012)).
For example, if collision checking were five times faster (an
optimistic estimate for state-of-the-art performance), the
difference in success rate would be much higher in favor
of the RRT, and the planning time when both algorithms
succeed would become comparable, with an estimated aver-
age difference of only 0.2 s in favor of CHOMP. H2, as we
will see in following section, would remain valid: for many
problems (namely 78%), CHOMP produces a low-cost fea-
sible trajectory in the same time that an RRT produces a
high-cost feasible trajectory.

7.1.4. Cost and feasibility comparison when the RRT
returns its first solution A total of 3067 of the 3400 RRT
runs yielded feasible trajectories. For every successful RRT
run, we retrieved the CHOMP trajectory from the same
problem at the time point when the RRT obtained a solution.
In 78% of the cases, the CHOMP trajectory was feasible,

Zucker et al.

1183

10t

CHOMP Path Length (rad)

z c‘lf"

: .tm'ﬂ‘ AR

70.6%

10
RRT Path Length (rad)

15

20

25

30 ©

Fig. 13. Comparison of path lengths of CHOMP and RRT at the RRT first-feasible time. Each RRT run is paired with the deterministic
CHOMP run for its problem, and the pair is plotted here by path length. Infeasible paths are assigned an infinite path length; the grey
bands show the distribution of lengths when one of the results was infeasible. The table also shows the distribution of feasible paths

found by each planner.

and its path length was on average 57% lower. This dif-
ference in path length was indeed significant (t(2401) =
65.67, p < 0.001): in 78% of the cases, in the same time
taken by an RRT to produce a feasible solution, CHOMP
can produce a feasible solution with significantly lower cost
(H2). See Figure 13 for the cost versus cost comparison.
Note that the CHOMP trajectories evaluated here were not
those with the smallest path length: the algorithm is opti-
mizing a combination of a smoothness and an obstacle cost.
Therefore, CHOMP is increasing the path length even after
the trajectory becomes feasible, in order to keep it far from
obstacles.

7.1.5. Time budgets In practice, planners are often evalu-
ated within fixed time budgets. Here, we allow each plan-
ner a fixed planning time, and evaluate its result (for both
feasibility and path length). We found that the relative per-
formance of CHOMP and RRT depends greatly on the time
budget allotted (and of course, on the collision checker). For
CHOMP, we run iterations until such time that a final full-
trajectory collision check will finish before the given bud-
get; the check is then performed, and the result is reported.
Note that a CHOMP trajectory can oscillate between feasi-
ble and infeasible during optimization; it may be the case
that an infeasible CHOMP result was in fact feasible at an
earlier time, but the algorithm is unaware of this because
it only performs the expensive collision check right before
it returns. For the RRT, we simply stop planning or short-
cutting at the end of the budget. We evaluated time budgets
of 1, 2, 3, 5, 10, and 20 s. The summary of these results is
shown in Table 1. Snapshots of the distribution of each pair
of planning runs are also shown in Figure 14.

The results illustrate the differences between the plan-
ners. For short time budgets (< 5 s), the deterministic
CHOMP has a higher success rate than the RRT; however,
it plateaus quickly, and does not exceed 75% for any bud-
get. The addition of HMC can improve this performance
further (see Section 7.1.6). The RRT continues to improve,

Table 1. Comparison of CHOMP and RRT for different time

budgets.

Time Success (%) Average path length (rad)
budget RRT CHOMP RRT CHOMP

ls 16.5 24.7 4.37 3.69

2s 47.0 68.2 6.85 4.89

3s 57.1 70.6 6.64 4,94

5s 66.3 74.1 6.69 5.00

10s 88.0 74.7 6.79 5.03

20s 90.2 74.7 6.58 5.03

with a 90.2% success rate within the longest budget. Across
all feasible solutions for all budgets, CHOMP significantly
outperforms the RRT when evaluated by path length.

7.1.6. HMC The deterministic CHOMP algorithm
resulted in a feasible path after a 20 s time budget with a
74.7% success rate (see Figure 15) on our testing suite of
clutter problems. A further 5.9% of problems yielded no
successful paths at any point during the runs of any of the
planners we tested, and are thus classified as unsolvable
here. The HMC component of CHOMP aims to improve
performance on the remaining 19.7% of the cases.

We implemented HMC by adding a trajectory momen-
tum term to the optimizer as described in Section 5. The
momentum of the trajectory was repeatedly resampled
after a random number of iterations given by an exponen-
tial distribution with parameter iep = 0.02. Momenta
were sampled from the distribution p(y) o exp (—3ay Ty),
with the parameter « increasing exponentially as o =
100 exp (0.02 k) with k the iteration number.

On those solvable problems on which deterministic
CHOMP failed, the addition of HMC resulted in a 56%
success rate during the 20 s time budget. Figure 15 shows
an example problem and also illustrates the behavior of the
algorithm.

1184

The International Journal of Robotics Research 32(9-10)

F
Naee)
= 10 3.3% | 72.0%
+ 3.3% 0%
:gf 13.2%
]
S s
A, r
n, ¥
S
S 0
5 0 5 10 15 20 25
RRT Path Length (rad)
(a) Planning results with a 1 s time budget.
o
g
Z
T 10 8.6%) 23.1%
E 38.4%] 29.
~
= 5
W)
&
=
@) 0)))))
jan)
S) 0 5 10 15 20 25
RRT Path Length (rad)
(b) Planning results with a 2 s time budget.
E)
<
=
~—
% 10 17.1%
E 73.1%
=
<
& 5
=
=
g o
Z 0 5 10 15 20 25
RRT Path Length (rad)
(c) Planning results with a 20 s time budget.

Fig. 14. The performance of CHOMP and RRT on the testing set of clutter problems for different time budgets. Infeasible (CHOMP)
or unfound (RRT) results are assigned an infinite length, partitioning the data as shown in the table. For short budgets (a), the planners
find short paths for some problems, but fail for most. As the budget is increased (b), CHOMP can solve more problems, also yielding
significantly shorter paths. Long budgets (c) favor the RRT, with a better success rate and improved path lengths.

7.1.7. RRT* We compared the performance of CHOMP
and bi-directional RRT-connect with the RRT* implemen-
tation in OMPL. The RRT* range (step size) parameter was
set equal to that of the RRT (corresponding to a workspace
distance of 2 cm). We chose other algorithm parameters
(goal bias, ball radius constant, and max ball radius) as
directed by the implementation documentation. RRT* had a
5.97% success rate on our testing suite of clutter problems.
When it did succeed, it found its first feasible solution after
an average of 6.34 s, and produced an average path length
of 11.64 rad. On none of our testing problems was it able to
improve its first path within the 20 s time budget (although
we did verify that for other problems, this does happen with
a long enough time budget).

7.1.8. Problem type effects on performance Our problems
varied in the starting configuration, target object location,

and clutter amount. We also chose a goal configuration for
each problem from a goal set of feasible grasps of the target
object. For this final stage of our analysis, we are inter-
ested in capturing the effects of such environment features
on the performance of CHOMP. We used these features
as factors in an analysis of variance (ANOVA) with the
amount of time taken by CHOMP to produce a feasible tra-
jectory as the response, and found that the fit was rather
poor (R? = 26.24%). This indicates that the complexity of
the problem is far more subtle than, for example, a general
notion of how much clutter is found around the goal, or how
far the starting configuration is. The fit was better when
using path length as a response (R?> = 51.9%), and all fac-
tors had significant effects. The result is intuitive: the length
of the final path produced by seeding deterministic CHOMP
with a straight-line trajectory is by in large determined by
the start and goal configurations.

Zucker et al.

1185

W HMC S
W uve

Ou
[HMC

7
N

1) Summary of HMC results on clutter problems (b) Example problem requiring HMC

CHOMP (HMC) Feas. =—
t CHOMP (HMC) Infeas. =====-]
A CHOMP Infeas =mim-
RRT
Smoother

Path Length (rad)

Time (s)

son of CHOMP with and without HMC to RRT over a 20 s time budget

Fig. 15. In cases where the deterministic CHOMP algorithm is
unable to find a feasible solution due to local minima, the addi-
tion of HMC sampling is often able to improve performance.
Restricted to the 33 solvable problems on which deterministic
CHOMP failed (a), HMC resulted in a feasible path 56% of the
time. (b) An example problem for which HMC was necessary; the
problem is difficult because the initial trajectory passes directly
through the table. (c) Time performance of the RRT and CHOMP
(with and without HMC) on the problem from (b). Determinis-
tic CHOMP falls immediately into an infeasible local minimum.
Driven by significant initial momenta, each run of CHOMP with
HMC begins by initially exploring different parts of the space of
trajectories before settling down. In this problem, 18 of the 20 runs
resulted in feasible trajectories. The performance of the RRT is
also shown for comparison.

Fig. 16. An easy (left) and a difficult (right) starting configura-
tion. Although they might seem very similar, the local gradient
information leads CHOMP to vastly different results: while it can
solve 91% of problems using the first configuration as the start, it
can only solve 55% of those using the second one. The RRT is less
affected by this, with a difference in success rate of 15% instead
of CHOMP’s 36%.

We also analyzed the effects of these features on the
success rate of CHOMP. We found that the starting con-
figuration has a large effect on this measure, with an easy
starting configuration leading to a 91% success rate, and a
difficult one to merely 55%. What is more, the difference
is not intuitive to the naked eye (see Figure 16): covariant
gradients in high-dimensional spaces can have unintuitive
effects.

Fig. 17. The start and the goal for a complex problem of reaching
into the back of a narrow microwave. The robot is close to the cor-
ner of the room, which makes the problem particularly challenging
because it gives the arm very little space to move through. The
goal configuration is also very different from the start, requiring an
“elbow flip”. Two starts were used, one with a flipped turret (e.g.
J1 and J3 offset by =, and J2 negated), leading to very different
straight-line paths.

7.2. Beyond grasping in clutter

Our experiments so far have focused on grasping an object
surrounded by clutter. But how does CHOMP perform on
more complex tasks, defined by narrow spaces? To explore
this question, we investigated the algorithm’s performance
on the problem setup depicted in Figure 17: reaching to the
back of a narrow microwave placed in a corner, with little
free space for the arm to move through. We ran CHOMP
and BiRRT-Connect for eight different scenarios (with dif-
ferent start and goal IK configurations). CHOMP was able
to solve seven of the eight scenarios, taking an average of
1.04 seconds. The RRT had a total success rate of 67.1%,
taking an average of 63.36 seconds to first-feasible when
it succeeds. On the problem for which CHOMP failed, the
RRT had a 10% success rate. A collision check here took an
average of 2023 s (requiring a speed up of 60x to make
the RRT first-feasible time equal to that of CHOMP).

7.3. Goal set constraints

In Section 6 we derived the CHOMP algorithm under
trajectory-wide constraints, and analyzed the particular case
of constraints that affect only the endpoint of the trajectory.
This type of constraint enables relaxing the constant goal
assumption made in Section 3 and allows the optimizer the
flexibility of a set of goal configurations.

7.3.1. Experimental setup

Hypothesis: Taking advantage of the goal set describ-
ing manipulation tasks during optimization results in final
trajectories with significantly lower cost.

We use a 7-DOF Barrett WAM mounted atop of a Seg-
way base for most of this section of our experiments. To

1186

The International Journal of Robotics Research 32(9-10)

Fig. 18. A cost comparison of the single goal with the goal set variant of CHOMP on problems from four different environment types:
grasping in clutter from a difficult, and from an easy starting configuration, handing off an object, and placing it in the recycle bin.

ensure a fair comparison, we use the same parameter set
for both algorithms. We also restrict ourselves to determin-
istic optimization: these experiments run CHOMP from a
straight line trajectory and do not use HMC.

We focus on day-to-day manipulation tasks, and define
four types of tasks: grasping in cluttered scenes with both
an easy and a difficult starting pose of the arm, handing
off an object, or placing it in the recycle bin; see Figure 18.
We set up various scenarios that represent different obstacle
configurations and, in the case of hand-offs and recycling,
different initial poses of the robot. Each scenario is asso-
ciated with a continuous goal set, e.g. the circle of grasps
around a bottle, or the rectangular prism in workspace that
ensures the object will fall into the bin. We compare the
algorithms starting from straight-line trajectories to each
goal in a discretized version of this set. This reduces the
variance and avoids biasing the comparison towards one
algorithm or the other, by selecting a particularly good goal
or a particularly bad one. For each scenario and initial goal,
we measure the cost of the final trajectory produced by each
algorithm.

7.3.2. Results and analysis We ran CHOMP and goal set
CHOMP for various scenarios and goals, leading to approx-
imately 1300 runs of each algorithm. Figure 18 shows
the results on each task type: the goal set algorithm does
achieve lower costs. We used a two-tailed paired t-test on
each task to compare the performances of the two algo-
rithms, and found significant differences in three out of
the four: on all task but grasping in clutter from a hard
starting configuration, taking advantage of goal sets led
to significantly better trajectories (p < 0.05). Across all
tasks, we found a 43% improvement in cost in favor of
goal set CHOMP, and the difference was indeed significant
(p < 0.001), confirming our hypothesis.

We did find scenarios in which the average performance
of goal set CHOMP was in fact worse than that of CHOMP.
This can be theoretically explained by the fact that both
these algorithms are local methods, and the goal set one
could make a locally optimal decision which converges to a
shallower local minima. At the same time, we do expect that

Fig. 19. The goal set algorithm modifies the trajectory’s goal in
order to reduce its final cost. The figure plots the initial versus
the final goals obtained by the single goal and the goal set algo-
rithm on a grasping in clutter problem. The area of each bubble is
proportional to the cost of the final trajectory.

the average performance improves by allowing goal sets.
A further analysis of these scenarios suggested a different
explanation: although in most cases the goal set version was
better, there were a few runs when it did not converge to
a “goal-feasible” trajectory (and therefore reported a very
high cost of the last feasible trajectory, which was close
to the initial one). We noticed that this is mainly related
to the projection being impeded by joint limits. Formaliz-
ing joint limits as trajectory constraints and projecting onto
both constraint sets at the same time would help mediate
this problem.

Figure 19 shows one of the successful scenarios. Here,
the target object is rotationally symmetric and can be
grasped from any direction. The figure depicts how goal set
CHOMP changed the grasp direction and obtained lower
costs (as indicated by the size of the bubbles). Figure 20
shows a similar setup for a different mobile manipulator.
Although the initial trajectory ends at a collision-free goal,
it intersects with the clutter. Goal set CHOMP converges to
a trajectory ending at a goal in free space, which is much
easier to reach.

7.4. Trajectory-wide constraints

Our experience with trajectory-wide constraints on
CHOMP has been mixed. CHOMP does successfully find

Zucker et al.

1187

Fig. 20. The end effector trajectory before and after optimization
with goal set CHOMP. The initial (straight line in configuration
space) trajectory ends at a feasible goal configuration, but col-
lides with the clutter along the way. The final trajectory avoids
the clutter by reaching from a different direction.

Fig. 21. The trajectory obtained by CHOMP for extracting the
bottle from the microwave while keeping it upright (a trajectory-
wide constraint).

collision-free trajectories that abide by such constraints,
as the theory shows. For example, we solved the task of
bimanually moving a box by enforcing a fixed relative
transform between the robot’s hands, and the task of
keeping an object upright while extracting it from the
microwave (Figure 21). However, this is computationally
expensive when the constraint affects all points along the
trajectory. Every iteration requires the inversion of a new
matrix CA=*CT, an O((nd)?37®) operation (where n is the
number of trajectory points and d is the dimensionality of
the constraint at each point). For example, for the task in
Figure 21, d is 2 and CHOMP solves the problem in 17.02
seconds.

Furthermore, handling joint limits separately, as CHOMP
usually does, can sometimes oppose the constraint projec-
tion: joint limits need to also be handled as hard constraints,
and the unconstrained step needs to be projected on both
constraints at once.

7.5. Fast replanning configuration

Simulated and real-robot experimental results are pre-
sented in the context of efficient replanning due to unfore-
seen changes in the environment or moving obstacles. To
this end, we configure the CHOMP algorithm with pre-
computed compositional distance fields (Section 4.1.2) and
weight scheduling (Section 3.6). This configuration, par-
ticularly well suited for replanning, is henceforth referred
to as CHOMP-R. We first demonstrate that this configura-
tion performs well with respect to the original formulation
of CHOMP described by Ratliff et al. (2009). Second, we

Fig. 22. Comparison with a standard configuration of CHOMP
by Ratliff et al. (2009) was performed in randomized simulated
clutter scenes similar to this one.

apply it to replanning on a physical robot and demonstrate
fast real-time replan rates in realistic scenarios.

In comparison with the original CHOMP, we utilized a
simulated model of a manipulator robot that operates in a
set of scenes that include dense clutter due to a collection of
50 randomly placed box obstacles of random size, as illus-
trated in Figure 22. Ten different scenes were generated and
100 planning queries were performed by selecting random
initial and final arm configurations. The baseline imple-
mentation was executed on these planning queries, and the
results were considered the control group, i.e. baseline. The
methods described in this paper were then also attempted,
and the results were compared with this control group.
Three different planner configurations were compared with
CHOMP:

e The standard SDF was replaced with the compositional
distance field in Section 4.1.2.

e The cost function weights were scheduled as described
in Section 3.6.

e CHOMP-R: both object distance primitives and weight
scheduling were combined.

Figure 23 demonstrates how the three planner configu-
rations compare to baseline. It uses three measures for the
comparison: the (reciprocal of) ratio of the planning queries
that were solved by a planner (failure means exceeding 500
iterations), the number of iterations a planner took and the
amount of time (in seconds) that was required to find a solu-
tion. These measures are color-coded in the figure as light
gray, dark gray and white, respectively, and presented as
ratios: each of the quantities was measured with each of
the variants above and divided by the respective quantity
measured using baseline.

In particular, the three bars on the left of the plot demon-
strate that replacing the standard distance field with the
compositional one does not affect performance, except by

1188

The International Journal of Robotics Research 32(9-10)

Fig. 23. A replanning configuration of CHOMP, referred to as CHOMP-R, is compared with the original configuration of the algorithm
described by (Ratliff et al., 2009), considered the baseline here. Two major components of CHOMP-R, compositional distance fields
(left) and weight scheduling (center), are compared with the baseline individually, along with their combination (right). The convergence
category (leftmost bar in each set) is the reciprocal of the ratio of successful planning queries, such that lower bar values represent more

attractive performance throughout the plot.

requiring far less runtime (in seconds) for each planning
query. A reduction of over an order of magnitude is attained
by virtue of eliminating the need to re-compute the distance
field on-line during planning.

The advantage of the cost function weight scheduling is
demonstrated in the center of the plot. The improvement
is two-fold: both in the greater ratio of queries solved and
in reducing the number of iterations, with an advantage of
about 20% in each category. Runtime in seconds is also
lower as a consequence of the reduction in iterations.

Finally, the three bars on the right of the figure compare
CHOMP-R, the combination of the two features compared
thus far, with baseline. This instance of the design is the one
that we apply to the real robot replanning experiments that
follow.

The ARM-S manipulator robot, featuring a 7-DOF Bar-
rett arm, was used for physical experimentation. The arm
repeatedly executes a pre-defined trajectory, which becomes
invalidated due to an unexpected obstacle. Once the per-
ception system localizes the obstacle, the replanner reacts
to it by modifying the trajectory to avoid the obstacle. We
performed 100 trials of the experiment in 2 configurations:
CHOMP-R with and without the end-effector workspace
pose constraint, implemented via (22), compared with stan-
dard CHOMP. As Figure 24 shows, CHOMP-R resulted in
notable replanning speedup on this platform.

8. Implementation on a quadruped robot

In Section 7, we describe a number of experiments
conducted to compare CHOMP with other planning
approaches, and to investigate the effectiveness of the var-
ious extensions to the algorithm. In this section, however,

Physical Robot Replanning Runtime

s 2.0} I ———
@ CHOMP

(]

" Constrained
S 15k C HOMP-R ,,,,,,
=] CHOMP-R
z

[®)]
£ L0
C

C
o

)

O 0.5 o

ﬁ ==

Fig. 24. CHOMP and CHOMP-R are compared on the ARM-S
robot platform, showing that the constraint claimed greater run-
time in seconds. The average CHOMP replan runtime was 2.03 s,
while the average CHOMP-R runtime was 0.28 and 0.17s with and
without the end-effector constraint implemented via (22), respec-
tively. This result is significant in demonstrating that CHOMP-R
is sufficiently fast to be responsible for the robot’s reactive behav-
ior. In addition, it demonstrates that satisfying workspace pose
constraint maintains sub-second replan rate.

we describe how CHOMP was successfully integrated into
a larger system to achieve high performance quadruped
locomotion over rough terrain.

In 2007-2010, the Robotics Institute fielded one of
six teams participating in the DARPA Learning Locomo-
tion project, a competitive program focusing on devel-
oping strategies for quadruped locomotion on rough ter-
rain (Zucker et al., 2011). Each team developed soft-
ware to guide the LittleDog robot, designed and built by

Zucker et al.

1189

Fig. 25. Boston Dynamics Inc. LittleDog quadruped robot, shown crossing several types of rough terrain. (Images reproduced with

permission from Zucker et al. (2011).)

Boston Dynamics Inc., over standardized terrains quickly
and robustly (Figure 25). With legs fully extended, Little-
Dog has approximately 12 cm clearance off of the ground.
As shown in Figure 26, some of the standardized terrains
require stepping over and onto obstacles in excess of 7 cm.

Our approach to robotic legged locomotion decomposes
the problem into a footstep planner which informs the robot
where to place its feet as it traverses the terrain (Chestnutt,
2007), and a footstep controller which generates full-body
trajectories to realize the planned footsteps. In the final 2
years of the project, our team came to rely on CHOMP as a
critical component of our footstep controller.

Footsteps for the LittleDog robot consist of a stance
phase, where all four feet have ground contact, and a swing
phase, where the swing leg is moved to the next support
location. During both phases, the robot can independently
control all six degrees of trunk position and orientation via
the supporting feet. In addition, during the swing phase, the
3 DOFs for the swing leg may be controlled. For a given
footstep, we run CHOMP as coordinate descent, alternat-
ing between first optimizing the trunk trajectory & given
the current swing leg trajectory &s, and subsequently opti-
mizing &s given the current & on each iteration. The initial
trunk trajectory is given by a zero moment point (ZMP) pre-
view controller (Kajita et al., 2003), and the initial swing
leg trajectory is generated by interpolation through a col-
lection of knot points intended to guide the swing foot a
specified distance above the terrain (see the right-hand side
of Figure 27).

To construct the SDF representation of the terrain, we
begin by scan-converting triangle mesh models of the
terrain into a discrete grid representation. To determine
whether a grid sample lies inside the terrain, we shoot a
ray through the terrain and use the even/odd rule. Typical
terrains are of the order of 1.8 m x 0.6 m x 0.3 m. We
set the grid resolution for the SDF to 5 mm. The resulting
SDFs usually require about 10-20 MB of RAM to store.
The scan-conversion and computation of the SDF is created
as a preprocessing step before optimization, and usually
takes under 5 seconds on commodity hardware.

When running CHOMP with LittleDog, we exploit
domain knowledge by adding a prior to the workspace
potential function c(x). The prior is defined as penalizing
the distance below some known obstacle-free height when
the swing leg is in collision with the terrain. Its effect in

practice is to add a small gradient term that sends colliding
points of the robot upwards regardless of the true gradient
of the SDF.

For the trunk trajectory, in addition to the workspace
obstacle potential, the objective function includes terms
which penalize kinematic reachability errors (which occur
when the desired stance foot locations are not reachable
given desired trunk pose) and which penalize instability
resulting from the computed ZMP straying towards the
edges of the supporting polygon. Penalties from the addi-
tional objective function terms are also multiplied through
A~ when applying the gradient, just as the workspace
potential is.®

Although we typically represent the orientation of the
trunk as a unit quaternion, we represent it to CHOMP as
an exponential map vector corresponding to a differential
rotation with respect to the “representative orientation” of
the trajectory. The exponential map encodes an (axis, angle)
rotation as a single vector in the direction of the rotation
axis whose magnitude is the rotation angle (Diebel, 2006).
The representative orientation is computed as the orien-
tation halfway between the initial and final orientation of
the trunk for the footstep. Because the total amount of
body rotation over a footstep is generally quite small (well
under 30°), the error between the inner product on exponen-
tial map vectors and the true quaternion distance metric is
negligible.

Timing for the footstep is decided by a heuristic which
is evaluated before the CHOMP algorithm is run. Typical
footstep durations run between 0.6 and 1.2 s. We discretize
the trajectories at the LittleDog host computer control cycle
frequency, which is 100 Hz. Currently, trajectories are pre-
generated before execution because in the worst case, opti-
mization can take slightly longer (by a factor of about 1.5)
than execution to return a collision-free trajectory; however,
CHOMP typically converges after less than 0.5 s.°

As shown in Figures 26 and 27, the initial trajectory for
the footstep is not always feasible; however, the CHOMP
algorithm is almost always able to find a collision-free final
trajectory, even when the initial trajectory contains many
collisions. CHOMP was developed as part of phase I of our
approach during the three phases of the Learning Locomo-
tion program, and refined during phase I11. It aided substan-
tially in raising our mean walking speed across standardized
terrains from 2.6 cm/s in phase I, t0 5.6 cm/s in phase 11, and

1190

The International Journal of Robotics Research 32(9-10)

Fig. 26. Using CHOMP with the Boston Dynamics LittleDog quadruped robot. Top row: the initial, heuristically determined input
trajectory has significant collisions between the barrier and the robot’s knee, shin and foot during the leg swing. Bottom row: CHOMP
pitches the trunk down and tips forward to bring the leg out of collision.

Fig. 27. Another illustration of CHOMP optimizing a step over a barrier. Left: Initial trajectory. Right: After optimization. Note that
although the initial trajectory results in severe collisions between the knee and the barrier, the optimized trajectory keeps the swing leg
free of collisions. (Images reproduced with permission from Zucker et al. (2011).)

finally to 9.0 cm/s in phase 11 (the program’s metric speeds
to beat in each phase were 1.2 cm/s, 4.2 cm/s and 7.2 cm/s,
respectively). The CHOMP algorithm was also adopted by
another team participating in the program (Kalakrishnan
etal., 2011a).

9. Limitations

Our work is limited in many ways, from the optimizer itself
to our experimental evaluation.

CHOMP inherits the problems of optimization in high-
dimensional spaces on non-convex cost functions. Finding
the global optimum may be intractable, and the optimizer
can converge to high-cost local minima. Complex prob-
lems (described by narrow passages) are difficult to solve
if the optimizer is initialized with a trajectory far from a
collision-free solution. This high-cost minima issue can be
alleviated to a certain extent through exploration (HMC,
Section 5, which makes CHOMP probabilistically com-
plete), or through learning from previous experiences to
initialize the optimizer in a good basin of attraction (Dragan
et al., 2011a; Dey et al., 2012).

Finding the right cost function to optimize is also a chal-
lenge. A limitation of CHOMP is that the current cost does

not always align with our (or a user’) actual preferences.
For example, a trajectory that is in collision briefly but stays
far away from obstacles on average can have lower cost than
a trajectory that never collides, but stays close to obstacles
(Dragan et al., 2011b). This cost function also does not nec-
essarily create trajectories that are what a human observer
would want or expect from the robot, and in fact different
observers have different expectations (Dragan et al., 2013).
Learning an appropriate cost function and customizing it
for the user is an active area of research.

CHOMP also depends on several parameters, which
require tuning, such as the trade-off between obstacle and
smoothness cost or the step size schedule.

An additional limitation relates to handling constraints.
While CHOMP can handle trajectory-wide constraints,
hard constraints can be time-consuming (they require
matrix inversion at every iteration), and soft constraints (in
the form of penalty functions) can lead to poor solutions
when the penalty and the cost have opposing gradients.

Finally, our work does not lead to a clear understanding of
what problems are easier and what problems are harder for
CHOMP. Further work is needed to investigate what makes
day-to-day, structured problems too complex to solve in a
practically suitable amount of time.

Zucker et al.

1191

Our experimental evaluation also has several limitations.
We compared CHOMP with RRT-based algorithms, but
other algorithms would also constitute good basis for com-
parisons (e.g. PRMs (Kavraki et al., 1996)). Although our
goal was to provide the fairest comparison, every deci-
sion comes with alternatives that could shift the results.
In our comparison, we used the standard implementations
from OMPL of RRT and RRT* (coming from the author of
the algorithm) and the standard collision checker from the
OpenRAVE simulator. This collision checker, albeit stan-
dard, is not state-of-the-art. Recent advances, e.g. FCL (Pan
et al., 2012), would drastically improve the RRT perfor-
mance. CHOMBP, on the other hand, uses a different type
of collision checking, via the SDF. This is much faster, but
also approximate: CHOMP has a built-in tolerance for this
approximation via the obstacle cost function. Nonetheless,
a similar collision checking method could be used for the
RRT. We chose standard libraries instead in order to pro-
vide a comparison with the typical performance of RRTs
on our scenes.

Our scene selection is limited as well. First, it is mostly
restricted to grasping in clutter (outside of a few additional
examples), and fails to explore a wide range of real-world
situations. This is a common issue in motion planning:
the community still lacks real-world scene generators that
would enable thorough testing of planners. Second, the clut-
ter is generated in an artificial manner, by placing the same
object in random positions around the target. It fails to cap-
ture the complexity of the real world. Third, the amount of
clutter still allows for feasible grasping configurations. If we
imagine reaching into a real cluttered fridge, however, the
clutter would not be distributed in a way that enables this:
the robot would have to adopt more complex strategies than
planning from a start to a goal (or goal set), e.g. pushing
objects aside to make room (Dogar and Srinivasa, 2011).

Funding

This work was supported by the DARPA Learning Locomotion
project, the DARPA Autonomous Robotic Manipulation-Software
project, the Quality of Life Technologies NSF ERC, and Intel
Pittsburgh.

Acknowledgments

We thank Gil Jones and Willow Garage for their support, particu-
larly in performing ROS experiments.

Notes

1. We consider time to range from 0 to 1 here without loss of
generality. Dilating the time by some constant factor changes
the updates only by scaling the gradient contribution from
Fsmooth bY a constant factor. One can interpret this scaling
factor as absorbed into our trade-off parameter A.

2. Alternatively, the functional gradient of (4) simply evaluates
the quantity inside this integral at the maximizer u.

3. Throughout this paper we assume that A is constant, but in
full generality A constitutes a Riemannian metric on the man-
ifold of trajectories, which allows A to vary smoothly across

the space. For instance, if we define A to account for the
configuration of robot masses in its measurement of dynami-
cal quantities, the form of A depends on kinematic Jacobians
along the trajectory which vary as the trajectory deforms.

4. There are number of technical criteria, such as measurability
and differentiability, that we gloss over in this presentation in
favor of simplicity and stronger intuition. See Neal (1993) for
the details.

5. Technically, since Monte Carlo algorithms require reversibil-
ity, some presentations suggest at this point randomly choos-
ing whether to simulate the system forward or backward in
time. In our case, though, since the marginal over momenta
is symmetric, randomly resampling the momentum at each
iteration automatically provides reversibility.

6. Specifically, one can show that for any single point in the goal
set, the magnitude of the optimal projection is proportional
to the Euclidean distance between the final configurations of
the original trajectory and the projected trajectory. Therefore,
the optimal projection is dictated by that Euclidean distance.
Moreover, the optimal projection onto each of those given
points in the goal set is given by the smoothing procedure
described above.

7. The bug fix for RRT* (path improvement) in 0.11.1 did not
alter the results on our problems, for our time intervals. We
did verify that the issue was indeed fixed by finding problems
on which the RRT* did eventually improve the path.

8. Since the ZMP is a dynamical constraint, it would be best
handled using the theory defined in Section 6; however, the
quadruped implementation predates that work. Instead, we
exploit the fact that smoothly moving the robot center of
mass using A~1 has a very similar effect to treating the ZMP
correctly.

9. Here, using the speedups discussed in Section 7.5 would have
presumably helped achieve better real-time performance, but
again, the quadruped implementation predates that work.

References

Amari Sl and Nagaoka H (2000) Methods of Information Geome-
try. Oxford: Oxford University Press.

Bagnell JA (2004) Learning Decisions: Robustness, Uncertainty,
and Approximation. PhD thesis, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA.

Barraquand J and Latombe JC (1990) A Monte-Carlo algorithm
for path planning with many degrees of freedom. In: Proceed-
ings of the IEEE International Conference on Robotics and
Automation, pp. 1712-1717.

Bentley JL (1975) Multidimensional binary search trees used
for associative searching. Communications of the ACM 18(9):
509-517.

Berenson D, Srinivasa S, Ferguson D, Collet Romea A and
Kuffner J (2009) Manipulation planning with workspace goal
regions. In: Proceedings of the IEEE International Conference
on Robotics and Automation.

Bobrow JE (1989) A direct minimization approach for obtain-
ing the distance between convex polyhedra. The International
Journal of Robotics Research 8(3): 65-76.

Branicky MS, LaValle SM, Olson K and Yang L (2001) Quasi-
randomized path planning. In: Proceedings of the International
Conference on Robotics and Automation.

Brock O and Khatib O (2002) Elastic Strips: A framework for
motion generation in human environments. The International
Journal of Robotics Research 21(12): 1031-1052.

1192

The International Journal of Robotics Research 32(9-10)

Casal A (2001) Reconfiguration Planning for Modular Self-
reconfigurable Robots. PhD thesis, Aeronautics and Astronau-
tics Department, Stanford University.

Chaichian M and Demichev A (2001) Path Integrals in Physics
Volume 2: Quantum Field Theory, Statistical Physics & Other
Modern Applications. Taylor & Francis.

Chen PC and Hwang YK (1998) SANDROS: A dynamic graph
search algorithm for motion planning. IEEE Transactions on
Robotics and Automation 14(3): 390-403.

Chestnutt J (2007) Navigation Planning for Legged Robots. PhD
thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA.

Cohen B, Chitta S and Likhachev M (2010) Search-based
planning for manipulation with motion primitives. In: IEEE
International Conference on Robotics and Automation. IEEE,
pp. 2902-2908.

Conte S and de Boor C (1972) Elementary Numerical Analysis.
New York: McGraw-Hill.

Dalibard S and Laumond J (2009) Control of probabilis-
tic diffusion in motion planning. In: Proceedings of the
International Workshop on Algorithmic Foundations of
Robotics, pp. 467-481.

Dey D, Liu TY, Hebert M and Bagnell JA (2012) Contex-
tual sequence prediction with application to control library
optimization. In: Proceedings of RSS.

Diankov R (2010) Automated Construction of Robotics Manipula-
tion Programs. PhD thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA.

Diebel J (2006) Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors. Technical Report, Stanford
University.

Dogar M and Srinivasa S (2011) A framework for push-grasping
in clutter. In: Proceedings of Robotics: Science and Systems,
Los Angeles, CA.

Dragan A, Gordon G and Srinivasa S (2011a) Learning from expe-
rience in manipulation planning: Setting the right goals. In:
Proceedings of ISRR.

Dragan A, Lee K and Srinivasa S (2013) Legibility and pre-
dictability of robot motion. In: Proceedings of Human-Robot
Interaction.

Dragan A, Ratliff N and Srinivasa S (2011b) Manipulation plan-
ning with goal sets using constrained trajectory optimization.
In: Proceedings of the 2011 IEEE International Conference on
Robotics and Automation.

Eisemann E and Decoret X (2008) Single-pass GPU solid vox-
elization for real-time applications. In: Proceedings of the
Graphics Interface Conference.

Faverjon B (1989) Hierarchical object models for efficient anti-
collision algorithms. In: Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 333-340. DOI:
10.1109/ROBOT.1989.100010.

Felzenszwalb PF and Huttenlocher DP (2004) Distance Trans-
forms of Sampled Functions. Technical Report TR2004-1963,
Cornell University.

Gelenbe E, Lent R and Xu Z (2001) Design and performance
of cognitive packet networks. Performance Evaluation 46(2-3):
155-176.

Gelfand IM and Fomin SV (1963) Calculus of Variations. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc.

Geraerts R and Overmars MH (2006) Creating high-quality
roadmaps for motion planning in virtual environments. In:
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4355-4361.

Gilbert EG, Johnson DW and Keerthi SS (1988) A fast procedure
for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation
4(2): 193-203. DOI: 10.1109/56.2083.

Hassani S (1999) Mathematical Physics: A Modern Introduction
to Its Foundations. New York: Springer-Verlag.

Hazan E, Agarwal A and Kale S (2006) Logarithmic regret
algorithms for online convex optimization. In: Proceedings of
COLT, pp. 499-513.

Hsu D (2000) Randomized Single-query Motion Planning in
Expansive Spaces. Ph.D. thesis, Computer Science Depart-
ment, Stanford University.

Hsu D, Latombe JC and Motwani R (1997) Path planning in
expansive configuration spaces. In: Proceedings of the IEEE
International Conference on Robotics and Automation, vol. 3,
pp. 2719-2726. DOI: 10.1109/ROBOT.1997.619371.

Igel C, Toussaint M and Weishui W (2005) Rprop using the
natural gradient. In: Trends and Applications in Constructive
Approximation (ISNM International Series of Numerical Math-
ematics, vol. 151). Basel: Birkh&user, pp. 259-272.

Jetchev N and Toussaint M (2010) Trajectory prediction in clut-
tered voxel environments. In: IEEE International Conference
on Robotics and Automation, pp. 2523-2528.

Kajita S, Kanehiro F, Kaneko K, et al. (2003) Biped walking
pattern generation by using preview control of zero-moment
point. In: IEEE International Conference on Robotics and
Automation.

Kalakrishnan M, Buchli J, Pastor P, Mistry M and Schaal S
(2011a) Learning, planning, and control for quadruped loco-
motion over challenging terrain. The International Journal of
Robotics Research 30(2): 236-258.

Kalakrishnan M, Chitta S, Theodorou E, Pastor P and Schaal
S (2011b) STOMP: Stochastic trajectory optimization for
motion planning. In: Proceedings IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 4569-4574.
DOI: 10.1109/ICRA.2011.5980280.

Karaman S and Frazzoli E (2011) Sampling-based algorithms
for optimal motion planning. The International Journal of
Robotics Research 30(7): 846-894.

Kavraki LE and Latombe JC (1998) Probabilistic roadmaps
for robot path planning. In: Practical Motion Planning in
Robotics: Current Approaches and Future Directions. New
York: John Wiley & Sons, Inc.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and
Automation 12(4): 566-580. DOI: 10.1109/70.508439.

Khalil HK (2001) Nonlinear Systems. Englewood Cliffs, NJ:
Prentice-Hall.

Khatib O (1986) Real-time obstacle avoidance for manipula-
tors and mobile robots. The International Journal of Robotics
Research 5(1): 90-98.

Kindel R (2001) Motion Planning for Free-flying Robots in
Dynamic and Uncertain Environments. PhD thesis, Aeronau-
tics and Astronautics Department, Stanford University.

Kleinert H (2009) Path Integrals in Quantum Mechanics, Statis-
tics, Polymer Physics, and Financial Markets (5th edn).
Singapore: World Scientific Publishing Company.

Kuffner JJ (1999) Autonomous Agents for Real-time Animation.
PhD thesis, Computer Science Deptartment, Stanford Univer-
sity.

Kuffner JJ and LaValle SM (2000) RRT-connect: An
efficient approach to single-query path planning. In:

Zucker et al.

1193

Proceedings IEEE International Conference on Robotics
and Automation (ICRA ’00), vol. 2, pp. 995-1001. DOI:
10.1109/ROBOT.2000.844730.

Lauterbach C, Mo Q and Manocha D (2010) gProximity: hierar-
chical GPU-based operations for collision and distance queries.
Computer Graphics Forum 29(2): 419-428.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge
University Press.

LaValle SM, Branicky MS and Lindemann SR (2004) On the
relationship between classical grid search and probabilistic
roadmaps. The International Journal of Robotics Research
23(7/8): 673-692.

LaValle SM and Kuffner JJ (2001) Rapidly-exploring random
trees: Progress and prospects. In: Algorithmic and Computa-
tional Robotics: New Directions, pp. 293-308.

Likhachev M, Gordon G and Thrun S (2004) ARA*: Anytime
A* with provable bounds on sub-optimality. In: Workshop on
Neural Information Processing Systems.

Likhachev M and Stentz A (2008) R* search. In: Proceedings of
AAAL

Lin MC and Canny JF (1991) A fast algorithm for incremental
distance calculation. In: Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1008-1014. DOI:
10.1109/ROBOT.1991.131723.

Mayne DH and Jacobson DQ (1970) Differential Dynamic Pro-
gramming. New York: American Elsevier Pub. Co.

Neal RM (1993) Probabilistic Inference using Markov Chain
Monte Carlo Methods. Technical Report, University of
Toronto.

Neal RM (2010) MCMC using Hamiltonian dynamics. In:
Handbook of Markov Chain Monte Carlo. Boca Raton, FL:
Chapman & Hall/CRC, pp. 113-162.

Pan J, Chitta S and Manocha D (2012) FCL: A general purpose
library for proximity and collision queries. In: Proceedings
of the IEEE International Conference on Robotics and
Automation.

Phillips M, Cohen B, Chitta S and Likhachev M (2012) E-
graphs: Bootstrapping planning with experience graphs. In:
Proceedings of Robotics: Science and Systems.

Quinlan S (1994) Real-time Modification of Collision-free Paths.
PhD thesis, Stanford University.

Quinlan S and Khatib O (1993) Elastic Bands: connecting path
planning and control. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 802-807.
DOI: 10.1109/ROBOT.1993.291936.

Ratliff N, Bagnell JA and Zinkevich M (2006a) Maximum margin
planning. In: Proceedings of the International Conference on
Machine Learning.

Ratliff N, Bagnell JA and Zinkevich M (2007) (Online) Subgra-
dient methods for structured prediction. In: Proceedings of the
Eleventh International Conference on Artificial Intelligence
and Statistics (AlStats).

Ratliff N, Bradley D, Bagnell JA and Chestnutt J (2006b) Boost-
ing structured prediction for imitation learning. In: Workshop
on Neural Information Processing Systems.

Ratliff N, Zucker M, Bagnell JA and Srinivasa S (2009) CHOMP:
Gradient optimization techniques for efficient motion plan-
ning. In: Proceedings of the IEEE International Conference on
Robotics and Automation.

Reggiani M, Mazzoli M and Caselli S (2002) An experimental
evaluation of collision detection packages for robot motion

planning. In: 2002 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3, pp. 2329-2334.

Rimon E and Koditschek DE (1988) Exact robot navigation
using cost functions: the case of distinct spherical boundaries
in EN. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp. 1791-1796. DOI:
10.1109/ROBOT.1988.12325.

Schlkopf B and Smola AJ (2001) Learning with Kernels.
Cambridge, MA: Massachusetts Institute of Technology.

Schouwenaars T, Moor BD, Feron E and How J (2001) Mixed
integer programming for multi-vehicle path planning. In:
Proceedings of the European Control Conference.

Shiller Z and Dubowsky S (1991) On computing the global
time-optimal motions of robotic manipulators in the presence
of obstacles. IEEE Transactions on Robotics and Automation
6(7): 785-797.

Sigg C, Peikert R and Gross M (2003) Signed distance trans-
form using graphics hardware. In: Proceedings of the IEEE
Visualization Conference.

Srinivasa S, Ferguson D, Helfrich C, et al. (2010) HERB: a home
exploring robotic butler. Autonomous Robots 28(1): 5-20.

Sud A, Govindaraju N, Gayle R and Manocha D (2006) Interac-
tive 3D distance field computation using linear factorization.
In: Proceedings of the Symposium on Interactive 3D Graphics
and Games.

Theodorou E, Buchli J and Schaal S (2010) Generalized path
integral control approach to reinforcement learning. Journal of
Machine Learning Research 11: 3137-3181.

Todorov E (2006) Linearly-solvable Markov decision problems.
In: Proceedings of Neural Information Processing Systems.
Cambridge, MA: MIT Press, pp. 1369-1376.

Todorov E and Li W (2005) A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear
stochastic systems. In: Proceedings of the American Control
Conference.

Toussaint M (2009) Robot trajectory optimization using
approximate inference. In: Proceedings of the 26th Annual
International Conference on Machine Learning. New York:
ACM Press, pp. 1049-1056.

Vernaza P and Lee D (2011) Learning dimensional descent
for optimal motion planning in high-dimensional spaces.
In: Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI) Conference.

Zefran M, Desai JP and Kumar V (1996) Continuous motion
plans for robotic systems with changing dynamic behavior.
In: Proceedings of the International Workshop on Algorithmic
Foundations of Robotics.

Ziebart BD (2010) Modeling Purposeful Adaptive Behavior
with the Principle of Maximum Causal Entropy. PhD thesis,
Machine Learning Department, Carnegie Mellon University.

Ziebart BD, Bagnell JA and Dey A (2010) Modeling interaction
via the principle of maximum causal entropy. In: Proceedings
of the International Conference on Machine Learning.

Ziebart BD, Ratliff N, Gallagher G, et al. (2009) Planning-based
prediction for pedestrians. In: Proceedings IROS 2009.

Zinkevich M (2003) Online convex programming and generalized
infinitesimal gradient ascent. In: Proceedings of the Twentieth
International Conference on Machine Learning, pp. 928-936.

Zucker M, Ratliff N, Stolle M, et al. (2011) Optimization and
learning for rough terrain legged locomotion. The International
Journal of Robotics Research 30(2): 175-191.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

