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CHAPTR Embedded Hardware Basics
Jack Ganssle

Tammy Noergaard

CHAPTER 1

1.1 Lesson One on Hardware: Reading Schematics

This section is equally important for embedded hardware and software engineers. Before 
diving into the details, note that it is important for all embedded designers to be able to under-
stand the diagrams and symbols that hardware engineers create and use to describe their hard-
ware designs to the outside world. These diagrams and symbols are the keys to quickly and 
effi ciently understanding even the most complex hardware design, regardless of how much or 
little practical experience one has in designing hardware. They also contain the information an 
embedded programmer needs to design any software that requires compatibility with the hard-
ware, and they provide insight to a programmer as to how to successfully communicate the 
hardware requirements of the software to a hardware engineer.

There are several different types of engineering hardware drawings, including:

• Block diagrams, which typically depict the major components of a board (processors, 
buses, I/O, memory) or a single component (a processor, for example) at a systems 
architecture or higher level. In short, a block diagram is a basic overview of the hard-
ware, with implementation details abstracted out. While a block diagram can refl ect 
the actual physical layout of a board containing these major components, it mainly 
depicts how different components or units within a component function together at a 
systems architecture level. Block diagrams are used extensively throughout this book 
(in fact, Figures 1.5a–e later in this chapter are examples of block diagrams) because 
they are the simplest method by which to depict and describe the components within a 
system. The symbols used within a block diagram are simple, such as squares or rec-
tangles for chips and straight lines for buses. Block diagrams are typically not detailed 
enough for a software designer to be able to write all the low-level software accurately 
enough to control the hardware (without a lot of headaches, trial and error, and even 
some burned-out hardware!). However, they are very useful in communicating a basic 
overview of the hardware, as well as providing a basis for creating more detailed 
hardware diagrams.

• Schematics. Schematics are electronic circuit diagrams that provide a more detailed 
view of all the devices within a circuit or within a single component—everything from 
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processors down to resistors. A schematic diagram is not meant to depict the physical 
layout of the board or component, but provides information on the fl ow of data in the 
system, defi ning what signals are assigned where—which signals travel on the various 
lines of a bus, appear on the pins of a processor, and so on. In schematic diagrams, 
schematic symbols are used to depict all the components within the system. They 
typically do not look anything like the physical components they represent but are a 
type of “shorthand” representation based on some type of schematic symbol standard. 
A schematic diagram is the most useful diagram to both hardware and software 
designers trying to determine how a system actually operates, to debug hardware, or 
to write and debug the software managing the hardware. See Appendix A for a list of 
commonly used schematic symbols.

• Wiring diagrams. These diagrams represent the bus connections between the major 
and minor components on a board or within a chip. In wiring diagrams, vertical and 
horizontal lines are used to represent the lines of a bus, and either schematic symbols 
or more simplifi ed symbols (that physically resemble the other components on the 
board or elements within a component) are used. These diagrams may represent an 
approximate depiction of the physical layout of a component or board.

• Logic diagrams/prints. Logic diagrams/prints are used to show a wide variety of circuit 
information using logical symbols (AND, OR, NOT, XOR, and so on) and logical inputs 
and outputs (the 1’s and 0’s). These diagrams do not replace schematics, but they can be 
useful in simplifying certain types of circuits in order to understand how they function.

• Timing diagrams. Timing diagrams display timing graphs of various input and output 
signals of a circuit, as well as the relationships between the various signals. They are 
the most common diagrams (after block diagrams) in hardware user manuals and data 
sheets.

Regardless of the type, to understand how to read and interpret these diagrams, it is important 
to fi rst learn the standard symbols, conventions, and rules used. Examples of the symbols used 
in timing diagrams are shown in Table 1.1, along with the conventions for input/output signals 
associated with each of the symbols.

An example of a timing diagram is shown in Figure 1.1. In this fi gure, each row represents a 
different signal. In the case of the signal rising and falling symbols within the diagram, the 
rise time or fall time is indicated by the time it takes for the signal to move from LOW to 
HIGH or vice versa (the entire length of the diagonal line of the symbol). In comparing two 
signals, a delay is measured at the center of the rising or falling symbols of each signal being 
compared. In Figure 1.1, there is a fall time delay between signals B and C and signals A and 
C in the fi rst falling symbol. In comparing the fi rst falling symbol of signals A and B in the 
fi gure, no delay is indicated by the timing diagram.
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Schematic diagrams are much more complex than their timing diagram counterparts. As intro-
duced earlier this chapter, schematics provide a more detailed view of all the devices within a 
circuit or within a single component. Figure 1.2 shows an example of a schematic diagram.

In the case of schematic diagrams, some of the conventions and rules include:

• A title section is located at the bottom of each schematic page, listing information 
that includes, but is not limited to, the name of the circuit, the name of the hardware 
engineer responsible for the design, the date, and a list of revisions made to the design 
since its conception.

• The use of schematic symbols indicating the various components of a circuit (see 
Appendix A).

Table 1.1: Timing diagrams symbol table.[1.1]

 Symbol Input Signals Output Signals 

 Input signal must be valid Output signal will be valid 

 Input signal doesn’t affect  Indeterminate output signal 
 system, will work regardless

 Garbage signal (nonsense)  Output signal not driven 
(fl oating), tristate, HiZ, high 
impedance 

 If the input signal rises: Output signal will rise 

 If the input signal falls: Output signal will fall 

Signal A

Signal B

Signal C

…….

Rise Time Fall Time

Delay

Figure 1.1: Timing diagram example.
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• Along with the assigned symbol comes a label that details information about the 
component (i.e., size, type, power ratings, etc.). Labels for components of a symbol, 
such as the pin numbers of an IC, signal names associated with wires, and so forth are 
usually located outside of the schematic symbol.

• Abbreviations and prefi xes are used for common units of measurement (i.e., k for kilo 
or 103, M for mega or 106) and these prefi xes replace writing out the units and larger 
numbers.

• Functional groups and subgroups of components are typically separated onto different 
pages.

• I/O and voltage source/ground terminals. In general, positive voltage supply terminals 
are located at the top of the page, and negative supply/ground at the bottom. Input 
components are usually on the left, and output components are on the right.

At the very least, the block and schematic diagrams should contain nothing unfamiliar to any-
one working on the embedded project, whether they are coding software or prototyping the 

Figure 1.2: Schematic diagram example.[1.2]
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hardware. This means becoming familiar with everything from where the name of the diagram 
is located to how the states of the components shown within the diagrams are represented.

One of the most effi cient ways of learning how to learn to read and/or create a hardware dia-
gram is via the Traister and Lisk method[1.3], which involves:

Step 1. Learning the basic symbols that can make up the type of diagram, such as timing or 
schematic symbols. To aid in the learning of these symbols, rotate between this step and 
steps 2 and/or 3.

Step 2. Reading as many diagrams as possible until reading them becomes boring (in that 
case, rotate between this step and steps 1 and/or 3) or comfortable (so there is no longer 
the need to look up every other symbol while reading).

Step 3. Writing a diagram to practice simulating what has been read, again until it becomes 
either boring (which means rotating back through steps 1 and/or 2) or comfortable.

1.2 The Embedded Board and the von Neumann Model

In embedded devices, all the electronics hardware resides on a board, also referred to as a 
printed wiring board (PW) or printed circuit board (PCB). PCBs are often made of thin sheets 
of fi berglass. The electrical path of the circuit is printed in copper, which carries the electri-
cal signals between the various components connected on the board. All electronic compo-
nents that make up the circuit are connected to this board, either by soldering, plugging into 
a socket, or some other connection mechanism. All the hardware on an embedded board is 
located in the hardware layer of the Embedded Systems Model (see Figure 1.3).

Hardware
Layer

System Software Layer

Application Software Layer

Embedded Board

Hardware
Layer

System Software Layer

Application Software Layer

Embedded Board

Figure 1.3: Embedded board and the Embedded Systems Model.

At the highest level, the major hardware components of most boards can be classifi ed into fi ve 
major categories:

• Central processing unit (CPU). The master processor.

• Memory. Where the system’s software is stored.

• Input device(s). Input slave processors and relative electrical components.
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• Output device(s). Output slave processors and relative electrical components.

• Data pathway(s)/bus(es). Interconnects the other components, providing a “highway” 
for data to travel on from one component to another, including any wires, bus bridges, 
and/or bus controllers.

These fi ve categories are based on the major elements defi ned by the von Neumann model 
(see Figure 1.4), a tool that can be used to understand any electronic device’s hardware archi-
tecture. The von Neumann model is a result of the published work of John von Neumann 
in 1945, which defi ned the requirements of a general-purpose electronic computer. Because 
embedded systems are a type of computer system, this model can be applied as a means of 
understanding embedded systems hardware.

While board designs can vary widely, as demonstrated in the examples of Figures 1.5a–d, all 
the major elements on these embedded boards—and on just about any embedded board—can 
be classifi ed as either the master CPU(s), memory, input/output, or bus components.

To understand how the major components on an embedded board function, it is useful to fi rst 
understand what these components consist of and why. All the components on an embedded 
board, including the major components introduced in the von Neumann model, are made up of 
one or some combination of interconnected basic electronic devices, such as wires, resistors, 

Figure 1.4: Embedded system board organization.[1.4] 

Based on the von Neumann architecture model (also referred to as the Princeton architecture).

Master Processor

Memory

OutputInputBRINGS DATA INTO THE EMBEDDED SYSTEM TAKES DATA OUT OF  THE EMBEDDED SYSTEM

DATA FROM CPU OR INPUT DEVICES
STORED IN MEMORY UNTIL A CPU OR
OUTPUT DEVICE REQUEST

5 SYSTEM COMPONENTS COMMONLY CONNECTED VIA BUSES

EMBEDDED SYSTEM BOARD

CONTROLS USAGE AND MANIPULATION
OF DATA 
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Figure 1.5b: Net Silicon ARM7 reference board.[1.6]
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• Memory: Flash, RAM

• Input/Output Devices: 10Base-T trans-
ceiver, Thinnet transceiver, 100Base-T
transceiver, RS-232 transceiver, 16646
transceiver, …

• Buses: System Bus, MII, …

Figure 1.5a: AMD/National Semiconductor x86 reference board.[1.5] 

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.
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Figure 1.5c: Ampro MIPS reference board.[1.7]
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Figure 1.5d: Ampro PowerPC reference board.[1.8] 

Copyright Freescale Semiconductor, Inc., 2004. Used by permission.
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capacitors, inductors, and diodes. These devices also can act to connect the major components 
of a board together. At the highest level, these devices are typically classifi ed as either passive 
or active components. In short, passive components include devices such as wires, resistors, 
capacitors and inductors that can only receive or store power. Active components, on the other 
hand, include devices such as transistors, diodes, and integrated circuits (ICs) that are capable 
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of delivering as well as receiving and storing power. In some cases, active components them-
selves can be made up of passive components. Within the passive and active families of 
components, these circuit devices essentially differ according to how they respond to 
voltage and current.

1.3 Powering the Hardware

Power is the rate that energy is expended or work is performed. This means that in alternating 
current (AC) and direct current (DC) circuits, the power associated with each element on the 
board equals the current through the element multiplied by the voltage across the element 
(P � VI). Accurate power and energy calculations must be done for all elements on an embed-
ded board to determine the power consumption requirements of that particular board. This is 
because each element can only handle a certain type of power, so AC-DC converters, DC-AC 
converters, direct AC-AC converters, and so on may be required. Also, each element has a 
limited amount of power that it requires to function, that it can handle, or that it dissipates. 
These calculations determine the type of voltage source that can be used on a board and how 
powerful the voltage source needs to be.

In embedded systems, both AC and DC voltage sources are used because each current genera-
tion technique has its pros and cons. AC is easier to generate in large amounts using genera-
tors driven by turbines turned by everything from wind to water. Producing large amounts of 
DC from electrochemical cells (batteries) is not as practical. Also, because transmitting cur-
rent over long transmission lines results in a signifi cant loss of energy due to the resistance of 
the wire, most modern electric company facilities transmit electricity to outlets in AC current, 
since AC can be transformed to lower or higher voltages much more easily than DC. With AC, 
a device called a transformer, located at the service provider, is used to effi ciently transmit 

Figure 1.5e: Mitsubishi analog TV reference board.
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Ch01-H8584.indd   9Ch01-H8584.indd   9 8/17/07   12:08:53 PM8/17/07   12:08:53 PM



10   Chapter 1

www.newnespress.com

current over long distances with lower losses. The transformer is a device that transfers electri-
cal energy from one circuit to another and can make changes to the current and voltage dur-
ing the transfer. The service provider transmits lower levels of current at a higher voltage rate 
from the power plant, and then a transformer at the customer site decreases the voltage to the 
value required. On the fl ip side, at very high voltages, wires offer less resistance to DC than 
AC, thus making DC more effi cient to transmit than AC over very long distances.

Some embedded boards integrate or plug into power supplies. Power supplies can be either 
AC or DC. To use an AC power supply to supply power to components using only DC, an 
AC-to-DC converter can be used to convert AC to the lower DC voltages required by the 
various components on an embedded board, which typically require 3.3, 5, or 12 volts.

Note: Other types of converters, such as DC-to-DC, DC-to-AC, or direct AC-to-AC 
can be used to handle the required power conversions for devices that have other 
requirements.

Other embedded boards or components on a board (such as nonvolatile memory, discussed in 
more detail in Chapter 5) rely on batteries as voltage sources, which can be more practical for 
providing power because of their size. Battery-powered boards don’t rely on a power plant for 
energy, and they allow portability of embedded devices that don’t need to be plugged into an 
outlet. Also, because batteries supply DC current, no mechanism is needed to convert AC to 
DC for components that require DC, as is needed with boards that rely on a power supply and 
outlet supplying AC. Batteries, however, have a limited life and must be either recharged or 
replaced.

1.3.1 A Quick Comment on Analog vs. Digital Signals

A digital system processes only digital data, which is data represented by only 0’s and 1’s. 
On most boards, two voltages represent “0” and “1,” since all data is represented as some 
combination of 1’s and 0’s. No voltage (0 volts) is referred to as ground, VSS, or low, and 
3, 5, or 12 volts are commonly referred to as VCC, VDD, or high. All signals within the sys-
tem are one of the two voltages or are transitioning to one of the two voltages. Systems can 
defi ne “0” as low and “1” as high, or some range of 0–1 volts as LOW and 4–5 volts as HIGH, 
for instance. Other signals can base the defi nition of a “1” or “0” on edges (low to high) or 
(high to low).

Because most major components on an embedded board, such as processors, inherently proc-
ess the 1’s and 0’s of digital signals, a lot of embedded hardware is digital by nature. However, 
an embedded system can still process analog signals, which are continuous—that is, not only 
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1’s and 0’s but values in between as well. Obviously, a mechanism is needed on the board to 
convert analog signals to digital signals. An analog signal is digitized by a sampling process, 
and the resulting digital data can be translated back into a voltage “wave” that mirrors the 
original analog waveform.

Inaccurate Signals: Problems with Noise in Analog and Digital Signals

One of the most serious problems in both the analog and digital signal realm involves 
noise distorting incoming signals, thus corrupting and affecting the accuracy of data. 
Noise is generally any unwanted signal alteration from an input source, any part of the 
input signal generated from something other than a sensor, or even noise generated from 
the sensor itself. Noise is a common problem with analog signals. Digital signals, on the 
other hand, are at greater risk if the signals are not generated locally to the embedded 
processor, so any digital signals coming across a longer transmission medium are the 
most susceptible to noise problems.

Analog noise can come from a wide variety of sources—radio signals, lightning, power 
lines, the microprocessor, or the analog sensing electronics themselves. The same is true 
for digital noise, which can come from mechanical contacts used as computer inputs, 
dirty slip rings that transmit power/data, limits in accuracy/dependability of input 
source, and so forth.

The key to reducing either analog or digital noise is: (1) to follow basic design guide-
lines to avoid problems with noise. In the case of analog noise, this includes not mixing 
analog and digital grounds, keeping sensitive electronic elements on the board a suf-
fi cient distance from elements switching current, limiting length of wires with low signal 
levels/high impedance, etc. With digital signals, this means routing signal wires away 
from noise-inducing high current cables, shielding wires, transmitting signals using cor-
rect techniques, etc. (2) to clearly identify the root cause of the problem, which means 
exactly what is causing the noise. With point (2), once the root cause of the noise has 
been identifi ed, a hardware or software fi x can be implemented. Techniques for reducing 
analog noise include fi ltering out frequencies not needed and averaging the signal inputs, 
whereas digital noise is commonly addressed via transmitting correction codes/par-
ity bits and/or adding additional hardware to the board to correct any problems with 
received data.

—Based on the articles “Minimizing Analog Noise” (May 1997),“Taming Analog Noise” 
(November 1992), and “Smoothing Digital Inputs” (October 1992), by Jack Ganssle, in 
Embedded Systems Programming Magazine.

Real-World Advice
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1.4 Basic Electronics

In this section, we will review some electronics fundamentals.

1.4.1 DC Circuits

DC means direct current, a fancy term for signals that don’t change. They’re fl atlined, like a 
corpse’s EEG or the output from a battery (Figure 1.6). Your PC’s power supply makes DC 
out of the building’s AC (alternating current) mains. All digital circuits require DC power 
supplies.

1.4.1.1 Voltage and Current
We measure the quantity of electricity using voltage and amperage, but both arise from 
more fundamental physics. Atoms that have a shortage or surplus of electrons are called 
ions. An ion has a positive or negative charge. Two ions of opposite polarity (one plus, 
meaning it’s missing electrons, and the other negative, with one or more extra electrons) 
attract each other. This attractive force is called the electromotive force, commonly known 
as EMF.

Charge is measured in coulombs, where one coulomb is 6.25 � 1018 electrons (for negative 
charges) or protons for positive ones.

An ampere is one coulomb fl owing past a point for one second. Voltage is the force between 
two points for which one ampere of current will do one joule of work, a joule per second 
being one watt.

Figure 1.6: A DC signal has a constant, unvarying amplitude.

0 DO A1

A1

1.00 V/ 0.00s 10.0m
s/ A2 RUNAuto
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Figure 1.7: A VOM, even an old-fashioned analog model like this $10 Radio 
Shack model, measures DC voltage as well or better than a scope. 

But few electrical engineers remember these defi nitions, and none actually use them.

An old but still apt analogy uses water fl ow through a pipe: Current would be the amount of 
water fl owing through a pipe per unit of time, whereas voltage is the pressure of the water.

The unit of current is the ampere (amp), though in computers an amp is an awful lot of cur-
rent. Most digital and analog circuits require much less. Table 1.2 shows the most common 
nomenclatures.

Table 1.2: Common nomenclatures.

 Name Abbreviation  Number of Amps Where Likely Found

amp A 1 Power supplies; very high-performance 
   processors may draw many tens of amps

milliamp mA .001 amp Logic circuits, processors (tens or hundreds of
   mA), generic analog circuits

microamp µA 10–6 amp Low-power logic, low-power analog, battery-
   backed RAM

picoamp pA 10–12 amp  Very sensitive analog inputs

femtoamp fA 10–15 amp The cutting edge of low-power analog
   measurements

Ch01-H8584.indd   13Ch01-H8584.indd   13 8/17/07   12:08:54 PM8/17/07   12:08:54 PM



14   Chapter 1

www.newnespress.com

Most embedded systems have a far less extreme range of voltages. Typical logic and micro-
processor power supplies range from a volt or 2–5 volts. Analog power supplies rarely exceed 
plus and minus 15 volts. Some analog signals from sensors might go down to the millivolt 
(.001 volt) range. Radio receivers can detect microvolt-level signals, but they do this using 
quite sophisticated noise-rejection techniques.

1.4.1.2 Resistors

As electrons travel through wires, components, or accidentally through a poor soul’s body, 
they encounter resistance, which is the tendency of the conductor to limit electron fl ow. 

A vacuum is a perfect resistor: no current fl ows through it. Air’s pretty close, but since water 
is a decent conductor, humidity does allow some electricity to fl ow in air.

Superconductors are the only materials with zero resistance, a feat achieved through the magic 
of quantum mechanics at extremely low temperatures, on the order of that of liquid nitrogen 
and colder. Everything else exhibits some resistance, even the very best wires. Feel the power 
cord of your 1500 watt ceramic heater—it’s warm, indicating some power is lost in the cord 
due to the wire’s resistance.

We measure resistance in ohms; the more ohms, the poorer the conductor. The Greek capital 
omega (Ω) is the symbol denoting ohms.

Resistance, voltage, and amperage are all related by the most important of all formulas in elec-
trical engineering. Ohm’s Law states:

E � I � R

where E is voltage in volts, I is current in amps, and R is resistance in ohms. (EEs like to use E 
for volts because it indicates electromotive force.)

What does this mean in practice? Feed one amp of current through a one-ohm load and there 
will be one volt developed across the load. Double the voltage and, if resistance stays the 
same, the current doubles.

Though all electronic components have resistance, a resistor is a device specifi cally made to 
reduce conductivity (Figure 1.8 and Table 1.3). We use them everywhere. The volume control 
on a stereo (at least, the nondigital ones) is a resistor whose value changes as you rotate the 
knob; more resistance reduces the signal and hence the speaker output.

What happens when you connect resistors together? For resistors in series, the total effective 
resistance is the sum of the values:

Reff � R1 � R2
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For two resistors in parallel, the effective resistance is:

R
R R

R Reff �
�

�
1 2

1 2

(Thus, two identical resistors in parallel are effectively half the resistance of either of them: 
two 1 ks is 500 ohms. Now add a third: that’s essentially a 500-ohm resistor in parallel with a 
1k, for an effective total of 333 ohms.)

Figure 1.8: The squiggly thing on the left is the standard symbol used by engineers to denote 
a resistor on their schematics. On the right is the symbol used by engineers in the United 

Kingdom. As Churchill said, we are two peoples divided by a common language.

Table 1.3: Range of values for real-world resistors.

 Name Abbreviation Ohms Where Likely Found 

milliohm m Ω .001 ohm  Resistance of wires and other good conductors

ohm Ω 1 ohm  Power supplies may have big dropping resistors in 
the few to tens of ohms range

hundreds of ohms    In embedded systems, it’s common to fi nd resis-
tors in the few hundred ohm range used to termi-
nate high-speed signals

kiloohm k Ω or just k 1000 ohms  Resistors from a half-k to a hundred or more k 
are found all over every sort of electronic device; 
“pullups” are typically a few k to tens of k

megaohm M Ω 106 ohms Low signal-level analog circuits

hundreds of M Ω  108�� ohms  Geiger counters and other extremely sensitive 
apps; rarely seen since resistors of this size are 
close to the resistance of air
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The general formula for more than two resistors in parallel (Figure 1.9) is:

R

R R R R

eff �

� � � �

1
1 1 1 1

1 2 3 4

…

1 k

1 k

1 k

1 k 1 k 1 k

Figure 1.9: The three series resistors on the left are equivalent to a single 3000-ohm part. 
The three paralleled on the right work out to one 333-ohm device.

Manufacturers use color codes to denote the value of a particular resistor. Although at fi rst this 
may seem unnecessarily arcane, in practice it makes quite a bit of sense. Regardless of orien-
tation, no matter how it is installed on a circuit board, the part’s color bands are always visible 
(Figure 1.10 and Table 1.4).

1st Color
Band

2nd Color
Band

Multiplier
Color Band

Tolerance
Color Band

Figure 1.10: This black-and-white photo masks the resistor’s color bands. However, we read them 
from left to right, the fi rst two designating the integer part of the value, the third band giving the 

multiplier. A fourth gold (5%) or silver (10%) band indicates the part’s tolerance.
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The fi rst two bands, reading from the left, give the integer part of the resistor’s value. The 
third is the multiplier. Read the fi rst two bands’ numerical values and multiply by the scale 
designated by the third band. For instance: brown black red � 1 (brown) 0 (black) times 100 
(red), or 1000 ohms, more commonly referred to as 1 k. Table 1.5 has more examples.

Table 1.4: The resistor color code. Various mnemonic devices 
designed to help one remember these are no longer politically correct; 
one acceptable but less memorable alternative is Big Brown Rabbits 

Often Yield Great Big Vocal Groans When Gingerly Slapped.

 Color band Value Multiplier

 Black 0 1

 Brown 1 10

 Red 2 100

 Orange 3 1000

 Yellow 4 10,000

 Green 5 100,000

 Blue 6 1,000,000

 Violet 7 Not used 

 Gray 8 Not used 

 White 9 Not used 

 Gold (third band)  �10 

 Silver (third band)  �100 

Table 1.5: Examples showing how to read color bands and compute resistance.

 First Band Second Band Third Band Calculation Value (Ohms) Commonly Called 

 Brown Red Orange 12 � 1000 12,000 12 k 

 Red Red Red 22 � 100   2,200 2.2 k 

 Orange Orange Yellow 33 � 10,000 330,000 330 k 

 Green Blue Red 56 � 100 5,600 5.6 k 

 Green Blue Green 56 � 100,000 5,600,000 5.6 M 

 Red Red Black 22 � 1 22 22

 Brown Black Gold 10 �10 1 1 

 Blue Gray Red 68 � 100 6,800 6.8 k 

Resistors come in standard values. Novice designers specify parts that do not exist; the expe-
rienced engineer knows that, for instance, there’s no such thing as a 1.9 k resistor. Engineering 
is a very practical art; one important trait of the good designer is using standard and easily 
available parts.

 Embedded Hardware Basics  17
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1.4.1.3 Circuits

Electricity always fl ows in a loop. A battery left disconnected discharges only very slowly 
because there’s no loop, no connection of any sort (other than the nonzero resistance of humid 
air) between the two terminals. To make a lamp light, connect one lead to each battery termi-
nal; electrons can now run in a loop from the battery’s negative terminal, through the lamp, 
and back into the battery.

There are only two types of circuits: series and parallel. All real designs use combinations of 
these. A series circuit connects loads in a circular string; current fl ows around through each 
load in sequence (Figure 1.11). In a series circuit, the current is the same in every load.

12 volts

R1

R2

2 k

10 k

Figure 1.11: In a series circuit, the electrons fl ow through one load and then 
into another. The current in each resistor is the same; the voltage 

dropped across each depends on the resistor’s value.

It’s easy to calculate any parameter of a series circuit. In Figure 1.11, a 12-volt battery powers 
two series resistors. Ohm’s Law tells us that the current fl owing through the circuit is the volt-
age (12 in this case) divided by the resistance (the sum of the two resistors, or 12 k).

Total current is thus:

I � V � R � (12 volts) � (2000 � 10,000 ohms) � 12 � 12000 � 0.001 amp � 1 mA

(Remember that mA is the abbreviation for milliamps.)

So what’s the voltage across either of the resistors? In a series circuit, the current is identical 
in all loads, but the voltage developed across each load is a function of the load’s resistance 
and the current. Again, Ohm’s Law holds the secret. The voltage across R1 is the current in 
the resistor times its resistance, or:

VR1
 � IR1

 � 0.001 amps � 2000 ohms � 2 volts
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Since the battery places 12 volts across the entire resistor string, the voltage dropped on R2 
must be 12 – 2, or 10 volts. Don’t believe that? Use Mr. Ohm’s wonderful equation on R2 to 
fi nd:

VR2
 � IR2

 � 0.001 amps � 10,000 ohms � 10 volts

It’s easy to extend this to any number of parts wired in series.

Parallel circuits have components wired so both pins connect (Figure 1.12). Current fl ows 
through both parts, though the amount of current depends on the resistance of each leg of the 
circuit. The voltage on each component, though, is identical.

12 volts
R1 R2

2 k 10 k

Figure 1.12: R1 and R2 are in parallel, both driven by the 12-volt battery.

We can compute the current in each leg much as we did for the series circuit. In the preceding 
case, the battery applies 12 volts to both resistors. The current through R1 is:

IR1
 � 12 volts � 2,000 ohms � 12 � 2000 � 0.006 amps � 6 mA

Through R2:

IR2
 � 12 volts � 10,000 ohms � 0.0012 amps � 1.2 mA

Real circuits are usually a combination of series and parallel elements (Figure 1.13). Even in 
these more complex, more realistic cases, it’s still very simple to compute anything one wants 
to know.

10 volts
5.6 k 2 k

R1

R3 R2

1 k

Figure 1.13: A series/parallel circuit.
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Let’s analyze the circuit shown in Figure 1.13. There’s only one trick: cleverly combine com-
plicated elements into simpler ones. Let’s start by fi guring the current fl owing out of the bat-
tery. It’s much too hard to do this calculation until we remember that two resistors in parallel 
look like a single resistor with a lower value.

Start by fi guring the current fl owing out of the battery and through R1. We can turn this into a 
series circuit (in which the current fl owing is the same through all the components) by replac-
ing R3 and R2 with a single resistor with the same effective value as these two paralleled com-
ponents. That’s:

R
R R

R R
ohmsEFF �

�

�
�

�

�
�2 3

1 3

5600 2000
5600 2000

1474

So the circuit is identical to one with two series resistors: R1, still 1 k, and REFF at 1474 ohms. 
Ohm’s Law gives the current fl owing out of the battery and through these two resistors:

i
V

R R
amps mA�

�
�

�
� �

1

10
1000 1474

0 004 4
EFF

.

Ohm’s Law remains the font of all wisdom in basic circuit analysis and readily tells us the 
voltage dropped across R1:

V � iR1 � 0.004 amps � 1000 ohms � 4 volts

Clearly, since the battery provides 10 volts, the voltage across the paralleled pair R2 and R3 is 
6 volts.

1.4.1.4 Power

Power is the product of voltage and current and is expressed in watts. One watt is one volt 
times one amp. A milliwatt is a thousandth of a watt; a microwatt is a millionth.

You can think of power as the total amount of electricity present. A thousand volts sounds 
like a lot of electricity, but if there’s only a microamp available, that’s a paltry milliwatt—not 
much power at all.

Power is also current2 times resistance:

P � I2 � R

Electronic components like resistors and ICs consume a certain amount of volts and amps. 
An IC doesn’t move, make noise, or otherwise release energy (other than exerting a minimal 
amount of energy in sending signals to other connected devices), so almost all the energy 
consumed gets converted to heat. All components have maximum power dissipation ratings; 
exceed these at your peril.
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If a part feels warm it’s dissipating a reasonable fraction of a watt. If it’s hot but you can keep 
your fi nger on it, then it’s probably operating within specs, though many analog components 
want to run cooler. If you pull back, not burned, but the heat is too much for your fi nger, then 
in most cases (be wary of the wimp factor; some people are more heat sensitive than others) 
the device is too hot and either needs external cooling (heat sink, fan, etc.), has failed, or your 
circuit exceeds heat parameters. A burn or near burn or discoloration of the device means 
there’s trouble brewing in all but exceptional conditions (e.g., high-energy parts like power 
resistors).

A PC’s processor has so many transistors, each losing a bit of heat, that the entire part might 
consume and eliminate 100� watts. That’s far more than the power required to destroy the 
chip. Designers expend a huge effort in building heat sinks and fans to transfer the energy in 
the part to the air.

Figure 1.14: This 10-ohm resistor, with 12 volts applied, draws 833 mA. P � I2R, 
so it’s sucking about 7 watts. Unfortunately, this particular part is rated for 1/4 watt max, 

so it is on fi re. Few recent college grads have a visceral feel for current, power, and 
heat, so this demo makes their eyes go like saucers.

The role of heat sinks and fans is to remove the heat from the circuits and dump it into the 
air before the devices burn up. The fact that a part dissipates a lot of energy and wants to run 
hot is not bad as long as proper thermal design removes the energy from the device before it 
exceeds its max temp rating (Figure 1.14).

1.4.2 AC Circuits

AC is short for alternating current, which is any signal that’s not DC. AC signals vary with 
time. The mains in your house supply AC electricity in the shape of a sine wave: the voltage
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varies from a large negative to a large positive voltage 60 times per second (in the United 
States and Japan) or 50 times per second (in most of the rest of the world).

AC signals can be either periodic, which means they endlessly and boringly repeat forever, or 
aperiodic, the opposite. Static from your FM radio is largely aperiodic since it’s quite random. 
The bit stream on any address or data line from a micro is mostly aperiodic, at least over short 
times, as it’s a complex changing pattern driven by the software.

The rate at which a periodic AC signal varies is called its frequency, which is measured in 
hertz (Hz for short). One Hz means the waveform repeats once per second. A thousand Hz is 
a kHz (kilohertz), a million Hz is the famous MHz by which so many microprocessor clock 
rates are defi ned, and a billion Hz is a GHz.

The reciprocal of Hz is period. That is, where the frequency in hertz defi nes the signal’s rep-
etition rate, the period is the time it takes for the signal to go through a cycle.

Mathematically:

Period in seconds � 1 � frequency in Hz

Thus, a processor running at 1 GHz has a clock period of 1 nanosecond—one billionth of a 
second. No kidding. In that brief fl ash of time, even light goes but a bare foot. Though your 
1.8 GHz PC may seem slow loading Word, it’s cranking instructions at a mind-boggling rate.

Wavelength relates a signal’s period—and thus its frequency—to a physical “size.” It’s the dis-
tance between repeating elements and is given by:

Wavelength in meters � �
c

frequency

300 000 000, , mmeters ond

frequency in Hz

/sec

where c is the speed of light.

An FM radio station at about 100 MHz has a wavelength of 3 meters. AM signals, on the other 
hand, are around 1 MHz, so each sine wave is 300 meters long. A 2.4-GHz cordless phone 
runs at a wavelength a bit over 10 cm.

As the frequency of an AC signal increases, things get weird. The basic ideas of DC circuits 
still hold but need to be extended considerably. Just as relativity builds on Newtonian mechan-
ics to describe fast-moving systems, electronics needs new concepts to properly describe fast 
AC circuits.

Resistance, in particular, is really a subset of the real nature of electronic circuits. It turns out 
that there are three basic kinds of resistive components; each behaves somewhat differently. 
We’ve already looked at resistors; the other two components are capacitors and inductors. 
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Both of these parts exhibit a kind of resistance that varies depending on the frequency of the 
applied signal; the amount of this “AC resistance” is called reactance.

1.4.2.1 Capacitors
A capacitor, colloquially called the “cap,” is essentially two metal plates separated from each 
other by a thin insulating material. This insulation, of course, means that a DC signal cannot 
fl ow through the cap. It’s like an open circuit.

But in the AC world, strange things happen. It turns out that AC signals can make it across 
the gap between the two plates; as the frequency increases, the effective resistance of this gap 
decreases. This resistive effect is called reactance; for a capacitor it’s termed capacitive reac-
tance (Figure 1.15). There’s a formula for everything in electronics; for capacitive reactance 
it’s:

X
fcc �

1
2π

where:
 Xc � capacitive reactance
 f � frequency in Hz
 c � capacitance in farads

Figure 1.15: Capacitive reactance of a 0.1 μF cap (top) and a 0.5 μF cap (bottom curve).
The vertical axis is reactance in ohms. See how larger caps have lower reactances, and as the 

frequency increases reactance decreases. In other words, a bigger cap passes AC better than a 
smaller one, and at higher frequencies all caps pass more AC current. Not shown: at 0 Hz (DC), 

reactance of all caps is essentially infi nite.
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Capacitors thus pass only changing signals (Table 1.6). The current fl owing through a cap is:

I
dV

dt
�

(If your calculus is rusty or nonexistent, this simply means that the current fl ow is proportional 
to the change in voltage over time.)

In other words, the faster the signal changes, the more current fl ows.

Table 1.6: Range of values for real-world capacitors.

 Name Abbreviation Farads Where Likely Found 

picofarad pF 10�12 farad  Padding caps on microprocessor crystals, 
oscillators, analog feedback loops.

microfarad μF 10�6 farad  Decoupling caps on chips are about .01 to 
.1 μF; low-freq decoupling runs about 10 μF, 
big power supply caps might be 1000 μF.

farad F 1 farad  One farad is a huge capacitor and generally 
does not exist. A few vendors sell “supercaps” 
that have values up to a few farads, but these 
are unusual. Sometimes used to supply backup 
power to RAM when the system is turned off. 

In real life there’s no such thing as a perfect capacitor. All leak a certain amount of DC and 
exhibit other more complex behavior. For that reason, there’s quite a range of different types 
of parts.

In most embedded systems you’ll see one of two types of capacitors (Figure 1.16). The fi rst 
are the polarized ones, devices which have a plus and a minus terminal. Connect one back-
ward and the part will likely explode!

Polarized devices have large capacitance values: tens to thousands of microfarads. They’re 
most often used in power supplies to remove the AC component from fi ltered signals. 
Consider the equation of capacitive reactance: large cap values pass lower-frequency signals 
effi ciently. Typical construction today is from a material called tantalum; seasoned EEs often 
call these devices tantalums. You’ll see tantalum caps on PC boards to provide a bit of bulk 
storage of the power supply.

Smaller caps are made from a variety of materials. These have values from a few picofarads to 
a fraction of a microfarad. They’re often used to “decouple” the power supply on a PCB (i.e., 
to short high-frequency switching from power to ground, so the logic signals don’t get coupled 
into the power supply). Most PCBs have dozens or hundreds of these parts scattered around.
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We can wire capacitors in series and in parallel; compute the total effective capacitance using 
the rules opposite those for resistors. So, for two caps in parallel, sum their values to get the 
effective capacitance. In a series confi guration the total effective capacitance is:

C

C C C

eff �

� � �

1
1 1 1

1 2 3

…

Note that this rule is for fi guring the total capacitance of the circuit, not for computing the 
total reactance. More on that shortly.

One useful characteristic of a capacitor is that it can store a charge. Connect one to a battery 
or power supply and it will store that voltage. Remove the battery and (for a perfect, lossless 
part) the capacitor will still hold that voltage. Real parts leak a bit; ones rated at under 1 μF or 
so discharge rapidly. Larger parts store the charge longer.

Interesting things happen when you wire a cap and a resistor in series. The resistor limits cur-
rent to the capacitor, causing it to charge slowly. Suppose the circuit shown in Figure 1.17 is 
dead, no voltage at all applied. Now turn on the switch. Though we’ve applied a DC signal, 
the sudden transition from 0 to 5 volts is AC.

Current fl ows due to the I
dV

dt
�  rule; dV is the sudden edge from fl ipping the switch.

But the input goes from an AC-edge to steady-state DC, so current stops fl owing pretty 
quickly. How fast? That’s defi ned by the circuit’s time constant.

A resistor and capacitor in series is colloquially called an RC circuit. The graph shows how 
the voltage across the capacitor increases over time. The time constant of any circuit is pretty 
well approximated by:

t � RC

for R in ohms, C in farads, and t in seconds.

�

Figure 1.16: Schematic symbols for capacitors. The one on the left is a generic, 
generally low-valued (under 1 μF) part. On the right the plus sign shows that 

the cap is polarized. Installed backward, it’s likely to explode.
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This formula tells us that after RC seconds the capacitor will be charged to 63.2% of the bat-
tery’s voltage. After another RC seconds, another 63.2%, for a total of 86.5%.

Analog circuits use a lot of RC circuits; in a microprocessor it’s still common to see them con-
trolling the CPU’s reset input. Apply power to the system and all the logic comes up, but the 
RC’s time constant keeps reset asserted low for a while, giving the processor time to initialize 
itself.

The most common use of capacitors in the digital portion of an embedded system is to decou-
ple the logic chips’ power pins. A medium value part (0.01 to 0.1 μF) is tied between power 
and ground very close to the power leads on nearly every digital chip. The goal is to keep 
power supplied to the chips as clean as possible—close to a perfect DC signal.

Why would this be an issue? After all, the system’s power supply provides a nearly perfect DC 
level. It turns out that as a fast logic chip switches between zero and one it can draw immense 
amounts of power for a short, subnanosecond, time. The power supply cannot respond quickly 
enough to regulate that, and since there’s some resistance and reactance between the supply 
and the chip’s pins, what the supply provides and what the chip sees are somewhat different. 
The decoupling capacitor shorts this very high-frequency (i.e., short transient) signal on Vcc 
to ground. It also provides a tiny bit of localized power storage that helps overcome the instan-
taneous voltage drop between the power supply and the chip.

Most designs also include a few tantalum bulk storage devices scattered around the PC board, 
also connected between Vcc and ground. Typically these are 10 to 50 μF each. They are even 
more effective bulk storage parts to help minimize the voltage drop chips would otherwise see.

You’ll often see very small caps (on the order of 20 pF) connected to microprocessor drive 
crystals. These help the device oscillate reliably.

Figure 1.17: Close the switch and the voltage applied to the RC circuit looks like 
the top curve. The lower graph shows how the capacitor’s voltage builds 

slowly with time, headed asymptotically toward the upper curve.
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Analog circuits make many wonderful and complex uses of caps. It’s easy to build integrators 
and differentiators from these parts, as well as analog hold circuits that memorize a signal for 
a short period of time. Common values in these sorts of applications range from 100 pF to 
fractions of a microfarad.

1.4.2.2 Inductors
An inductor is, in a sense, the opposite of a capacitor. Caps block DC but offer diminishing 
resistance (really, reactance) to AC signals as the frequency increases. An inductor, on the 
other hand, passes DC with zero resistance (for an idealized part), but the resistance (reac-
tance) increases proportionately to the frequency.

Physically an inductor is a coil of wire and is often referred to as a coil. A simple straight wire 
exhibits essentially no inductance. Wrap a wire in a loop and it’s less friendly to AC signals. 
Add more loops, or make them smaller, or put a bit of ferrous metal in the loop, and induct-
ance increases. Electromagnets are inductors, as is the fi eld winding in an alternator or motor.

An iron core inductor is wound around a slug of metal, which increases the device’s induct-
ance substantially (Figure 1.18).

Figure 1.18: Schematic symbols of two inductors. The one on the 
left is an “air core”; the one on the right is an “iron core.”

Inductance is measured in henries (H). Inductive reactance is the tendency of an inductor to 
block AC and is given by:

XL � 2πLf

where:
 XL � Inductive reactance
 f � frequency in Hz
 L � inductance in henries

Clearly, as the frequency goes to zero (DC), reactance does as well.

Inductors follow the resistor rules for parallel and series combinations: add the value (in hen-
ries) when in series, and use the division rule when in parallel.
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Inductors are much less common in embedded systems than are capacitors, yet they are occa-
sionally important. The most common use is in switching power supplies. Many datacomm 
circuits use small inductors (generally millihenries) to match the network being driven.

Power supplies usually have a transformer which reduces the AC mains (from the wall) to a 
lower voltage more appropriate for embedded systems (Figure 1.19).

Figure 1.19: The schematic symbol for a transformer.

Transformers are two inductors wrapped around each other, with an iron core. The input AC 
generates a changing magnetic fi eld, which induces a voltage in the output (“secondary”) 
inductor.

If both inductors have the same number of wire loops, the output voltage is the same as the 
input. If the secondary has fewer loops, the voltage is less.

Sometimes signals, especially those fl owing off a PC board, will have a ferrite bead wrapped 
around the wire. These beads are small cylinders (a few mm long) made of a ferromagnetic 
material. Like all inductors, they help block AC so are used to minimize noise of signal wires.

1.4.3 Active Devices

Resistors, capacitors and inductors are the basic passive components, passive meaning 
“dumb.” The parts can’t amplify or dramatically change applied signals. By contrast, active 
parts can clip, amplify, distort, and otherwise change an applied signal. The earliest active 
parts were vacuum tubes, called “valves” in the UK.

Consider the schematic in Figure 1.20, which is a single tube that contains two identical active 
elements, each called a triode, as each has three terminals. Tubes are easy to understand; let’s 
see how one works.

A fi lament heats the cathode, which emits a stream of electrons. They fl ow through the grid, 
a wire mesh, and are attracted to the plate. Electrons are negatively charged, so applying a 
very small amount of positive voltage to the grid greatly reduces their fl ow. This is the basis of 
amplifi cation: a small control signal greatly affects the device’s output.
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Of course, in the real world tubes are almost unheard of today. When Bardeen, Brattain, and 
Shockley invented the transistor in 1947 they started a revolution that continues today. Tubes 
are power hogs, bulky and fragile. Transistors—also three-terminal devices that amplify— 
seem to have no lower limit of size and can run on picowatts (Figure 1.21).

plate

grid

cathode filament

Figure 1.20: On the left, a schematic of a dual triode 
vacuum tube. The part itself is shown on the right.

collector

emitter

base

Figure 1.21: The schematic diagram of a bipolar 
NPN transistor with labeled terminals.

A transistor is made from a single crystal, normally of silicon, into which impurities are doped 
to change the nature of the material. The tube description showed how it’s a voltage-controlled 
device; bipolar transistors are current-controlled.

Writers love to describe transistor operation by analogy to water fl ow or to the movement of 
holes and carriers within the silicon crystal. These are at best poor attempts to describe the 
quantum mechanics involved. Suffi ce to say that, in Figure 1.21, feeding current into the base 
allows current to fl ow between the collector and emitter.

And that’s about all you need to know to get a sense of how a transistor amplifi er works. The 
circuit shown in Figure 1.22 is a trivialized example of one. A microphone—which has a tiny 
output—drives current into the base of the transistor, which amplifi es the signal, causing the 
lamp to fl uctuate in rhythm with the speaker’s voice.

A real amplifi er might have many cascaded stages, each using a transistor to get a bit of ampli-
fi cation. A radio, for instance, might have to increase the antenna’s signal by many millions 
before it gets to the speakers.
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Transistors are also switches, the basic element of digital circuits. The previous circuit is a 
simplifi ed—but totally practical—NOR gate (Figure 1.23). When both inputs are zero, both 
transistors are off. No current fl ows from their collectors to emitters, so the output is 5 volts 
(as supplied by the resistor).

�5 volts

�5 volts

Figure 1.22: A very simple amplifi er.

If either input goes to a high level, the associated transistor turns on. This causes a conduction 
path through the transistor, pulling “out” low. In other words, any input going to a one gives 
an output of zero. Table 1.7 illustrates the circuit’s behavior.

It’s equally easy to implement any logic function.

The circuit we just analyzed would work; in the 1960s all “RTL” integrated circuits used 
exactly this design. But the gain of this approach is very low. If the input dawdles between a 
zero and a one, so will the output. Modern logic circuits use very high amplifi cation factors, 

Figure 1.23: A NOR gate circuit.

�5

in 1 in 2

out

Ch01-H8584.indd   30Ch01-H8584.indd   30 8/17/07   12:09:04 PM8/17/07   12:09:04 PM



 Embedded Hardware Basics   31

www.newnespress.com

so the output is either a legal zero or one, not some in-between state, no matter what input is 
applied.

The silicon is a conductor, but a rather lousy one compared to a copper wire. The resistance of 
the device between the collector and the emitter changes as a function of the input voltage; for 
this reason active silicon components are called semiconductors.

Transistors come in many fl avors; the one we just looked at is a bipolar part, characterized 
by high power consumption but (typically) high speeds. Modern ICs are constructed from 
MOSFET—Metal Oxide Semiconductor Field Effect Transistor—devices, or variants thereof 
(Figure 1.24). A mouthful? You bet. Most folks call these transistors FETs for short.

Table 1.7: Truth table.

 in1 in2 out 

 0 0 1 

 0 1 0 

 1 0 0 

 1 1 0 

source

gate

drain

Figure 1.24: The schematic diagram of a MOSFET.

A FET is a strange and wonderful beast. The gate is insulated by a layer of oxide from a 
silicon channel running between the drain and source. No current fl ows from the gate to the 
silicon channel. Yet putting a bias voltage (like a tube, a FET is a voltage device) on the gate 
creates an electrostatic fi eld that reduces current fl ow between the other two terminals. Again, 
no current fl ows from the gate. And when turned on, the source-drain resistance is much lower 
than in a bipolar transistor. This means the part dissipates little power, a critical concern when 
putting millions of these transistors on a single IC.

A diode is a two-terminal semiconductor that passes current in one direction only. In 
Figure 1.25, a positive voltage will fl ow from the left to the right, but not in the reverse 

Figure 1.25: The schematic symbol for a diode.

Ch01-H8584.indd   31Ch01-H8584.indd   31 8/17/07   12:09:04 PM8/17/07   12:09:04 PM



32   Chapter 1

www.newnespress.com

direction. This seems a little thing, but it’s incredibly useful. Figure 1.26 shows a circuit 
that implements an OR gate without a transistor.

out

in 1

in 2

�5

Figure 1.26: A diode OR circuit.

20 VAC
AC mains
110 VAC

Now let’s turn that lower voltage AC into DC. A diode does the trick nicely:

20 VAC
AC mains
110 VAC

If both inputs are logic one, the output is a one (pulled up to �5 by the resistor). Any input 
going low will drag the output low as well. Yet the diodes ensure that a low-going input 
doesn’t drag the other input down.

1.5 Putting It Together: A Power Supply

A power supply is a simple yet common circuit that uses many of the components we’ve 
discussed. The input is 110 volts AC (or 220 volts in Europe, 100 in Japan, 240 in the UK). 
Output might be 5 volts DC for logic circuits. How do we get from high voltage AC input to 
5 volts DC?

The fi rst step is to convert the AC mains to a lower voltage AC, as follows:
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The AC mains are a sine wave, of course. Since the diode conducts in one direction only, its 
output looks like:

0

5

10

15

20

25

This isn’t DC … but the diode has removed all the negative-going parts of the waveform.

But we’ve thrown away half the signal; it’s wasted. A better circuit uses four diodes arranged 
in a bridge confi guration as follows:

The bridge confi guration ensures that two diodes conduct on each half of the AC input, as 
shown above. It’s more effi cient and has the added benefi t of doubling the apparent frequency, 
which will be important when we’re fi guring out how to turn this moving signal into a DC 
level.

0

5

10

15

20

25

20 VAC
AC mains
110 VAC
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The average of this signal is clearly a positive voltage; if only we had a way to create an aver-
age value. Turns out that a capacitor does just that:

A huge-value capacitor fi lters best—typical values are in the thousands of microfarads.

The output is a pretty decent DC wave, but we’re not done yet. The load—the device this cir-
cuit will power—will draw varying amounts of current. The diodes and transformer both have 
resistance. If the load increases, current fl ow goes up, so the drop across the parts will increase 
(Ohm’s Law tells us E � IR, and as I goes up, so does E). Logic circuits are very sensitive to 
fl uctuations in their power, so some form of regulation is needed.

A regulator takes varying DC in and produces a constant DC level out. For example:

The odd-looking part in the middle is a zener diode. The voltage drop across the zener is 
always constant, so if, for example, this is a 3-volt part, the intersection of the diode and the 
resistor will always be 3 volts.

The regulator’s operation is straightforward. The zener’s output is a constant voltage. The 
triangle is a bit of magic—an error amplifi er circuit—that compares the zener’s constant volt-
age to the output of the power supply (at the node formed by the two resistors). If the output 
voltage goes up, the error amplifi er applies less bias to the base of the transistor, making it 
conduct less … and lowering the supply’s output. The transistor is key to the circuit; it’s sort 
of like a variable resistor controlled by the error amp.

20 VAC
AC mains
110 VAC

20 VAC
AC mains
110 VAC

�

�
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If, say, 20 volts of unregulated DC go into the transistor from the bridge and capacitor, and the 
supply delivers 5 volts to the logic, there’s 15 volts dropped across the transistor. If the supply 
provides even just two amps of current, that’s 30 watts (15 volts times two amps) dissipated by 
that semiconductor—a lot of heat! Careful heatsinking will keep the device from burning up.

1.5.1 The Scope

The oscilloscope (colloquially known as the “scope”) is the most basic tool used for trouble-
shooting and understanding electronic circuits. Without some understanding of this most criti-
cal of all tools, you’ll be like a blind person trying to understand color.

The scope has only one function: it displays a graph of the signal or signals you’re probing 
(Figure 1.27). The horizontal axis is usually time; the vertical is amplitude, a fancy electronics 
term for voltage.

Figure 1.27: A sea of knobs. Don’t be intimidated. There’s a logical grouping to these. 
Master them and wow your friends and family. Photo courtesy of Tektronix, Inc.

1.5.2 Controls

In Figure 1.28, note fi rst the two groups of controls labeled “vertical input 1” and “vertical 
input 2.” This is a two-channel scope, by far the most common kind, which allows you to sam-
ple and display two different signals at the same time.

The vertical controls are simple. “Position” allows you to move the graphed signal up and 
down on the screen to the most convenient viewing position. When you’re looking at two sig-
nals it allows you to separate them, so they don’t overlap confusingly.
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“Volts/div” is short for volts-per-division. You’ll note the screen is a matrix of 1 cm by 1 cm 
boxes; each is a “division.” If the “volts/div” control is set to 2, then a two-volt signal extends 
over a single division. A fi ve-volt signal will use 2.5 divisions. Set this control so the signal is 
easy to see. A reasonable setting for TTL (5-volt) logic is 2 volts/div.

The “coupling” control selects “DC”—which means what you see is what you get. That is, the 
signal goes unmolested into the scope. “AC” feeds the input through a capacitor; since caps 
cannot pass DC signals, this essentially subtracts DC bias (Figure 1.29).

The “mode” control lets us look at the signal on either channel, or both simultaneously.

Now check out the horizontal controls. These handle the scope’s “time base,” so called 
because the horizontal axis is always the time axis.

The “position” control moves the trace left and right, analogously to the vertical channel’s 
knob of the same name.

“Time/div” sets the horizontal axis’ scale. If set to 20 nsec/div, for example, each cm on the 
screen corresponds to 20 nsec of time. Figure 1.30 shows the same signal displayed using 
two different time base settings; it’s more compressed in the left picture simply because at 
2000 μsec/div more pulses occur in the 1 cm division mark.

Figure 1.28: Typical oscilloscope front panel. Picture courtesy Tektronix, Inc.
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UTILITY
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TWO CHANNEL
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FORCE TRIGGER
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CH 2

MENU

MATH
MENU
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Figure 1.29: The signal is an AC waveform riding on top of a constant DC signal. On the 
left we’re observing it with the scope set to DC coupling; note how the AC component is moved 

up by the amount of DC (in other words, the total signal is the DC component � the AC). 
On the right we’ve changed the coupling control to “AC”; the DC bias is removed and the AC 

component of the signal rides in the middle of the screen.

0 DO A1 200v/ 0.00s 500s/
µm

A1 RUN

0 DO A1 200v/ 0.00s 500s/
µm

A1 RUN

A1

A1

Figure 1.30: The left picture shows a signal with the time base set to 2000 μsec/division; 
the right is the same signal, but now we’re sweeping at 200 μsec/division. Though the 

data is unchanged, the signal looks compressed. Also note that the 5-volt signal extends
 over 2.5 vertical boxes, since the gain is set to 2 volts/div. The fi rst rule of scoping is 

to know the horizontal and vertical settings.

A1

A1

0 DO A1 2.00v/ 0.00s 2.00s/
µm

A1 RUN

0 DO A1 2.00v/ 0.00s 2.00s/
µm

A1 RUN
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The last bank of knobs—those labeled “trigger”—are perhaps the most important of all. 
Though you see a line on the screen, it’s formed by a dot swept across from left to right, 
repeatedly, at a very high speed. How fast? The dot moves at the speed you’ve set in the 
time/div knob. At 1 sec/div the dot takes 10 seconds to traverse the normal 10 cm-wide scope 
screen. More usual speeds for digital work are in the few microseconds to nanosecond range, 
so the dot moves faster than any eye can track.

Most of the signals we examine are more or less repetitive: it’s pretty much the same old 
waveform over and over again. The trigger controls tell the scope when to start sweeping the 
dot across the screen. The alternative—if the dot started on the left side at a random time—
would result in a very quickly scrolling screen, which no one could follow.

Twiddling the “trigger level” control sets the voltage at which the dot starts its inexorable left-
to-right sweep. Set it to 6 volts and the normal 5-volt logic signal will never get high enough 
that the dot starts. The screen stays blank. Crank it to zero and the dot runs continuously, 
unsynchronized to the signal, creating a scrambled mess on the scope screen.

Set trigger level to 2 volts or so, and as the digital signal traverses from 0 to 5 volts the dot 
starts scanning, synchronizing to the signal.

It’s most dramatic to learn how this control works when you’re sampling a sine wave. As you 
twirl the knob clockwise (from a low trigger voltage to a higher one) the displayed sine wave 
shifts to the left. That is, the scan starts later and later since the triggering circuit waits for an 
ever-increasing signal voltage before starting.

“Trigger Menu” calls up a number of trigger selection criteria. Select “trigger on positive 
edge” and the scope starts sweeping when the signal goes from a low level through the trigger 
voltage set with the “Trigger Level” knob. “Trigger on negative edge” starts the sweep when 
the signal falls from a high level through the level.

Every scope today has more features than normal humans can possibly remember, let alone 
use. Various on-screen menus let you do math on the inputs (add them and so on), store sig-
nals that occur once, and much, much more. The instrument is just like a new PC application. 
Sure, it’s nice to read the manual, but don’t be afraid to punch a lot of buttons and see what 
happens. Most functions are pretty intuitive.

1.5.3 Probes

A “probe” connects the scope to your system. Experienced engineers’ fi ngers are 
permanently bent a bit, warped from too many years holding the scope probe in hand 
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while working on circuit boards. Though electrically the probe is just a wire, in fact there’s 
a bit of electronics magic inside to propagate signals without distortion from your target sys-
tem to the scope.

So too for any piece of test equipment. The tip of the scope probe is but one of the two con-
nections required between the scope and your target system. A return path is needed, a ground 
(Figure 1.31). If there’s no ground connection the screen will be nuts, a swirling mass of 
meaningless scrolling waveforms.

Figure 1.31: Always connect the probe’s ground lead to the system.

Yet often we’ll see engineers probing nonchalantly without an apparent ground connection. 
Oddly, the waves look fi ne on the scope. What gives? Where’s the return path?

It’s in the lab wall. Most electric cords, including the one to the scope and possibly to your tar-
get system, have three wires. One is ground. It’s pretty common to fi nd the target grounded to 
the scope via this third wire, going through the wall outlets. Of one thing be sure: even if this 
ground exists, it’s ugly. It’s a marginal connection at best, especially when dealing with high-
speed logic signals or low level noise-sensitive analog inputs. Never, ever count on it even 
when all seems well. Every bit of gear in the lab, probably in the entire building, shares this 
ground. When the Xerox machine on the third fl oor kicks in, the big inductive spike from the 
motor starting up will distort the scope signal.

No scope will give decent readings on high-speed digital data unless it is properly grounded. 
I can’t count the times technicians have pointed out a clock improperly biased 2 volts above 
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ground, convinced they found the fault in a particular system, only to be bemused and 
embarrassed when a good scope ground showed the signal in its correct 0 to 5 volt glory. 
Ground the probe and thus the scope to your target using the little wire that emits from the 
end of the probe. As circuits get faster, shorten the wire. The very shortest ground lead 
results in the least signal distortion (see Figure 1.32.)

Figure 1.32: Here we probe a complex nonembedded circuit. Note the displayed 
waveform. A person is an antenna that picks up the 60 Hz hum radiated from the 
power lines in the walls around us. Some say engineers are particularly sensitive 

(though not their spouses).

Yet most scope probes come with crummy little lead alligator clips on the ground wire that are 
impossible to connect to an IC. The frustrated engineer might clip this to a clip lead that has 
a decent “grabber” end. Those extra 6–12 inches of ground may very well trash the display, 
showing a waveform that is not representative of reality. It’s best to cut the alligator clip off 
the probe and solder a micrograbber on in its place.

One of the worst mistakes we make is neglecting probes. Crummy probes will turn that won-
derful 1-GHz instrument into junk. After watching us hang expensive probes on the fl oor, 
mixed in with all sorts of other debris, few bosses are willing to fork over the $150 that 
Tektronix or Agilent demands. But the $50 alternatives are junk. Buy the best and take good 
care of them (see Figure 1.33.)
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Figure 1.33: Tektronix introduced the 545 scope back in the dark ages; a half-century later, 
many are still going strong. Replace a tube from time to time and these might last forever. About 

the size of a two-drawer fi le cabinet and weighing almost 100 pounds, they’re still favored by 
Luddites and analog designers.
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Logic Circuits
Jack Ganssle

Tammy Noergaard

CHAPTER 2

2.1 Coding

The unhappy fact that most microprocessor books start with a chapter on coding and number 
systems refl ects the general level of confusion on this, the most fundamental of all computer 
topics.

Numbers are existential nothings, mere representations of abstract quantitative ideas. We 
humans have chosen to measure the universe and itemize our bank accounts, so we have 
developed a number of arbitrary ways to count.

All number systems have a base, the number of unique identifi ers combined to form numbers. 
The most familiar is decimal, base 10, which uses the 10 symbols 0 through 9. Binary is base 
2 and can construct any integer using nothing more than the symbols 0 and 1. Any number 
system using any base is possible and in fact much work has been done in higher-order sys-
tems like base 64—which obviously must make use of a lot of odd symbols to get 64 unique 
identifi ers. Computers mostly use binary, octal (base 8), and hexadecimal (base 16, usually 
referred to as “hex”; see Table 2.1).

Why binary? Simply because logic circuits are primitive constructs cheaply built in huge quanti-
ties. By restricting the electronics to two values only—on and off—we care little if the voltage 
drifts from 2 to 5. It’s possible to build trinary logic, base 3, which uses 0, 1, and 2. The output 
of a device in certain ranges represents each of these quantities. But defi ning three bands means 
something like: 0 to 1 volt is a zero, 2 to 3 volts a 1, and 4 to 5 a 2. By contrast, binary logic 
says anything lower than (for TTL logic) 0.8 volts is a 0 and anything above 2 a 1. That’s easy 
to make cheaply.

Why hex? Newcomers to hexadecimal fi nd the use of letters baffl ing. Remember that “A” is as 
meaningless as “5”; both simply represent values. Unfortunately “A” viscerally means some-
thing that’s not a number to those of us raised to read.

Hex combines four binary digits into a single number. It’s compact. “8B” is much easier and 
less prone to error than “10001011.”
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Table 2.1: Various coding schemes. BCD is covered 
a bit later in the text.

 Decimal  Binary  Octal  Hex  BCD

 00  000000  00  00  0000 0000

 01  000001  01  01  0000 0001

 02  000010  02  02  0000 0010

 03  000011  03  03  0000 0011

 04  000100  04  04  0000 0100

 05  000101  05  05  0000 0101

 06  000110  06  06  0000 0110

 07  000111  07  07  0000 0111

 08  001000  10  08  0000 1000

 09  001001  11  09  0000 1001

 10  001010  12  0A  0001 0000

 11  001011  13  0B  0001 0001

 12  001100  14  0C  0001 0010

 13  001101  15  0D  0001 0011

 14  001110  16  0E  0001 0100

 15  001111  17  0F  0001 0101

 16  010000  20  10  0001 0110

 17  010001  21  11  0001 0111

 18  010010  22  12  0001 1000

 19  010011  23  13  0001 1001

 20  010100  24  14  0010 0000

 21  010101  25  15  0010 0001

 22  010110  26  16  0010 0010

 23  010111  27  17  0010 0011

 24  011000  30  18  0010 0100

 25  011001  31  19  0010 0101

 26  011010  32  1A  0010 0110

 27  011011  33  1B  0010 0111

 28  011100  34  1C  0010 1000

 29  011101  35  1D  0010 1001

 30  011110  36  1E  0011 0000

 31  011111  37  1F  0011 0001

 32  100000  40  20  0011 0010
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Why octal? Base 8 is an aberration created by early programmers afraid of the implications 
of using letters to denote numbers. It’s a grouping of three binary digits to represent the quan-
tities 0 through 7. It’s less compact than hex but was well suited to some early mainframe 
computers that used 36-bit words. Twelve octal digits exactly fi lls one 36-bit word (12 times 
3 bits per digit). Hex doesn’t quite divide into 36 bits evenly. Today, though, virtually all com-
puters are 8, 16, 32, or 64 bits, all of which are cleanly divisible by 4, so the octal dinosaur is 
rarely used.

To convert from one base to another, just remember that the following rule constructs any inte-
ger in any number system:

 Number � … � C4 � b4 � C3 � b3 � C2 � b2 � C1 � b1 � C0

Each of the C’s are coeffi cients—the digit representing a value, and b is the base. So, the deci-
mal number 123 really is three digits that represent the value:

 123 � 1 � 102 � 2 � 101 � 3

D’oh, right? This pedantic bit of obviousness, though, tells us how to convert any number to 
base 10. For binary, the binary number 10110:

 10110 2 � 1 � 24 � 0 � 23 �1 � 22 �1 � 21 � 0 � 20

 � 2210

A1C in hex is:

 A1C 16 � A � 162 �1 � 161 � C � 160

 � 10 � 162 �1 � 161 � 12 � 160

 � 258810

Converting from decimal to another base is a bit more work. First, you need a cheat sheet, one 
that most developers quickly memorize for binary and hex, as shown in Table 2.2.

To convert 1234 decimal to hex, for instance, use the table to fi nd the largest even power of 
16 that goes into the number (in this case 162, or 256 base 10). Then see how many times you 
can subtract this number without the result going negative. In this case, we can take 256 from 
1234 four times. The fi rst digit of the result is thus 4.

First digit � 4. Remainder � 1234 – 4 * 256 � 210

Now, how many times can we subtract 161 from the remainder (210) without going negative? 
The answer is 13, or D in hex.

Second digit � D. Remainder � 210 – 13*16� 2

Ch02-H8584.indd   45Ch02-H8584.indd   45 8/17/07   10:03:01 AM8/17/07   10:03:01 AM



46   Chapter 2

www.newnespress.com

Following the same algorithm for the 160 placeholder, we see a fi nal result of 4D2. For 
another example, convert 41007 decimal to hex:

163 goes into 41007 10 times before the remainder goes negative, so the fi rst digit is 10 
(A in hex).

The remainder is: 41007 – 10 * 163 � 47

162 cannot go into 47 without going negative. The second digit is therefore 0.

161 goes into 47 twice. The next digit is 2.

Remainder � 47 – 2 * 161 � 15

The fi nal digit is 15 (F in hex).

Final result: A02F

2.1.1 BCD

BCD stands for binary coded decimal. The BCD representation of a number is given in groups 
of four bits; each group expresses one decimal digit. The normal base 2 binary codes map to 

Table 2.2: Binary and hex cheat sheet.

 Decimal  Binary  Hex

 1  20  160

 2  21  

 4  22  

 8  23  

 16  24  161

 32  25  

 64  26  

 128  27  

 256  28  162

 512  29  

 1024  210  

 2048  211  

 4096  212  163

 8192  213  

 16384  214  

 32768  215  

 65536  216  164
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the 10 digits 0 through 9. Just as the decimal number 10 requires two digits, its equivalent in 
BCD uses two groups of four bits: 0001 0000. Each group maps to one of the decimal digits.

It’s terribly ineffi cient, because the codes from 1010 to 1111 are never used. Yet BCD matches 
the base 10 way we count. It’s often used in creating displays that show numerics.

2.2 Combinatorial Logic

Combinatorial logic is that whose state always refl ects the inputs. There’s no memory; past 
events have no impact on present outputs.

An adder is a typical combinatorial device: the output is always just the sum of the inputs—no 
more, no less.

The easiest way to understand how any combinatorial circuit works—be it a single component 
or a hundred interconnected ICs—is via a truth table, a matrix that defi nes every possible 
combination of inputs and outputs. We know, for example, that a wire’s output is always the 
same as its input, as refl ected in its table (see Table 2.3).

Table 2.3: The truth table for a wire’s output and input.

 In  Out

 0  0

 1 1

Gates are the basic building blocks of combinatorial circuits. Though there’s no limit to the 
varieties available, most are derived from AND, OR, and NOT gates.

2.2.1 NOT Gate

The simplest of all gates inverts the input. It’s the opposite of a wire, as shown by the truth 
table in Table 2.4.

Table 2.4: A gate’s truth table.

 In  Out

 0  1

 1 0

The Boolean expression is a bar over a signal: the NOT of an input A is A. Any expression can 
have an inverse, A B�  is the NOT of A � B.

The schematic symbol is:
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Note the circle on the device’s output node. By convention a circle always means inversion. 
Without it, this symbol would be a buffer: a device that performs no logic function at all 
(rather like a piece of wire, though it does boost the signal’s current). On a schematic, any cir-
cle appended to a gate means invert the signal.

2.2.2 AND and NAND Gates

An AND gate combines two or more inputs into a single output, producing a 1 if all the inputs 
are ones (see Table 2.5). If any input is zero, the output will be too.

Table 2.5: The truth table for an AND gate.

 Input1 Input2 Output

 0 0 0

 0 1 0

 1 0 0

 1 1 1

The AND of inputs A and B is expressed as: output � AB

On schematics, a two-input AND looks like:

NAND is short for NOT-AND, meaning the output is zero when all inputs are one. It’s an 
AND with an inverter on the output. So the NAND of inputs A and B is: output � AB.
Schematically a circle shows the inversion:

The NAND truth table is shown in Table 2.6.
Table 2.6: The truth table for a NAND gate.

 Input1 Input2 Output

 0 0 1

 0 1 1

 1 0 1

 1 1 0
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The AND and NAND gates we’ve looked at all have two inputs. Though these are very
common, there’s no reason not to use devices with three, four, or more inputs. Here’s
the symbol for a 13-input NAND gate … its output is zero only when all inputs 
are one:

2.2.3 OR and NOR Gates

An OR gate’s output is true if any input is a one (see Table 2.7). That is, it’s zero only if every 
input is zero.

Table 2.7: An OR gate’s truth table.

 Input1 Input2 Output

 0 0  0

 0 1  1

 1  0  1

 1  1  1

The OR of inputs A and B is: output � A � B

Schematically:

NOR means NOT-OR and produces outputs opposite that of OR gates (see Table 2.8).

Ch02-H8584.indd   49Ch02-H8584.indd   49 8/17/07   10:03:03 AM8/17/07   10:03:03 AM



50   Chapter 2

www.newnespress.com

Table 2.8: A NOR gate’s truth table.

 Input1 Input2 Output

 0 0  1

 0 1  0

 1 0  0

 1 1  0

The NOR equation is: output � A B�  The gate looks like:

2.2.4 XOR

XOR is short for Exclusive-OR. Often used in error correction circuits, its output goes true if 
one of the inputs, but not both, is true (see Table 2.9). Another way of looking at it is that the 
XOR produces a true if the inputs are different.

Table 2.9: An XOR truth table.

 Input1 Input2 Output

 0 0  0

 0 1  1

 1 0  1

 1 1  0

The exclusive OR of A and B is: output � A B⊕

The XOR gate schematic symbol is:

2.2.5 Circuits

Sometimes combinatorial circuits look frighteningly complex, yielding great job security for 
the designer. They’re not. All can be reduced to a truth table that completely describes how 
each input affects the output(s). Though there are several analysis techniques, truth tables are 
usually the clearest and easiest to understand.
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A proper truth table lists every possible input and output of the circuit. It’s trivial to produce a cir-
cuit from the complete table. One approach is to ignore any row in the table for which the output is 
a zero. Instead, write an equation that describes each row with a true output, and then OR these.

Consider the XOR gate previously described. The truth table (Table 2.9) shows true outputs 
only when both inputs are different. The Boolean equivalent of this statement, assuming A and 
B are the inputs, is:

XOR � �AB AB

The circuit is just as simple:

A

B

XOR

Note that an AND gate combines inputs A and B into AB; another combines the inversions of 
A and B. An OR gate combines the two product terms into the exclusive OR.

How about something that might seem harder? Let’s build an adder, a device that computes 
the sum of two 16-bit binary numbers.

We could create a monster truth table of 32 inputs, but that’s as crazy as the programmer who 
eschews subroutines in favor of a single, huge, monolithic main() function. Instead, realize 
that each of the 16 outputs (A0 to A15) is merely the sum of the two single-bit inputs, plus the 
carry from the previous stage. A 16-bit adder is really nothing more than 16 single-bit addition 
circuits. Each of those has a truth table as shown in Table 2.10.

Table 2.10: The single-bit addition circuit truth table.

 An Bn  CARRYin  SUMn  CARRYout

 0 0 0 0  0

 0 1 0 1  0

 1 0 0 1  0

 1 1 0 0  1

 0 0 1 1  0

 0 1 1 0  1

 1 0 1 0  1

 1 1 1 1  1
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The two outputs (the sum plus a carry bit) are the sum of the A and B inputs, plus the carry out 
from the previous stage. (The very fi rst stage, for A0 and B0, has CARRYin connected to zero.)

The 1-bit adder has two outputs: sum and carry. Treat them independently; we’ll have a circuit 
for each.

The trick to building combinatorial circuits is to minimize the amount of logic needed by not 
implementing terms that have no effect. In the truth table above we’re only really interested in 
combinations of inputs that result in an output of 1, since any other combination results in 0, 
by default.

For each truth table row which has a one for the output, write a Boolean term, and then OR 
each of these as follows:

SUM CARRY CARRY CARRYin in inn n n n n n n nA B A B A B A� � � � BB

CARRY A B A B
n

n n n n

CARRY
CARRY CARRY

in

out in in� � � AA B A Bn n n nCARRY CARRYin in�

Each output is a different circuit, sharing only inputs. This implementation could be simpli-
fi ed—note that both outputs share an identical last product term—but in this example we’ll 
pedantically leave it unminimized.

SUMn

An

Bn

CARRYout

CARRYin
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The drawing looks intricate, but does nothing more than the two simple equations above. 
Drawing the entire circuit for two 16-bit input numbers would cover a rather large sheet of 
paper, yet is merely a vast amount of duplicated simplicity.

And so, just as programmers manipulate the very smallest of things (ones and zeroes) in mas-
sive quantities to create applications, digital designers use gates and other brain-dead bits of 
minimalism to build entire computers.

This is the essence of all combinatorial design. Savvy engineers will work hard to reduce the 
complexity of a circuit and therefore reduce parts count, by noticing repetitive patterns, using 
truth tables, DeMorgan’s theorem, and other tools. Sometimes it’s hard to fi gure out how a cir-
cuit works, because we’re viewing the result of lots of work done to minimize part count. It’s 
analogous to trying to make sense of an object fi le, without the source. Possible, but tedious.

2.2.6 Tristate Devices

Though all practical digital circuits are binary, there are occasions when it’s useful to have a 
state other than a zero or one. Consider busses: a dozen interconnected RAM chips, for exam-
ple, all use the same data bus. Yet if more than one tries to drive that bus at a time, the result 
is babble, chaos. Bus circuits expect each connected component to behave itself, talking only 
when all other components are silent.

But what does the device do when it is supposed to be quiet? Driving a one or zero is a seri-
ously Bad Thing because either will scramble any other device’s attempt to talk. Yet ones and 
zeroes are the only legitimate binary codes.

Enter the tristate. This is a nonbinary state when a bus-connected device is physically turned 
off. It’s driving neither a zero nor a one; rather, the output fl oats, electrically disconnected 
from the rest of the circuit.

Bus devices like memories have a control pin, usually named “Output Enable” (OE for short), 
that, when unasserted, puts the component’s output pins into a tristate condition, fl oating them 
free of the circuit.

2.3 Sequential Logic

The output of sequential logic refl ects both the inputs and the previous state of the 
circuit. That is, it remembers the past and incorporates history into the present. A counter 
whose output is currently 101, for instance, remembers that state to know the next value must 
be 110.

Sequential circuits are always managed by one or more clocks. A clock is a square wave (or at 
least one that’s squarish) that repeats at a fi xed frequency. Every sequential circuit is idle until 
the clock transitions; then, for a moment, everything changes. Counters count. Timers tick. 
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UARTs squirt a serial bit. The clock sequences a series of changes; the circuit goes idle after 
clock changes to allow signals to settle out.

The clock in a computer ensures that every operation has time to complete correctly. It takes 
time to access memory, for example. A 50 nsec RAM needs 50 nsec to retrieve data after 
being instructed as to which location to access. The system clock paces operations so the data 
has time to appear.

Just as gates are the basic units of combinatorial circuits, fl ip-fl ops form all sequential logic. A 
fl ip-fl op (aka a “fl op” or “bistable”) changes its output based on one or more inputs, after the 
supplied clock transitions. Databooks show a veritable zoo of varieties. The simplest is the set-
reset fl op (SR for short), which looks like Figure 2.1.

1
A

B

2

�

�

Figure 2.1: SR fl ip-fl op.

To understand how this works, pretend input A is a zero. Leave B open. It’s pulled to a one by 
the resistor. With A low, NAND gate 1 must go to a one, supplying a one to the input gate 2, 
which therefore, since B is high, must go low. Remove input A and gate 2 still drives a zero 
into gate 1, keeping output 1 high. The fl op has remembered that A was low for a while. Now 
momentarily drive B low. Like a cat chasing its tail, the pattern reverses: output 1 goes high 
and 2 low.

What happens if we drive A and B low and release them at the same time? No one knows. 
Don’t do that.

Flip fl ops are latches, devices that store information. A RAM is essentially an array of many 
latches.

Possibly the most common of all sequential components is the D fl ip-fl op. As Figure 2.2 
shows, it has two inputs and one output. The value at the D input is transferred to the Q output 
when clock transitions. Change the D input and nothing happens till clock comes again.
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�CLK
D

Q

CLK

D

Q

Figure 2.2: Note that the output of the D fl ip-fl op changes only on the leading edge of clock.

(Some versions also have set and clear inputs that drive Q to a high or low regardless of the 
clock. It’s not unusual to see a Q output as well, which is the inversion of Q.)

Clearly the D fl op is a latch (also known as a register). String eight of these together, tied to 
one common clock, and you’ve created a byte-wide latch, a parallel output port.

Another common, though often misunderstood, synchronous device is the JK fl ip-fl op, named 
for its inventor (John Kardash). Instead of a single data input (D on the D fl ip-fl op), there are 
two, named J and K. Like the D, nothing happens unless the clock transitions.

But when the clock changes, if J is held low, then the Q output goes to a zero (it follows J ). If 
J is one and K zero, Q also follows J, going to a one.

But if both J and K are one, then the output toggles—it alternates between zero and one every 
time a clock comes along.

The JK fl ip-fl op can form all sorts of circuits, like the following counter:

CLK

CLK

K Q

J Q

�

Q0

Q0 Q1 Q2

Q1

Q2

�

K Q

J Q

�

K Q

J Q

�
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Every clock transition causes the three outputs to change state, counting through the binary 
numbers. Notice how the clock paces the circuit’s operation; it keeps things happening at the 
rate the designer desires.

Counters are everywhere in computer systems; the program counter sequences fetches from 
memory. Timer peripherals and real-time clocks are counters.

The example above is a ripple counter, so called because a binary pattern ripples through each 
fl ip-fl op. That’s relatively slow. Worse, after the clock transitions it takes some time for the 
count to stabilize; there’s a short time when the data hasn’t settled. Synchronous counters are 
more complex but switch rapidly, with virtually no settle time (Figure 2.3).

Figure 2.3: A 3-bit synchronous counter.

CLK

K Q

J Q

�

Q0 Q1 Q2
�

K Q

J Q

�

K Q

J Q

�

Cascading JK fl ip-fl ops in a different manner creates a shift register. The input bits march 
(shift) through each stage of the register as the clock operates (Figure 2.4).

Figure 2.4: A 3-bit shift register.

CLK

/PRE

D0

IN

CLK

Q

/Q

J

K

CLK

/PRE

D1

Q

/Q

J

K
CLK

/PRE

D2

Q

/Q

J

K

Putting a lot of what we’ve covered together, let’s build a simplifi ed UART and driver for an 
RS-232 device (see Figure 2.5). This is the output part of the system only; considerably more 
logic is needed to receive serial data, and this drawing doesn’t show the start and stop bits. But 
it shows the use of a counter, a shift register, and discrete parts.
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RS-232 data is slow by any standard. Normal microprocessor clocks are far too fast for, say, 
9600 baud operation. The leftmost chip is an eight-stage counter. It divides the input fre-
quency by 256. So a 2.5 MHz clock, often found in slower embedded systems, divided as 
shown, provides 9600 Hz to the shift register.

The register is one that can be parallel-loaded; when the computer asserts the LOAD signal, 
the CPU’s data bus is preset into the 8 stage shift register IC (middle of the drawing). The 
clock makes this 8-bit parallel word, loaded into the shift register, march out to the QH output, 
one bit at a time. A simple transistor amplifi er translates the logic’s 5 volt levels to 12 volts for 
the RS-232 device.

Figure 2.5: A simplifi ed UART.

S0
S1
/ENT/RCO
/ENP

A
B
C
D
E
F
G
H

QA
QB
QC
QD
QE
QF
QG
QH

�CLK

SH//LD

�CLK
�CLKINH

SER
A
B
C
D
E
F
G
H QH

/QH

CLK

LCAD

DATABUS

�12

RS-232 OUT

2.3.1 Logic Wrap-Up

Modern embedded systems do use all these sorts of components. However, most designers use 
integrated circuits that embody complex functions instead of designing with lots of gates and 
fl ops. A typical IC might be an 8-bit synchronous counter or a 4-bit arithmetic-logic unit (that 
does addition, subtraction, shifting, and more).

Yet you’ll see gates and fl ops used as “glue” logic, parts needed to interface big complex ICs 
together.
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2.4 Putting It All Together: The Integrated Circuit

Gates, along with the other electronic devices that can be located on a circuit, can be com-
pacted to form a single device, called an integrated circuit (IC). ICs, also referred to as chips, 
are usually classifi ed into groups according to the number of transistors and other electronic 
components they contain, as follows:

• SSI (small-scale integration) containing up to 100 electronic components per chip

• MSI (medium-scale integration) containing between 100–3,000 electronic components 
per chip.

• LSI (large-scale integration) containing 3,000–100,000 electronic components per chip

• VLSI (very large-scale integration) containing between 100,000–1,000,000 electronic 
components per chip

• ULSI (ultra large-scale integration) containing over 1,000,000 electronic components 
per chip

ICs are physically enclosed in a variety of packages that include SIP, DIP, fl at pack, and oth-
ers (see Figure 2.6). They basically appear as boxes with pins protruding from the body of the 
box. The pins connect the IC to the rest of the board.

Figure 2.6: IC packages.

SIP DIP

Flat pack Metal can

Physically packaging so many electronic components in an IC has its advantages as well as 
drawbacks. These include:

• Size. ICs are much more compact than their discrete counterparts, allowing for smaller 
and more advanced designs.
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• Speed. The buses interconnecting the various IC components are much, much smaller 
(and thus faster) than on a circuit with the equivalent discrete parts.

• Power. ICs typically consume much less power than their discrete counterparts.

• Reliability. Packaging typically protects IC components from interference (dirt, 
heat, corrosion, etc.) far better than if these components were located discretely 
on a board.

• Debugging. It is usually simpler to replace one IC than try to track down one compo-
nent that failed among 100,000 (for example) components.

• Usability. Not all components can be put into an IC, especially those components 
that generate a large amount of heat, such as higher value inductors or high-powered 
amplifi ers.

In short, ICs are the master processors, slave processors, and memory chips located on embed-
ded boards (see Figures 2.7a–e).

Figure 2.7a: AMD/National Semiconductor x86 reference board.[2.1]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.
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Figure 2.7b: Net Silicon ARM7 reference board.[2.2]
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Figure 2.7c: Ampro MIPS reference board.[2.3]
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Endnotes

[2.1] National Semiconductor, “Geode User Manual,” Rev. 1, p. 13.

[2.2] Net Silicon, “Net�ARM40 Hardware Reference Guide,” pp. 1–5.

[2.3] “EnCore M3 Embedded Processor Reference Manual,” Revision A, p. 8.

[2.4] “EnCore PP1 Embedded Processor Reference Manual,” Revision A, p. 9.

Figure 2.7d: Ampro PowerPC reference board.[2.4]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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Figure 2.7e: Mitsubishi analog TV reference board.
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Embedded Processors
Tammy Noergaard

CHAPTER 3

3.1 Introduction

Processors are the main functional units of an embedded board and are primarily responsible 
for processing instructions and data. An electronic device contains at least one master proces-
sor, acting as the central controlling device, and can have additional slave processors that work 
with and are controlled by the master processor. These slave processors may either extend the 
instruction set of the master processor or act to manage memory, buses, and I/O (input/output) 
devices. In the block diagram of an x86 reference board, shown in Figure 3.1, the Atlas STPC 
is the master processor, and the super I/O and Ethernet controllers are slave processors.

SDRAM
(SODIMM)

CRT/TFT to
Baseboard

Keyboard
& Mouse to
Baseboard

Serial Ports
To Baseboard

Parallel/Floppy
to

Baseboard

Infrared to
Baseboard

PCI Bus to
Baseboard

IDE to
Baseboard

Ethernet
Controller

USB (4) to
Baseboard

Host-
Peripheral
Interface

CPU
Core

STPC® Atlas
(Computer
In a Chip)

Real Time
Clock (RTC)

BIOSSuper I/O
Controller

Internal Bus

Figure 3.1: Ampro’s Encore 400 board.[3.1]
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As shown in Figure 3.1, embedded boards are designed around the master processor. The 
complexity of the master processor usually determines whether it is classifi ed as a microproc-
essor or a microcontroller. Traditionally, microprocessors contain a minimal set of integrated 
memory and I/O components, whereas microcontrollers have most of the system memory and 
I/O components integrated on the chip. However, keep in mind that these traditional defi ni-
tions may not strictly apply to recent processor designs. For example, microprocessors are 
increasingly becoming more integrated.

Although some components, like I/O, may show a decrease in performance when inte-
grated into a master processor as opposed to remaining a dedicated slave chip, many 
others show an increase in performance because they no longer have to deal with the 
latencies involved with transmitting data over buses between processors. An integrated 
processor also simplifi es the entire board design since there are fewer board compo-
nents, resulting in a board that is simpler to debug (fewer points of failure at the board 
level). The power requirements of components integrated into a chip are typically a lot 
less than those same components implemented at the board level. With fewer compo-
nents and lower power requirements, an integrated processor may result in a smaller and 
cheaper board. On the fl ip side, there is less fl exibility in adding, changing, or removing 
functionality, since components integrated into a processor cannot be changed as easily 
as if they had been implemented at the board level.

Why Use an Integrated Processor?

There are literally hundreds of embedded processors available, and not one of them currently 
dominates embedded system designs. Despite the sheer number of available designs, 
embedded processors can be separated into various “groups” called architectures. What dif-
ferentiates one processor group’s architecture from another is the set of machine code instruc-
tions that the processors within the architecture group can execute. Processors are considered 
to be of the same architecture when they can execute the same set of machine code instruc-
tions. Table 3.1 lists some examples of real-world processors and the architecture families 
they fall under.

Table 3.1: Real-world architectures and processors.

 Architecture Processor Manufacturer

AMD Au1xxx Advanced Micro Devices, …

ARM ARM7, ARM9, … ARM, …

C16X C167CS, C165H, C164CI, … Infi neon, …

ColdFire 5282, 5272, 5307, 5407, … Motorola/Freescale, …
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3.2 ISA Architecture Models

The features that are built into an architecture’s instruction set are commonly referred to as the 
Instruction Set Architecture, or ISA. The ISA defi nes such features as the operations that can 
be used by programmers to create programs for that architecture, the operands (data) that are 
accepted and processed b+-y an architecture, storage, addressing modes used to gain access 
to and process operands, and the handling of interrupts. These features are described in more 
detail in this section because an ISA implementation is a determining factor in defi ning impor-
tant characteristics of an embedded design, such as performance, design time, available func-
tionality, and cost.

3.2.1 Operations

Operations are made up of one or more instructions that execute certain commands. (Note that 
operations are commonly referred to simply as instructions.) Different processors can execute 
the exact same operations using a different number and different types of instructions. An ISA 
typically defi nes the types and formats of operations.

3.2.1.1 Types of Operations

Operations are the functions that can be performed on the data, and they typically include 
computations (math operations), movement (moving data from one memory location/register 

Table 3.1: Continued

 Architecture Processor Manufacturer

I960 I960 Vmetro, …

M32/R 32170, 32180, 32182, 32192, … Renesas/Mitsubishi, …

M Core MMC2113, MMC2114, … Motorola/Freescale

MIPS32 R3K, R4K, 5K, 16, … MTI4kx, IDT, MIPS Technologies, …

NEC Vr55xx, Vr54xx, Vr41xx NEC Corporation, …

PowerPC 82xx, 74xx,8xx,7xx,6xx,5xx,4xx IBM, Motorola/Freescale, …

68k 680x0 (68K, 68030, 68040, 68060, …), 683xx Motorola/Freescale, …

SuperH (SH) SH3 (7702,7707, 7708,7709), SH4 (7750) Hitachi, …

SHARC SHARC Analog Devices, Transtech DSP,
  Radstone, …

strongARM strongARM Intel, …

SPARC UltraSPARC II Sun Microsystems, …

TMS320C6xxx TMS320C6xxx Texas Instruments, …

x86 X86 [386,486,Pentium (II, III, IV)…] Intel, Transmeta, National
  Semiconductor, Atlas, …

TriCore TriCore1, TriCore2, … Infi neon, …
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to another), branches (conditional/unconditional moves to another area of code to process), 
input/output operations (data transmitted between I/O components and master processor), and 
context switching operations (where location register information is temporarily stored when 
switching to some routine to be executed and, after execution, by the recovery of the tempo-
rarily stored information, there is a switch back to executing the original instruction stream).

The instruction set on a popular lower-end processor, the 8051, includes just over 100 instruc-
tions for math, data transfer, bit variable manipulation, logical operations, branch fl ow and 
control, and so on. In comparison, a higher-end MPC823 (Motorola/Freescale PowerPC) 
has an instruction set a little larger than that of the 8051 but with many of the same types of 
operations contained in the 8051 set, along with an additional handful, including integer
operations/fl oating-point (math) operations, load and store operations, branch and fl ow 
control operations, processor control operations, memory synchronization operations, 
PowerPC VEA operations, and so on. Figure 3.2a lists examples of common operations 
defi ned in an ISA.

Figure 3.2a: Sample ISA operations.

Math and Logical

Add
Subtract
Multiply
Divide
AND
OR

XOR
…..

Shift/Rotate

Logical Shift Right
Logical Shift Left

Rotate Right
Rotate Left

…..

Load/Store

Stack PUSH 
Stack POP 

Load
Store
…..

Compare Instructions…
Move Instructions…

Branch Instructions …
…..

In short, different processors can have similar types of operations, but they usually have differ-
ent overall instruction sets. As mentioned, what is also important to note is that different archi-
tectures can have operations with the same purpose (add, subtract, compare, etc.), but
the operations may have different names or internally operate much differently, as seen in 
Figures 3.2b and c.

a ← EXTS(rA)
b ← EXTS(rB)
if a<b then c ← 0b100
else if a>b then  c ← 0b010
else c ← 0b001
CR[4 * crfD-4 *crfD +3] ← c || XER[SO}

CMP crfD,L,rA,rB …

Figure 3.2b: MPC823 compare operation.[3.2]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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3.2.1.2 Operation Formats

The format of an operation is the actual number and combination of bits (1’s and 0’s) that rep-
resent the operation and is commonly referred to as the operation code, or opcode. MPC823 
opcodes, for instance, are structured the same and are all 6 bits long (0–63 decimal) (see 
Figure 3.3a). MIPS32/MIPS I opcodes are also 6 bits long, but the opcode can vary as to 
where it is located, as shown in Figure 3.3b. An architecture like the SA-1100, which is based 
on the ARM v4 Instruction Set, can have several instruction set formats, depending on the 
type of operation being performed (see Figure 3.3c).

The MIPS32/MIPS 1 compare 
operation is a floating point 
operation. The value in floating 
point register fs is compared to 
the value in floating point reg-
ister ft. The MIPS I architecture 
defines a single floating point 
condition code, implemented 
as the coprocessor 1 condition 
signal (Cp1Cond) and the C bit in 
the FP Control/Status register.

if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException(InvalidOperation)
endif
else
less ← ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)
unordered ← false
endif
condition ← (cond2 and less) or (cond1 and equal)
or (cond0 and unordered)
SetFPConditionCode(cc, condition)

C.cond.S fs, ft
C.cond.D fs, ft …

Figure 3.2c: MIPS32/MIPS I – compare operation.[3.3]

CMP crfD,L,rA,rB
31 crfD 0 L A B 0000000000 0

Reserved

313021201615111098650

Figure 3.3a: MPC823 “CMP” operation size.[3.4]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

C condS fs, ft

SPECIAL

000000

0

00000

ADD

100000

6

31 26 25 21 20 16 15 11 8 7 6 5 6 54 3 0 010 31 26 25 21 20 16 15 11 10

6 65 5 5 5 5 5 53 1 1 2 4

rs rt rd

ADD rd, rs,rt

condccfsftfmt 0
A

0

FC

11

COP1

010001

Figure 3.3b: MIPS32/MIPS I “CMP” and “ADD” operation sizes and locations.[3.5]
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3.2.2 Operands

Operands are the data that operations manipulate. An ISA defi nes the types and formats of 
operands for a particular architecture. For example, in the case of the MPC823 (Motorola/
Freescale PowerPC), SA-1110 (Intel StrongARM), and many other architectures, the ISA 
defi nes simple operand types of bytes (8 bits), halfwords (16 bits), and words (32 bits). More 
complex data types such as integers, characters, or fl oating point are based on the simple types 
shown in Figure 3.4.

Instruction Type
Data Processing1/PSR Transfer

Multiply
Long Multiply

Swap
Load & Store Byte/Word

Halfword Transfer : Immediate Offset
Halfword Transfer : Register Offset

Branch
Branch Exchange

Coprocessor Data Transfer
Coprocessor Data Operation

Coprocessor Register Transfer
Software Interrupt

…
1 - Data Processing OpCodes

Cond 0 0 I Opcode S Rn Rd Operand2

Cond 0 0 0 0 0 0 A S  Rd Rn Rs 1 0 0 1  Rm 

Cond 0 0 0 0 1 U A S  RdHi RdLo Rs  1 0 0 1  Rm 

Cond 0 0 0 1 0 B 0 0  Rn Rd 0 0 0 0  1 0 0 1  Rm  

Cond 0 1 I P U B W L Rn Rd Offset

Cond 1 0 0 P U S W L Rn  Register List

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 1 S H 1 Offset2

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Cond 1 0 1 L       Offset

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Cond 1 1 0 P U N W L Rn CRd CPNum Offset

Cond 1 1 1 0 Op1 CRn CRd CPNum Op2 0 CRm

Cond 1 1 1 0 Op1 L CRn Rd CPNum Op2 1 CRm

1  1  1  1  Cond

0000 = AND − Rd: = Op1 AND Op2
0001 = EOR − Rd: = Op1 EOR Op2
0010 = SUR − Rd: = Op1 − Op2
0011 = RSB − Rd: = Op2 − Op1
0100 = ADD − Rd: = Op1 + Op2
0101 = ADC − Rd: = Op1 + Op2 + C
0110 = SEC − Rd: = Op2 − Op1 + C −1
0111 = RSC − Rd: = Op2 − Op1 + C − 1
1000 = TST − set condition codes on Op1 AND Op2
1001 = TEQ − set condition codes on Op1 EOR Op2
1010 = CMP − set condition codes on Op1 − Op2
1011 = CMN − set condition codes on Op1 + Op2
1100 = ORR − Rd: = Op1 OR Op2
1101 = MOV − Rd: = Op2
1110 = BIC − Rd: = Op1 AND NOT Op2
1111 = MVN − Rd: = NOT Op2 

31 2827 1615 87 0

SWI Number

Figure 3.3c: SA-1100 instruction.[3.6]

byte

halfword

word

0 7

150

310

Figure 3.4: Simple operand types.
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An ISA also defi nes the operand formats (the way the data looks) that a particular architecture 
can support, such as binary, decimal, and hexadecimal. Figure 3.5 shows an example illustrat-
ing the way an architecture can support various operand formats.

MOV  registerX, 10d  ; Move decimal value 10 into register X
MOV  registerX, $0Ah  ; Move hexadecimal value A (decimal 10) to register X
MOV  registerX, 00001010b ; Move binary value 00001010 (decimal 10) to register X
.....

Figure 3.5: Operand formats pseudocode example.

3.2.3 Storage

The ISA specifi es the features of the programmable storage used to store the data being oper-
ated on, primarily:

A. The organization of memory used to store operands. Memory is simply an array 
of programmable storage, like that shown in Figure 3.6, that stores data, including 
operations, operands, and so on.

 The indices of this array are locations referred to as memory addresses, where each 
location is a unit of memory that can be addressed separately. The actual physical or 
virtual range of addresses available to a processor is referred to as the address space.

 An ISA defi nes specifi c characteristics of the address space, such as whether it is:

 •  Linear. A linear address space is one in which specifi c memory locations are 
represented incrementally, typically starting at 0 thru 2N-1, where N is the address 
width in bits.

 •  Segmented. A segmented address space is a portion of memory that is divided 
into sections called segments. Specifi c memory locations can only be accessed by 
specifying a segment identifi er, a segment number that can be explicitly defi ned 
or implicitly obtained from a register, and specifying the offset within a specifi c 
segment within the segmented address space.

   The offset within the segment contains a base address and a limit, which map to 
another portion of memory that is set up as a linear address space. If the offset is 
less than or equal to the limit, the offset is added to the base address, giving the 
unsegmented address within the linear address space.

 • Containing any special address regions.
 • Limited in any way.

 An important note regarding ISAs and memory is that different ISAs not only defi ne 
where data is stored but also how data is stored in memory—specifi cally in what order 
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the bits (or bytes) that make up the data are stored, or byte ordering. The two byte-
ordering approaches are big-endian, in which the most signifi cant byte or bit is stored 
fi rst, and little-endian, in which the least signifi cant bit or byte is stored fi rst.

 F or example:

 • 68000 and SPARC are big-endian
 • x86 is little-endian
 •  ARM, MIPS and PowerPC can be confi gured as either big-endian or little-endian 

using a bit in their machine state registers

B. Register set. A register is simply fast programmable memory normally used to store 
operands that are immediately or frequently used. A processor’s set of registers is 
commonly referred to as the register set or the register fi le. Different processors have 

Memory Cell

ROM Matrix

Address Decoder

A2 A1 A0

3-state output
buffers

CE

D7 D6 D5 D4 D3 D2 D1 D0

Figure 3.6: Block diagram of memory array.[3.7]
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different register sets, and the number of registers in their sets varies between very few 
to several hundred (even over a thousand). For example, the SA-1110 register set has 
37 32-bit registers, whereas the MPC823, on the other hand, has about a few hundred 
registers (general purpose, special purpose, fl oating-point, etc.).

C. How registers are used. An ISA defi nes which registers can be used for what 
transactions, such as special purpose or fl oating point, and which can be used by the 
programmer in a general fashion (general-purpose registers).

 As a fi nal note on registers, one of many ways processors can be referenced is 
according to the size (in bits) of data that can be processed and the size (in bits) of 
the memory space that can be addressed in a single instruction by that processor. This 
specifi cally relates back to the basic building block of registers, the fl ip-fl op; we’ll 
discuss this concept in more detail in Section 3.3.

 Commonly used embedded processors support 4-bit, 8-bit, 16-bit, 32-bit, and/or 
64-bit processing, as shown in Table 3.2. Some processors can process larger amounts 
of data and can access larger memory spaces in a single instruction, such as 128-bit 
architectures, but they are not commonly used in embedded designs.

Table 3.2: “X”-bit architecture examples.

 “X”-Bit Architecture

  4 Intel 4004, …

  8 Mitsubishi M37273, 8051, 68HC08, Intel 8008/8080/8086, …

 16 ST ST10, TI MSP430, Intel 8086/286, …

 32 68K, PowerPC, ARM, x86 (386�), MIPS32, …

3.2.4 Addressing Modes

Addressing modes defi ne the way the processor can access operand storage. In fact, the use of 
registers is partly determined by the ISA’s Memory Addressing Modes. The two most common 
types of addressing mode models are:

• Load-store architecture, which only allows operations to process data in registers, 
not anywhere else in memory. For example, the PowerPC architecture has only 
one addressing mode for load and store instructions: register plus displacement 
(supporting register indirect with immediate index, register indirect with index, etc.).

• Register-memory architecture, which allows operations to be processed within both 
registers and other types of memory. Intel’s i960 Jx processor is an example of an 
addressing mode architecture that is based on the register-memory model (supporting 
absolute, register indirect, etc.).
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3.2.5 Interrupts and Exception Handling

Interrupts (also referred to as exceptions or traps, depending on the type) are mechanisms that 
stop the standard fl ow of the program in order to execute another set of code in response to 
some event, such as problems with the hardware, resets, and so forth. The ISA defi nes what if 
any type of hardware support a processor has for interrupts.

M37273
Controller ISA
Architecture

Video Processor 

Audio Processor

NVM

Tuner

I2C Bus

Figure 3.7: Analog TV board example with controller ISA implementations.

Note: Because of their complexity, interrupts are discussed in more detail in Section 3.3 
later in this chapter.

Architectures are based on several different ISA models, each with its own defi nitions for the 
various features. The most commonly implemented ISA models are application-specifi c, gen-
eral-purpose, instruction-level parallel, or some hybrid combination of these three ISAs.

3.2.6 Application-Specifi c ISA Models

Application-specifi c ISA models defi ne processors that are intended for specifi c embedded 
applications, such as processors made only for TVs. There are several types of application-
specifi c ISA models implemented in embedded processors, the most common models being 
the ones discussed in this section.

3.2.6.1 Controller Model

The Controller ISA is implemented in processors that are not required to perform complex 
data manipulation, such as video and audio processors that are used as slave processors on a 
TV board, for example (see Figure 3.7).

3.2.6.2 Datapath Model

The Datapath ISA is implemented in processors for which the purpose is to repeatedly per-
form fi xed computations on different sets of data, a common example being digital signal 
processors (DSPs), shown in Figure 3.8.
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3.2.6.3 Finite State Machine with Datapath (FSMD) Model

The FSMD ISA is an implementation based on a combination of the Datapath ISA and the 
Controller ISA for processors that are not required to perform complex data manipulation
and must repeatedly perform fi xed computations on different sets of data. Common examples 
of an FSMD implementation are application-specifi c integrated circuits (ASICs), shown in 
Figure 3.9; programmable logic devices (PLDs), and fi eld-programmable gate arrays
(FPGAs, which are essentially more complex PLDs).

PA Control
Keyboard

Display

ARM
Control

Antenna
Microphone

Analog Baseband RF Section

Battery/Temp
Monitor

Speaker
Amplifier

Voice
Codec

Analog
Section

Vin Vout

EN

Digital
Section

Vin Vout

EN

RF
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Vin Vout

Integrated Power SuppliesPower Management

DSP

Supply Voltage
Supervisor PMOS

Switches

Signal
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IrDA

Neg
Supply

RFQPSK
Modulator

RF
Codec

EN

Battery

Figure 3.8: Board example with datapath ISA implementation: digital cellphone.[3.8]
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Figure 3.9: Board example with FSMD ISA implementation: solid-state digital camcorder.[3.9]
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3.2.6.4 Java Virtual Machine (JVM) Model

The JVM ISA is based on one of the Java Virtual Machine standards. Real-world JVMs can be 
implemented in an embedded system via hardware, such as in aJile’s aj-80 and aj-100 proces-
sors, for example (Figure 3.10).

2 × RS-232

RJ-45

50-Pin
LCD

Connector

LCD
Controller

10Base-T
Ethernet
Controller

Touch
Screen

Controller

aJ-100
1 MB

SRAM

IEEE 1149 Interface

1−4 MB
Flash

Memory

GPIO Headers SPI Header

Figure 3.10: JVM ISA implementation example.[3.10]

3.2.7 General-Purpose ISA Models

General-purpose ISA models are typically implemented in processors targeted to be used in 
a wide variety of systems, rather than only in specifi c types of embedded systems. The most 
common types of general-purpose ISA architectures implemented in embedded processors are 
those discussed in this section.

3.2.7.1 Complex Instruction Set Computing (CISC) Model

The CISC ISA, as its name implies, defi nes complex operations made up of several instruc-
tions (see Figure 3.11). Common examples of architectures that implement a CISC ISA are 
Intel’s �86 and Motorola/Freescale’s 68000 families of processors.

3.2.7.2 Reduced Instruction Set Computing (RISC) Model

In contrast to CISC, the RISC ISA (see Figure 3.12) usually defi nes:

• An architecture with simpler and/or fewer operations made up of fewer instructions

• An architecture that has a reduced number of cycles per available operation
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Many RISC processors have only one-cycle operations, whereas CISCs typically have multi-
ple-cycle operations. ARM, PowerPC, SPARC, and MIPS are just a few examples of RISC-
based architectures.

Data
DDR

SDRAM
(32M � 16

Address/Control

SDCLKs
CRT

Analog RGB

AMD Geode™
CS5535

Companion
Device

System
Control

FS2 JTAG
Header

PCI 3.3V

Ethernet
Controller

Clock
Generator 33 MHz14 MHz

USB Ports
(2 � 2)

Audio
Codec

Line Out

Headphone Out

Microphone In

IDE Header
(44-pin, 2 mm)

IDE/Flash Port

Power Button
GPIOs LPC Header

LPC
BIOS

LPC Bus

Serial Data

or
128M � 16)

AMD Geode™
GX 533@1.1W

Processor

TFT
Digital RGB

Figure 3.11: CISC ISA implementation example.[3.11]

© 2004 Advanced Micro Devices, Inc. Reprinted with permission.

In the area of general-purpose computing, note that many current processor designs 
fall under the CISC or RISC category primarily because of their heritage. RISC proces-
sors have become more complex, while CISC processors have become more effi cient to 
compete with their RISC counterparts, thus blurring the lines between the defi nition of a 
RISC versus a CISC architecture. Technically, these processors have both RISC and CISC 
attributes, regardless of their defi nitions.

A Final Note on CISC vs. RISC
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3.2.8 Instruction-Level Parallelism ISA Models

Instruction-level parallelism ISA architectures are similar to general-purpose ISAs,
except that they execute multiple instructions in parallel, as the name implies. In fact, 
instruction-level parallelism ISAs are considered higher evolutions of the RISC ISA, which 
typically has one-cycle operations, one of the main reasons that RISCs are the basis for 
parallelism. Examples of instruction-level parallelism ISAs include those discussed in this 
section.

3.2.8.1 Single Instruction, Multiple Data (SIMD) Model

The SIMD Machine ISA (see Figure 3.13) is designed to process an instruction simultane-
ously on multiple data components that require action to be performed on them.

3.2.8.2 Superscalar Machine Model

The superscalar ISA (see Figure 3.14) is able to process multiple instructions simultaneously 
within one clock cycle through the implementation of multiple functional components within 
the processor.
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Figure 3.12: RISC ISA implementation example.[3.12]

Ch03-H8584.indd   76Ch03-H8584.indd   76 8/17/07   12:10:20 PM8/17/07   12:10:20 PM



 Embedded Processors   77

www.newnespress.com

3.2.8.3 Very Long Instruction Word Computing (VLIW) Model

The VLIW ISA (see Figure 3.15) defi nes an architecture in which a very long instruction word 
is made up of multiple operations. These operations are then broken down and processed in 
parallel by multiple execution units within the processor.

Motor/Lamp
Drivers

Scanner
CCD/CI

Scanner
Motor/
Lamp

Scanner
AFE

SDRAM

Flash/
ROM

Fax
Modem

Laser Engine
Controller

OTI-4110 Inkjet
Heads
Motors

Head/Motor
Drivers

Memory
Card
Slot

USB
Device

Connector

OTI-4110 Controller Block Diagram

Figure 3.13: SIMD ISA implementation example.[3.13]
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Figure 3.14: Superscalar ISA implementation example.[3.14]
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3.3 Internal Processor Design

The ISA defi nes what a processor can do, and it is the processor’s internal interconnected 
hardware components that physically implement the ISA’s features. Interestingly, the 
fundamental components that make up an embedded board are the same as those that 
implement an ISA’s features in a processor: a CPU, memory, input components, output 
components, and buses. As mentioned in Figure 3.16, these components are the basis of 
the von Neumann model.

Of course, many current real-world processors are more complex in design than the
von Neumann model has defi ned. However, most of these processors’ hardware
designs are still based on von Neumann components or a version of the von Neumann
model called the Harvard architecture model. These two models differ in primarily one
area, and that is memory. A von Neumann architecture defi nes a single memory space to
store instructions and data. A Harvard architecture defi nes separate memory spaces for 
instructions and data; separate data and instruction buses allow simultaneous fetches
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Figure 3.15: VLIW ISA implementation example: (VLIW) Trimedia-based
DTV board.[3.15]
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and transfers to occur. The main reasoning behind using von Neumann versus a Harvard-
based model for an architecture design is performance. Given certain types of ISAs, like 
Datapath model ISAs in DSPs, and their functions, such as continuously performing
fi xed computations on different sets of data, the separate data and instruction memory
allows for an increase in the amount of data that can be processed per unit of time, given 
the lack of competing interests of space and bus accesses for transmissions of data and 
instructions.

As mentioned previously, most processors are based on some variation of the von
Neumann model (in fact, the Harvard model itself is a variation of the von Neumann model; 
see Figure 3.17). Real-world examples of Harvard-based processor designs include ARM’s 
ARM9/ARM10, MPC860, 8031, and DSPs (see Figure 3.18a), whereas ARM’s ARM7 and 
x86 are von Neumann-based designs (see Figure 3.18b).

Master Processor

Memory

OutputInput

Output Input

Memory

CPU

Embedded System Board

Gets Data Out of the Embedded SystemBrings Data Into the Embedded System

5 System Components Commonly 
Connected Via Buses

Controls Usage and Manipulation of Data

Data From CPU or Input Devices 
Stored in Memory Until a CPU or 
Output Device Request

Figure 3.16: A von Neumann-based processor diagram.

Note: Although the MPC860 is a complex processor design, it is still based on the funda-
mental components of the Harvard model: the CPU, instruction memory, data memory, 
I/O, and buses.
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Figure 3.17: The von Neumann vs. Harvard architectures.
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Figure 3.18a: Harvard architecture example: MPC860.[3.16]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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Figure 3.18b: A von Neumann architecture example: x86.[3.17]

Note: x86 is a complex processor design based on the von Neumann model in which, 
unlike the MPC860 processor, instructions and data share the same memory space.

The von Neumann model not only impacts the internals of a processor (what you don’t 
see) but it shapes what you do see and what you can access within a processor. As dis-
cussed in Chapter 2, ICs—and a processor is an IC—have protruding pins that connect 
them to the board. Different processors vary widely in the number of pins and their asso-
ciated signals, but the components of the von Neumann model, both at the board and 
at the internal processor level, also defi ne the signals that all processors have. As shown 
in Figure 3.19, to accommodate board memory, processors typically have address and 
data signals to read and write data to and from memory. To communicate to memory or 
I/O, a processor usually has some type of READ and WRITE pins to indicate it wants to 
retrieve or transmit data.

Why Talk About the von Neumann Model?
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3.3.1 Central Processing Unit (CPU)

The semantics of this section can be a little confusing because processors themselves are com-
monly referred to as CPUs, but it is actually the processing unit within a processor that is the 
CPU. The CPU is responsible for executing the cycle of fetching, decoding, and executing 
instructions (see Figure 3.20). This three-step process is commonly referred to as a three-stage 
pipeline, and most recent CPUs are pipelined designs.

CPU designs can differ widely, but understanding the basic components of a CPU will make 
it easier to understand processor design and the cycle shown in Figure 3.20. As defi ned by the 
von Neumann model, this cycle is implemented through some combination of four major CPU 
components:

• The arithmetic logic unit (ALU). Implements the ISA’s operations.

• Registers. A type of fast memory.

• The control unit (CU). Manages the entire fetching and execution cycle.

• The internal CPU buses. Interconnect the ALU, registers, and the CU.

Looking at a real-world processor, these four fundamental elements defi ned by the von 
Neumann model can be seen within the CPU of the MPC860 (see Figure 3.21).

Of course there are other pins not explicitly defi ned by von Neumann that are required 
for practical purposes, such as a synchronizing mechanism like a clock signal to drive 
a processor and some method of powering and grounding of the processor. However, 
regardless of the differences between processors, the von Neumann model essentially 
drives the external pins all processors have.

Figure 3.19: Von Neumann and processor pins.
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Figure 3.20: The fetch, decode, and execution cycle of CPU.
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Figure 3.21: The MPC860 CPU: the PowerPC core.[3.18]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Remember: Not all processors have these components as strictly defi ned by the von 
Neumann model, but they will have some combination of these components under vari-
ous aliases somewhere on the processor. Remember that this model is a reference tool 
you can use to understand the major components of a CPU design.
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3.3.1.1 Internal CPU Buses

The CPU buses are the mechanisms that interconnect the CPU’s other components: the ALU, 
the CU, and registers (see Figure 3.22). Buses are simply wires that interconnect the various 
other components within the CPU. Each bus’s wire is typically divided into logical functions, 
such as data (which carries data, bidirectionally, between registers and the ALU), address 
(which carries the locations of the registers that contain the data to be transferred), control 
(which carries control signal information, such as timing and control signals, between the 
registers, the ALU, and the CU), and so on.
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Regs

GPR
32�32

GPR
history

IMUL/
IDIV

ALU/
BFU

LDST
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queue

Address
generation

Sequencer

I-cache/I-MMU interface D-cache/D-MMU interface

control bus
write back bus
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unit

Core

1

2 3 4

Control Bus

Data Buses

Figure 3.22: PowerPC core and buses.[3.19]

Note: To avoid redundancy, buses are discussed in more detail in Chapter 4.

Note: In the PowerPC Core, there is a control bus that carries the control signals 
between the ALU, CU, and registers. What the PowerPC calls “source buses” are the 
data buses that carry the data between registers and the ALU. There is an additional bus 
called the write-back that is dedicated to writing data received from a source bus directly 
back from the load/store unit to the fi xed or fl oating-point registers.
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3.3.1.2 Arithmetic Logic Unit (ALU)

The arithmetic logic unit (ALU) implements the comparison, mathematical, and logical opera-
tions defi ned by the ISA. The format and types of operations implemented in the CPU’s ALU 
can vary depending on the ISA. Considered the core of any processor, the ALU is respon-
sible for accepting multiple n-bit binary operands and performing any logical (AND, OR, 
NOT, etc.), mathematical (�, –, *, etc.), and comparison (�,�, �, etc.) operations on these 
operands.

The ALU is a combinational logic circuit that can have one or more inputs and only one out-
put. An ALU’s output is dependent only on inputs applied at that instant, as a function of time, 
and “no” past conditions (see Chapter 2 on gates). The basic building block of most ALUs 
(from the simplest to the multifunctional) is considered the full adder, a logic circuit that takes 
three 1-bit numbers as inputs and produces two 1-bit numbers. The way this actually works 
will be discussed in more detail later this section.

To understand how a full adder works, let us fi rst examine the mechanics of adding binary 
numbers (0’s and 1’s) together:

Cin …         Cin   

     Xn   …  X1  X0

+   Yn   …  Y1  Y0

----------------------------------

      Sn   …  S1    S0

          +     …       +       +
Cout   …    Cout   Cout

Starting with two 1-bit numbers, adding them will produce, at most, a 2-bit number:

Q 0b + 0b = 0b

Q 0b + 1b = 0b

Q 1b + 0b = 1b

Q 1b + 1b = 10b (or 2d) In binary addition of 2 1-bit numbers, when 
the count exceeds 10 (the binary of 2 decimal), the 1 (Cout) is carried 
and added to the next row of numbers thus resulting in a 2-bit number.

 X0 Y0 S0 Cout

  0  0  0  0

  0  1  1  0

  1  0  1  0

  1  1  0  1

Ch03-H8584.indd   85Ch03-H8584.indd   85 8/17/07   12:10:24 PM8/17/07   12:10:24 PM



86   Chapter 3

www.newnespress.com

To add a larger number, the adder circuit must increase in complexity, and this is where the 
full adder comes into play. In trying to add two-digit numbers, for example, a full adder must 
be used in conjunction with a half adder. The half adder takes care of adding the fi rst digits 
of the two numbers to be added (i.e., x0, y0, and so on); the full adder’s three 1-bit inputs are 
the second digits of the two numbers to be added (i.e., x1, y1,…) along with the carry in (Cin) 
from the half adder’s addition of the fi rst digits. The half adder’s output is the sum (S0) along 
with the carry out (Cout) of the fi rst digit’s addition operation; the two 1-bit outputs of the full 
adder are the sum (S1) along with the carry out (Cout) of the second digits’ addition operation. 
Figure 3.24a shows the logic equations and truth table, Figure 3.24b shows the logic symbol, 
and Figure 3.24c shows an example of a full adder at the gate level, in this case, a combination 
XOR and NAND gate.

This simple addition of two 1-bit numbers can be executed via a half-adder circuit, a logical 
circuit that takes two 1-bit numbers as inputs and produces a 2-bit output. Half-adder circuits, 
like all logical circuits, can be designed using several possible combinations of gates, such as 
the combinations shown in Figure 3.23.

Figure 3.23a: Half-adder logic circuits.[3.20]

Half Adder using XOR and AND gates Half Adder using NOR and AND gates

X0
S0 S0

Cout

Cout

Y0

X0

Y0

Figure 3.23b: Half-adder logic symbol.[3.20]

        X               Y

C HA

                 S

Ch03-H8584.indd   86Ch03-H8584.indd   86 8/17/07   12:10:25 PM8/17/07   12:10:25 PM



 Embedded Processors   87

www.newnespress.com

        X               Y

Cout FA           Cin

                 S

Figure 3.24b: Full adder logic symbol.[3.21]

X

Y

Cin

S

Cout

Figure 3.24c: Full adder gate-level circuit.[3.21]

Sum (S) = XYCin + XY�Cin� + X�YCin� + X�Y� Cin�
Carry Out (Cout) = XY + X Cin = Y Cin

X 
0 
0 
0 
0 
1 
1 
1 
1 

Y 
0 
0 
1 
1 
0 
0 
1 
1 

Cin 

0 
1 
0 
1 
0 
1 
0 
1 

S 
0 
1 
1 
0 
1 
0 
0 
1 

Cout

0
0
0
1
0
1
1
1

Figure 3.24a: Full adder truth table and logic equations.[3.21]

To add larger numbers, additional full adders can then be integrated (cascaded) to the half-
adder/full-adder hybrid circuit (see Figure 3.25). The example shown in this fi gure is the basis 
of the ripple-carry adder (one of many types of adders), in which n full adders are cascaded 
so that the carry produced by the lower stages propagates (ripples) through to the higher stages 
in order for the addition operation to complete successfully.

Multifunction ALUs that provide addition operations, along with other mathematical and logi-
cal operations, are designed around the adder circuitry, with additional circuitry incorporated 
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X1 X0 Y0Y1X2 Y2Xn Yn

Sn S2 S1 S0

Cin …         Cin   

     Xn   …  X1  X0

+   Yn   …  Y1  Y0

----------------------------------

      Sn   …  S1    S0

          +     …       +       +
Cout   …    Cout   Cout

Figure 3.25: Cascaded adders.

for performing subtraction, logical AND, logical OR, and so on (see Figure 3.26a). The logic 
diagram shown in Figure 3.26b is an example of two stages of an n-bit multifunction ALU. 
The circuit in Figure 3.26 is based on the ripple-carry adder that was just described. In the logic 
circuit in Figure 3.26b, control inputs k0, k1, k2, and cin determine the function performed on 
the operand or operands. Operand inputs are X � xn-1 … x1x0 and Y � yn-1 … y1y0 and the 
output is sum (S) � sn-1 … s1s0 where the ALU saves the generated results varies with different 
architectures. With the PowerPC shown in Figure 3.27, results are saved in a register called an 
Accumulator. Results can also be saved in memory (on a stack or elsewhere) or in some hybrid 
combination of these locations.

Note: In the PowerPC core, the ALU is part of the “Fixed Point Unit” that implements 
all fi xed-point instructions other than load/store instructions. The ALU is responsible 
for fi xed-point logic, add, and subtract instruction implementation. In the case of the 
PowerPC, generated results of the ALU are stored in an Accumulator. Also, note that the 
PowerPC has an IMUL/IDIV unit (essentially another ALU) specifi cally for performing 
multiplication and division operations.
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Figure 3.26a: Multifunction ALU truth table and logic equations.[3.22]

Cout Cin Cin
     Cin                 S
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X1

C2 C1 C0

S1 S0

YXYX

y1 X0 y0 k0 k1 k2

Figure 3.26b: Multifunction ALU gate-level circuitry.[3.22]

3.3.1.3 Registers

Registers are simply a combination of various fl ip-fl ops that can be used to temporarily store 
data or to delay signals. A storage register is a form of fast programmable internal processor 
memory usually used to temporarily store, copy, and modify operands that are immediately or 
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frequently used by the system. Shift registers delay signals by passing the signals between the 
various internal fl ip-fl ops with every clock pulse.

Registers are made up of a set of fl ip-fl ops that can be activated either individually or as a 
set. In fact, it is the number of fl ip-fl ops in each register that is actually used to describe a 
processor (for example, a 32-bit processor has working registers that are 32 bits wide contain-
ing 32 fl ip-fl ops, a 16-bit processor has working registers that are 16 bits wide containing 16 
fl ip-fl ops, and so on). The number of fl ip-fl ops within these registers also determines the width 
of the data buses used in the system. Figure 3.28 shows an example of how eight fl ip-fl ops 
could comprise an 8-bit register and thus impact the size of the data bus. In short, registers are 
made up of one fl ip-fl op for every bit being manipulated or stored by the register.

ISA designs do not all use registers in the same way to process data, but storage typically 
falls under one of two categories, either general purpose or special purpose (see Figure 3.29). 
General-purpose registers can be used to store and manipulate any type of data determined by 
the programmer, whereas special-purpose registers can only be used in a manner specifi ed by 
the ISA, including holding results for specifi c types of computations, having predetermined fl ags 
(single bits within a register that can act and be controlled independently) acting as counters 
(registers that can be programmed to change states—that is, increment—asynchronously or 
synchronously after a specifi ed length of time), and controlling I/O ports (registers managing 
the external I/O pins connected to the body of the processor and to board I/O). Shift registers are 
inherently special purpose because of their limited functionality.
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Figure 3.27: PowerPC core and the ALU.[3.23]
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Figure 3.28a: 8-bit register with 8 D fl ip-fl ops example.[3.24]

Pulse
Generator

Data (d)

Clock

Clear (CLR)

Preset (PRE)

Q

Q

Figure 3.28b: Example of a gate-level circuit of a fl ip-fl op.[3.24]

Note: The PowerPC Core has a “Register Unit” that contains all registers visible to a 
user. PowerPC processors generally have two types of registers: general-purpose and spe-
cial-purpose (control) registers.
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Figure 3.29: PowerPC core and register usage.[3.25]

The number of registers, the types of registers, and the size of the data that these registers 
can store (8-bit, 16-bit, 32-bit, and so forth) vary depending on the CPU, according to the 
ISA defi nitions. In the cycle of fetching and executing instructions, the CPU’s registers have 
to be fast so as to quickly feed data to the ALU, for example, and to receive data from the 
CPU’s internal data bus. Registers are also multiported so as to be able to both receive and 
transmit data to these CPU components. The next several pages of this section will give some 
real-world examples of how some common registers in architectures—specifi cally fl ags and 
counters—can be designed.

3.3.1.4 Example 1: Flags

Flags are typically used to indicate to other circuitry that an event or a state change has 
occurred. In some architectures, fl ags can be grouped together into specifi c fl ag registers, 
whereas in other architectures, fl ags comprise some part of several different types of
registers.

To understand how a fl ag works, let’s examine a logic circuit that can be used in designing a 
fl ag. Given a register, for instance, let’s assume that bit 0 is a fl ag (see Figures 3.30a and b) 
and the fl ip-fl op associated with this fl ag bit is a set-reset (SR) fl ip-fl op, the simplest of data-
storage asynchronous sequential digital logic. The (cross NAND) SR fl ip-fl op is used in this 
example to asynchronously detect an event that has occurred in attached circuitry via the set 
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(MSB)

bit N …… bit 2 bit 1 bit 0

(LSB)N-Bit Register

Figure 3.30a: N-bit register with fl ag and SR fl ip-fl op example.[3.26]
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Start

S

Preset (PRE)

Q

Q

R

CLR

flip-flop flip-flop

Figure 3.30b: SR fl ip-fl op gate-level circuit example.[3.26]

(S) or reset (R) input signal of the fl ip-fl op. When the set/reset signal changes from 0 to 1 or 1 
to 0, it immediately changes the state of the fl ip-fl op, which results, depending on the input, in 
the fl ip-fl op setting or resetting.

3.3.1.5 Example 2: Counters

As mentioned at the beginning of this section, registers can also be designed to be counters, 
programmed to increment or decrement either asynchronously or synchronously, such as 
with a processor’s program counter (PC) or timers, which are essentially counters that count 
clock cycles. An asynchronous counter is a register whose fl ip-fl ops are not driven by the 
same central clock signal. Figure 3.31a shows an example of a 8-bit MOD-256 (modulus-256) 
asynchronous counter using JK fl ip-fl ops (which have 128 binary states—capable of count-
ing between 0 and 255, 128 * 2 � 256). This counter is a binary counter, made up of 1’s and 
0’s, with 8 digits, one fl ip-fl op per digit. It loops counting between 00000000 and 11111111, 
recycling back to 00000000 when 11111111 is reached, ready to start over with the count. 
Increasing the size of the counter—the maximum number of digits the counter can count
to—is only a matter of adding a fl ip-fl op for every additional digit.
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All the fl ip-fl ops of the counter are fi xed in toggle mode; looking at the counter’s truth table in 
Figure 3.31b under toggle mode, the fl ip-fl op inputs (J and K) are both � 1 (HIGH). In toggle 
mode, the fi rst fl ip-fl op’s output (Q0) switches to the opposite of its current state at each active 
clock HIGH-to-LOW (falling) edge (see Figure 3.32).
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Figure 3.31a: An 8-bit MOD-256 asynchronous counter example.[3.27]
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Figure 3.31b: JK fl ip-fl op truth 
table.[3.27]
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Figure 3.32: First fl ip-fl op CLK timing waveform for MOD-256 counter.

Figure 3.31c: JK fl ip-fl op gate-level diagram.[3.27]
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As shown in Figure 3.32, the result of toggle mode is that Q0, the output of the fi rst fl ip-fl op, 
has half the frequency of the CLK signal that was input into its fl ip-fl op. Q0 becomes the CLK 
signal for the next fl ip-fl op in the counter. As shown in the timing diagram in Figure 3.33, 
Q1, the output of the second fl ip-fl op signal has half the frequency of the CLK signal that was 
input into it (one-quarter of the original CLK signal).

Pulse
Width

CLK of 
1st Flip-Flop

CLK of 
2nd Flip-Flop (Q0)

Q1

Output switch
(0 to 1)

Output switch
(1 to 0)

Output switch
(0 to 1)

Rising
Edge

Falling
Edge 1 Cycle 

Figure 3.33: Second fl ip-fl op CLK timing waveform for MOD-256 counter.

This cycle in which the output signals for the preceding fl ip-fl ops become the CLK signals 
for the next fl ip-fl ops continues until the last fl ip-fl op is reached. The division of the CLK 
signal originally input into the fi rst fl ip-fl op can be seen in Figure 3.31a. The combination of 
output switching of all the fl ip-fl ops on the falling edges of the outputs of the previous fl ip-
fl op, which acts as their CLK signals, is how the counter is able to count from 00000000 to 
11111111 (see Figure 3.34).

With synchronous counters, all fl ip-fl ops within the counter are driven by a common clock 
input signal. Again using JK fl ip-fl ops, Figure 3.35 demonstrates how a MOD-256 synchro-
nous counter circuitry differs from a MOD-256 asynchronous counter (the previous example).

The fi ve additional AND gates (two of which are not explicitly shown due to the scale of the 
diagram) in the synchronous counter example in Figure 3.35 serve to put the fl ip-fl ops either in 
HOLD mode if inputs J and K � 0 (LOW) or in TOGGLE mode if inputs J and K � 1 (HIGH). 
Refer to the JK fl ip-fl op truth table in Figure 3.30b. The synchronous counter in this example 
works because the fi rst fl ip-fl op is always in TOGGLE mode at the start of the count 00000000, 
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Figure 3.34: All fl ip-fl op CLK timing waveforms for MOD-256 counter.
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Figure 3.35: An 8-bit MOD-256 synchronous counter example.[3.28]
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whereas the rest are in HOLD mode. When counting (0 to 1 for the fi rst fl ip-fl op), the next fl ip-
fl op is then TOGGLED, leaving the remaining fl ip-fl ops on HOLD. This cycle continues (2–4 
for the second fl ip-fl op, 4–8 for the third fl ip-fl op, 8–15 for the fourth fl ip-fl op, 15–31 for the 
fi fth fl ip-fl op, and so on) until all counting is completed to 11111111 (255). At that point, all 
the fl ip-fl ops have been toggled and held accordingly.

3.3.1.6 Control Unit (CU)

The control unit (CU) is primarily responsible for generating timing signals as well as control-
ling and coordinating fetching, decoding, and executing instructions in the CPU. After the 
instruction has been fetched from memory and decoded, the control unit then determines what 
operation will be performed by the ALU and selects and writes signals appropriate to each 
functional unit within or outside the CPU (i.e., memory, registers, ALU, etc.). To better under-
stand how a processor’s control unit functions, let’s examine more closely the control unit of a 
PowerPC processor.

As shown in Figure 3.36, the PowerPC core’s CU is called a “sequencer unit” and is the heart 
of the PowerPC core. The sequencer unit is responsible for managing the continuous cycle of 
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32x32

GPR
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IMUL/
IDIV

ALU/
BFU

LDST
address

LDST
fix data

Instruction
queue

Address
generation

Sequencer

I-cache/I-MMU interface D-cache/D-MMU interface

control bus
write back bus
(2 slots/clock)

L-addr L-data

source busses
(4 slots/clock)

Branch
unit

Core

1

2 3 4

Control
Unit

Figure 3.36: PowerPC core and the CU.[3.29]

fetching, decoding, and executing instructions while the PowerPC has power, including such 
tasks as:

• Providing the central control of the data and instruction fl ow among the other major 
units within the PowerPC core (CPU), such as registers, ALU, and buses
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• Implementing the basic instruction pipeline

• Fetching instructions from memory to issue these instructions to available execution 
units

• Maintaining a state history for handling exceptions

Like many CUs, the PowerPC’s sequencer unit isn’t one physically separate, explicitly defi ned 
unit; rather, it is made up of several circuits distributed within the CPU that all work together 
to provide the managing capabilities. Within the sequencer unit these components are mainly 
an address generation unit (provides address of next instruction to be processed), a branch 
prediction unit (processes branch instructions), a sequencer (provides information and 
centralized control of instruction fl ow to the other control subunits), and an instruction 
queue (stores the next instructions to be processed and dispatches the next instructions in 
the queue to the appropriate execution unit).

3.3.1.7 The CPU and the System (Master) Clock

A processor’s execution is ultimately synchronized by an external system or master clock, 
located on the board. The master clock is an oscillator along with a few other components, 
such as a crystal. It produces a fi xed frequency sequence of regular on/off pulse signals 
(square waves), as shown in Figure 3.37. The CU, along with several other components on an 
embedded board, depends on this master clock to function. Components are driven by either 
the actual level of the signal (a “0” or a “1”), the rising edge of a signal (the transition from 
“0” to “1”), and/or the falling edge of the signal (the transition from “1” to “0”). Different 
master clocks, depending on the circuitry, can run at a variety of frequencies but typically 
must run so that the slowest component on the board has its timing requirements met. In some 
cases, the master clock signal is divided by the components on the board to create other clock 
signals for their own use.

Time

Pulse
Width

Rising
Edge

Falling
Edge 1 Cycle 

Figure 3.37: Clock signal.

In the case of the CU, for instance, the signal produced by the master clock is usually divided 
or multiplied within the CPU’s CU to generate at least one internal clock signal. The CU then 
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uses internal clock signals to control and coordinate the fetching, decoding, and executing of 
instructions.

3.3.2 On-Chip Memory

The CPU goes to memory to get what it needs to process, because it is in memory that all the 
data and instructions to be executed by the system are stored. Embedded platforms have a 
memory hierarchy, a collection of different types of memory, each with unique speeds, sizes, 
and usages (see Figure 3.38). Some of this memory can be physically integrated on the proc-
essor, such as registers, read-only memory (ROM), certain types of random access memory 
(RAM), and level-1 cache.

3.3.2.1 Read-Only Memory (ROM)

On-chip ROM is memory integrated into a processor that contains data or instructions that 
remain even when there is no power in the system, due to a small, longer-life battery, and 
therefore is considered to be nonvolatile memory (NVM). The content of on-chip ROM usu-
ally can only be read by the system it is used in.

To get a clearer understanding of how ROM works, let’s examine a sample logic circuit of
8 � 8 ROM, shown in Figure 3.39. This ROM includes three address lines (log28) for all
eight words, meaning that the 3-bit addresses ranging from 000 to 111 will each represent one 
of the 8 bytes.

Processor

Level-1
Cache

Level-2
Cache

Level-3
Cache

Main
Memory

Secondary/Tertiary
Storage

Figure 3.38: Memory hierarchy.

Note that different ROM designs can include a wide variety of addressing confi gurations 
for the exact same matrix size, and this addressing scheme is just an example of one such 
scheme.
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D0 through D7 are the output lines from which data is read, one output line for each bit. 
Adding rows to the ROM matrix increases its size in terms of the number of address spaces, 
whereas adding columns increases a ROM’s data size (the number of bits per address) it can 
store. ROM size specifi cations are represented in the real world identically to what is used
in this example, where the matrix reference (8 � 8, 16 k � 32, and so on) refl ects the actual 
size of ROM where the fi rst number, preceding the “�”, is the number of addresses and the 
second number, after the “�”, refl ects the size of the data (number of bits) at each address 
location—8 � byte, 16 � halfword, 32 � word, and so on. Also, note that in some design 
documentation, the ROM matrix size may be summarized. For example, 16 kB (kBytes) of 
ROM is 16 K � 8 ROM, 32 MB of ROM is 32 M � 8 ROM, and so on.

Memory Cell

ROM Matrix

Address Decoder

A2 A1 A0

3-state output
buffers

CE

D7 D6 D5 D4 D3 D2 D1 D0

Figure 3.39: 8 � 8 ROM logic circuit.[3.30]
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In this example, the 8 � 8 ROM is an 8 � 8 matrix, meaning that it can store eight
different 8-bit bytes, or 64 bits of information. Every intersection of a row and column in
this matrix is a memory location, called a memory cell. Each memory cell can contain either
a bipolar or MOSFET transistor (depending on the type of ROM) and a fusible link
(see Figure 3.40).

VDD VDD VCC VCC

Stores
“1”

Stores
“0”

Stores
“1”

Stores
“0”

MOSFET Storage Memory Cell
(MROMS, PROMS, EPROMs, EEPROMs, Flash)

Bipolar Storage Memory Cell
(MROMs, PROMs)

Programmable
Link

Programmable
Link

Figure 3.40: 8 � 8 MOSFET and bipolar memory cells.[3.31]

When a programmable link is in place, the transistor is biased ON, resulting in a 1 being 
stored. All ROM memory cells are typically manufactured in this confi guration. When
writing to ROM, a “0” is stored by breaking the programmable link. The way links are broken 
depends on the type of ROM. The way to read from a ROM depends on the ROM, but in this 
example, the chip enable (CE) line is toggled (HIGH to LOW) to allow the data stored to be 
output via D0–D7 after having received the 3-bit address requesting the row of data bits
(see Figure 3.41).

Finally, the most common types of on-chip ROM include:

• MROM (mask ROM), which is ROM (with data content) that is permanently etched 
into the microchip during the manufacturing of the processor and cannot be modifi ed 
later.

• PROMs (programmable ROM) or OTPs (one-time programmables), which is a type 
of ROM that can be integrated on-chip and that is one-time programmable by a 
PROM programmer (in other words, it can be programmed outside the manufacturing 
factory).

• EPROM (erasable programmable ROM), which is ROM that can be integrated on a 
processor, in which content can be erased and reprogrammed more than once. The 
number of times erasure and reuse can occur depends on the processor. The content 
of EPROM is written to the device using special separate devices and erased, either 
selectively or in its entirety, using other devices that output intense ultraviolet light 
into the processor’s built-in window.
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• EEPROM (electrically erasable programmable ROM), which, like EPROM, can be 
erased and reprogrammed more than once. The number of times erasure and reuse 
can occur depends on the processor. Unlike EPROMs, the content of EEPROM can 
be written and erased without using any special devices while the embedded system 
is functioning. With EEPROMs, erasing must be done in its entirety, unlike EPROMs, 
which can be erased selectively.

Broken Programmable
Link in Memory Cell

ROM Matrix

1

2

3

4

5

6

7

8

Address Decoder

A2 A1 A0

3-state output
buffers

CE

D7 D6 D5 D4 D3 D2 D1 D0

Gate A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 0 1 1 1 1 0 1 1 1
2 0 0 1 1 1 0 1 1 1 0 1
3 0 1 0 0 1 1 1 1 0 1 1
4 0 1 1 0 0 1 0 1 1 1 1
5 1 0 0 1 1 1 1 1 1 1 1
6 1 0 1 1 1 1 0 0 0 0 1
7 1 1 0 0 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 0

Figure 3.41: 8 � 8 reading ROM circuit.[3.32]
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A cheaper and faster variation of the EEPROM is Flash memory. Where EEPROMs are 
written and erased at the byte level, Flash can be written and erased in blocks or sectors
(a group of bytes). Like EEPROM, Flash can be erased while still in the embedded device.

3.3.2.2 Random Access Memory (RAM)

RAM (random access memory), commonly referred to as main memory, is memory in which 
any location within it can be accessed directly (randomly, rather than sequentially from some 
starting point) and whose content can be changed more than once (the number depending 
on the hardware). Unlike ROM, contents of RAM are erased if RAM loses power, meaning 
that RAM is volatile. The two main types of RAM are static RAM (SRAM) and dynamic 
RAM (DRAM).

As shown in Figure 3.42a, SRAM memory cells are made up of transistor-based fl ip-fl op cir-
cuitry that typically holds its data due to a moving current being switched bidirectionally on a 
pair of inverting gates in the circuit until power is cut off or the data is overwritten.

word

bit bit

Figure 3.42a: A six-transistor SRAM cell.[3.33]

To get a clearer understanding of how SRAM works, let’s examine a sample logic circuit of 
4K � 8 SRAM shown in Figure 3.42b.

In this example, the 4 K � 8 SRAM is a 4 K � 8 matrix, meaning that it can store 4096
(4 � 1024) different 8-bit bytes, or 32768 bits of information. As shown in the diagram, 12 
address lines (A0–A11) are needed to address all 4096 (000000000000b–111111111111b) pos-
sible addresses, one address line for every address digit of the address. In this example, the 4K 
� 8 SRAM is set up as a 64 � 64 array of rows and columns where addresses A0–A5 identify 
the row and A6–A11 identify the column. As with ROM, every intersection of a row and col-
umn in the SRAM matrix is a memory cell, and in the case of SRAM memory cells, they can 
contain fl ip-fl op circuitry mainly based on semiconductor devices such as polysilicon load 
resistors, bipolar transistors, and/or CMOS transistors. There are eight output lines
(D0–D7), a byte for every byte stored at an address.

Ch03-H8584.indd   103Ch03-H8584.indd   103 8/17/07   12:10:35 PM8/17/07   12:10:35 PM



104   Chapter 3

www.newnespress.com

64 × 64 SRAM Array
Row
Select

A 0

A 1

A 2

A 3

A 4

A 5

Column I/O Circuits

A 6 A 7 A 8 A 9 A 10 A 11

Column Select

D0

D1

D2

D3
Data Input

D4

D5

D6

D7

D0

D1

D2

D3

D4

D5

D6

D7

Data Output

CS

WE

Figure 3.42b: 4K � 8 SRAM logic circuit.[3.34]

In this SRAM example, when the chip select (CS) is HIGH, then memory is in standby mode 
(no read or writes are occurring). When CS is toggled to LOW and write-enable input (WE) is 
LOW, then a byte of data is written through the data input lines (D0–D7) at the address 
indicated by the address lines. Given the same CS value (LOW) and WE is HIGH, then a byte 
of data is being read from the data output lines (D0–D7) at the address indicated by the address 
lines (A0–A7).

As shown in Figure 3.43, DRAM memory cells are circuits with capacitors that hold a charge 
in place (the charges or lack thereof refl ecting data). DRAM capacitors need to be refreshed 
frequently with power in order to maintain their respective charges and to recharge capacitors 
after DRAM is read. (Reading DRAM discharges the capacitor.) The cycle of discharging and 
recharging of memory cells is why this type of RAM is called dynamic.

Given a sample logic DRAM circuit of 16K � 8, this RAM confi guration is a two-dimen-
sional array of 128 rows and 128 columns, meaning that it can store 16384 (16 � 1024) 
different 8-bit bytes, or 131072 bits of information. With this address confi guration, larger 
DRAMs can either be designed with 14 address lines (A0–A13) needed to address all 16384 
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Data Out

Data In

Figure 3.43: DRAM (capacitor-based) memory cell.[3.35]

(000000000000b–11111111111111b) possible addresses—one address line for every address 
digit of the address—or these address lines can be multiplexed, or combined into fewer lines 
to share, with some type of data selection circuit managing the shared lines. Figure 3.44 dem-
onstrates how a multiplexing of address lines could occur in this example.
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Figure 3.44: 16K � 8 SRAM logic circuit.[3.36]
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The 16 K � 8 DRAM is set up with addresses A0–A6 identifying the row and A7–A13 identify-
ing the column. In this example, the ROW address strobe (RAS) line is toggled (from HIGH 
to LOW) for A0–A6 to be transmitted, and then the Column Address Strobe (CAS) line is tog-
gled (from HIGH to LOW) for A7–A7 to be transmitted. After this point the memory cell is 
latched and ready to be written to or read from.

There are eight output lines (D0–D7), a byte for every byte stored at an address. When the 
write-enable (WE) input line is HIGH, data can be read from output lines D0–D7, and when 
WE is LOW, data can be written to input lines D0–D7.

One of the major differences between SRAM and DRAM lies in the makeup of the DRAM 
memory array itself. The capacitors in the memory array of DRAM are not able to hold a 
charge (data). The charge gradually dissipates over time, thus requiring some additional 
mechanism to refresh DRAM in order to maintain the integrity of the data. This mechanism 
reads the data in DRAM before it is lost, via a sense amplifi cation circuit that senses a charge 
stored within the memory cell, and writes it back onto the DRAM circuitry. Ironically, the 
process of reading the cell also discharges the capacitor, even though reading the cell is part of 
the process of correcting the problem of the capacitor gradually discharging in the fi rst place. 
A memory controller (see Section 5.4, “Memory Management,” for more information) in the 
embedded system typically manages a DRAM’s recharging and discharging cycle by initiating 
refreshes and keeping track of the refresh sequence of events. It is this refresh cycling mecha-
nism that discharges and recharges memory cells that gives this type of RAM its name—
“dynamic” RAM (DRAM)—and the fact that the charge in SRAM stays put is the basis for its 
name, “static” RAM (SRAM). It is this same additional recharge circuitry that makes DRAM 
slower in comparison to SRAM. (Note that SRAM is usually slower than registers because 
the transistors within the fl ip-fl op are usually smaller and thus do not carry as much current as 
those typically used within registers.)

SRAMs also usually consume less power than DRAMs, since no extra energy is needed for a 
refresh. On the fl ip side, DRAM is typically cheaper than SRAM because of its capacitance-
based design, in comparison to its SRAM fl ip-fl op counterpart (more than one transistor). 
DRAM also can hold more data than SRAM, since DRAM circuitry is much smaller than 
SRAM circuitry and more DRAM circuitry can be integrated into an IC.

DRAM is usually the “main” memory in larger quantities and is also used for video RAM 
and cache. DRAMs used for display memory are also commonly referred to as frame buffers. 
SRAM, because it is more expensive, is typically used in smaller quantities, but because it is 
also the fastest type of RAM, it is used in external cache (see Section 5.2) and video memory 
(when processing certain types of graphics, and given a more generous budget, a system can 
implement a better-performing RAM).

Table 3.3 summarizes some examples of different types of integrated RAM and ROM used for 
various purposes in ICs.
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Table 3.3: On-chip memory.[3.37]

 Main Memory Video Memory Cache

SRAM NA Random Access Memory SRAM has been used for 
  Digital-to-Analog Converter both level-1 and level-2 caches. 
  (RAMDAC) processors are A type of SRAM, called Burst/
  used in video cards for SynchBurst Static Random-
  display systems without Access Memory (BSRAM), which 
  true color, to convert digital is synchronized with either the 
  image data into analog system clock or a cache bus 
  display data for analog clock, has been primarily used 
  displays such as cathode ray for level-2 cache memory. 
  tubes (CRTs). The built-in (See Section 3.3.)
  SRAM contains the color
  palette table that provides
  the red/green/blue (RGB)
  on version values used by
  the digital-to-analog
  converters (DACs), also
  built into the RAMDAC,
  to change the digital image
  data into analog signals for
  the display units.

DRAM Synchronous Dynamic On-Chip Rambus Dynamic Enhanced Dynamic Random
 Random Access Memory Random Access Memory Access Memory (EDRAM) 
 (SDRAM) is DRAM that (RDRAM) and On-Chip integrates SRAM within the
 is synchronized with the Multibank Dynamic Random DRAM and is usually used as
 microprocessor’s clock Access Memory (MDRAM) are level-2 cache (see Section 3.3). 
 speed (in MHz). Several DRAMs commonly used as The faster SRAM portion of
 types of SDRAMs are display memory that store EDRAM is searched fi rst for the
 used in various systems, arrays of bit values (pixels of data, and if it’s not found there, 
 such as the JDEC SDRAM the image on the display). the DRAM portion of EDRAM is
 (JEDEC Synchronous The resolution of the image is searched.
 Dynamic Random Access determined by the number of
 Memory), PC100 SDRAM bits that have been defi ned
 (PC100 Synchronous per each pixel.
 Dynamic Random Access
 Memory), and DDR
 SDRAM (Double Data
 Rate Synchronous
 Dynamic Random Access
 Memory). Enhanced
 Synchronous Dynamic
 Random Access Memory
 (ESDRAM) is SDRAM
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3.3.2.3 Cache (Level-1 Cache)

Cache is the level of memory between the CPU and main memory in the memory hierarchy 
(see Figure 3.45). Cache can be integrated into a processor or can be off-chip. Cache existing 
on-chip is commonly referred to as level-1 cache, and SRAM memory is usually used as level-
1 cache. Because (SRAM) cache memory is typically more expensive due to its speed, proces-
sors usually have a small amount of cache, whether on-chip or off-chip.

Table 3.3: Continued

 Main Memory Video Memory Cache

 that integrates SRAM
 within the SDRAM,
 allowing for faster SDRAM.
 (Basically, the faster SRAM
 portion of the ESDRAM is
 checked fi rst for data,
 then if not found, the
 remaining SDRAM
 portion is searched.)

 Direct Rambus Dynamic Fast Page Mode Dynamic 
 Random Access Memory Random Access Memory 
 (DRDRAM) and SyncLink (FPM DRAM), Data Output 
 Dynamic Random Access Random Access/Dynamic 
 Memory (SLDRAM) are Random Access Memory 
 DRAMs whose bus signals (EDORAM/EDO DRAM), 
 can be integrated and and Data Burst Extended 
 accessed on one line, thus Data Output Dynamic 
 decreasing the access time Random-Access Memory 
 (since synchronizing (BEDO DRAM) …
 operations on multiple
 lines is not necessary).

Processor

Level-1
Cache

Level-2
Cache

Level-3
Cache

Main
Memory

Secondary/Tertiary
Storage

Figure 3.45: Level-1 cache in the memory hierarchy.
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Using cache has become popular in response to systems that display a good locality of ref-
erence, meaning that these systems in a given time period access most of their data from a 
limited section of memory. Cache is used to store subsets of main memory that are used or 
accessed often. Some processors have one cache for both instructions and data; others have 
separate on-chip caches for each.

A variety of strategies are used in writing to and reading data from level-1 cache and main 
memory (Figure 3.46). These strategies include transferring data between memory and cache 
in either one-word or multiword blocks. These blocks are made up of data from main memory 
as well as the location of that data in main memory (called tags).

CPU

OutputInput

CPU

Output

Input

Data Cache

Address Pathway

On-Chip Cache Memory

Data & Instruction
Pathway

Instruction Cache

Instruction
Address
Pathway

Instruction
Pathway

Data Address
Pathway

Data
Pathway

von Neumann Processor Harvard Processor

Figure 3.46: Level-1 cache in the von Neumann and Harvard models.

In the case of writing to memory, given some memory address from the CPU, this address 
is translated to determine its equivalent location in level-1 cache, since cache is a snapshot 
of a subset of memory. Writes must be done in both cache and main memory to ensure that 
cache and main memory are consistent (have the same value). The two most common write 
strategies to guarantee consistency are write-through, in which data is written to both cache 
and main memory every time, and write-back, in which data is initially only written into 
cache, and only when it is to be bumped and replaced from cache is it written into main 
memory.

When the CPU wants to read data from memory, level-1 cache is checked fi rst. If the data is in 
cache, it is called a cache hit. The data is returned to the CPU and the memory access process 
is complete. If the data is not located in level-1 cache, it is called cache miss. Off-chip caches 
(if any) are then checked for the data desired. If this is a miss, then main memory is accessed 
to retrieve and return the data to the CPU.
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Data is usually stored in cache in one of three schemes:

• Direct mapped, where data in cache is located by its associated block address in 
memory (using the “tag” portion of the block)

• Set associative, where cache is divided into sets into which multiple blocks can be 
placed; blocks are located according to an index fi eld that maps into a cache’s particu-
lar set

• Full associative, where blocks are placed anywhere in cache and must be located by 
searching the entire cache every time

In systems with memory management units (MMU) to perform the translation of addresses 
(see Section 3.3), cache can be integrated between the CPU and the MMU or between the 
MMU and main memory. There are advantages and disadvantages to both methods of cache 
integration with an MMU, mostly surrounding the handling of DMA (direct memory access), 
which is the direct access of off-chip main memory by slave processors on the board without 
going through the main processor. When cache is integrated between the CPU and MMU, only 
the CPU accesses to memory affect cache; therefore DMA writes to memory can make cache 
inconsistent with main memory unless CPU access to memory is restricted while DMA data is 
being transferred or cache is being kept updated by other units within the system besides the 
CPU. When cache is integrated between the MMU and main memory, more address transla-
tions need to be done, since cache is affected by both the CPU and DMA devices.

3.3.2.4 On-Chip Memory Management

Many different types of memory can be integrated into a system, and there are also differences 
in the way software running on the CPU views memory addresses (logical/virtual addresses) 
and the actual physical memory addresses (the two-dimensional array or row and column). 
Memory managers are ICs designed to manage these issues and in some cases are integrated 
onto the master processor.

The two most common types of memory managers that are integrated into the master 
processor are memory controllers (MEMC) and memory management units (MMUs).
A memory controller (MEMC) is used to implement and provide glueless interfaces to the 
different types of memory in the system, such as cache, SRAM, and DRAM, synchronizing 
access to memory and verifying the integrity of the data being transferred. Memory 
controllers access memory directly with the memory’s own physical (two-dimensional) 
addresses.The controller manages the request from the master processor and accesses the 
appropriate banks, awaiting feedback and returning that feedback to the master processor. 
In some cases, where the memory controller is mainly managing one type of memory, it 
may be referred to by that memory’s name (such as DRAM controller, cache controller, 
and so forth).
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Memory management units (MMUs) are used to translate logical addresses into physical 
addresses (memory mapping) as well as handle memory security, control cache, handle bus 
arbitration between the CPU and memory, and generate appropriate exceptions. Figure 3.47 
shows the MPC860, which has both an integrated MMU (in the core) and an integrated mem-
ory controller (in the system interface unit).

4K
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I MMU

4K D
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D MMU1PowerPC™

Core U-bus
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16 Serial
DMAs;

2 Virtual 1DMA

Communications
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Serial Interface
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2
System Interface Unit

Memory Controller
BIU

Real Time clock
PCMCIA Interface

System Functions

Figure 3.47: Memory management and the MPC860.[3.38]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

In the case of translated addresses, the MMU can use level-1 cache on the processor, or por-
tions of cache allocated as buffers for caching address translations, commonly referred to as 
the translation lookaside buffer, or TLB, to store the mappings of logical addresses to physi-
cal addresses. MMUs also must support the various schemes in translating addresses, mainly 
segmentation, paging, or some combination of both schemes. In general, segmentation is the 
division of logical memory into large variable-size sections, whereas paging is the dividing of 
logical memory into smaller fi xed-size units.

The memory protection schemes then provide shared, read/write, or read-only accessibility to 
the various pages and/or segments. If a memory access is not defi ned or allowed, an interrupt 
is typically triggered. An interrupt is also triggered if a page or segment isn’t accessible dur-
ing address translation (i.e., in the case of a paging scheme, a page fault, etc.). At that point 
the interrupt would need to be handled; the page or segment would need to be retrieved from 
secondary memory, for example.

The scheme supporting segmentation and/or paging of the MMU typically depends on the 
software—that is, the operating system.
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3.3.2.5 Memory Organization

Memory organization includes not only the makeup of the memory hierarchy of the particu-
lar platform but also the internal organization of memory, specifi cally what different portions 
of memory may or may not be used for as well as how all the different types of memory are 
organized and accessed by the rest of the system. For example, some architectures may split 
memory so that a portion stores only instructions and another only stores data. The SHARC 
DSP contains integrated memory that is divided into separate memory spaces (sections of 
memory) for data and programs (instructions). In the case of the ARM architectures, some are 
based on the von Neumann model (for example, ARM7), which means that it has one memory 
space for instructions and data, whereas other ARM architectures (namely ARM9) are based 
on the Harvard model, meaning memory is divided into a section for data and a separate 
section for instructions.

The master processor, along with the software, treats memory as one large one-dimensional 
array, called a memory map (see Figure 3.48). This map serves to clearly defi ne what address 
or set of addresses are occupied by what components.

0000 0000 

FFFF  FFFF

Figure 3.48a: Memory map.

Address
Offset

Register Size

000 SIU module configuration register (SIUMCR)  32 bits
004 System Protection Control Register (SYPCR)   32 bits

008-00D Reserved 6 bytes
00E Software Service Register (SWSR) 16 bits
010 SIU Interrupt Pending Register (SIPEND) 32 bits
014 SIU Interrupt Mask Register (SIMASK) 32 bits
018 SIU Interrupt Edge/Level Register (SIEL) 32 bits
01C SIU Interrupt Vector Register (SIVEC) 32 bits
020 Transfer Error Status Register (TESR) 32 bits
…. …. ….0000 0000

FFFF  FFFF

Figure 3.48b: MPC860 registers within a memory map.[3.39]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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Within this memory map, an architecture may defi ne multiple address spaces accessible
to only certain types of information. For example, some processors may require at a specifi c 
location—or given a random location—a set of offsets to be reserved as space for its own 
internal registers (see Figure 3.48b). The processor may also allow specifi c address spaces 
accessible to only internal I/O functionality, instructions (programs), and/or data.

3.3.3 Processor Input/Output (I/O)

Input/output components of a processor are responsible for moving information to and from 
the processor’s other components to any memory and I/O outside the processor, on the board 
(see Figure 3.49). Processor I/O can be input components that only bring information into the 
master processor, output components that bring information out of the master processor, or 
components that do both (refer back to Figure 3.48).

Master Processor

Memory

OutputInput

Output Input

Memory

CPU

Embedded System Board

5 System Components Commonly Connected Via Buses

Brings Data Into the 
Embedded System

Data From CPU or Input Devices 
Stored in Memory

Until a CPU or Output Device Request

Gets Data Out if the Embedded System

Controls Usage and Manipulation of Data

Figure 3.49: Processor I/O diagram.

Virtually any electromechanical system, embedded and nonembedded, conventional (key-
board, mouse, etc.) as well as unconventional (power plants, human limbs, etc.), can be con-
nected to an embedded board and act as an I/O device. I/O is a high-level group that can be 
subdivided into smaller groups of either output devices, input devices, or devices that are both 
input and output devices. Output devices can receive data from board I/O components and 
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display that data in some manner, such as printing it to paper, to a disk, or to a screen or a 
blinking LED light for a person to see. An input device transmits data to board I/O compo-
nents, such as a mouse, keyboard, or remote control. I/O devices can do both, such as a net-
working device that can transmit data to and from the Internet, for instance. An I/O device 
can be connected to an embedded board via a wired or wireless data transmission medium, 
such as a keyboard or remote control, or can be located on the embedded board itself, such 
as an LED.

Because I/O devices can be such a wide variety of electromechanical systems, ranging 
from simple circuits to another embedded system entirely, processor I/O components 
can be organized into categories based on the functions they support, the most common 
including:

• Networking and communications I/O (the physical layer of the OSI model)

• Input (keyboard, mouse, remote control, voice, etc.)

• Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

• Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape control-
lers, etc.)

• Debugging I/O (BDM, JTAG, serial port, parallel port, etc.)

• Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and 
digital-to-analog converters, key switches, and so on)

In short, an I/O subsystem can be as simple as a basic electronic circuit that connects the mas-
ter processor directly to an I/O device (such as a master processor’s I/O port to a clock or LED 
located on the board) to more complex I/O subsystem circuitry that includes several units, as 
shown in Figure 3.50. I/O hardware is typically made up of all or some combination of six 
main logical units:

• The transmission medium, wireless or wired medium connecting the I/O device to the 
embedded board for data communication and exchanges.

• A communication port, which is what the transmission medium connects to on the 
board, or if a wireless system, what receives the wireless signal.

• A communication interface, which manages data communication between master 
CPU and I/O device or I/O controller; also responsible for encoding data and 
decoding data to and from the logical level of an IC and the logical level of the I/O 
port. This interface can be integrated into the master processor, or can be a 
separate IC.

• An I/O controller, a slave processor that manages the I/O device.
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• I/O buses, the connection between the board I/O and master processor.

• The master processor integrated I/O.

This means that the I/O on the board can range from a complex combination of components, 
as shown in Figure 3.51a, to a few integrated I/O board components, as shown in 
Figure 3.51b.
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Figure 3.50: Ports and device controllers on an embedded board.
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Figure 3.51a: Complex I/O subsystem.

Ch03-H8584.indd   115Ch03-H8584.indd   115 8/17/07   12:10:43 PM8/17/07   12:10:43 PM



116   Chapter 3

www.newnespress.com

I/O controllers are a type of processor (see Section 3.2, “ISA Architecture Models”). An I/O 
device can be connected directly to the master processor via I/O ports (processor pins) if the 
I/O devices are located on the board, or it can be connected indirectly via a communication 
interface integrated into the master processor or a separate IC on the board.

As shown in the sample circuit in Figure 3.52, an I/O pin is typically connected to some type 
of current source and switching device. In this example it’s a MOSFET transistor. This sample 
circuit allows for the pin to be used for both input and output. When the transistor is turned 
OFF (open switch), the pin acts as an input pin, and when the switch is ON it operates as an 
output port.

+V

I/O Port (Pin)

Master CPU

the master processor
integrated I/O

Embedded Board

I/O Device
(LED)

Figure 3.51b: Simple I/O subsystem.[3.40]

I/O Pin 

+V

INPUT OUTPUT

Figure 3.52: I/O port sample circuit.[3.41]

A pin or sets of pins on the processor can be programmed to support particular I/O functions 
(for example, Ethernet port receiver, serial port transmitter, bus signals, etc.), through a master 
processor’s control registers (see Figure 3.53).
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Within the various I/O categories (networking, debugging, storage, and so forth), processor 
I/O is typically subgrouped according to the way data is managed. Note that the actual sub-
groups may be entirely different, depending on the architecture viewpoint, as related to the 
embedded systems model. Here “viewpoint” means that hardware and software can view 
(and hence subgroup) I/O differently. Within software, the subgroups can even differ depend-
ing on the level of software (i.e., system software versus application software, operating 
system versus device drivers, and so on). For example, in many operating systems, I/O is con-
sidered to be either block or character I/O. Block I/O stores and transmits data in fi xed block 
sizes and is addressable only in blocks. Character I/O, on the other hand, manages data in 
streams of characters, the size of the character depending on the architecture—such as 
one byte, for example.

From a hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel, 
or both.
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Figure 3.53: MPC860 reference platform and I/O.[3.42]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Note: In the case of the MPC860, the I/O such as Ethernet and RS-232 is implemented 
by the SCC registers, RS-232 by SMC2, and so on.
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3.3.3.1 Managing I/O Data: Serial vs. Parallel I/O

Processor I/O that can transmit and receive serial data is made up of components in which data 
is stored, transferred, and/or received one bit at a time. Serial I/O hardware is typically made 
up of some combination of the six main logical units outlined at the start of the chapter; serial 
communication then includes within its I/O subsystem a serial port and a serial interface.

Serial interfaces manage the serial data transmission and reception between the master CPU 
and either the I/O device or its controller. They include reception and transmission buffers to 
store and encode or decide the data they are responsible for transmitting to either the master 
CPU or an I/O device. In terms of serial data transmission and reception schemes, they gener-
ally differ as to the direction in which data can be transmitted and received, as well as in the 
actual process of how the data bits are transmitted (and thus received) within the data stream.

Data can be transmitted between two devices in one of three directions: one way, in both direc-
tions but at separate times because they share the same transmission line, and in both direc-
tions simultaneously. A simplex scheme for serial I/O data communication is one in which a 
data stream can only be transmitted—and thus received—in one direction (see Figure 3.54a). 
A half-duplex scheme is one in which a data stream can be transmitted and received in either 
direction, but in only one direction at any one time (see Figure 3.54b). A full-duplex scheme is 
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Serial Port Serial Port
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Figure 3.54a: Simplex transmission scheme example.[3.43]
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Figure 3.54b: Half-duplex transmission scheme example.[3.43]
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one in which a data stream can be transmitted and received in either direction, simultaneously 
(see Figure 3.54c).
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Figure 3.54c: Full-duplex transmission scheme example.[3.43]

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous) 
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous transfer, 
or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

In an asynchronous transfer (shown in Figure 3.55), the data being transmitted can be stored 
and modifi ed within a serial interface’s transmission buffer or registers. The serial interface 
at the transmitter divides the data stream into packets that typically range from either 4–8 or 
5–9 bits, the number of bits per character. Each of these packets is then encapsulated in frames 
to be transmitted separately. The frames are packets that are modifi ed before transmission by 
the serial interface to include a START bit at the start of the stream, and a STOP bit or bits 
(i.e., can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit 
of the next frame) at the end of the data stream being transmitted. Within the frame, after the 

0      
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IdleIdle Embedded System
Receiver

Sampling in middle
of data bit period

STOP
bit (s) 8 data bits

0      0      1      1      1      1      1      
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bit

Embedded System
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Figure 3.55: Asynchronous transfer sample diagram.
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data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates 
the start of a frame, the STOP bit(s) indicates the end of a frame, and the parity is an optional 
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE 
(for no parity bit and thus no error checking), EVEN (where the total number of bits set to “1” 
in the transmitted stream, excluding the START and STOP bits, needs to be an even number 
for the transmission to be a success), or ODD (where the total number of bits set to “1” in the 
transmitted stream, excluding the START and STOP bits, needs to be an odd number for the 
transmission to be a success).

Between the transmission of frames, the communication channel is kept in an idle state, mean-
ing a logical level “1” or non-return to zero (NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of 
a frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer 
until reaching the STOP bit (s). For asynchronous transmission to work, the bit rate (band-
width) has to be synchronized in all serial interfaces involved in the communication.
Bit rate is defi ned as:

(number of actual data bits per frame / total number of bits per frame) * baud rate

The baud rate is the total number of bits, regardless of type, per unit of time (kbits/sec,
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with sepa-
rate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts when 
transmission of a new frame starts, and it continues until the end of the frame so that the data 
stream is sent at intervals the receiver can process. At the receiving end, the clock starts with 
the reception of a new frame, delaying when appropriate, in accordance with the bit rate, sam-
pling the middle of each data bit period of time, and then stopping when the frame’s STOP 
bit(s) are received.

In a synchronous transmission (as shown in Figure 3.56), there are no START or STOP bits 
appended to the data stream, and there is no idle period. As with asynchronous transmissions, 

…………    0 0 1 1 1 0 1 1 0  ………..

LSBMSB

Next FrameEmbedded System
Transmitter

Serial Frame

Previous Frame Embedded System
Receiver

Figure 3.56: Synchronous transfer sample diagram.
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the data rates on receiving and transmitting have to be in sync. However, unlike the separate 
clocks used in an asynchronous transfer, the devices involved in a synchronous transmission 
are synchronizing off one common clock that does not start and stop with each new frame 
(and on some boards there may be an entirely separate clock line for the serial interface to 
coordinate the transfer of bits). In some synchronous serial interfaces, if there is no separate 
clock line, the clock signal may even be transmitted along with the data bits.

The universal asynchronous receiver-transmitter (UART) is an example of a serial interface 
that does asynchronous serial transmission, whereas serial peripheral interface (SPI) is an 
example of a synchronous serial interface.

Serial interfaces can either be separate slave ICs on the board or integrated onto the master 
processor. The serial interface transmits data to and from an I/O device via a serial port (see 
Chapter 4). Serial ports are serial communication (COM) interfaces that are typically used to 
interconnect off-board serial I/O devices to on-board serial board I/O. The serial interface is 
then responsible for converting data that is coming to and from the serial port at the logic level 
of the serial port into data that the logic circuitry of the master CPU can process.

3.3.3.2 Processor Serial I/O Example 1:

An Integrated Universal Asynchronous Receiver-Transmitter
The UART is an example of a full-duplex serial interface that can be integrated into the master 
processor and that does asynchronous serial transmission. As mentioned earlier, the UART 
can exist in many variations and under many names; however, they are all based on the same 
design: the original 8251 UART controller implemented in older PCs. A UART (or something 
like it) must exist on both sides of the communication channel, in the I/O device as well as on 
the embedded board, in order for this communication scheme to work.

In this example, we look at the MPC860 internal UART scheme, since it has more than one 
way to implement a UART. The MPC860 allows for two methods to confi gure a UART,
either using a serial communication controller (SCC) or a serial management controller 
(SMC). Both of these controllers reside in the PowerPC’s Communication Processor
Module (shown in Figure 3.57) and can be confi gured to support a variety of communication 
schemes, such as Ethernet, HDLC, and the like for the SCC and transparent, GCI, and so on 

Note: Different architectures that integrate a UART or other types of serial interfaces can 
have varying names for the same type of interface, such as the MPC860, which has serial 
management controller (SMC) UARTs, for example. Review the relevant documentation 
to understand the specifi cs.
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for SMCs. In this example, however, we are only examining both being confi gured and func-
tioning as a UART.

MPC860 SCC in UART Mode
As introduced at the start of this section, in an asynchronous transfer, the data being transmit-
ted can be stored and modifi ed within a serial interface’s transmission buffer. With the SCCs 
on the MPC860, there are two UART fi rst-in/fi rst-out (FIFO) buffers, one for receiving data 
for the processor and one for transmitting data to external I/O (see Figures 3.58a and b). Both 
buffers are typically allocated space in main memory.
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Figure 3.57: MPC860 UARTs.[3.44]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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Figure 3.58a: SCC in receive mode.[3.45]
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As shown in Figures 3.58a and b, along with the reception and transmission buffers there are 
control registers to defi ne the baud rate, the number of bits per character, the parity, and the 
length of the stop bit, among other things. As shown in Figures 3.58a and b as well as 3.59, 
there are fi ve pins, extending out from the PowerPC chip, that the SCC is connected to for 
data transmission and reception: transmit (TxD), receive (RxD), carrier detect (CDx), collision 
on the transceiver (CTSx), and request-to-send (RTS). The way these pins work together is 
described in the next few paragraphs.
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DPLL
and Clock
Recovery

Receive
Data
FIFO

Transmit
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FIFO

SDMA

Delimiter Shifter Shifter Delimiter Encoder

Figure 3.58b: SCC in transmit mode.[3.45]

SCC Pin Summary

PA[15] / RXD1

* TXDx - transmit pins

* RTSx - request-to-send pins

* RXDx - receive pins
* CDx - carrier detect pins
* CTSx - clear-to-send pins

PA[14] / TXD1
PC[10] / CD1*/TGATE 1
PC[11] / CTS1*

PA[13] / RXD2
PA[12] / TSD2

PC[9] / CTS2*

PD[11] / RXD3
PD[10] / TSD3

PD[7] / RTS3*
PD[9] / RXD4
PD[8] / TXD4

PD[6] / RTS4*

PC[4] / CD4* / L1RSYNCA
PC[5] / CTS4* / SDACK1 / L1TSYNCA

PC[7] / CTS3* / SDACK2 / L1TSYNCB
PC[6] / CD3* / L1RSYNCB

PB[18] / RTS2* / L1ST1 or PC[14] / RTS2* / L1ST2 / DREQ1

PC[8] / CD2* / TGATE2

PB[19] / RTS1*/L1ST1 or PC[15]/RTS1*/L1ST1 / DREQ0

Figure 3.59: SCC pinouts.[3.46]
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In either receive or transmit modes, the internal SCC clock is activated. In asynchronous 
transfers, every UART has its own internal clock that, though unsynchronized with the
clock in the UART of the external I/O device, is set at the same baud rate as that of the UART 
it is in communication with. The carrier detect (CDx) is then asserted to allow the SCC to 
receive data, or the collision on the transceiver (CTSx) is asserted to allow the SCC to
transmit data.

As mentioned, data is encapsulated into frames in asynchronous serial transmissions. When 
transmitting data, the SDMA transfers the data to the transmit FIFO and the request-to-send 
pin asserts (because it is a transmit control pin and asserts when data is loaded into the trans-
mit FIFO). The data is then transferred (in parallel) to the shifter. The shifter shifts the data 
(in serial) into the delimiter, which appends the framing bits (i.e., start bits, stop bits, and so 
on). The frame is then sent to the encoder for encoding before transmission. In the case of an 
SCC receiving data, the framed data is then decoded by the decoder and sent to the delimiter 
to strip the received frame of nondata bits, such as start bit, stop bit(s), and so on. The data 
is then shifted serially into the shifter, which transfers (in parallel) the received data into the 
receive data FIFO. Finally, the SDMA transfers the received data to another buffer for contin-
ued processing by the processor.

MPC860 SMC in UART Mode
As shown in Figure 3.60a, the internal design of the SMC differs greatly from the internal 
design of the SCC (shown in Figures 3.58a and b), and in fact has fewer capabilities than 
an SCC. An SMC has no encoder, decoder, delimiter, or receive/transmit FIFO buffers. 
It uses registers instead. As shown in Figure 3.60b, there are only three pins that an SMC 
is connected to: a transmit pin (SMTXDx), a receive pin (SMRXDx), and sync signal pin 
(SMSYN). The sync pin is used in transparent transmissions to control receive and transmit 
operations.
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Figure 3.60a: SMC.[3.47]
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Data is received via the receive pin into the receive shifter, and the SDMA then transfers the 
received data from the receive register. Data to be transmitted is stored in the transmit register 
and then moved into the shifter for transmission over the transmit pin. Note that the SMC does 
not provide the framing and stripping of control bits (i.e., start bit, stop bit[s], and so on) that 
the SCC provides.

Processor Serial I/O Example: An Integrated Serial Peripheral Interface (SPI)
The SPI is an example of a full-duplex serial interface that can be integrated into the master 
processor and that does synchronous serial transmission. Like the UART, an SPI needs to 
exist on both sides of the communication channel (in the I/O device as well as on the embed-
ded board) in order for this communication scheme to work. In this example, we examine the 
MPC860 internal SPI, which resides in the PowerPC’s Communication Processor Module 
(shown in Figure 3.61).

*SMTXDx - transmit pins
*SMRXDx - receive pins

PB[24]/SMRXD1
PB[25]/SMTXD1
PB[23]/SMSYN1/SDACK1
PB[20]/SMRXD2/L1CLKOA
PB[21]/SMTXD2/L1CLKOB
PB[22]/SMSYN2/SDACK2

*SMSYNx - synch signal pins for transparent

Figure 3.60b: SMC pins.[3.47]
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Figure 3.61: MPC860 SPI.[3.48]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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In a synchronous serial communication scheme, both devices are synchronized by the
same clock signal generated by one of the communicating devices. In such a case, a mas-
ter-slave relationship develops in which the master generates the clock signal which it and 
the slave device, adheres to. It is this relationship that is the basis of the four pins that the 
MPC860 SPI is connected to (as shown in Figure 3.62b): the master out/slave in or transmit 
(SPIMOSI), master in/slave out or receive (SPIMISO), clock (SPICLK), and slave select 
(SPISEL).

Control Registers

U-Bus

SDMA

Peripheral Bus

Receive RegTransmit RegSPI Mode Reg

Shift_Register
TXD

BRGCLK

SPI BRGPins Interface

IN CLK

RXD

Counter3 1

2

SPISEL* SPIMOSI SPIMISO SPICLK

Figure 3.62a: SPI.[3.49]

* SPIMOSI - master out, slave in pin
* SPIMOSI - master in, slave out pin
* SPICLK - SPI clock pin

PB[30]/SPICLK
PB[31]/SPISEL*/REJECT1*

PB[28]/SPIMISO/BRGO4
PB[29]/SPIMOSI

Clock

SPIMOSI

SPIMISO

SPISEL*

* SPISEL - SPI slave select pin, used when 860 SPI is in slave mode

Figure 3.62b: SPI pins.[3.49]

When the SPI operates in a master mode, it generates the clock signals, while in slave mode, 
it receives clock signals as input. SPIMOSI in master mode is an output pin, SPMISO in 
master mode is an input pin, SPICLK supplies an output clock signal in master mode that 
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synchronizes the shifting of received data over the SPIMISO pin or shifts out transmitted 
data over SPIMOSI. In slave mode, SPIMOSI is an input pin, SPIMISO is an output pin, and 
SPICLK receives a clock signal from the master synchronizing the shifting of data over the 
transmit and receive pins. The SPISEL is also relevant in slave mode because it enables input 
into the slave.

The way these pins work together, along with the internal components of the SPI, is shown 
in Figure 3.62a. Essentially, data is received or transmitted via one shift register. If data is 
received, it is then moved into a receive register. The SDMA then transfers the data into a 
receive buffer that usually resides in main memory. In the case of a data transmission, the 
SDMA moves the data to be transmitted from the transfer buffer in main memory to the trans-
mit register. SPI transmission and reception occurs simultaneously; as data is received into the 
shift register, it shifts out data that needs to be transmitted.

3.3.3.2 Parallel I/O

I/O components that transmit data in parallel allow data to be transferred in multiple bits 
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of some 
combination of six main logical units, as introduced at the start of this chapter, except that the 
port is a parallel port and the communication interface is a parallel interface.

Parallel interfaces manage the parallel data transmission and reception between the master 
CPU and either the I/O device or its controller. They are responsible for decoding data bits 
received over the pins of the parallel port, transmitted from the I/O device, and receiving data 
being transmitted from the master CPU, and then encoding these data bits onto the parallel 
port pins.

They include reception and transmission buffers to store and manipulate the data they are 
responsible for transmitting either to the master CPU or an I/O device. Parallel data transmis-
sion and reception schemes, like serial I/O transmission, generally differ in terms of the direc-
tion in which data can be transmitted and received as well as the actual process of how the 
data bits are transmitted (and thus received) within the data stream. In the case of direction of 
transmission, as with serial I/O, parallel I/O uses simplex, half-duplex, or full-duplex modes. 
Again, like serial I/O, parallel I/O can be transmitted asynchronously or synchronously. 
Unlike serial I/O, parallel I/O does have a greater capacity to transmit data, because multiple 
bits can be transmitted or received simultaneously. Examples of I/O devices that transfer and 
receive data in parallel include IEEE1284 controllers (for printer/display I/O devices), CRT 
ports, and SCSI (for storage I/O devices).

3.3.3.3 Interfacing the Master Processor with an I/O Controller

When the communication interface is integrated into the master processor, as is the case with 
the MPC860, it is a matter of connecting the identical pins for transmitting data and receiving 
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data from the master processor to an I/O controller. The remaining control pins are then con-
nected according to their function. In Figure 3.63a, for instance, the request to send (RTS) on the 
PowerPC is connected to transmit enable (TENA) on the Ethernet controller, since RTS is auto-
matically asserted if data is loaded into the transmit FIFO, indicating to the controller that data 
is on its way. The collision on the transceiver (CTS) on the PowerPC is connected to the clear to 
send (CLSN) on the Ethernet controller, and the carrier detect (CD) is connected to the receive 
enable (RENA) pin, since when either CD or CTS is asserted, a transmission or data reception 
can take place. If the controller does not clear to send or receive enable to indicate data is on its 
way to the PowerPC, no transmission or reception can take place. Figure 3.63b shows a MPC860 
SMC interfaced to an RS-232 IC, which takes the SMC signals (transmit pin [SMTXDx] and 
receive pin [SMRXDx]) and maps them to an RS-232 port in this example.

Finally, Figure 3.63c shows an example of a PowerPC SPI in master mode interfaced with 
some slave IC, in which the SPIMISO (master in/slave out) is mapped to SPISO (SPI slave 

MPC860 TXD1

RTS1*
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RXD1

CD1*

CLKm

CTS1*

TX

TENA

TCLK

RX

RENA

RCLK

CLSN

TPTX�

TPRX�

TPRX�

TPTX�

MC68160

Figure 3.63a: MPC860 SCC UART interfaced to Ethernet controller.[3.50]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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Figure 3.63b: MPC860 SMC interfaced to RS-232.[3.50]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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out). Since in master mode SPIMISO is an input port, SPIMOSI (master out/slave in) is 
mapped to SPISI (slave in). Since SPIMOSI in master mode is an output port, SPICLK is 
mapped to SPICK (clock) because both ICs are synchronized according to the same clock, 
and SPISEL is mapped to SPISS (Slave Select input), which is only relevant if the PowerPC 
is in slave mode. If it were the other way around (that is, PowerPC in slave mode and slave
IC in master mode), the interface would map identically.

Finally, for a subsystem that contains an I/O controller to manage the I/O device, the interface 
between an I/O controller and master CPU (via a communications interface) is based on four 
requirements:

• An ability for the master CPU to initialize and monitor the I/O controller. I/O 
controllers can typically be confi gured via control registers and monitored via status 
registers. These registers are all located on the I/O controller itself. Control registers 
can be modifi ed by the master processor to confi gure the I/O controller. Status 
registers are read-only registers in which the master processor can get information 
as to the state of the I/O controller. The master CPU uses these status and control 
registers to communicate and/or control attached I/O devices via the I/O controller.

• A way for the master processor to request I/O. The most common mechanisms used 
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/O mapped) in the ISA and memory-mapped I/O, in which the I/O controller 
registers have reserved spaces in main memory.

• A way for the I/O device to contact the master CPU. I/O controllers that have the abil-
ity to contact the master processor via an interrupt are referred to as interrupt-driven 
I/O. Generally, an I/O device initiates an asynchronous interrupt requesting signaling 
to indicate (for example) that control and status registers can be read from or written 
to. The master CPU then uses its interrupt scheme to determine when an interrupt will 
be discovered.

Interface
Example MPC860 MCM2814

EEPROM

SPISO

SPISI

SPICK

SPISS

SPIMISO

SPIMOSI

SPICLK

Port Pin

Figure 3.63c: MPC860 SPI interfaced to ROM.[3.50]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.
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• Some mechanism for both to exchange data. This refers to the process by which
data is actually exchanged between the I/O controller and the master processor.
In a programmed transfer, the master processor receives data from the I/O control-
ler into its registers, and the CPU then transmits this data to memory. For memory-
mapped I/O schemes, DMA (direct memory access) circuitry can be used to bypass 
the master CPU entirely. DMA has the ability to manage data transmissions or 
receptions directly to and from main memory and an I/O device. On some systems, 
DMA is integrated into the master processor, and on others there is a separate 
DMA controller.

3.3.4 Processor Buses

Like the CPU buses, the processor’s buses interconnect the processor’s major internal com-
ponents (in this case the CPU, memory, and I/O, as shown in Figure 3.64), carrying signals 
between the various components.
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Figure 3.64: MPC860 processor buses.[3.51]

Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

Note: In the case of the MPC860, the processor buses include the U-bus interconnecting 
the system interface unit (SIU), the communications processor module (CPM), and the 
PowerPC core. Within the CPM there is a peripheral bus as well. Of course, this includes 
the buses within the CPU.

Ch03-H8584.indd   130Ch03-H8584.indd   130 8/17/07   12:10:52 PM8/17/07   12:10:52 PM



 Embedded Processors   131

www.newnespress.com

A key feature of processor buses is their width, which is the number of bits that can be trans-
mitted at any one time. This can vary depending on both the buses implemented within the 
processor—for example: x86 contains bus widths of 16/32/64, 68K has 8/16/32/ 64 bit buses, 
MIPS 32 has 32 bit buses, and so forth—as well as the ISA register size defi nitions. Each 
bus also has a bus speed (in MHz)  that impacts the performance of the processor. Buses 
implemented in real-world processor designs include the U, peripheral, and CPM buses in the 
MPC8xx family of processors and the C and X buses in the x86 Geode.

To avoid redundancy, buses are covered in more detail in Chapter 4, and more examples are 
provided there.

3.4 Processor Performance

There are several measures of processor performance, but are all based on the processor’s 
behavior over a given length of time. One of the most common defi nitions of processor per-
formance is a processor’s throughput, the amount of work the CPU completes in a given 
period of time.

A processor’s execution is ultimately synchronized by an external system or master clock, 
located on the board. The master clock is simply an oscillator producing a fi xed frequency 
sequence of regular on/off pulse signals that is usually divided or multiplied within the CPU’s 
CU (control unit) to generate at least one internal clock signal running at a constant number 
of clock cycles per second, or clock rate, to control and coordinate the fetching, decoding, and 
execution of instructions. The CPU’s clock rate is expressed in MHz (megahertz).

Using the clock rate, the CPU’s execution time, which is the total time the processor takes 
to process some program in seconds per program (total number of bytes), can be calculated. 
From the clock rate, the length of time a CPU takes to complete a clock cycle is the inverse of 
the clock rate (1/clock rate), called the clock period or cycle time and expressed in seconds per 
cycle. The processor’s clock rate or clock period is usually located in the processor’s specifi ca-
tion documentation.

Looking at the instruction set, the CPI (average number of clock cycles per instruction) can be 
determined in several ways. One way is to obtain the CPI for each instruction (from the proc-
essor’s instruction set manual) and multiply that by the frequency of that instruction, then add 
up the numbers for the total CPI.

CPI � Σ (CPI per instruction * instruction frequency)

At this point the total CPU’s execution time can be determined by:

CPU execution time in seconds per program � (total number of 
instructions per program or instruction count) * (CPI in number 
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of cycle cycles / instruction) * (clock period in seconds per 
cycle) � ((instruction count) * (CPI in number of cycle cycles / 
instruction)) / (clock rate in MHz)

The processor’s average execution rate, also referred to as throughput or bandwidth, refl ects 
the amount of work the CPU does in a period of time and is the inverse of the CPU’s execu-
tion time:

CPU throughput (in bytes/sec or MB/sec) � 1 / CPU execution
time � CPU performance

Knowing the performance of two architectures (Geode and SA-1100, for example), the spee-
dup of one architecture over another can then be calculated as follows:

Performance(Geode) / Performance (SA-1100) � Execution Time
(SA-1100) / Execution Time (Geode) � X

Therefore, Geode is X times faster than SA-1100.

Other defi nitions of performance besides throughput include:

• A processor’s responsiveness, or latency, which is the length of elapsed time a 
processor takes to respond to some event

• A processor’s availability, which is the amount of time the processor runs normally 
without failure; reliability, the average time between failures or MTBF (mean time 
between failures); and recoverability, the average time the CPU takes to recover from 
failure or mean time to recover (MTTR)

On a fi nal note, a processor’s internal design determines a processor’s clock rate and the CPI; 
thus a processor’s performance depends on which ISA is implemented and how the ISA is 
implemented. For example, architectures that implement Instruction-level Parallelism ISA 
models have better performance over the application-specifi c and general-purpose based 
processors due to the parallelism that occurs within these architectures. Performance can be 
improved because of the actual physical implementations of the ISA within the processor, 
such as implementing pipelining in the ALU.

Note: There are variations on the full adder that provide additional performance 
improvements, such as the carry lookahead adder (CLA), carry completion adder, con-
ditional sum adder, carry select adder, and so on. In fact, some algorithms that can 
improve the performance of a processor do so by designing the ALU to be able to proc-
ess logical and mathematical instructions at a higher throughput—a technique called 
pipelining.

Ch03-H8584.indd   132Ch03-H8584.indd   132 8/17/07   12:10:53 PM8/17/07   12:10:53 PM



 Embedded Processors   133

www.newnespress.com

The increasing gap between the performance of processors and memory can be improved by 
cache algorithms that implement instruction and data prefetching (especially algorithms that 
use branch prediction to reduce stall time) and lockup-free caching. Basically, any design fea-
ture that allows for either an increase in the clock rate or a decrease in the CPI will increase 
the overall performance of a processor.

3.4.1 Benchmarks

One of the most common performance measures used for processors in the embedded market 
is millions of instructions per seconds, or MIPS.

MIPS � Instruction Count / (CPU execution time * 106) � Clock 
Rate / (CPI * 106)

The MIPS performance measure gives the impression that faster processors have higher 
MIPS values, since part of the MIPS formula is inversely proportional to the CPU’s execution 
time. However, MIPS can be misleading in terms of this assumption for a number of reasons, 
including:

• Instruction complexity and functionality aren’t taken into consideration in the MIPS 
formula, so MIPS cannot compare the capabilities of processors with different ISAs.

• MIPS can vary on the same processor running different programs (with varying 
instruction count and different types of instructions).

Software programs called benchmarks can be run on a processor to measure its performance.
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Embedded Board Buses and I/O
Tammy Noergaard

CHAPTER 4

4.1 Board I/O

Input/output (I/O) components on a board are responsible for moving information into and 
out of the board to I/O devices connected to an embedded system. Board I/O can consist of 
input components, which only bring information from an input device to the master processor; 
output components, which take information out of the master processor to an output device; or 
components that do both (see Figure 4.1).

Any electromechanical system, both embedded and nonembedded and whether conventional 
or unconventional, can be connected to an embedded board and act as an I/O device. I/O is a 
high-level group that can be subdivided into smaller groups of output devices, input devices, 
and devices that are both input and output devices. Output devices receive data from board 
I/O components and display that data in some manner, such as printing it to paper, to a disk, 
or to a screen or a blinking LED light for a person to see. An input device such as a mouse, 

Figure 4.1: Von Neumann-based I/O block diagram.
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keyboard, or remote control transmits data to board I/O components. Some I/O devices can do 
both, such as a networking device that can transmit data to and from the Internet, for instance. 
An I/O device can be connected to an embedded board via a wired or wireless data transmis-
sion medium such as a keyboard or remote control or can be located on the embedded board 
itself, such as an LED.

Because I/O devices are so varied, ranging from simple circuits to other complete embedded 
systems, board I/O components can fall under one or more of several different categories, the 
most common including:

• Networking and communications I/O (the physical layer of the OSI model)

• Input (keyboard, mouse, remote control, vocal, etc.)

• Graphics and output I/O (touch screen, CRT, printers, LEDs, etc.)

• Storage I/O (optical disk controllers, magnetic disk controllers, magnetic tape control-
lers, etc.)

• Debugging I/O (BDM, JTAG, serial port, parallel port, etc.)

• Real-time and miscellaneous I/O (timers/counters, analog-to-digital converters and 
digital-to-analog converters, key switches, and so on)

In short, board I/O can be as simple as a basic electronic circuit that connects the master proc-
essor directly to an I/O device, such as a master processor’s I/O port to a clock or LED located 
on the board, to more complex I/O subsystem circuitry that includes several units, as shown 
in Figure 4.2. I/O hardware is typically made up of all or some combination of six main 
logical units:

• The transmission medium, a wireless or wired medium connecting the I/O device to 
the embedded board for data communication and exchanges

• A communication port, to which the transmission medium connects on the board or, if 
a wireless system, which receives the wireless signal

• A communication interface, which manages data communication between master 
CPU and I/O device or I/O controller and is responsible for encoding data and decod-
ing data to and from the logical level of an IC and the logical level of the I/O port; this 
interface can be integrated into the master processor or can be a separate IC

• An I/O controller, a slave processor that manages the I/O device

• I/O buses, the connection between the board I/O and master processor

• The master processor integrated I/O
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The I/O on a board can thus range from complex combination of components, as shown in 
Figure 4.3a, to a few integrated I/O board components, as shown in Figure 4.3b.

Port
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HD Controller

HD

Printer Controller

Printer

Graphics Board 

Monitor

Other Controllers

LED

Oscillator (Clock)

…. ….

Port

Master
Processor
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Figure 4.2: Ports and device controllers on an embedded board.
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Parallel
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Figure 4.3a: Complex I/O subsystem.

The actual make-up of an I/O system implemented on an embedded board, whether using con-
nectors and ports or using an I/O device controller, is dependent on the type of I/O device con-
nected to, or located on, the embedded board. This means that, although other factors such as 
reliability and expandability are important in designing an I/O subsystem, what mainly 
dictates the details behind an I/O design are the features of the I/O device—its purpose within 
the system—and the performance of the I/O subsystem, discussed in Section 4.4.
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Within the various I/O categories—networking, debugging, storage, and so forth—board I/O is 
typically subgrouped according to the way data is managed (transmitted). Note that the actual 
subgroups may be entirely different depending on the architecture viewpoint, as related to the 
embedded systems model. “Viewpoint” means that hardware and software can view, and hence 
subgroup, board I/O differently. Within software, the subgroups can even differ depending on the 
level of software—system software versus application software, operating system versus device 
drivers, and so on. For example, in many operating systems board I/O is considered either as 
block or character I/O. In short, block I/O manages in fi xed block sizes and is addressable only 
in blocks. Character I/O, on the other hand, manages data in streams of characters, the size of the 
character depending on the architecture—such as one byte, for example.

From the hardware viewpoint, I/O manages (transmits and/or stores) data in serial, in parallel, 
or both.

4.2 Managing Data: Serial vs. Parallel I/O

Board I/O that can transmit and receive data in serial is made up of components in which data 
(characters) are stored, transferred, and received one bit at a time. Serial I/O hardware is typically 
made up of some combination of the six main logical units outlined at the start of the chapter. 
Serial communication includes within its I/O subsystem a serial port and a serial interface.

Serial interfaces manage the serial data transmission and reception between the master CPU 
and either the I/O device or its controller. They include reception and transmission buffers to 
store and encode or decode the data they are responsible for transmitting to either the mas-
ter CPU or an I/O device. Serial data transmission and reception schemes generally differ in 

Figure 4.3b: Simple I/O subsystem.
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terms of the direction in which data can be transmitted and received as well as the actual trans-
mission/reception process—in other words, the way the data bits are transmitted and received 
within the data stream.

Data can be transmitted between two devices in one of three directions: in a one-way direc-
tion, in both directions but at separate times because they share the same transmission line, 
and in both directions simultaneously. Serial I/O data communication that uses a simplex 
scheme is one in which a data stream can only be transmitted—and thus received—in one 
direction (see Figure 4.4a). A half-duplex scheme is one in which a data stream can be trans-
mitted and received in either direction but in only one direction at any one time (see Figure 
4.4b). A full-duplex scheme is one in which a data stream can be transmitted and received in 
either direction simultaneously (see Figure 4.4c).

Embedded Board

Serial Interface

Printer

Transfer Data
(TxData)

Ground (Gnd)

Serial Port Serial Port

Serial Interface

Receive Data
(RxData)

Ground (Gnd)

Figure 4.4a: Simplex transmission scheme example.
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Figure 4.4b: Half-duplex transmission scheme example.

Within the actual data stream, serial I/O transfers can occur either as a steady (continuous) 
stream at regular intervals regulated by the CPU’s clock, referred to as a synchronous transfer, 
or intermittently at irregular (random) intervals, referred to as an asynchronous transfer.

In an asynchronous transfer (shown in Figure 4.5), the data being transmitted is typically 
stored and modifi ed within a serial interface’s transmission buffer. The serial interface at the 
transmitter divides the data stream into groups, called packets, that typically range from either 
4 to 8 bits per character or 5 to 9 bits per character. Each of these packets is then encapsulated 
in frames to be transmitted separately. The frames are packets modifi ed (before transmission) 
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by the serial interface to include a START bit at the start of the stream and a STOP bit or bits 
(this can be 1, 1.5, or 2 bits in length to ensure a transition from “1” to “0” for the START bit 
of the next frame) at the end of the data stream being transmitted. Within the frame, after the 
data bits and before the STOP bit, a parity bit may also be appended. A START bit indicates 
the start of a frame, the STOP bit(s) indicate the end of a frame, and the parity is an optional 
bit used for very basic error checking. Basically, parity for a serial transmission can be NONE, 
for no parity bit and thus no error checking; EVEN, where the total number of bits set to “1” 
in the transmitted stream, excluding the START and STOP bits, must be an even number in 
order for the transmission to be a success; and ODD, where the total number of bits set to “1” 
in the transmitted stream, excluding the START and STOP bits, must be an odd number in 
order for the transmission to be a success. Between the transmission of frames, the commu-
nication channel is kept in an idle state, meaning that a logical level “1” or nonreturn to zero 
(NRZ) state is maintained.

The serial interface of the receiver then receives frames by synchronizing to the START bit of a 
frame, delays for a brief period, and then shifts in bits, one at a time, into its receive buffer until 
reaching the STOP bit (s). For asynchronous transmission to work, the bit rate (bandwidth) 

Figure 4.4c: Full-duplex transmission scheme example.
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Figure 4.5: Asynchronous transfer sample diagram.
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has to be synchronized in all serial interfaces involved in the communication. The bit rate is 
defi ned as:

(number of actual data bits per frame / total number of bits per frame) * baud rate

The baud rate is the total number of bits (regardless of type) per some unit of time (kbits/sec, 
Mbits/sec, etc.) that can be transmitted.

Both the transmitter’s serial interface and the receiver’s serial interface synchronize with sepa-
rate bit-rate clocks to sample data bits appropriately. At the transmitter, the clock starts when 
transmission of a new frame starts and continues until the end of the frame so that the data 
stream is sent at intervals the receiver can process. At the receiving end, the clock starts with 
the reception of a new frame, delaying when appropriate (in accordance with the bit rate) and 
then sampling the middle of each data bit period of time and then stopping when receiving the 
frame’s STOP bit(s).

Note: Various architectures that integrate a UART or other types of serial interfaces may 
have different names and types for the same type of interface, such as the MPC860, 
which has serial management controller (SMC) UARTs, for example. Review the relevant 
documentation to understand the specifi cs.

In a synchronous transmission (as shown in Figure 4.6), there are no START or STOP bits 
appended to the data stream, and there is no idle period. As with asynchronous transmissions, 
the data rates for receiving and transmitting must be in sync. However, unlike the separate 
clocks used in an asynchronous transfer, the devices involved in a synchronous transmis-
sion are synchronizing off one common clock, which does not start and stop with each new 
frame. On some boards, there may be an entirely separate clock line for the serial interface to 
coordinate the transfer of bits. In some synchronous serial interfaces, if there is no separate 
clock line, the clock signal may even be transmitted along with the data bits. The universal 
asynchronous receiver-transmitter (UART) is an example of a serial interface that does asyn-
chronous serial transmission, whereas serial peripheral interface (SPI) is an example of a syn-
chronous serial interface.

Figure 4.6: Synchronous transfer sample diagram.
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Serial interfaces can either be separate slave ICs on the board or integrated onto the mas-
ter processor. The serial interface transmits data to and from an I/O device via a serial port 
(shown in Figures 4.4a, b, and c). Serial ports are serial communication (COM) interfaces 
that are typically used to interconnect off-board serial I/O devices to on-board serial board 
I/O. The serial interface is then responsible for converting data that is coming to and from the 
serial port at the logic level of the serial port into data that the logic circuitry of the master 
CPU can process.

One of the most common serial communication protocols defi ning how the serial port is 
designed and what signals are associated with the different bus lines is RS-232.

4.2.1 Serial I/O Example 1: Networking and Communications: RS-232

One of the most widely implemented serial I/O protocols for either synchronous or asynchro-
nous transmission is the RS-232 or EIA-232 (Electronic Industries Association-232), which is 
primarily based on the EIA family of standards. These standards defi ne 
the major components of any RS-232 based system, which is implemented almost 
entirely in hardware.

The hardware components can all be mapped to the physical layer of the OSI model (see 
Figure 4.7). The fi rmware (software) required to enable RS-232 functionality maps to the 
lower portion of the data link but will not be discussed in this section.

According to the EIA-232 standards, RS-232 compatible devices (shown in Figure 4.8) are 
called either Data Terminal Equipment (DTE) or Data Circuit-terminating Equipment (DCE). 
DTE devices are the initiators of a serial communication, such as a PC or embedded board. 
DCE is the device that the DTE wants to communicate with, such as an I/O device connected 
to the embedded board.

Figure 4.7: OSI model.
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The core of the RS-232 specifi cation is called the RS-232 interface (see Figure 4.9). The RS-
232 interface defi nes the details of the serial port and the signals, along with some additional 
circuitry that maps signals from a synchronous serial interface (such as SPI) or an asynchro-
nous serial interface (such as UART) to the serial port and by extension to the I/O device 
itself. By defi ning the details of the serial port, RS-232 also defi nes the transmission medium, 
which is the serial cable. The same RS-232 interface must exist on both sides of a serial com-
munication transmission (DTE and DCE or embedded board and I/O device), connected by an 
RS-232 serial cable, in order for this scheme to work.

DTE
Embedded System 1

Transmission Medium DCE
Embedded System 2

Figure 4.8: Serial network diagram.

RS-232 Cable

Embedded Device

Serial Port UART

RS-232 Interface

Master or Slave Processor

RS-232 System Model

Figure 4.9: Serial components block diagram.

The actual physics behind the serial port—the number of signals and their defi nitions—
differs among the different EIA232 standards. The parent RS-232 standard defi nes a total 
of 25 signals, along with a connector, called a DB25 connector, on either end of a wired 
transmission medium, shown in Figure 4.10a. The EIA RS-232 Standard EIA574 defi nes 
only nine signals (a subset of the original 25) that are compatible with a DB9 connector 
(shown in Figure 4.10b), whereas the EIA561 standard defi nes eight signals (again a subset 
of the original RS-232 25 signals) compatible with an RJ45 connector (see 
Figure 4.10c).

Two DTE devices can interconnect to each other using an internal wiring variation on serial 
cables called null modem serial cables. Since DTE devices transmit and receive data on the 
same pins, these null modem pins are swapped so that the transmit and receive connections on 
each DTE device are coordinated.
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4.2.2 Example: Motorola/Freescale MPC823 FADS Board RS-232 System Model

The serial interface on the Motorola/Freescale FADS board (a platform for hardware and 
software development around the MPC8xx family of processors) is integrated in the master 
processor, in this case the MPC823. To understand the serial port, the other major serial com-
ponent located on the board, one only has to read the board’s hardware manual.

DB25 
Pin 

Name Signal Description Voltage DTE DCE 

1 FG Frame Ground/Shield Out In
2 BA TxD Transmit Data �12 In Out
3 BB RxD Receive Data �12 Out In
4 CA RTS Request To Send �12 In Out
5 CB CTS Clear To Send �12 In Out
6 CC DSR Data Set Ready �12
7 AB SG Signal Ground 
8 CF DCD Data Carrier Detect �12 In Out
9 Positive Test Voltage 
10 Negative Test Voltage 
11 Not Assigned 
12 sDCD Secondary DCD �12 In Out
13 sCTS Secondary CTS �12 In Out
14 sTxD Secondary TxD �12 Out In
15 DB TxC DCE Transmit Clock In Out
16 sRxD Scondary RxD �12 In Out
17 DD RxC Receive Clock In Out
18 LL Local  Loopback 
19 sRTS Secondary RTS �12 Out In
20 CD DTR Data Terminal Ready �12 Out In
21 RL SQ Signal Quality �12 In Out
22 CE RI Ring Indicator �12 In Out
23 SEL Speed Selector DTE In Out
24 DA TCK Speed Selector DCE Out In 
25 TM TM Test Mode �12 In Out

Looking Into the DTE Device Connector
DB25 Male

Shield
13
12
11
10
9
8
7
6
5
4
3
2
1

25
24
23
22
21
20
19
18
17
16
15
14

Test Mode
Transmitter Signal Timing (DTE Source)
Data Signal Rate Selector
Ring Indicator
Remote Loopback
DTE Ready
Sec. Request to Send
Local Loopback
Receiver Signal Timing (DCE Source)
Sec. Received Data
Transmitter Signal Timing (DCE Source)
Sec. Transmitted Data

Sec. Clear to Send
Sec. Received Line Signal Detect

(Unassigned)
(reserved for testing)
(reserved for testing)

Received Line Signal Detect
Signal Ground

DCE Ready
Clear to Send

Request to Send
Received Data

Transmitted Data
Shield

Looking Into the DCE Device Connector
DB25 Female

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

Sec. Received Data
Transmitter Signal Timing (DCE Source)
Sec. Transmitted Data
Receiver Signal Timing (DCE Source)
Local Loopback
Sec. Clear to Send
DTE Ready
Remote Loopback
Ring Indicator
Data Signal Rate Selector
Transmitter Signal Timing (DTE Source)
Test Mode

Shield
Received Data

Transmitted Data
Clear to Send

Request to Send
DCE Ready

Signal Ground
Received Line Signal Detect

(reserved for testing)
(reserved for testing)

(Unassigned)
Sec. Received Line Signal Detect

Sec. Request to Send
Shield

Figure 4.10a: RS-232 signals and DB25 connector.

DB9
Pin

Name Signal Description Voltage DTE DCE

1 109 DCD Data Carrier Detect �12 In

In
In
In

In
In

In2 104 RxD Receive Data �12
3 103 TxD Transmit Data �12
4 108 DTR Data Terminal Ready  �12
5 102 SG Signal Ground
6 107 DSR Data Set Ready �12
7 105/133 RTS Request To Send �12
8 106 CTS Clear To Send �12
9 125 RI Ring  Indicator �12

Leading Into DTE Device DB9 Male

Leading Into DCE Device DB9 Female

9 Ring Indicator

8 Clear to Send

7 Request to Send

6

5

4

3

2

1

Signal Ground

DTE Ready

Transmitted Data

Received Data

Received Line Signal Detect

1

2

3

4

5

Received Line Signal Detect

Transmitted Data

Received Data

DTE Ready

Signal Ground

DCE Ready

6 DCE Ready

7 Clear to Send

8 Request to Send

9 Ring Indicator

Out

Out
Out
Out

Out
Out

Out

Figure 4.10b: RS-232 signals and DB9 connector.
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Section 4.9.3 of The Motorola/Freescale 8xxFADS User’s Manual (Rev. 1) details the RS-232 
system on the Motorola/Freescale FADS board as follows:

DB9
Pin Name Signal Description Voltage DTE DCE

1 125 RI Ring Indicator �12 In

In
In
In

In

In
In2 109 DCD Data Carrier Detect �12

3 108 DTR Data Terminal Ready  �12
4 102 SG Signal Ground
5 104 RxD Receive Data �12
6 103 TxD Transmit Data �12
7 106 CTS Clear To Send �12
8 105/133 RTS Request To Send �12

Same Leading Into DTE Device and DCE Device

8
7
6
5
4
3
2
1

Request to Send
Clear to Send
Transmit Data
Receive Data

Signal Ground
Data Terminal Ready

Data Carrier Detect
Ring Indicator

Out

Out
Out
Out

Out

Out
Out

Figure 4.10c: RS-232 signals and RJ45 connector.

To assist user’s applications and to provide convenient communication channels with 
both a terminal and a host computer, two identical RS232 ports are provided on the 
FADS. …..

Use is done with 9 pins, female D-type stack connector, confi gured to be directly (via a 
fl at cable) connected to a standard IBM-PC-like RS232 connector.

4.9.3.1 RS-232 Signal Description

In the following list:

DCD (O) – Data Carrier Detect

TX (O) – Transmit Data

…

1
6

2
7

3
8

4
9

5

DCD

TX

RX

DTR

GND

DSR

RTS

CTS

NC

Figure 4.11: RS-232 serial port connector.

From this manual, we can see that the FADS RS-232 port defi nition is based on the EIA574 
DB9 DCE female device connector defi nition.
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4.2.3 Serial I/O Example 2: Networking and Communications: IEEE 802.11 
Wireless LAN

The IEEE 802.11 family of networking standards are serial wireless LAN standards and are 
summarized in Table 4.1. These standards defi ne the major components of a wireless LAN 
system.

Table 4.1: 802.11 standards.

 IEEE 802.11 Standard Description

802.11-1999 Root Standard for  The 802.11 standard was the fi rst attempt to defi ne the way 
Information Technology— wireless data from a network should be sent. The standard
Telecommunications and defi nes operations and interfaces at the MAC (Media Access 
Information Exchange between Systems— Control) and PHY (physical interface) levels in a TCP/IP 
Local and Metropolitan Area Network— network. There are three PHY layer interfaces defi ned (one 
Specifi c Requirements—Part 11: Wireless IR and two radio: Frequency-Hopping Spread Spectrum 
LAN Medium Access Control (MAC) and [FHSS] and Direct Sequence Spread Spectrum [DSSS]), and 
Physical Layer (PHY) Specifi cations the three do not interoperate. Use CSMA/CA (carrier sense 
 multiple access with collision avoidance) as the basic medium 
 access scheme for link sharing, phase-shift keying (PSK) for 
 modulation.

802.11a-1999 “WiFi5” Amendment 1:  Operates at radio frequencies between 5 GHz and 6 GHz 
High-speed Physical Layer in the  to prevent interference with many consumer devices. Uses 
5 GHz band CSMA/CA as the basic medium access scheme for link 
 sharing. As opposed to PSK, it uses a modulation scheme 
 known as orthogonal frequency-division multiplexing (OFDM) 
 that provides data rates as high as 54 Mbps maximum.

802.11b-1999 “WiFi” Supplement to  Backward compatible with 802.11. 11Mbps speed, 
802.11a-1999, Wireless LAN MAC and  one single PHY layer (DSSS), uses CSMA/CA as the basic 
PHY Specifi cations: Higher-speed Physical  medium access scheme for link sharing and 
Layer (PHY) extension in the 2.4 GHz band  complementarycode keying (CCK), which allows higher data 
 rates and is less susceptible to multipath-propagation 
 interference.

802.11b-1999/Cor1-2001 Amendment 2:  To correct defi ciencies in the MIB defi nition of 802.11b.
Higher-speed Physical Layer (PHY) 
extension in the 2.4 GHz band—
Corrigendum 1

802.11c IEEE Standard for Information  Designated in 1998 to add a subclass under 2.5 Support of 
Technology—Telecommunications and  the Internal Sublayer Service by specifi c MAC Procedures 
information exchange between systems— to cover bridge operation with IEEE 802.11 MACs. Allows the 
Local area networks—Media access  use of 802.11 access points to bridge across networks within 
control (MAC) bridges—Supplement for  relatively short distances from each other (i.e., where there 
support by IEEE 802.11 was a solid wall dividing a wired network).
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 IEEE 802.11 Standard Description

802.11d-2001 Amendment to IEEE  Internationalization—defi nes the physical layer requirements
802.11-1999 (ISO/IEC 8802-11),  (channelization, hopping patterns, new values for current MIB
Specifi cation for Operation in Additional  attributes, and other requirements) to extend the operation
Regulatory Domains of 802.11 WLANs to new regulatory domains (countries).

802.11e Amendment to STANDARD [for]  Enhance the 802.11 Medium Access Control (MAC) to
Information Technology- improve and manage quality of service (QoS), provide classes
Telecommunications and information  of service and effi ciency enhancements in the areas of the 
exchange between systems-Local and  Distributed Coordination Function (DCF) and Point 
metropolitan area networks-Specifi c  Coordination Function (PCF). Defi ning a series of extensions 
requirements-Part 11: Wireless LAN  to 802.11 networking to allow for QoS operation (i.e., to 
Medium Access Control (MAC) and  allow for adaptation for streaming audio or video via a 
Physical Layer (PHY) specifi cations:  preallocated dependable portion of the bandwidth.)
Medium Access Method (MAC) Quality 
of Service Enhancements 

802.11f-2003 IEEE Recommended  Standard to enable handoffs (constant operation while the 
Practice for Multi-Vendor Access Point mobile terminal is actually moving) to be done in such a 
Interoperability via an Inter-Access Point  way as to work across access points from a number of 
Protocol Across Distribution Systems vendors. Includes recommended practices for an Inter-
Supporting IEEE 802.11 Operation Access Point Protocol (IAPP), which provides the necessary 
 capabilities to achieve multivendor Access Point 
 interoperability across a distribution system supporting IEEE 
 P802.11 Wireless LAN Links. This IAPP will be developed for 
 the following environment(s): (1) a distribution system 
 consisting of IEEE 802 LAN components supporting 
 an IETF IP environment; (2) others as deemed appropriate.

802.11g-2003 Amendment 4: Further  A higher-speed(s) PHY extension to 802.11b—offering wireless
Higher-Speed Physical Layer Extension  transmission over relatively short distances at up to 54 Mbps
in the 2.4 GHz Baud compared to the maximum 11 Mbps of the 802.11 standard 
 and operating in the 2.4 GHz range. Uses CSMA/CA as the 
 basic medium access scheme for link sharing.

802.11h-2001 Spectrum and Transmit  Enhancing the 802.11 MAC standard and 802.11a High 
Power Management Extensions in the  Speed PHY in the 5 GHz Band supplement to the standard; 
5 GHz band in Europe  to add indoor and outdoor channel selection for 5 GHz 
 license exempt bands in Europe; and to enhance channel 
 energy measurement and reporting mechanisms to improve 
 spectrum and transmit power management (per CEPT and 
 subsequent EU committee or body ruling incorporating CEPT 
 Recommendation ERC 99/23).

 Looking into the tradeoffs involved in creating reduced-power 
 transmission modes for networking in the 5 GHz space—
 essentially allowing 802.11a to be used by handheld 
 computers and other devices with limited battery power 
 available to them. Also, examining the possibility of allowing
 access points to reduce power to shape the geometry of a 
 wireless network and reduce interference outside the desired 
 infl uence of such a network.
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Table 4.1: (continued)
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Table 4.1: (continued)

 IEEE 802.11 Standard Description

802.11i Amendment to STANDARD  Enhances the 802.11 MAC to enhance security and 
[for] Information Technology-  authentication mechanisms and improve the PHY-level 
Telecommunications and information  security that is used on these networks.
exchange between systems-Local and 
metropolitan area networks-Specifi c 
requirements-Part 11: Wireless LAN 
Medium Access Control (MAC) and 
Physical Layer (PHY) specifi cations: 
Medium Access Method (MAC) Security 
Enhancements

802.11j Amendment to STANDARD  The scope of the project is to enhance the 802.11 standard 
[for] Information Technology- and amendments, to add channel selection for 4.9 GHz 
Telecommunications and information  and 5 GHz in Japan to additionally conform to the Japanese 
exchange between systems-Local and  rules for radio operation, to obtain Japanese regulatory 
Metropolitan networks-Specifi c  approval by enhancing the current 802.11 MAC and 802.11a 
requirements—Part 11: Wireless LAN  PHY to additionally operate in newly available Japanese 
Medium Access Control (MAC) and  4.9 GHz and 5 GHz bands.
Physical Layer (PHY) specifi cations: 
4.9–5 GHz Operation in Japan

802.11k Amendment to STANDARD  This project will defi ne Radio Resource Measurement 
[for] Information Technology- enhancements to provide interfaces to higher layers for radio 
Telecommunications and information  and network measurements.
exchange between systems-Local and 
Metropolitan networks- Specifi c 
requirements-Part 11: Wireless LAN 
Medium Access Control (MAC) and 
Physical Layer (PHY) specifi cations: Radio 
Resource Measurement of Wireless LANs

802.11ma Standard for Information Incorporates accumulated maintenance changes (editorial 
Technology–Telecommunications and  and technical corrections) into 802.11-1999, 2003 edition 
information exchange between systems– (incorporating 802.11a-1999, 802.11b-1999, 802.11b-1999 
Local and Metropolitan networks–Specifi c  corrigendum 1-2001, and 802.11d-2001).
requirements–Part 11: Wireless LAN 
Medium Access Control (MAC) and 
Physical Layer (PHY) specifi cations–
Amendment x: Technical corrections 
and clarifi cations

802.11n Amendment to STANDARD  The scope of this project is to defi ne an amendment that 
[for] Information Technology-  shall defi ne standard modifi cations to both the 802.11 
Telecommunications and information  physical layers (PHY) and the 802.11 Medium Access Control 
exchange between systems-Local and  Layer (MAC) so that modes of operation can be enabled that 
Metropolitan networks- Specifi c  are capable of much higher throughputs, with a maximum 
requirements-Part 11: Wireless LAN  throughput of at least 100 Mbps, as measured at the MAC 
Medium Access Control (MAC) and  data service access point (SAP).
Physical Layer (PHY) specifi cations: 
Enhancements for Higher Throughput

www.newnespress.com
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The fi rst step is to understand the main components of an 802.11 system, regardless of 
whether these components are implemented in hardware or software. This is important 
because different embedded architectures and boards implement 802.11 components differ-
ently. On most platforms today, 802.11 standards are made up of root components that are 
implemented almost entirely in hardware. The hardware components can all be mapped to the 
physical layer of the OSI model, as shown in Figure 4.12. Any software required to enable 
802.11 functionality maps to the lower section of the OSI data-link layer but will not be dis-
cussed in this section.

Off-the-shelf wireless hardware modules supporting one or some combination of the 802.11 
standards (i.e., 802.11a, 802.11b, 802.11g, etc.) have in many ways complicated the efforts to 
commit to one wireless LAN standard. These modules also come in a wide variety of forms, 
including embedded processor sets, PCMCIA, Compact Flash, and PCI formats. In general, 
as shown in Figures 4.13a and b, embedded boards need to either integrate 802.11 functional-
ity as a slave controller or into the master chip or the board needs to support one of the stand-
ard connectors for the other forms (PCI, PCMCIA, Compact Flash, etc.). This means that 
either (1) 802.11 chipset vendors can produce or port their PC Card fi rmware for an 802.11 
embedded solution, which can be used for lower volume/more expensive devices or during 
product development, or (2) the same vendor’s chipset on a standard PC card could be 
placed on the embedded board, which can be used for devices that will be manufactured in 
larger volumes.

On top of the 802.11 chipset integration, an embedded board design needs to take into consid-
eration wireless LAN antenna placement and signal transmission requirements. The designer 
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Figure 4.12: OSI model.

IR DS FH

802.11 MAC

802.2 ...

Physical

Network

Transport

Session

Presentation

Application

802.11
Data-Link

Infrared (IR) Pulse Position
Modulation. This PHY provides
1 Mbit/s with optional 2 Mbit/s. The
1 Mbit/s version uses Pulse Position
Modulation with 16 positions
(16-PPM) and the 2 Mbit/s version
uses 4-PPM.

Direct Sequence Spread Spectrum
operating in the 2 400 - 2 483.5 MHz
band (depends on local regulations). This
PHY provides both 1 and 2 Mbit/s
operation. The 1 Mbit/s version uses
Differential Binary Phase Shift Keying
(DBPSK) and the 2 Mbit/s version uses
Differential Quadrature Phase Shift
Keying (DQPSK).

Frequency Hopping Spread Spectrum
operating in the 2 400 - 2 483.5 MHz
band (depends on local regulations). This
PHY provides for 1 Mbit/s (with 2 Mbit/s
optional) operation. The 1 Mbit/s version
uses 2 level Gaussian Frequency Shift
Keying (GFSK) modulation and the 2
Mbit/s version uses 4 level GFSK.

Ch04-H8584.indd   151Ch04-H8584.indd   151 8/17/07   6:10:37 PM8/17/07   6:10:37 PM



152   Chapter 4

www.newnespress.com

must ensure that there are no obstructions to prevent receiving and transmitting data. When 
802.11 is not integrated into the master CPU, such as with the System-on-Chip (SoC) shown 
in Figure 4.13b, the interface between the master CPU and the 802.11 board hardware also 
needs to be designed.

Figure 4.13a: 802.11 sample hardware confi gurations with PCI card.
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Figure 4.13b: 802.11 sample hardware confi gurations with SoC.
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4.2.4 Parallel I/O

Components that transmit data in parallel are devices that can transfer data in multiple bits 
simultaneously. Just as with serial I/O, parallel I/O hardware is also typically made up of some 
combination of six main logical units, as introduced at the start of this chapter, except that the 
port is a parallel port and the communication interface is a parallel interface.

Parallel interfaces manage the parallel data transmission and reception between the master 
CPU and either the I/O device or its controller. They are responsible for decoding data bits 
received over the pins of the parallel port (transmitted from the I/O device) and receiving data 
being transmitted from the master CPU, then encoding these data bits onto the parallel port 
pins.

They include reception and transmission buffers to store and manipulate the data being 
transferred. In terms of parallel data transmission and reception schemes, like serial I/O 
transmission, they generally differ in terms of the direction in which data can be transmitted 
and received as well as the actual process of transmitting/receiving data bits within the data 
stream. In the case of direction of transmission, as with serial I/O, parallel I/O uses simplex, 
half-duplex, or full-duplex modes. Also, as with serial I/O, parallel I/O devices can transmit 
data asynchronously or synchronously. However, parallel I/O does have a greater capacity to 
transmit data than serial I/O, because multiple bits can be transmitted or received simultane-
ously. Examples of board I/O that transfer and receive data in parallel include IEEE 1284 con-
trollers (for printer/display I/O devices—see Example 3), CRT ports, and SCSI (for storage 
I/O devices). A protocol that can potentially support both parallel and serial I/O is Ethernet, 
presented in Example 4.

4.2.5 Parallel I/O Example 3: “Parallel” Output and Graphics I/O

Technically, the models and images that are created, stored, and manipulated in an embedded 
system are the graphics. There are typically three logical components (engines) of I/O graph-
ics on an embedded board, as shown in Figure 4.14:

Geometric Engine Rendering Engine Display Engine

Embedded System

Input I/O
Device

Output I/O
Device

Display Pipeline

Figure 4.14: Graphical design engines.
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• The geometric engine, which is responsible for defi ning what an object is. This 
includes implementing color models, an object’s physical geometry, material and 
lighting properties, and so on.

• The rendering engine, which is responsible for capturing the description of objects. 
This includes providing functionality in support of geometric transformations, projec-
tions, drawing, mapping, shading, illumination, and so on.

• The raster and display engine, which is responsible for physically displaying the 
object. It is in this engine that the output I/O hardware comes into play.

An embedded system can output graphics via softcopy (video) or hardcopy (on paper) means. 
The contents of the display pipeline differ according to whether the output I/O device outputs 
hard or soft graphics, so the display engine differs accordingly, as shown in Figures 4.15a and b.

Figure 4.15a: Display engine of softcopy (video) graphics example.
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Figure 4.15b: Display engine of hardcopy graphics example.
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The actual parallel port confi guration differs from standard to standard in terms of the number 
of signals and the required cable. For example, on Net Silicon’s NET�ARM50 embedded 
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board (see Figure 4.16), the master processor (an ARM7-based architecture) has an integrated 
IEEE 1284 interface, a confi gurable MIC controller integrated in the master processor, to 
transmit parallel I/O over four on-board parallel ports.

The IEEE 1284 specifi cation defi nes a 40-signal port, but on the Net�ARM50 board, data and 
control signals are multiplexed to minimize the master processor’s pin count. Aside from eight 
data signals DATA[8:1] (D0 – D7), IEEE 1284 control signals include:

• PDIR, which is used for bidirectional modes and defi nes the direction of the external 
data transceiver. Its state is directly controlled by the BIDIR bit in the IEEE 1284 
Control register (0 state, data is driven from the external transceiver toward 1285, the 
cable, and in the 1 state, data is received from the cable).

• PIO, which is controlled by fi rmware. Its state is directly controlled by the PIO bit in 
the IEEE 1284 Control register.

• LOOPBACK, which confi gures the port in external loopback mode and can be used to 
control the mux line in the external FCT646 devices (set to 1, the FCT646 transceivers 
drive inbound data from the input latch and not the real-time cable interface). Its state 
is directly controlled by the LOOP bit in the IEEE 1284 Control register. The LOOP 
strobe signal is responsible for writing outbound data into the inbound latch (complet-
ing the loop back path). The LOOP strobe signal is an inverted copy of the STROBE* 
signal.

Figure 4.16: NET�ARM50 embedded board parallel I/O.
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• STROBE* (nSTROBE), AUTOFD* (nAUTOFEED), INIT* (nINIT), HSELECT* (nSE-
LECTIN), *ACK (nACK), BUSY, PE, PSELECT (SELECT), *FAULT (nER-ROR), …

4.2.6 Parallel and Serial I/O Example 4: Networking and Communications—Ethernet

One of the most widely implemented LAN protocols is Ethernet, which is primarily based 
on the IEEE 802.3 family of standards. These standards defi ne the major components of any 
Ethernet system. Thus, to fully understand an Ethernet system design, you fi rst need to under-
stand the IEEE specifi cations. (Remember, this is not a book about Ethernet, and there is a lot 
more involved than is covered here. This example is about understanding a networking proto-
col and then being able to understand the design of a system based on a networking protocol 
such as Ethernet.)

The fi rst step is understanding the main components of an Ethernet system, regardless of 
whether these components are implemented in hardware or software. This is important since 
different embedded architectures and boards implement Ethernet components differently. On 
most platforms, however, Ethernet is implemented almost entirely in hardware.

The hardware components can all be mapped to the physical layer of the OSI model. The 
fi rmware (software) required to enable Ethernet functionality maps to the lower section of the 
OSI data-link layer but will not be discussed in this section.

Several Ethernet system models are described in the IEEE 802.3 specifi cation, so let’s look at a 
few to get a clear understanding of some of the most common Ethernet hardware components.

Ethernet devices are connected to a network via Ethernet cables: thick coax (coaxial), thin 
coax, twisted-pair, or fi ber optic cables. These cables are commonly referred to by their IEEE 
names. These names are made up of three components: the data transmission rate, the type of 
signaling used, and either the cable type or cable length.

Network

Ethernet
Data-Link

Application

Presentation

Session

Transport

Physical

Figure 4.17: OSI model.
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For example, a 10Base-T cable is an Ethernet cable that handles a data transmission rate of 
10 Mbps (million bits per second), will only carry Ethernet signals (baseband signaling), and 
is a twisted-pair cable. A 100Base-F cable is an Ethernet cable that handles a data transmis-
sion rate of 100 Mbps, supports baseband signaling, and is a fi ber optic cable. Thick or thin 
coax cables transmit at speeds of 10 Mbps and support baseband signaling but differ in the 
length of maximum segments cut for these cables (500 meters for thick coax, 200 meters for 
thin coax). Thus, these thick coax cables are called 10Base-5 (short for 500), and thin coax 
cables are called 10Base-2 (short for 200).

The Ethernet cable must then be connected to the embedded device. The type of cable, along 
with the board I/O (communication interface, communication port, etc.), determines whether 
the Ethernet I/O transmission is serial or parallel. The Medium Dependent Interface (MDI) 
is the network port on the board into which the Ethernet cable plugs. Different MDIs exist for 
the different types of Ethernet cables. For example, a 10Base-T cable has a RJ-45 jack as the 
MDI. In the system model of Figure 4.18, the MDI is an integrated part of the transceiver.

Figure 4.18: Ethernet components diagram.
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A transceiver is the physical device that receives and transmits the data bits; in this case it is 
the Medium Attachment Unit (MAU). The MAU contains not only the MDI but the Physical 
Medium Attachment (PMA) component as well. It is the PMA which “contains the functions for 
transmission, reception, and” depending on the transceiver, “collision detection, clock recovery 
and skew alignment” (p. 25, IEEE 802.3 Spec). Basically, the PMA serializes (breaks down into 
a bit stream) code groups received for transmission over the transmission medium or deserializes 
bits received from the transmission medium and converts these bits into code groups.

The transceiver is then connected to an Attachment Unit Interface (AUI), which carries the 
encoded signals between an MAU and the Ethernet interface in a processor. Specifi cally, 
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the AUI is defi ned for up to 10 Mbps Ethernet devices and specifi es the connection between 
the MAU and the Physical Layer Signaling (PLS) sublayer (signal characteristics, connectors, 
cable length, etc.).

The Ethernet interface can exist on a master or slave processor and contains the remaining 
Ethernet hardware and software components. The Physical Layer Signaling (PLS) component 
monitors the transmission medium and provides a carrier sense signal to the Media Access 
Control (MAC) component. It is the MAC that initiates the transmission of data, so it checks 
the carrier signal before initiating a transmission, to avoid contention with other data over the 
transmission medium.

Let’s start by looking at an embedded board for an example of this type of Ethernet system.

4.2.7 Example 1: Motorola/Freescale MPC823 FADS Board Ethernet 
System Model

Section 4.9.1 of The Motorola/Freescale 8xxFADS User’s Manual (Rev 1) details the Ethernet 
system on the Motorola/Freescale FADS board:

“4.9.1 Ethernet Port

The MPC8xxFADS has an Ethernet port with a 10-Base-T interface. The communication 
port on which this resides is determined according to the MPC8xx type whose routing is 
on the daughter board. The Ethernet port uses an MC68160 EEST 10 Base-T transceiver.

You can also use the Ethernet SCC pins, which are on the expansion connectors of the 
daughter board and on the communication port expansion connector (P8) of the moth-
erboard. The Ethernet transceiver can be disabled or enabled at any time by writing a 1 
or a 0 to the EthEn bit in the BCSR1.”

From this information, we know that the board has an RJ-45 jack as the MDI, and the 
MC68160 enhanced Ethernet serial transceiver (EEST) is the MAU. The second paragraph, as 
well as Chapter 28 of the PowerPC MPC823 User’s Manual, tells us more about the AUI and 
the Ethernet interface on the MPC823 processor.

On the MPC823, a seven-wire interface acts as the AUI. The SCC2 is the Ethernet interface 
and “performs the full set of IEEE 802.3/Ethernet CSMA/CD media access control and chan-
nel interface functions.” (See MPC823 PowerPC User’s Manual, p. 16–312.)

LAN devices that are able to transmit and receive data at a much higher rate than 10 Mbps 
implement a different combination of Ethernet components. The IEEE 802.3u Fast Ethernet 
(100 Mbps data rate) and the IEEE 802.3z Gigabit Ethernet (1000 Mbps data rate) systems 
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Figure 4.19: MPC823 Ethernet diagram.
Copyright of Freescale Semiconductor, Inc., 2004. Used by permission.

evolved from the original Ethernet system model (described in the previous section) and are 
based on the system model in Figure 4.20.
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Figure 4.20: Ethernet diagram.

Embedded Device 

Ethernet Cable 

10 Mbps, 100 Mbps and 1000 Mbps Ethernet System Model 

MDI

PHY

P
M

D

P
M

A

P
C

S

M
II/G

M
II

R
econciliation
S

ublayer

Master or Slave
Processor 
Ethernet
Interface

M
A

C
/M

A
C

 C
ontrol

The MDI in this system is connected to the transceiver, not a part of the transceiver (as in the 
previous system model). The Physical Layer Device (PHY) transceiver in this system con-
tains three components: the PMA (same as on the MAU transceiver in the 1/10 Mbps system 
model), the Physical Coding Sub layer (PCS), and the Physical Medium Dependent (PMD).
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The PMD is the interface between the PMA and the transmission medium (through the MDI). 
The PMD is responsible for receiving serialized bits from the PMD and converting it to the 
appropriate signals for the transmission medium (optical signals for a fi ber optic, etc.). When 
transmitting to the PMA, the PCS is responsible for encoding the data to be transmitted into the 
appropriate code group. When receiving the code groups from the PMA, the PCS decodes the 
code groups into the data format that can be understood and processed by upper Ethernet layers.

The Media Independent Interface (MII) and the Gigabit Media Independent Interface (GMII) 
are similar in principle to the AUI, except they carry signals (transparently) between the trans-
ceiver and the Reconciliation Sub layer (RS). Furthermore, the MII supports a LAN data rate 
of up to 100 Mbps, while GMII (an extension of MII) supports data rates of up to 1000 Mps. 
Finally, the RS maps PLS transmission media signals to two status signals (carrier presence 
and collision detection) and provides them to the Ethernet interface.

4.2.8 Example 2: Net Silicon ARM7 (6127001) Development Board Ethernet 
System Model

The Net�Works 6127001 Development Board Jumper and Component Guide from NetSilicon 
has an Ethernet interface section on their ARM based reference board, and from this we can 
start to understand the Ethernet system on this platform (see Figure 4.21).

“Ethernet Interface

The 10/100 version of the 3V NET�Works Hardware Development Board provides a 
full-duplex 10/100 Mbit Ethernet Interface using the Enable 3V PHY chip. The Enable 3V 
PHY interfaces to the NET�ARM chip using the standard MII interface.

The Enable 3V PHY LEDL (link indicator) signal is connected to the NET�ARM PORTC6 
GPIO signal. The PORT6 input can be used to determine the current Ethernet link status 
(The MII interface can also be used to determine the current Ethernet link status) .…”

Figure 4.21: Net�ARM Ethernet block diagram.
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From this information we can determine that the board has an RJ-45 jack as the MDI, and the 
Enable 3V PHY is the MAU. Section 5: “Ethernet Controller Interface” of the NET�Works 
for NET�ARM Hardware Reference Guide tells us that the ARM7-based ASIC integrates 
an Ethernet controller, and that the Ethernet Interface is actually composed of two parts: the 
Ethernet Front End (EFE) and the Media Access Control (MAC) modules. Finally, Section 1.3 
of this manual tells us the Reconciliation Layer (RS) is integrated into the Media Independent 
Interface (MII).

4.2.9 Example 3: Adastra Neptune x86 Board Ethernet System Model

While both the ARM and PowerPC platforms integrate the Ethernet interface into the main 
processor (see Figure 4.22), this x86 platform has a separate slave processor for this function-
ality. According to the Neptune User’s Manual Rev A.2, the Ethernet controller the (“MAC 
Am79C791 10/100 Controller”) connects to two different transceivers, with each connected to 
either an AUI or MII for supporting various transmission media.

10Base-2/5
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10/100Base-T
Ethernet Cable 

RJ-45
MII

AUI to10Base-2/5
Transceiver 

10Base-2/5AUI 
Ethernet
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PCI

“MAC” Am79C971
10/100 Network

Controller

Figure 4.22: x86 Ethernet diagram.

4.3 Interfacing the I/O Components

As discussed at the start of this chapter, I/O hardware is made up of all or some combination 
of integrated master processor I/O, I/O controllers, a communications interface, a communica-
tion port, I/O buses, and a transmission medium (see Figure 4.23).

All these components are interfaced (connected) and communication mechanisms imple-
mented via hardware, software, or both to allow for successful integration and function.
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4.3.1 Interfacing the I/O Device with the Embedded Board

For off-board I/O devices, such as keyboards, mice, LCDs, printers, and so on, a transmission 
medium is used to interconnect the I/O device to an embedded board via a communication port. 
Aside from the I/O schemes implemented on the board (serial versus parallel), whether the 
medium is wireless (Figure 4.24b) or wired (Figure 4.24a) also impacts the overall scheme used 
to interface the I/O device to the embedded board.

As shown in Figure 4.24a, with a wired transmission medium between the I/O device and 
embedded board, it is just a matter of plugging in a cable, with the right connector head, 
to the embedded board. This cable then transmits data over its internal wires. Given an I/O 
device transmitting data over a wireless medium, such as the remote control in Figure 4.24b, 
understanding how this interfaces to the embedded board means understanding the nature of 
infrared wireless communication, since there are no separate ports for transmitting data versus 
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Figure 4.23: Sample I/O subsystem.

Figure 4.24a: Wired transmission medium. b: Wireless transmission medium.
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control signals. Essentially, the remote control emits electromagnetic waves to be intercepted 
by the IR receiver on the embedded board.

The communication port would then be interfaced to an I/O controller, a communication 
interface controller, or the master processor (with an integrated communication interface) via 
an I/O bus on the embedded board (see Figure 4.25). An I/O bus is essentially a collection of 
wires transmitting the data.

Embedded Board

    Infrared (IR) Wireless Transmission Medium

Communication Port
(IR Transmitter)

I/O Device
[Remote Control]

Figure 4.24b: Wireless transmission medium.

Figure 4.25: Interfacing communication port to other board I/O.
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In short, an I/O device can be connected directly to the master processor via I/O ports (proc-
essor pins) if the I/O devices are located on the board, or it can be connected indirectly using 
a communication interface integrated into the master processor or a separate IC on the board 
and the communication port. The communication interface itself is what is either connected 
directly to the I/O device or the device’s I/O controller. For off-board I/O devices, the relative 
board I/O components are interconnected via I/O buses.

4.3.2 Interfacing an I/O Controller and the Master CPU

In a subsystem that contains an I/O controller to manage the I/O device, the design of the 
interface between the I/O controller and master CPU—via a communications interface—is 
based on four requirements:

• An ability of the master CPU to initialize and monitor the I/O controller. I/O control-
lers can typically be confi gured via control registers and monitored via status registers. 
These registers are all located on the I/O controller. Control registers are data registers 
that the master processor can modify to confi gure the I/O controller. Status registers 
are read-only registers in which the master processor can get information as to the 
state of the I/O controller. The master CPU uses these status and control registers to 
communicate and/or control attached I/O devices via the I/O controller.

• A way for the master processor to request I/O. The most common mechanisms used 
by the master processor to request I/O via the I/O controller are special I/O instruc-
tions (I/O mapped) in the ISA and memory-mapped I/O, in which the I/O controller 
registers have reserved spaces in main memory.

• A way for the I/O device to contact the master CPU. I/O controllers that have the abil-
ity to contact the master processor via an interrupt are referred to as interrupt driven 
I/O. Generally, an I/O device initiates an asynchronous interrupt requesting signaling 
to indicate (for example) control and status registers can be read from or written to. 
The master CPU then uses its interrupt scheme to determine when an interrupt will be 
discovered.

• Some mechanism for both to exchange data. This refers to how data is actually 
exchanged between the I/O controller and the master processor. In a programmed 
transfer, the master processor receives data from the I/O controller into its registers, 
and the CPU then transmits this data to memory. For memory-mapped I/O schemes, 
DMA (direct memory access) circuitry can be used to bypass the master CPU entirely. 
DMA has the ability to manage data transmissions or receptions directly to and from 
main memory and an I/O device. On some systems, DMA is integrated into the mas-
ter processor, and on others there is a separate DMA controller. Essentially, DMA 
requests control of the bus from the master processor.
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4.4 I/O and Performance

I/O performance is one of the most important issues of an embedded design. I/O can nega-
tively impact performance by bottlenecking the entire system. To understand the type of per-
formance hurdles I/O must overcome, it is important to understand that, with the wide variety 
of I/O devices, each device will have its own unique qualities. Thus, in a proper design, the 
engineer will have taken these unique qualities on a case-by-case basis into consideration. 
Some of the most important shared features of I/O that can negatively impact board perform-
ance include:

• The data rates of the I/O devices. I/O devices on one board can vary in data rates from 
a handful of characters per second with a keyboard or a mouse to devices that can 
transmit in Mbytes per second (networking, tape, disk).

• The speed of the master processor. Master processors can have clocks rates anywhere 
from tens of MHz to hundreds of MHz. Given an I/O device with an extremely slow 
data rate, a master CPU could have executed thousands of times more data in the time 
period that the I/O needs to process a handful of bits of data. With extremely fast I/O, 
a master processor would not even be able to process anything before the I/O device is 
ready to move forward.

• How to synchronize the speed of the master processor to the speeds of I/O. Given the 
extreme ranges of performance, a realistic scheme must be implemented that allows 
for either the I/O or master processor to process data successfully regardless of how 
different their speeds. Otherwise, with an I/O device processing data much slower 
than the master processor transmits, for instance, data would be lost by the I/O device. 
If the device is not ready, it could hang the entire system if there is no mechanism to 
handle this situation.

• How I/O and the master processor communicate. This includes whether there is an 
intermediate dedicated I/O controller between the master CPU and I/O device that 
manages I/O for the master processor, thus freeing up the CPU to process data more 
effi ciently. Relative to an I/O controller, it becomes a question whether the communi-
cation scheme is interrupt driven, polled, or memory mapped (with dedicated DMA 
to, again, free up the master CPU). If interrupt-driven, for example, can I/O devices 
interrupt other I/O, or would devices on the queue have to wait until previous devices 
fi nished their turn, no matter how slow.

To improve I/O performance and prevent bottlenecks, board designers need to examine the 
various I/O and master processor communication schemes to ensure that every device can be 
managed successfully via one of the available schemes. For example, to synchronize slower 
I/O devices and the master CPU, status fl ags or interrupts can be made available for all ICs so 
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that they can communicate their status to each other when processing data. Another example 
occurs when I/O devices are faster than the master CPU. In this case, some type of interface 
(i.e., DMA) that allows these devices to bypass the master processor altogether could be an 
alternative.

The most common units measuring performance relative to I/O include:

• Throughput of the various I/O components (the maximum amount of data per unit 
time that can be processed, in bytes per second). This value can vary for different 
components. The components with the lowest throughput are what drives the perform-
ance of the whole system.

• The execution time of an I/O component. The amount of time it takes to process all of 
the data it is provided with.

• The response time or delay time of an I/O component. It is the amount of time 
between a request to process data and the time the actual component begins 
processing.

To accurately determine the type of performance to measure, the benchmark has to match 
how the I/O functions within the system. If the board will be accessing and processing several 
larger stored data fi les, benchmarks will be needed to measure the throughput between mem-
ory and secondary/tertiary storage medium. If the access is to fi les that are very small, then 
response time is the critical performance measure, since execution times would be very fast 
for small fi les, and the I/O rate would depend on the number of storage accesses per second, 
including delays. In the end, the performance measured would need to refl ect how the system 
would actually be used in order for any benchmark to be of use.

4.5 Board Buses

All the other major components that make up an embedded board—the master processor, I/O 
components, and memory—are interconnected via buses on the embedded board. As defi ned 
earlier, a bus is simply a collection of wires carrying various data signals, addresses, and 
control signals (clock signals, requests, acknowledgements, data type, etc.) between all the 
other major components on the embedded board, which include the I/O subsystems, memory 
subsystem, and the master processor. On embedded boards, at least one bus interconnects the 
other major components in the system (see Figure 4.26).

On more complex boards, multiple buses can be integrated on one board (see Figure 4.27). For 
embedded boards with several buses connecting components that need to inter-communicate, 
bridges on the board connect the various buses and carry information from one bus to another. 
In Figure 4.27, the PowerManna PCI bridge is one such example. A bridge can automatically 
provide a transparent mapping of address information when data is transferred from one bus 
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to another, implement different control signal requirements for various buses—acknowledg-
ment cycles, for example—as well as modify the data being transmitted if any transfer proto-
cols differ bus to bus. For instance, if the byte ordering differs, the bridge can handle the byte 
swapping.

Board buses typically fall under one of three main categories: system buses, backplane buses 
or I/O buses. System buses (also referred to as “main,” “local,” or “processor-memory” buses) 
interconnect external main memory and cache to the master CPU and/or any bridges to the 
other buses. System buses are typically shorter, higher-speed custom buses. Backplane buses 

Figure 4.26: General bus structure.
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are also typically faster buses that interconnect memory, the master processor, and I/O, all on 
one bus. I/O buses, also referred to as “expansion,” “external,” or “host” buses, in effect act as 
extensions of the system bus to connect the remaining components to the master CPU, to each 
other, to the system bus via a bridge, and/or to the embedded system itself, via an I/O com-
munication port. I/O buses are typically standardized buses that can be either shorter, higher-
speed buses such as PCI and USB, or longer, slower buses such as SCSI.

The major difference between system buses and I/O buses is the possible presence of IRQ 
(interrupt request) control signals on an I/O bus. There are a variety of ways I/O and the mas-
ter processor can communicate, and interrupts are one of the most common methods. An IRQ 
line allows for I/O devices on a bus to indicate to the master processor that an event has taken 
place or an operation has been completed by a signal on that IRQ bus line. Different I/O buses 
can have different impacts on interrupt schemes. An ISA bus, for example, requires that each 
card that generates interrupts must be assigned its own unique IRQ value (via setting switches 
or jumpers on the card). The PCI bus, on the other hand, allows two or more I/O cards to share 
the same IRQ value.

Within each bus category, buses can be further divided into whether the bus is expandable or 
nonexpandable. An expandable bus (PCMCIA, PCI, IDE, SCSI, USB, and so on) is one in 
which additional components can be plugged into the board on the fl y, whereas a nonexpandable 
bus (DIB, VME, I2C are examples) is one in which additional components cannot be simply 
plugged into the board and then communicate over that bus to the other components.

While systems implementing expandable buses are more fl exible because components 
can be added ad-hoc to the bus and work “out of the box,” expandable buses tend to be 
more expensive to implement. If the board is not initially designed with all of the possible 
types of components that could be added in the future in mind, performance can be negatively 
impacted by the addition of too many “draining” or poorly designed components onto the 
expandable bus.

4.6 Bus Arbitration and Timing

Associated with every bus is some type of protocol that defi nes how devices gain access to the 
bus (arbitration), the rules attached devices must follow to communicate over the bus (hand-
shaking), and the signals associated with the various bus lines.

Board devices obtain access to a bus using a bus arbitration scheme. Bus arbitration is based 
upon devices being classifi ed as either master devices (devices that can initiate a bus transac-
tion) or slave devices (devices which can only gain access to a bus in response to a master 
device’s request). The simplest arbitration scheme is for only one device on the board—the 
master processor—to be allowed to be master, while all other components are slave devices. In 
this case, no arbitration is necessary when there can only be one master.
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For buses that allow for multiple masters, some have an arbitrator (separate hardware cir-
cuitry) that determines under what circumstances a master gets control of the bus. There are 
several bus arbitration schemes used for embedded buses, the most common being dynamic 
central parallel, centralized serial (daisy-chain), and distributed self-selection.

Dynamic central parallel arbitration (shown in Figure 4.28a) is a scheme in which the arbi-
trator is centrally located. All bus masters connect to the central arbitrator. In this scheme, 
masters are then granted access to the bus via a FIFO (fi rst in, fi rst out—see Figure 4.28b) or 
priority-based system (see Figure 4.28c). The FIFO algorithm implements some type of FIFO 
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Figure 4.28a: Dynamic central parallel arbitration.
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queue that stores a list of master devices ready to use the bus in the order of bus requests. 
Master devices are added at the end of the queue and are allowed access to the bus from the 
start of the queue. One main drawback is the possibility of the arbitrator not intervening if a 
single master at the front of the queue maintains control of the bus, never completing and not 
allowing other masters to access the bus.

The priority arbitration scheme differentiates between masters based upon their relative 
importance to each other and the system. Basically, every master device is assigned a priority, 
which acts as an indicator of order of precedence within the system. If the arbitrator imple-
ments a preemption priority-based scheme, the master with the highest priority always can 
preempt lower priority master devices when they want access to the bus, meaning a master 
currently accessing the bus can be forced to relinquish it by the arbitrator if a higher priority 
master wants the bus. Figure 4.28c shows three master devices (1, 2, 3 where master 1 is the 
lowest priority device and master 3 is the highest); master 3 preempts master 2, and master 2 
preempts master 1 for the bus.

Central-serialized arbitration, also referred to as daisy-chain arbitration, is a scheme in which 
the arbitrator is connected to all masters, and the masters are connected in serial. Regardless of 
which master makes the request for the bus, the fi rst master in the chain is granted the bus and 
passes the “bus grant” on to the next master in the chain if/when the bus is no longer needed 
(see Figure 4.29).

There are also distributed arbitration schemes, which means there is no central arbitrator and no 
additional circuitry, as shown in Figure 4.30. In these schemes, masters arbitrate themselves by 
trading priority information to determine if a higher-priority master is making a request for the 
bus or even by removing all arbitration lines and waiting to see if there is a collision on the bus, 
which means that the bus is busy with more than one master trying to use it.

Again, depending on the bus, bus arbitrators can grant a bus to a master atomically (until that 
master is fi nished with its transmission) or allow for split transmissions, where the arbitrator 
can preempt devices in the middle of transactions, switching between masters to allow other 
masters to have bus access.

Figure 4.29: Centralized serial/daisy-chain arbitration.
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Once a master device is granted the bus, only two devices—a master and another device in 
slave mode—communicate over that bus at any given time. There are only two types of trans-
actions that a bus device can do—READ (receive) and/or WRITE (transmit). These transac-
tions can take place either between two processors (a master and I/O controller, for example) 
or processor and memory (a master and memory, for example). Within each type of transac-
tion, whether READ or WRITE, there can also be several specifi c rules that each device needs 
to follow in order to complete a transaction. These rules can vary widely between the types of 
devices communicating, as well as from bus to bus. These sets of rules, commonly referred to 
as the bus handshake, form the basis of any bus protocol.

The basis of any bus handshake is ultimately determined by a bus’s timing scheme. Buses are 
based upon one or some combination of synchronous or asynchronous bus timing schemes, 
which allow for components attached to the bus to synchronize their transmissions. A synchro-
nous bus (such as that shown in Figure 4.31) includes a clock signal among the other signals it 
transmits, such as data, address and other control information. Components using a synchro-
nous bus all are run at the same clock rate as the bus and (depending on the bus) data is 
transmitted either on the rising edge or falling edge of a clock cycle. In order for this scheme 
to work, components either must be in rather close proximity for a faster clock rate, or the 
clock rate must be slowed for a longer bus. A bus that is too long with a clock rate that is too 
fast (or even too many components attached to the bus) will cause a skew in the synchroniza-
tion of transmissions, because transmissions in such systems won’t be in sync with the clock. 
In short, this means that faster buses typically use a synchronous bus timing scheme.

An asynchronous bus, such as the one shown in Figure 4.32, transmits no clock signal, 
but transmits other (non-clock based) “handshaking” signals instead, such as request and 
acknowledgment signals. Although the asynchronous scheme is more complex for devices 
having to coordinate request commands, reply commands, and so on, an asynchronous bus has 
no problem with the length of the bus or a larger number of components communicating over 
the bus, because a clock is not the basis for synchronizing communication. An asynchronous 
bus, however, does need some other “synchronizer” to manage the exchange of information, 
and to interlock the communication.

Figure 4.30: Distributed arbitration via self-selection.
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The two most basic protocols that start any bus handshaking are the master indicating or 
requesting a transaction (a READ or WRITE) and the slave responding to the transaction 
indication or request (for example, an acknowledgment/ACK or enquiry/ENQ). The basis of 
these two protocols are control signals transmitted either via a dedicated control bus line or 
over a data line. Whether it’s a request for data at a memory location, or the value of an I/O 
controller’s control or status registers, if the slave responds in the affi rmative to the master 
device’s transaction request, then either an address of the data involved in the transaction is 

Figure 4.31: I2C bus with SCL clock.
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exchanged via a dedicated address bus line or data line, or this address is transmitted as part 
of the same transmission as the initial transaction request. If the address is valid, then a data 
exchange takes place over a data line (plus or minus a variety of acknowledgments over other 
lines or multiplexed into the same stream). Again, note that handshaking protocols vary with 
different buses. For example, where one bus requires the transmission of enquiries and/or 
acknowledgments with every transmission, other buses may simply allow the broadcast of 
master transmissions to all bus (slave) devices, and only the slave device related to the transac-
tion transmits data back to the sender. Another example of differences between handshaking 
protocols might be that, instead of a complex exchange of control signal information being 
required, a clock could be the basis of all handshaking.

Buses can also incorporate a variety of transferring mode schemes, which dictate how the 
bus transfers the data. The most common schemes are single, where an address transmission 
precedes every word transmission of data, and blocked, where the address is transmitted only 
once for multiple words of data. A blocked transferring scheme can increase the bandwidth 
of a bus (without the added space and time for retransmitting the same address), and is some-
times referred to as burst transfer scheme. It is commonly used in certain types of memory 
transactions, such as cache transactions. A blocked scheme, however, can negatively impact 
bus performance in that other devices may have to wait longer to access the bus. Some of the 
strengths of the single transmission scheme include not requiring slave devices to have buffers 
to store addresses and the multiple words of data associated with the address, as well as not 

Figure 4.32: SCSI bus.
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The SCSI specification defines 50 bus signals, half of which are tied to 
ground. The 18 SCSI bus signals that are relevant to understanding SCSI 
transactions are shown below. Nine of these signals are used to initiate 
and control transactions, and nine are used for data transfer (8 data bits 
plus a parity bit). 

Busy Indicates that the bus is in use. 

The initiator uses this signal to select a target. Select 

Control/Data The target uses this signal to indicate whether the information being transferred is
control information (signal asserted) or data (signal negated).  

The target uses this signal to specify the direction of the data movement with re-
spect to the initiator. When the signal is asserted, data flows to the initiator; when
negated, data flows to the target.   

Input/Output 

This signal is used by the target during the message phase. Message 

The target uses this signal to start a request/acknowledge handshake.Request

This signal is used by the initiator to end a request/acknowledge handshake.Acknowledge

The initiator uses this signal to inform the target that the initiator has a message
ready. The target retrieves the message, at its convenience, by transitioning to a
message-out bus phase.   

Attention

This signal is used to clear all devices and operations from the bus, and force the
bus into the bus free phase. The Macintosh computer asserts this signal at startup.
SCSI peripheral devices should never assert this signal.  

Reset 

Eight data signals, numbered 0 to 7, and the parity signal. Macintosh computers
generate proper SCSI parity, but the original SCSI Manager does not detect parity
errors in SCSI transactions.  

Signal Name Description 
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having to handle any problems that could arise with multiple words of data either arriving out 
of order or not directly associated with an address.

4.6.1 Nonexpandable Bus: I2C Bus Example

The I2C (Inter IC) bus interconnects processors that have incorporated an I2C on-chip inter-
face, allowing direct communication between these processors over the bus. A master/slave 
relationship between these processors exists at all times, with the master acting as a master 
transmitter or master receiver. As shown in Figure 4.33, the I2C bus is a two-wire bus with 
one serial data line (SDA) and one serial clock line (SCL). The processors connected via I2C 
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Figure 4.33: Sample analog TV board.
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Figure 4.34: SCL cycles.
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Figure 4.35: I2C START and STOP conditions.
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are each addressable by a unique address that is part of the data stream transmitted between 
devices.

The I2C master initiates data transfer and generates the clock signals to permit the transfer. 
Basically, the SCL just cycles between HIGH and LOW (see Figure 4.34).

The master then uses the SDA line (as SCL is cycling) to transmit data to a slave. A session is 
started and terminated as shown in Figure 4.35, where a “START” is initiated when the master 
pulls the SDA port (pin) LOW while the SCL signal is HIGH, whereas a “STOP” condition is 
initiated when the master pulls the SDA port HIGH when SCL is HIGH.

With regard to the transmission of data, the I2C bus is a serial, 8-bit bus. This means that, 
while there is no limit on the number of bytes that can be transmitted in a session, only one 
byte (8 bits) of data will be moved at any one time, 1 bit at a time (serially). How this trans-
lates into using the SDA and SCL signals is that a data bit is “read” whenever the SCL signal 
moves from HIGH to LOW, edge to edge. If the SDA signal is HIGH at the point of an edge, 
then the data bit is read as a “1”. If the SDA signal is LOW, the data bit read is a “0”. An 
example of byte “00000001” transfer is shown in Figure 4.36a, while Figure 4.36b shows an 
example of a complete transfer session.

4.6.2 PCI (Peripheral Component Interconnect) Bus Example: Expandable

The latest PCI specifi cation at the time of writing, PCI Local Bus Specifi cation Revision 2.1, 
defi nes requirements (mechanical, electrical, timing, protocols, etc.) of a PCI bus 
implementation. PCI is a synchronous bus, meaning that it synchronizes communication 
using a clock. The latest standard defi nes a PCI bus design with at least a 33 MHz clock (up 
to 66 MHz) and a bus width of at least 32 bits (up to 64 bits), giving a possible minimum 
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throughput of approximately 132 Mbytes/sec ((33 MHz * 32 bits) / 8)—and up to 528 Mbytes/
sec maximum with 64-bit transfers given a 66-MHz clock. PCI runs at either of these clock 
speeds, regardless of the clock speeds at which the components attached to it are running.

As shown in Figure 4.37, the PCI bus has two connection interfaces: an internal PCI inter-
face that connects it to the main board (to bridges, processors, etc.) via EIDE channels, and 

Figure 4.36a: I2C data transfer example.
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Figure 4.36b: I2C complete transfer diagram.
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Figure 4.37: PCI bus.
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the expansion PCI interface, which consists of the slots into which PCI adaptor cards (audio, 
video, etc.) plug. The expansion interface is what makes PCI an expandable bus; it allows 
for hardware to be plugged into the bus, and for the entire system to automatically adjust and 
operate correctly.

Under the 32-bit implementation, the PCI bus is made up of 49 lines carrying multiplexed data 
and address signals (32 pins), as well as other control signals implemented via the remaining 
17 pins (see table in Figure 4.37).

Because the PCI bus allows for multiple bus masters (initiators of a bus transaction), it imple-
ments a dynamic centralized, parallel arbitration scheme (see Figure 4.38). PCI’s arbitration 
scheme basically uses the REQ# and GNT# signals to facilitate communication between initi-
ators and bus arbitrators. Every master has its own REQ# and GNT# pin, allowing the arbitra-
tor to implement a fair arbitration scheme, as well as determining the next target to be granted 
the bus while the current initiator is transmitting data.

In general, a PCI transaction is made up of fi ve steps:

1. An initiator makes a bus request by asserting a REQ# signal to the central arbitrator.

2. The central arbitrator does a bus grant to the initiator by asserting GNT# signal.

3. The address phase which begins when the initiator activates the FRAME# signal, and 
then sets the C/BE[3:0]# signals to defi ne the type of data transfer (memory or I/O 
read or write). The initiator then transmits the address via the AD[31:0] signals at the 
next clock edge.

4. After the transmission of the address, the next clock edge starts the one or more data 
phases (the transmission of data). Data is also transferred via the AD[31:0] signals. 
The C/BE[3:0], along with IRDY# and #TRDY signals, indicate if transmitted data 
is valid.

Figure 4.38: PCI arbitration scheme.
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Figure 4.39a: PCI read example.

CLK Cycle 1 – The bus is idle.
CLK Cycle 2 – The initiator asserts a valid address and places a read com-

mand on the C/BE# signals. 
** Start of address phase. **
CLK Cycle 3 – The initiator tri-states the address in preparation for the 

target driving read data. The initiator now drives valid byte enable 
information on the C/BE# signals. The initiator asserts IRDY# low in-
dicating it is ready to capture read data. The target asserts DEVSEL# 
low (in this cycle or the next) as an acknowledgment it has positively 
decoded the address. The target drives TRDY# high indicating it is 
not yet providing valid read data. 

CLK Cycle 4 – The target provides valid data and asserts TRDY# low indi-
cating to the initiator that data is valid. IRDY# and TRDY# are both 
low during this cycle causing a data transfer to take place. 

** Start of fi rst data phase occurs, and the initiator captures the data. **
CLK Cycle 5 – The target deasserts TRDY# high indicating it needs more 

time to prepare the next data transfer. 
CLK Cycle 6 – Both IRDY# and TRDY# are low. 
** Start of next data phase occurs, and the initiator captures the data pro-

vided by the target. **
CLK Cycle 7 – The target provides valid data for the third data phase, but the 

initiator indicates it is not ready by deasserting IRDY# high. 
CLK Cycle 8 – The initiator re-asserts IRDY# low to complete the third data 

phase. The initiator drives FRAME# high indicating this is the fi nal 
data phase (master termination). 

** Final data phase occurs, the initiator captures the data provided by the 
target, and terminates. **

CLK Cycle 9 – FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#, 
and DEVSEL# are driven inactive high for one cycle prior to being 
tri-stated.
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Figure 4.39b: PCI write example.
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CLK Cycle 1 – The bus is idle. 
CLK Cycle 2 – The initiator asserts a valid address and places a write command 

on the C/BE# signals. 
** Start of address phase. **
CLK Cycle 3 – The initiator drives valid write data and byte enable signals. The 

initiator asserts IRDY# low indicating valid write data is available. The 
target asserts DEVSEL# low as an acknowledgment it has positively de-
coded the address (the target may not assert TRDY# before DEVSEL#). 
The target drives TRDY# low indicating it is ready to capture data. Both 
IRDY# and TRDY# are low. 

** First data phase occurs with target capturing write data. **
CLK Cycle 4 – The initiator provides new data and byte enables. Both IRDY# 

and TRDY# are low. 
** Next data phase occurs with target capturing write data. **
CLK Cycle 5 – The initiator deasserts IRDY# indicating it is not ready to pro-

vide the next data. The target deasserts TRDY# indicating it is not ready 
to capture the next data. 

CLK Cycle 6 – The initiator provides the next valid data and asserts IRDY# low. 
The initiator drives FRAME# high indicating this is the final data phase 
(master termination). The target is still not ready and keeps TRDY# high. 

CLK Cycle 7 – The target is still not ready and keeps TRDY# high. 
CLK Cycle 8 – The target becomes ready and asserts TRDY# low. Both IRDY# 

and TRDY# are low. 
** Final data phase occurs with target capturing write data. **
CLK Cycle 9 – FRAME#, AD, and C/BE# are tri-stated, as IRDY#, TRDY#, and 

DEVSEL# are driven inactive high for one cycle prior to being tri-stated.

5. Either the initiator or target can terminate a bus transfer through the deassertion of the 
#FRAME signal at the last data phase transmission. The STOP# signal also acts to 
terminate all bus transactions

Figures 4.39a and b demonstrate how PCI signals are used for transmission of information.
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4.7 Integrating the Bus with Other Board Components

Buses vary in their physical characteristics, and these characteristics are refl ected in the com-
ponents with which the bus interconnects, mainly the pinouts of processors and memory chips 
which refl ect the signals a bus can transmit (shown in Figure 4.40).

Within an architecture, there may also be logic that supports bus protocol functionality. As an 
example, the MPC860 shown in Figure 4.41a includes an integrated I2C bus controller.

As discussed earlier this section, the I2C bus is a bus with two signals: SDA (serial data) and 
SCL (serial clock), both of which are shown in the internal block diagram of the PowerPC I2C 
controller in Figure 4.41b. Because I2C is a synchronous bus, a baud rate generator within the 
controller supplies a clock signal if the PowerPC is acting as a master, along with two units 

Figure 4.40: PCI-compliant IC.
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Figure 4.41: (a) I2C on MPC860.  Copyright of Freescale Semiconductor, 
Inc., 2004. Used by permission. (b) I2C on MPC860.Copyright of 

Freescale Semiconductor, Inc., 2004. Used by permission.
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(receiver and transmitter) covering the processing and management of bus transactions. In 
this I2C integrated controller, address and data information is transmitted over the bus via the 
transmit data register and out the shift register. When the MPC860 receives data, data is trans-
mitted into the receive data register via a shift register.

4.8 Bus Performance

A bus’s performance is typically measured by its bandwidth, the amount of data a bus can 
transfer for a given length of time. A bus’s design—both physical design and its associated 
protocols—will impact its performance. In terms of protocols, for example, the simpler the 
handshaking scheme the higher the bandwidth (fewer “send enquiry,” “wait for acknowledg-
ment,” etc., steps). The actual physical design of the bus (its length, the number of lines, the 
number of supported devices, and so on) limits or enhances its performance. The shorter the 
bus, the fewer connected devices, and the more data lines, typically the faster the bus and the 
higher its bandwidth.

The number of bus lines and how the bus lines are used—for example, whether there are sepa-
rate lines for each signal or whether multiple signals multiplex over fewer shared lines—are 
additional factors that impact bus bandwidth. The more bus lines (wires), the more data that 
can be physically transmitted at any one time, in parallel. Fewer lines mean more data has to 
share access to these lines for transmission, resulting in less data being transmitted at any one 
time. Relative to cost, note that an increase in conducting material on the board, in this case 
the wires of the bus, increases the cost of the board. Note, however, that multiplexing lines 
will introduce delays on either end of the transmission, because of the logic required on either 
end of the bus to multiplex and demultiplex signals that are made up of different kinds of 
information.

Another contributing factor to a bus’s bandwidth is the number of data bits a bus can transmit 
in a given bus cycle (transaction); this is the bus width. Buses typically have a bandwidth of 
some binary power of 2—such as 1 (20) for buses with a serial bus width, 8 (23) bit, 16 (24) 
bit, 32 (25) bit, and so on. As an example, given 32 bits of data that needs to be transmitted, if 
a particular bus has a width of 8 bits, then the data is divided and sent in four separate trans-
missions; if the bus width is 16 bits, then there are two separate packets to transmit; a 32-bit 
data bus transmits one packet, and serial means that only 1 bit at any one time can be trans-
mitted. The bus width limits the bandwidth of a bus because it limits the number of data bits 
that can be transmitted in any one transaction. Delays can occur in each transmission session, 
because of handshaking (acknowledgment sequences), bus traffi c, and different clock frequen-
cies of the communicating components, that put components in the system in delaying situ-
ations, such as a wait state (a time-out period). These delays increase as the number of data 
packets that need to be transmitted increases. Thus, the bigger the bus width, the fewer the 
delays, and the greater the bandwidth (throughput).
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For buses with more complex handshaking protocols, the transferring scheme implemented 
can greatly impact performance. A block transfer scheme allows for greater bandwidth over 
the single transfer scheme, because of the fewer handshaking exchanges per blocks versus sin-
gle words, bytes (or whatever) of data. On the fl ip side, block transfers can add to the latency 
due to devices waiting longer for bus access, since a block transfer-based transaction lasts 
longer than a single transfer-based transaction. A common solution for this type of latency 
is a bus that allows for split transactions, where the bus is released during the handshaking, 
such as while waiting for a reply to acknowledgement. This allows for other transactions to 
take place, and allows the bus not to have to remain idle waiting for devices of one transac-
tion. However, it does add to the latency of the original transaction by requiring that the bus be 
acquired more than once for a single transaction.
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CHAPTER 5

5.1 Introduction

To attain maximum performance, an embedded processor should have independent bus struc-
tures to fetch data and instructions concurrently. This feature is a fundamental part of what’s 
known as a Harvard architecture. Nomenclature aside, it doesn’t take a Harvard grad to see 
that, without independent bus structures, every instruction or data fetch would be in the critical 
path of execution. Moreover, instructions would need to be fetched in small increments (most 
likely one at a time) because each data access the processor makes would need to utilize the 
same bus. In the end, performance would be horrible.

With separate buses for instructions and data, on the other hand, the processor can continue to 
fetch instructions while data is accessed simultaneously, saving valuable cycles. In addition, 
with separate buses a processor can pipeline its operations. This leads to increased perform-
ance (higher attainable core-clock speeds) because the processor can initiate future operations 
before it has fi nished its currently executing instructions.

So it’s easy to understand why today’s high-performance devices have more than one bus each 
for data and instructions. In Blackfi n processors, for instance, each core can fetch up to 64 bits 
of instructions and two 32-bit data words in a single core-clock (CCLK) cycle. Alternately, it 
can fetch 64 bits of instructions and one data word in the same cycle as it writes a data word.

There are many excellent references on the Harvard architecture (see Endnotes). However, 
because it is a straightforward concept, we will instead focus on the memory hierarchy under-
lying the Harvard architecture.

5.2 Memory Spaces

Embedded processors have hierarchical memory architectures that strive to balance several 
levels of memory with differing sizes and performance levels. The memory closest to the core 
processor (known as Level 1, or L1, memory) operates at the full core-clock rate. The use of 
the term closest is literal in that L1 memory is physically close to the core processor on the 
silicon die so as to achieve the highest operating speeds. L1 memory is most often partitioned 
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into instruction and data segments, as shown in Figure 5.1, for effi cient utilization of memory 
bus bandwidth. L1 instruction memory supports instruction execution in a single cycle; like-
wise, L1 data memory runs at the full core-clock rate and supports single-cycle accesses.

Of course, L1 memory is necessarily limited in size. For systems that require larger code 
sizes, additional on-chip and off-chip memory is available—with increased latency. Larger on-
chip memory is called Level 2 (L2) memory, and we refer to external memory as Level 3 (L3) 
memory. Figure 5.2 shows a summary of how these memory types vary in terms of speed and 
size. The L1 memory size usually comprises tens of kbytes, whereas the L2 memory on-chip 
is measured in hundreds of kbytes. What’s more, Harvard-style L1 requires us to partition our 

Figure 5.1: L1 memory architecture.
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Figure 5.2: Memory-level summary.

code and data into separate places, but L2 and L3 provide a “unifi ed” memory space. By this 
we mean that the instruction and data fetch units of the processor can both access a common 
memory space.

In addition, note the operating speed of each memory block. L1 memory runs at the CCLK 
rate. L2 memory does as well, except that accesses typically take multiple CCLK cycles. With 
L3 memory, the fastest access we can achieve is measured in system clock (SCLK) cycles, 
usually much slower than the CCLK rate.

On Blackfi n processors, L1 and L2 memories are each further divided into sub-banks to allow 
concurrent core and DMA access in the same cycle. For dual-core devices, the core path to L2 
memory is multiplexed between both cores, and the various DMA channels arbitrate for the 
DMA path into L2 memory. Don’t worry too much about DMA right now; we’ll focus on it in 
Chapter 3. For now, it is just important to think of it as a resource that can compete with the 
processor for access to a given memory space.

As we mentioned earlier, L3 memory is defi ned as “off-chip memory.” In general, multiple 
internal data paths lead to the external memory interface. For example, one or two core access 
paths, as well as multiple DMA channels, all can contend for access to L3 memory. When 
SDRAM is used as external memory, some subset of the processor’s external memory inter-
face can be shared with asynchronous memory, such as fl ash or external SRAM. However, 
using DDR-SDRAM necessitates a separate asynchronous interface because of the signal 
integrity and bus loading issues that accompany DDR. Later in this chapter, we will review the 
most popular L3 memory types.
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5.2.1 L1 Instruction Memory

Compared with data fetches, instruction fetches usually occur in larger block sizes. The 
instructions that run on a processor may range in size in order to achieve the best code den-
sity. For instance, the most frequently used Blackfi n instructions are encoded in 16 bits, but 
Blackfi n instruction sizes also come in 32-bit and 64-bit variants. The instruction fetch size is 
64 bits, which matches the largest instruction size. When the processor accesses instructions 
from internal memory, it uses 64-bit bus structures to ensure maximum performance.

What happens when code runs from L3 memory that is less than 64 bits wide? In this case, the 
processor still issues a fetch of 64 bits, but the external memory interface will have to make 
multiple accesses to fi ll the request. Take a look at Figure 5.3 to see how instructions might 
actually align in memory. You’ll see that the 64-bit fetch can contain as many as four instruc-
tions or as few as one. When the processor reads from memory instructions that are different 
in size, it must align them to prevent problems accessing those instructions later.

64-bit instruction fetch can be between 1 and 4 instructions

In addition, portions of instructions can be fetched

One 32-bit instruction One 32-bit instruction

One 32-bit instruction One half of a 64-bit instruction

One 32-bit instruction

One 16-bit instruction One 16-bit instruction One 16-bit instruction One 16-bit instruction

One 16-bit instruction One 16-bit instruction

One 64-bit instruction

Figure 5.3: Instruction alignment.

5.2.2 Using L1 Instruction Memory for Data Placement

In general, instruction memory is meant to be used only for instructions, because in a Harvard 
architecture, data can’t be directly accessed from this memory. However, due to the code effi -
ciency and low byte count that some applications require, data is sometimes staged in L1 instruc-
tion memory. In these cases, the DMA controller moves the data between instruction and data 
memories. Although this is not standard practice, it can help in situations where you’d otherwise 
have to add more external memory. In general, the primary ways of accessing instruction mem-
ory are via instruction fetches and via the DMA controller. A back-door method is frequently 
provided as well.
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5.2.3 L1 Data Memory

L1 data memory exists as the complement to L1 instruction memory. As you might expect 
from our L1 instruction memory discussion, the processor can access L1 data memory in a 
single cycle. As stated earlier, internal memory banks usually are constructed of multiple sub-
banks to allow concurrent access between multiple resources.

On the Blackfi n processor, L1 data memory banks consist of four 4-kbyte sub-banks, each 
with multiple ports, as shown in Figure 5.1b. In a given cycle, the core can access data in two 
of the four sub-banks, whereas the DMA controller can access a third one. Also, when the 
core accesses two data words on different 32-bit boundaries, it can fetch data (8, 16, or 32 bits 
in size) from the same sub-bank in a single cycle while the DMA controller accesses another 
sub-bank in the same cycle. See Figure 5.4 to get a better picture of how using sub-banks can 
increase performance. In the “unoptimized” diagram, all the buffers are packed into two sub-
banks. In the “optimized” diagram, the buffers are spread out to take advantage of all four 
sub-banks.

Core fetch

Core fetch

DMA

DMA

Buffer0
Buffer1

Buffer2
Coefficients

Unused

Un-optimized

DMA and core conflict when
accessing sub-banks

Unused

Core fetch

Core fetch

DMA

DMA

Buffer0

Buffer1

Coefficients

Optimized

Core and DMA operate
in harmony

Buffer2

Partitioning Data in L1 Data Memory Sub-Banks

Figure 5.4: Memory bank structure and corresponding bus structure.

We’ve seen that there are two separate internal buses for data accesses, so up to two fetches 
can be performed from L1 memory in a single cycle. When fetching to a location outside L1 
memory, however, the accesses occur in a pipelined fashion. In this case, the processor has 
both fetch operations in the same instruction. The second fetch initiates immediately after the 
fi rst fetch starts. This creates a head start condition that improves performance by reducing 
the cycle count for the entire instruction to execute.

5.3 Cache Overview

By itself, a multilevel memory hierarchy is only moderately useful, because it could force a 
high-speed processor to run at much slower speeds to accommodate larger applications that 
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only fi t in slower external memory. To improve performance, there’s always the option of 
manually moving important code into and out of internal SRAM. But there’s also a simpler 
option: cache.

On the Blackfi n processor, portions of L1 data and instruction memory can be confi gured as 
either SRAM or cache, whereas other portions are always SRAM. When L1 memory is con-
fi gured as cache, it is no longer directly accessible for reads or writes as addressable memory.

5.3.1 What Is Cache?

You might be wondering, “Why can’t more L1 memory be added to my processor?” After all, 
if all of a processor’s memory ran at the same speed as L1, caches and external memory would 
not be required. Of course, the reason is that L1 memory is expensive in terms of silicon size, 
and big L1 memories drive up processor prices.

Enter the cache. Specifi cally, cache is a smaller amount of advanced memory that improves 
performance of accesses to larger amounts of slower, less expensive memories.

By defi nition, a cache is a set of memory locations that can store something for fast access 
when the application actually needs it. In the context of embedded processors, this “something” 
can be either data or instructions. We can map a relatively small cache to a very large cacheable 
memory space. Because the cache is much smaller than the overall cacheable memory space, 
the cacheable addresses alias into locations in cache, as shown in Figure 5.5. The high-level 
goal of cache is to maximize the percentage of “hits,” which are instances when the processor 
fi nds what it needs in cache instead of having to wait until it gets fetched from slower memory.

Actually, cache increases performance in two ways. First, code that runs most often will have 
a higher chance of being in single-cycle memory when the processor needs it. Second, fi lls 
done as a result of cache-line misses will help performance on linear code and data accesses 
because by the time the fi rst new instruction or data block has been brought into the cache, the 
next set of instructions (or data) is also already on its way into cache. Therefore, any cycles 
associated with a cache-line miss are spread out across multiple accesses.

Instruction cache almost always helps improve performance, whereas data cache is sometimes 
benefi cial. The only time that instruction cache can cause problems is in the highest-performance 
systems that tax the limits of processor bus bandwidths.

Each sub-bank of cache consists of ways. Each way is made up of lines, the fundamental com-
ponents of cache. Each cache line consists of a collection of consecutive bytes. On Blackfi n 
devices, a cache line is 32 bytes long. Figure 5.6 shows how Blackfi n instruction and data 
caches are organized.

Ways and lines combine to form locations in cache where instructions and data are stored. As 
we mentioned earlier, memory locations outside the cache alias to specifi c ways and lines, 
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Figure 5.5: Cache concept diagram.
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Figure 5.6: Blackfi n cache organization.
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depending on the type of cache that is implemented. Let’s talk now about the three main kinds of 
cache: direct-mapped, fully associative, and set-associative. Figure 5.7 illustrates the basic differ-
ences between types. It is important to understand the variety of cache your processor employs, 
because this determines how the cacheable memory aliases to the actual cache memory.

5.3.2 Direct-Mapped Cache

When we talk about a cache that is direct-mapped, we mean that each memory location maps 
to a single cache line that it shares with many other memory locations. Only one of the many 
addresses that share this line can use it at a given time. Although this is the simplest scheme to 
implement, it provides the lowest percentage of performance increase. Since there is only one 
site in the cache for any given external memory location, code that has lots of branches will 
always result in cache-line misses. Direct mapping only helps when code fl ow is very linear, a 
situation that does not fi t the control nature of the typical embedded application.

The primary problem with this type of cache is that the probability the desired code or data is 
actually in cache is the lowest of the three cache models we describe. Thrashing occurs when 
a line in cache is constantly being replaced with another line. This is much more common in a 
direct-mapped cache than in other cache architectures.

5.3.3 Fully Associative Cache

In a fully associative cache, any memory location can be cached in any cache line. This is the 
most complicated (and costly) scheme to implement in silicon, but performance will always 
be the best. Essentially, this implementation greatly reduces the number of cache-line misses 

Figure 5.7: Cache architectures.
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in steady-state operation. Because all addresses map to all sites in the cache, the probability 
increases that what you want to be in cache will actually be there.

5.3.4 N-Way Set-Associative Cache

The previous two cache designs represent the two ends of the performance spectrum. The fi nal 
design we will discuss is actually the most common implementation. It is called the N-way set-
associative cache, where N is typically 2 or 4. This scheme represents a compromise between 
the two previously mentioned types of cache. In this scenario, the cache comprises sets of N 
lines each, and any memory address can be cached in any of those N lines within a set. This 
improves hit ratios over the direct-mapped cache, without the added design complexity and 
silicon area of the fully associative design. Even so, it achieves performance very close to that 
of the fully associative model.

In Blackfi n processors, the data cache is two-way set-associative, and the instruction cache is 
four-way set-associative. This mostly has to do with the typical profi le of execution and data 
access patterns in an embedded application. Remember, the number of ways increases the 
number of locations within the cache to which each address can alias, so it makes sense to 
have more for instruction cache, where addressing normally spans a larger range.

5.3.5 More Cache Details

As we saw in Figure 5.6, a cache structure is made up of lines and ways. But there’s certainly 
more to cache than this. Let’s take a closer look.

Each line also has a “tag array” that the processor uses to fi nd matches in the cache. When an 
instruction executes from a cached external memory location, the processor fi rst checks the 
tag array to see if the desired address is in cache. It also checks the “validity bit” to determine 
whether a cache line is valid or invalid. If a line is valid, this means that the contents of this 
cache line contain values that can be used directly. On the other hand, when the line is invalid, 
its contents can’t be used.

As we stated before, a cache hit refers to a case when the data (or instruction) the core wants 
to access is already in the cache. Likewise, a cache miss refers to the case when the processor 
needs information from the cache that is not yet present. When this happens, a cache-line fi ll 
commences.

As noted earlier, the information in the tag array determines whether a match exists or not. At 
the simplest level, a cache-line fi ll is just a series of fetches made from cacheable memory. 
The difference is that when cache is off, the core fetches only what it needs, and when cache is 
on, the core may actually fetch more than it needs (or hopefully, what it will need soon!).

So, as an example, let’s assume that cache is enabled and the location being accessed has 
been confi gured as cacheable. The fi rst time a processor accesses a specifi c location in, say, 
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L3 memory, a cache miss will generate a cache-line fi ll. Once something is brought into 
cache, it stays there until it is forced out to make room for something else that the core needs. 
Alternatively, as we will soon see, it is sometimes prudent to manually invalidate the cache 
line.

As we noted earlier, Blackfi n processors fetch instructions 64 bits at a time. When instruc-
tion cache is enabled and a cache miss occurs, the cache-line fi ll returns four 64-bit words, 
beginning with the address of the missed instruction. As Figure 5.8 illustrates, each cache 
line aligns on a fi xed 32-byte boundary. If the instruction is in the last 64-bit word in a cache 
line, that will be the fi rst value returned. The fi ll always wraps back around to the beginning 
of the line and fi nishes the fetch. From a performance standpoint this is preferable because we 
wouldn’t want the processor to wait for the three unwanted 64-bit fetches to come back before 
receiving the desired instruction.

Target Word

Cache Line Replacement

Fetching Order for Next Three Words

WD0

WD1

WD2

WD3

WD0, WD1, WD2, WD3

WD1, WD2, WD3, WD0

WD2, WD3, WD0, WD1

WD3, WD0, WD1, WD2

Cache line fill begins with requested word

Figure 5.8: Cache-line boundaries.

When a cache hit occurs, the processor treats the access as though it were in L1 memory—that 
is, it fetches the data/instruction in a single CCLK cycle. We can compute the cache hit rate as 
the percentage of time the processor has a cache hit when it tries to fetch data or instructions. 
This is an important measure because if the hit rate is too low, performance will suffer. A hit rate 
over 90% is desirable. You can imagine that, as the hit rate drops, performance starts to approach 
a system in which everything to which the core needs access resides in external memory.

Actually, when the hit rate is too low, performance will be worse than it is when everything 
is in external memory and cache is off. This is due to the fact that the cache-line size is larger 
than the data or instruction being fetched. When cache misses are more common than cache 
hits, the core will end up waiting for unwanted instructions or data to come into the system. 
Of course, this situation degrades performance; fortunately, it’s diffi cult to create a case where 
this happens.
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As a rule of thumb, the more associative a cache is, the higher the hit rate an application can 
achieve. Also, as the cache size grows, the number of cache ways has less impact on hit rate, 
but performance still does increase.

As more items are brought into cache, the cache itself becomes full with valid data and/or 
instructions. When the cache has an open line, new fetches that are part of cache-line fi lls pop-
ulate lines that are invalid. When all the lines are valid, something has to be replaced to make 
room for new fetches. How is this replacement policy determined?

A common method is to use a least recently used (LRU) algorithm, which simply targets for 
replacement the data or instruction cache line that has not been accessed for the longest time. 
This replacement policy yields great performance because applications tend to run small 
amounts of code more frequently. This is true even when application code approaches Mbytes 
in size.

5.3.6 Write-Through and Write-Back Data Cache

Data cache carries with it some additional important concepts. There are generally two modes 
of operation for data cache: write-through and write-back, as shown in Figure 5.9.

Processor

Updated at same time

(a) Write-through

Data cache

Memory

Updated only
when entry replaced
in data cache

(b) Write-back

Processor

Data cache

Memory

Figure 5.9: Write-through and write-back data cache.

The term write-through means that the information is written both to the cache and to the source 
memory at the time it is modifi ed, as shown in Figure 5.9a. This means that if a data element is 
brought into cache and modifi ed a million times while the processor is executing an algorithm, 
the data is written to the source memory a million times as well. In this case, the term source 
memory refers to the actual location being cached in L2 or L3 memory. As you can see, write-
through mode can result in lots of traffi c on the bus between cache and the source memory. This 
activity can impact performance when other resources are accessing the memory.
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Write-through data cache does have one advantage over write-back, however: It helps keep 
buffers in source memory coherent when more than one resource has access to them. For 
example, in a dual-core device with shared memory, a cache confi gured as write-through can 
help ensure that the shared buffer has the latest data in it. Assume that core A modifi es the 
buffer and then core B needs to make subsequent changes to the same buffer. In this case, 
core A would notify core B when the initial processing was complete, and core B would have 
access to the latest data.

The term “write-back” means that the information is written only to the cache, until it is being 
replaced, as shown in Figure 5.9b. Only then is the modifi ed data written back to source mem-
ory. Therefore, if a data value is modifi ed a million times, the result is only written locally to
the cache until its cache entry is replaced, at which point source memory will be written a single
time. Using our dual-core example again, coherency can still be maintained if core A manually 
“fl ushes” the cache when it is done processing the data. The fl ush operation forces the data in 
cache to be written out to source memory, even though it is not being replaced in cache, which 
is normally the only time this data would be written to source memory.

Although these two modes each have merit, write-back mode is usually faster because the proc-
essor does not need to write to source memory until absolutely necessary. Which one should 
you choose? The choice depends on the application, and you should try both ways to see which 
will give the best performance. It is important to try these options multiple times in your devel-
opment cycle. This approach will let you see how the system performs once peripherals are inte-
grated into your application. Employing the write-back mode (versus write-through mode) can 
usually increase performance between 10% and 15%.

These write policy concepts don’t apply to instruction memory, because modifying code in 
cached instruction memory isn’t a typical programming model. As a result, instruction cache 
is not designed with this type of feature.

Before we move on, let’s look at one additional write-back mode mechanism. Figure 5.10 
illustrates the composition of a cache line. Specifi cally, an address tag precedes the set of 
four 64-bit words (in the case of Blackfi n devices). The cache array tags possess a dirty bit to 

Figure 5.10: Cache array with tags.

32-byte of data/instructions

Address Tag Way Word 0 V Word 1 V Word 2 V Word 3 V

Validity bitsDetermines
bank, way, line, and

dirty/clean status

Ch05-H8584.indd   194Ch05-H8584.indd   194 8/17/07   10:14:29 AM8/17/07   10:14:29 AM



 Memory Systems   195

www.newnespress.com

mark data that has changed in cache under write-back mode. For example, if we read a value 
from memory that ends up in cache and the value is subsequently modifi ed by the processor, 
it is marked as “dirty.” The cache uses this bit as a reminder that before the data is completely 
removed from cache, it needs to be written out to its source memory. Processors often have a 
victim buffer that holds data that was replaced in the cache. Let’s consider why and how this 
helps performance.

When a data miss occurs in write-back mode and the entire cache contains valid data, some-
thing must be removed from the cache to hold the data about to be fetched. Recall that when 
this happens, the cache (assuming an LRU policy) will replace the data least recently used. 
What if there’s “dirty” data in the line that is replaced—that is, data which has changed and 
needs to be updated in the source memory? The processor is most immediately interested in 
obtaining data for the currently executing instruction. If it had to wait for the dirty data to be 
written back to source memory, and then wait again for the new data to be fetched, the core 
would stall longer than desired. This is where the victim buffer comes in; it holds the data 
that needs to be written back, while the core gets its new data quickly. Once the cache-line fi ll 
completes, the victim buffer empties and the source memory is current.

5.4 External Memory

So far in this chapter, our discussions have centered on internal memory resources. Let’s now 
focus on the many storage options available external to the processor. We generically refer to 
external memory as “L3” throughout this text, but you will soon see that the choices for L3 
memory vary considerably in terms of the way they operate and their primary uses. They all 
can play an important role in media-based applications. We will start with the highest-per-
formance volatile memories and move to various nonvolatile options. It is important to note 
here that the synchronous and asynchronous memories described here are directly memory-
mapped to a processor’s memory space. Some of the other memories we’ll discuss later in this 
chapter, such as NAND fl ash, are also mapped to an external memory bank, but they have to 
be indirectly accessed.

5.4.1 Synchronous Memory

We begin our discussion with synchronous memory because it is the highest-performance 
external memory. It’s widely available and provides a very cost-effective way to add large 
amounts of memory without completely sacrifi cing performance. We focus on SDRAM tech-
nology to provide a good foundation for understanding, but then we’ll proceed to an overview 
of current and near-term follow-ons to SDRAM: DDR-SDRAM 1 and 2.

Both SDRAM and DDR are widely available and very cost-effective because the personal 
computer industry uses this type of memory in standard DIMM modules.
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5.4.1.1 SDRAM

SDRAM is synchronous addressable memory composed of banks, rows, and columns. All 
reads and writes to this memory are locked to a processor-sourced clock. Once the processor 
initializes SDRAM, the memory must be continually refreshed to ensure that it retains its state.
Clock rates vary for SDRAM, but the most popular industry specifi cations are PC100 and PC133, 
indicating a 100 MHz and 133 MHz maximum clock, respectively. Today’s standard SDRAM 
devices operate at voltages between 2.5 V and 3.3 V, with the PC133 memory available at 3.3 V.
Memory modules are specifi ed in terms of some number of Mbits in addition to a variety of 
data bus sizes (e.g., �8, �16, �32). This sometimes causes confusion, but it is actually a 
straightforward nomenclature. For example, the �16 designation on a 256-Mbit device implies 
an arrangement of 16 Mbits � 16. Likewise, for a �32 bus width, a 256-Mbit device would be 
confi gured as 8 Mbits � 32. This is important when you are selecting your fi nal memory size. 
For example, if the external bus on your processor is 32 bits wide and you want 128 Mbytes of 
total memory, you might connect two 32 Mbits � 16 modules.
At its lowest level, SDRAM is divided into rows and columns. To access an element in an 
SDRAM chip, the row must fi rst be “opened” to become “active.” Next, a column within that 
row is selected, and the data is transferred from or written to the referenced location. The proc-
ess of setting up the SDRAM can take several processor system clock cycles. Every access 
requires that the corresponding row be active.
Once a row is active, it is possible to read data from an entire row without re-opening that row 
on every access. The address within the SDRAM will automatically increment once a location 
is accessed. Because the memory uses a high-speed synchronous clock, the fastest transfers 
occur when performing accesses to contiguous locations, in a burst fashion.
Figure 5.11 shows a typical SDRAM controller (SDC) with the required external pins to inter-
face properly to a memory device. The data access size might be 8, 16, or 32 bits. In addition, 
the actual addressable memory range may vary, but an SDC can often address hundreds of 
Mbytes or more.

Figure 5.11: Representative SDRAM controller.
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SDRAMs are composed of internal banks—most commonly, four equally sized banks. So if you 
connected 64 Mbytes of SDRAM to a processor, the SDRAM would consist of four 16-Mbyte 
internal banks. This is important to remember because you’ll derive performance benefi ts from 
partitioning your application across the internal banks. Another thing to note—the term bank is 
unfortunately used to describe both the internal structure of an SDRAM and an entire SDRAM 
module (as viewed from the system level). For example, two 64-Mbyte external SDRAM banks 
may connect to a processor, and each 64-Mbyte module may consist of four 16-Mbyte inter-
nal banks each.
The SDRAM controller uses the external pins shown in Figure 5.11 to issue a series of com-
mands to the SDRAM. Table 5.1 provides a brief description of each of the pins, and Table 
5.2 shows how the pins work in concert to send commands to the SDRAM. It generates these 
commands automatically based on writes and reads by the processor or DMA controller.

ADDR External address bus

DATA External data bus

SRAS SDRAM row address strobe (connect to SDRAM’s RAS pin)

SCAS SDRAM column address strobe (connect to SDRAM’s CAS pin)

SWE SDRAM write-enable pin (connect to SDRAM’s WE pin)

SDQM SDRAM data mask pins (connect to SDRAM’s DQM pins)

SMS Memory select pin of external memory bank confi gured for SDRAM

SA10 SDRAM A10 pin (used for SDRAM refreshes; connect to SDRAM’s A[10] pin)

SCKE SDRAM clock-enable pin (connect to SDRAM’s CKE pin)

CLKOUT SDRAM clock pin (connect to SDRAM’s CLK pin; Opverates at SCLK frequency)

Table 5.1: SDRAM pin description.

Command SMS SCAS SRAS SWE SCKE SA10

Precharge All low high low low high high

Single Precharge low high low low high low

Bank Activate low high low high high –

Load Mode Register low low low low high –

Load Extended Mode Register low low low low high low

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high –

Self-Refresh low low low high low –

NOP (No Operation) low high high high high –

Command Inhibit high high high high high –

Table 5.2: SDRAM commands.
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It is important to consider the way your processor’s SDC multiplexes SDRAM addresses. 
Consider two possibilities shown in Figure 5.13 as an example. In Figure 5.13b, the SDRAM 
row addresses are in the higher bit positions. In Figure 5.13a, the bank address lines are in 
the higher bit positions, which can result in better performance, depending on the applica-
tion. Why is this the case? The SDRAM can keep four pages open across four internal banks, 
thus reducing page opening/closing latency penalties. If your system is connected as shown in 
Figure 5.13b, it would be very hard to partition your code and data to take advantage of this 

Figure 5.12: Basic SDRAM timing diagram.

RAS

CAS

Address Row Column

Data Read
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Figure 5.12 illustrates an SDRAM transaction in a simplifi ed manner. First, the higher bits of 
the address are placed on the bus and /RAS is asserted. The lower address bits of the address 
are then placed on the bus and /CAS is asserted. The number of rows and columns will depend 
on the device you select for connection.
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feature. Specifi cally, you would have to slice up your data and code and essentially interleave 
it in memory to make use of all open rows.

Let’s now discuss briefl y some of the key commands that the SDRAM controller uses to inter-
face with the memory device.

The Bank Activate command causes the SDRAM to open an internal bank (specifi ed by the 
bank address) in a row (specifi ed by the row address). The pins that are used for the bank 
and row addresses depend on the mappings of Figure 5.13. When the SDC issues the Bank 
Activate command, the SDRAM opens a new row address in the dedicated bank. The memory 
in the open internal bank and row is referred to as the open page. The Bank Activate command 
must be applied before issuing a read or write command.

The Precharge command closes a specifi c internal bank in the active page or all internal banks 
in the page.

The Precharge All command precharges all internal banks at the same time before executing 
an auto-refresh.

A Read/Write command executes if the next read/write access is in the present active page. 
During the Read command, the SDRAM controller drives the column address. The delay 
between Bank Activate and Read commands is determined by the tRCD parameter in the 
SDRAM data sheet. The SDRAM then makes data available after the CAS latency period 
described below.

In the Write command, the SDRAM controller drives the column address. The write data 
becomes valid in the same cycle. The delay between Bank Activate and Write commands is 
determined by the tRCD parameter in the SDRAM data sheet.

Whenever a page miss occurs (an access to a location on a row that is not open), the SDC exe-
cutes a Precharge command followed by a Bank Activate command before executing the Read 
or Write command. If there is a page hit, the Read or Write command can be issued immedi-
ately without requiring the Precharge command.

The Command Inhibit and NOP commands are similar in that they have no effect on the cur-
rent operations of the SDRAM. The only difference between the two is that the NOP is used 
when the actual SDRAM bank has been selected.

The Load Mode command is used to initialize an SDRAM chip. Load Extended Mode is an 
additional initialization command that’s used for mobile SDRAMs.

Auto-Refresh and Self-Refresh commands regulate the way the contents of the SDRAM are 
refreshed periodically. We’ll talk more about them shortly.
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5.4.1.2 CAS Latency

SDRAM data sheets are swimming in numbers that specify the performance of the device. 
What do all these parameters really mean?

The Column Address Strobe (CAS) latency, abbreviated as CL2 or CL3, is the delay in clock 
cycles between when the SDRAM detects a Read command and when it provides the data at 
its output pins. This CAS latency is an important selection parameter. A common term used 
to identify SDRAM devices is either CAS2 or CAS3. These actually represent CL2 or CL3, 
since they refer to CAS latency timings (e.g., two system clocks versus three system clocks). 
An SDRAM with a CAS latency of two cycles will likely yield better throughput than one 
with a three-cycle latency. This is based on the fact that for random accesses, a cycle will be 
saved each time an access is made. You should specify this parameter based on application 
needs. Does the extra performance of the faster device justify the extra cost? For high-per-
formance systems, the answer is usually “Yes.”

The CAS latency of a device must be greater than or equal to its column access time (tCAC) 
and its frequency of operation (tCLK). That is, the selection of CL must satisfy this equation:

CL � tCLK 	 tCAC

For example, if tCLK is 7.5 ns (133 MHz system clock) and tCAC is 15 ns, you can select a CL2 
device. If tCAC is 20 ns, you must choose CL3. The PC133 SDRAM specifi cation only allows 
for CAS latency values of 1, 2, or 3.

Sometimes you will see memory devices described as 3-2-2 or 2-2-2. These numbers repre-
sent the CAS latency, RAS-to-CAS delay (tRCD), and Row Precharge (tRP) values, respectively, 
in clock cycles at 100 MHz. Note that for any other speed of operation, such as 66 MHz or 
133 MHz, these numbers would change. For example, let’s assume that for a given module, 
tCAC is 25 ns, tRCD is 20 ns, and tRP is 20 ns. This would indicate 3-2-2 timings at 100 MHz 
(substituting tRCD or tRP for tCAC in the preceding equation as appropriate), but what would 
they be at 133 MHz? Since 133 MHz corresponds to a 7.5 ns clock cycle (tCLK), our equation 
gives timings of 4-3-3, which would be invalid for the SDRAM, since the CAS latency cannot 
be higher than 3. Therefore, you would not be able to operate this module at 133 MHz.

One more point to understand about the CAS latency fi gure (CAS2 or CAS3) is that SDRAM 
suppliers often advertise their top PC100 SDRAM as CAS2. Recall that the CAS latency 
number is derived from tCAC. Unfortunately, the vendor doesn’t provide you with the tCAC 
value. Imagine a CL2 part with a 20-ns tCAC and a CL3 part with a 21-ns tCAC. At 133 MHz 
(7.5 ns clock period), both parts would have a CAS latency value of 3. This means that 
although a CL2 part may be designed to handle a faster system clock speed than a CL3 part, 
you won’t always see a performance difference. Specifi cally, if you don’t plan on running 
your SDRAM faster than 125 MHz, the device with the lower value of CL doesn’t provide any 
additional benefi t over the device with the higher CL value.

Ch05-H8584.indd   200Ch05-H8584.indd   200 8/17/07   10:14:32 AM8/17/07   10:14:32 AM



 Memory Systems   201

www.newnespress.com

5.4.1.3 Refreshing the SDRAM

SDRAM controllers have a refresh counter that determines when to issue refresh commands 
to the SDRAM. When the SDC refresh counter times out, the SDC precharges all banks of 
SDRAM and then issues an Auto-Refresh command to them. This causes the SDRAM to 
generate an internal refresh cycle. When the internal refresh completes, all internal SDRAM 
banks are precharged.

In power-saving modes where SDRAM data needs to be maintained, it is sometimes necessary 
to place the SDRAM in self-refresh mode. Self-refresh is also useful when you want to buffer 
the SDRAM while the changes are made to the SDRAM controller confi guration. Moreover, 
the self-refresh mode is useful when sharing the memory bus with another resource. It can pre-
vent confl icts on shared pins until the fi rst processor regains ownership of the bus.

When you place the SDRAM in self-refresh mode, it is the SDRAM’s internal timer that initi-
ates auto-refresh cycles periodically, without external control input. Current draw when the 
SDRAM is in self-refresh mode is on the order of a few milliamps, versus the typical “on” 
current of 100 mA.

The SDC must issue a series of commands, including the Self-Refresh command, to put the 
SDRAM into this low power mode, and it must issue another series of commands to exit self-
refresh mode. Entering self-refresh mode is controlled by software in an application. Any 
access made by the processor or the DMA controller to the SDRAM address space causes the 
SDC to remove the SDRAM from self-refresh mode.

It is important to be aware that core or DMA accesses to SDRAM are held off until an in-process 
refresh cycle completes. This is signifi cant because if the refresh rate is too high, the potential 
number of accesses to SDRAM decreases, which means that SDRAM throughput declines as 
well. Programming the refresh rate to a higher value than necessary is a common mistake that 
programmers make, especially on processors that allow frequency modifi cation on the fl y. In 
other words, they forget to adjust the Refresh Control register to a level commensurate with the 
newly programmed system clock frequency. As long as the effective refresh rate is not too slow, 
data will not be lost, but performance will suffer if the rate is too high.

5.4.1.4 Mobile SDRAM

A variant of SDRAM that targets the portable device realm is called mobile SDRAM. It comes 
in a smaller form factor and smaller memory sizes than its traditional cousin, and it can oper-
ate down to 2.5 V or 1.8 V, greatly reducing SDRAM power consumption. Mobile SDRAM 
is also known as LP SDRAM, or low-power SDRAM. It is worth mentioning that mobile 
SDRAM devices typically specify a supply voltage and an I/O voltage. For the most power-
sensitive applications, the supply voltage is at 2.5 V while the I/O supply is 1.8 V.

In addition to a reduced form factor and greatly reduced power budget, mobile SDRAM has 
three key JEDEC-specifi ed features that set it apart from SDRAM. The fi rst is a temperature 
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compensated self-refresh mode. The second is a partial array self-refresh capability, and the 
third is a “deep power-down” mode.

The temperature-compensated self-refresh capability allows you to program the mobile SDRAM 
device to automatically adjust its refresh rate in self-refresh mode to accommodate case tempera-
ture changes. Some mobile devices assume you will connect a temperature sensor to the case 
and adjust the parameters associated with this feature. Others have a built-in temperature sensor. 
Either way, the goal is to save power by adjusting the frequency of self-refresh to the minimum 
level necessary to retain the data.

The partial array self-refresh feature allows you to control which banks within a mobile SDRAM 
are actually refreshed when the device is in self-refresh mode. You can program the device so 
that 100%, 50%, or 25% of the banks are kept in self-refresh mode. Obviously, any data you 
need to keep must reside in a bank that is self-refreshed. The other banks are then used for data 
that does not need to be retained during power-saving modes.

Finally, the deep power-down feature allows you to remove power from the device via a write 
to the control register of the SDRAM chip to prevent any current draw during self-refresh mode 
(thus saving hundreds of μA). Of course, all data is lost when you do this, but this mode can be 
very useful in applications in which the entire board is not powered down (e.g., some compo-
nents are operational and are powered by the same regulator) but you want to extend the battery 
life as long as possible.

5.4.1.5 Double Data Rate (DDR) SDRAM/DDR1

SDRAM and mobile SDRAM chips provide the bulk of today’s synchronous memory in produc-
tion. This is quickly changing, however, as an evolved synchronous memory architecture pro-
vides increased performance. Double data rate (DDR) SDRAM provides a direct path to double 
memory bandwidth in an application. In addition, although the industry has more or less skipped 
2.5 V SDRAM devices (with the notable exception of mobile SDRAM), standard DDR1 chips 
are all at 2.5 V.

The traditional SDRAM controller often shares processor pins with various types of asynchro-
nous memory, but the DDR specifi cation is much tighter to allow for much faster operation. 
As such, a DDR memory module will not share pins with other types of memory. Additionally, 
DDR memories require a DDR controller to interface with them; a processor’s SDRAM con-
troller is incompatible with DDR memory.

As the name suggests, a key difference between SDRAM and DDR is that whereas SDRAM 
allows synchronous data access on each clock cycle, DDR allows synchronous access on both 
edges of the clock—hence the term double data rate. This results in an immediate increase in 
peak performance when you use DDR in an application.
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As an example, whereas the peak transfer rate of a PC133 SDRAM running at 133 MHz 
would be 4 bytes � 133 MHz, the maximum peak transfer rate of the equivalent DDR1 mod-
ule running at the same frequency is 4 bytes � 266 MHz.
Another important advantage DDR has over SDRAM is the size of the “prefetch” it accepts. 
DDR1 has a prefetch size of 2n, which means that data accesses occur in pairs. When reads 
are performed, each access results in a fetch of two data words. The same is true for a single 
write access—that is, two data words must be sent.
This means that the minimum burst size of DDR1 is two external data words. For reads, the 
DDR controller can choose to ignore either of the words, but the cycles associated with both 
will still be spent. So you can see that although this feature greatly enhances performance of 
sequential accesses, it erodes performance on random accesses.
DDR SDRAM also includes a strobe-based data bus. The device that drives the data signals 
also drives the data strobes. This device is the DDR module for reads and the DDR control-
ler for writes. These strobes allow for higher data rates by eliminating the synchronous clock 
model to which SDRAM adheres.
When all these DDR feature enhancements are combined, performance really shines. For 
example, at 400 MHz, DDR1 increases memory bandwidth to 3.2 Gbytes/s, compared to 
PC133 SDRAM theoretical bandwidth of 133 MHz � 4 bytes, or 532 Mbytes/s.
Just as a low-power version of SDRAM exists, mobile DDR1 also exists, with many simi-
larities to mobile SDRAM. Mobile DDR1 devices run as low as 1.8 V. Another advantage of 
mobile DDR1 is that there is no minimum clock rate of operation. This compares favorably to 
standard DDR1, whose approximate 80 MHz minimum operating frequency can cause prob-
lems in power-sensitive applications.

5.4.1.6 DDR2 SDRAM

DDR2 SDRAM is the second generation of DDR SDRAM. It offers data rates of up to 
6.4 Gbytes/s, lower power consumption, and improvements in packaging. It achieves this higher 
level of performance and lower power consumption through faster clocks, 1.8 V operation and 
signaling, and a simplifi ed command set. Like DDR1, DDR2 has a mobile variety as well, 
 targeted for handheld devices.
Table 5.3 shows a summary of the differences between DDR1, mobile DDR1, and DDR2. 
It should be noted that DDR1 is not compatible with a conventional SDRAM interface, and 
DDR2 is not compatible with DDR1. However, DDR2 is planned to be forward-compatible 
with next-generation DDR technology.

5.4.2 Asynchronous Memory

As we have just seen, SDRAM and its successors both are accessed in a synchronous manner. 
Asynchronous memory, as you can guess, does not operate synchronously to a clock. Each 
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access has an associated read and write latency. Burst operations are always available with 
synchronous memory, but the same can’t be said of asynchronous memory.

The asynchronous bus of today has evolved from buses that were popular in the past, such as 
IBM’s Industry Standard Architecture (ISA) bus. Asynchronous devices come in many differ-
ent fl avors. The most common include Static RAM (SRAM), which is volatile, and nonvolatile 
memories like PROM and Flash. SRAM can substitute for the pricier SDRAM when high per-
formance isn’t required.

Processors that have an asynchronous memory controller (AMC) typically share its data and 
address pins with the SDRAM controller. As we mentioned earlier, because DDR has much 
tighter capacitive loading requirements, an AMC would not share pins with a DDR controller.

A characteristic AMC is shown in Figure 5.14. It contains read- and write-enable pins that can 
interface to memory devices. Table 5.4 shows a summary of the common AMC pins. Several 

Feature DDR1 Mobile DDR1 DDR2

Data transfer rate 266, 333, 400 MHz 200, 250, 266,
333 MHz

400, 533, 667, 
800 MHz

Operating voltage 2.5 V 1.8 V 1.8 V

Densities 128 Mb–1 Gb 128–512 Mb, 
1 Gb(future)

256 Mb–4 Gb

Internal banks 4 4 4 and 8

Prefetch 2 2 4

CAS latency 2, 2.5, 3 2, 3 3, 4, 5, 6

Additive latency No No 0, 1, 2, 3, 4, 5

READ latency CAS latency CAS latency Additive latency �
CAS latency

WRITE latency Fixed � 1 cycle Fixed � 1 cycle READ latency � 1 cycle

I/O width �4, �8, �16 �4, �8, �16, �32 �4, �8, �16

On-die termination No No Selectable

Off-chip driver No No Yes

Burst length 2, 4, 8 2, 4, 8, 16, full page 4, 8

Burst terminate
command

Yes Yes No

Partial array self-refresh No Full, 1/2, 1/4, 1/8, 
1/16

No

Temperature-compen-
sated self-refresh

No Supported No

Deep power-down No Supported No

Table 5.3: Comparison of DDr1, mobile DDR1, and DDr2.
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memory-select lines allow the AMC to choose which of several connected devices it’s talking 
to at a given point in time. The AMC has programmable wait states and setup/hold timing for 
each connected device, to accommodate a wide array of asynchronous memories.
The AMC is especially useful because, in addition to interfacing with memory devices, it 
allows connection to many other types of components. For example, FIFOs and FPGAs eas-
ily map to an asynchronous bank. Chip sets for USB and Ethernet, as well as bridges to many 
other popular peripherals, also easily interface to the asynchronous memory interface.
When connecting a nonmemory device to an AMC, it is always best to use a DMA channel to 
move data into and out of the device, especially when the interface is shared with SDRAM. 
Access to these types of components usually consumes multiple system clock cycles, whereas 
an SDRAM access can occur in a single system clock cycle. Be aware that, when the AMC 
and SDC share the same L3 memory bus, slow accesses on an asynchronous bank could hold 
off access to a SDRAM bank considerably.
Synchronous random access memory (synchronous SRAM) is also available for higher per-
formance than traditional SRAMs provide, at increased cost. Synchronous SRAM devices are 
capable of either pipelined or fl ow-through functionality. These devices take the asynchronous 
devices one step closer to SDRAM by providing a burst capability.

ADDR External address bus (outputs)

DATA External data bus (inputs/outputs)

AMS Asynchronous memory selects (outputs)

AWE Asynchronous memory write enable (output)

ARE Asynchronous memory read enable (output)

AOE Asynchronous memory read enable (output)

ARDY Asynchronous memory ready response (input)

ABE[1:0] Byte enables (outputs)

Table 5.4: Typical AMC pins.

Figure 5.14: A typical asynchronous memory controller (AMC).
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Whereas synchronous SRAM provides for higher performance than ordinary SRAM, other tech-
nologies allow for lower power. Pseudo-SRAM (and a variant called CellularRAM) connect to 
a processor via an SDRAM-like interface. Additionally, they sport an I/O supply requirement in 
line with other processor I/O (2.5 V or 3.3 V, for instance) while powering the Vcc supply of the 
memory itself at 1.8 V. This presents a good compromise that allows processors to take advan-
tage of some power savings even when they don’t have 1.8 V-capable I/O.

Figure 5.15 shows a high-level view comparing several representative types of external mem-
ory from the dual standpoints of performance and capacity.
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Figure 5.15: External memory comparison of performance and capacity.

5.4.3 Nonvolatile Memories

Nonvolatile memories—memories that retain their contents even when not powered—come in 
several forms. The simplest, a ROM (read-only memory), is written once (at the factory) but 
can be read many times. A PROM, or Programmable ROM, also can only be written once, but 
this can be done in the fi eld, not just at the time of manufacture. An erasable PROM (EPROM) 
can be reprogrammed after erasing its contents via ultraviolet light exposure. An electrically 
erasable PROM (EEPROM), commonly used today, needs only electricity for erasure. A Flash 
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EEPROM takes this technology one step further by allowing data to be stored and erased in 
blocks, rather than in byte-sized increments. This signifi cantly speeds up access rates to Flash 
memories compared with regular EEPROM access times. Finally, a burst-mode Flash sharply 
reduces read access times for sequential bytes by adding a few extra control pins to the stand-
ard Flash interface.

5.4.3.1 NAND and NOR Flash Memories

The two main types of nonvolatile Flash memory widely used today are NOR-based and 
NAND-based. There are many differences between these two technologies, each of which is 
optimal for certain classes of use. Table 5.5 gives a rundown of their major characteristics.

Fundamentally, NAND and NOR Flash technologies differ in the structure of their respec-
tive memory cell arrays. In NOR devices, memory cells are connected in parallel between a 
bit line and ground, such that selecting any number of memory cells can end up grounding 
a bit line. Because this is similar to a wired-OR confi guration, it is termed NOR Flash. This 

Trait NOR Flash NAND Flash

Capacity/bit density Low (�64 MB) High (16–512 MB)

Directly execute code from? Yes No

Erase performance Very slow (5 sec) Fast (3 ms)

Write performance Slow Fast

Read performance Fast Medium

Reliability OK Low; requires error checking and 
bad-block checking

Erase cycles 10 K–100 K 100–1000 K

Life span OK Excellent (10� NOR)

Interface ISA-like/MCU-friendly; (Addr � 
Data � Control), Serial
(SPI or I2C)

I/O only (command sequence)

Pin count High Low

Access method Random Sequential

Ease-of-use Easy; memory-mapped address � 
data scheme

Diffi cult (fi le system needed)

Cost/bit High Low

Primary usage Low-density, high-speed code 
access, some data storage

High-density data block storage

Bootable? Yes Not generally

Power/Energy Dissipation Higher (due to long program and 
erase cycles)

Lower

Table 5.5: Summary of NOR and NAND Flash characteristics.
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arrangement enables very fast read times and thus makes NOR Flash a good candidate for ran-
dom access—a trait associated with processor code.

NAND realizes a more effi cient cell architecture that results in only about half the space taken 
by a NOR cell. However, this space-saving layout connects memory cells in series, sharing 
bit-select lines across several cells. To ground a bit line, an entire group of memory cells must 
be turned on simultaneously. This makes NAND Flashes a poor choice for random accesses, 
but it provides excellent cell compactness. What’s more, it allows several NAND cells to 
be programmed simultaneously, providing very fast write performance compared to NOR 
devices.

NOR Flash holds the edge in read access speed, but NAND is superior in programming and 
erasing speeds. Erase time is especially crucial because Flash devices must all be erased (each 
bit set to 1) before programming occurs (selectively setting bits back to 0). Therefore, erasing 
is an integral part of writing to a Flash device. Moreover, NAND Flashes can tolerate many 
more erase cycles than NOR Flashes can, usually on the order of tenfold, thus providing much 
longer life spans than NOR devices.

One intricacy of NAND Flashes is that a fi le system is necessary to use them. This is because, 
to maintain high yields, NAND Flashes are shipped with randomly located bad blocks. It is 
the job of the fi le system (running on the embedded processor) to fi nd these bad blocks, tag 
them, and avoid using them. Usually, the memory vendor has already scanned and marked the 
bad blocks at the factory, and the fi le system just needs to maintain a table of where these are 
located, keeping in mind that some additional bad blocks will be formed over the lifetime of 
the part. The good news is that because each block is independent of all others, the failure of 
one block has no impact on the operation of others.

As it turns out, NOR Flash can also have bad blocks, but manufacturers typically allocate 
extra blocks on the chip to substitute for any bad blocks discovered during factory tests. 
NAND has no such spare blocks because it’s assumed that a fi le system is necessary anyway 
for the mass storage systems of which NAND devices are a part.

As another consideration, NAND is somewhat prone to bit errors due to periodic program-
ming (one bit error out of every 10 billion bits programmed). Therefore, error-correcting codes 
(Hamming codes, usually) are employed by the fi le system to detect and correct bit errors.

As far as processor interface, NOR devices have a couple of options. For one, they hook 
directly up to the asynchronous memory controller of microprocessors, with the conventional 
address and data bus lines as well as write/read/select control. Depending on the address space 
desired, this interface can encompass a large number of pins. As a slower, lower pin-count 
alternative, serial Flash devices can connect through just a few wires via an SPI or I2C inter-
face. Here, the address and data are multiplexed on the serial bus to achieve memory access 
rates only a fraction of those attainable using parallel address/data buses.
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Interfacing to NAND devices is more complex and occurs indirectly, requiring a sequence of 
commands on the 8-bit bus to internal command and address registers. Data is then accessed 
in pages, usually around 528 bytes in length. Although this indirect interface makes NAND 
unsuitable for booting, this approach provides a fi xed, low pin-count interface that remains 
static as higher-density devices are substituted. In this respect (and many others), NAND Flash 
acts like a conventional hard disk drive. This accounts for the similar structure and access 
characteristics between the two storage technologies.

In fact, NAND Flash devices were specifi cally intended to replace magnetic hard disk drives 
in many embedded applications. To their advantage, they are solid-state devices, meaning that 
they have no moving parts. This leads to more rugged, reliable devices than magnetic disk 
drives, as well as much less power dissipation.

NAND fl ash serves as the basis for all of the most popular removable solid-state mass storage 
cards: CompactFlash, SmartMedia, Secure Digital/Multimedia Card (SD/MMC), Extreme 
Digital Picture Card (xD), MemoryStick, and the like. With the exception of SmartMedia, all 
these cards have built-in controllers that simplify access to the NAND memory on the device. 
These products fi nd wide use in consumer electronics (like cameras, PDAs, cell phones, etc.) 
and other embedded applications requiring mass storage. Table 5.6 provides a high-level com-
parison of these storage cards.

Devices like SD, MemoryStick, and CompactFlash also have an I/O layer, which makes them 
quite attractive as interfaces on embedded processors. They enable a wide range of peripherals 
through these interfaces, including Bluetooth, 802.11b, Ethernet transceivers, modems, FM 
radio, and the like.

5.4.3.2 Hard Disk Storage: IDE, ATA, and ATAPI

The terms IDE and ATA actually refer to the same general interface, but they mean different 
things, and people often get confused and use the terms interchangeably. For simplicity, we’ll 
just refer to the interface as ATA or ATAPI, as explained below.

IDE is short for Integrated Drive Electronics, which refers to a pivotal point in the PC storage 
market when the disk drive controllers were integrated directly on the hard disk itself, rather 
than as a separate board inside the PC. This reduced the cost of the interface and increased 
reliability considerably. IDE drives can support a master and a slave device on each IDE 
channel.

ATA stands for AT Attachment, dating back to the days of the IBM PC/AT. It describes a device 
interface for hooking up to hard disk drives. ATAPI stands for ATA Packet Interface, which 
specifi es a way to hook up to CD-ROM, DVD and tape drives, which communicate by means of 
packetized commands and data. Although the packet layer of ATAPI adds considerable complex-
ity, it still maintains the same electrical interface as ATA. ATA is such a ubiquitous standard for 
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Table 5.6: Storage card comparison.

SmartMedia MMC CompactFlash Secure Digital 
(SD)

MemoryStick xD TransFlash/
Micro SD

Developer Toshiba Infi neon, SanDisk SanDisk SanDisk, 
Panasonic, 
Toshiba

Sony (later with 
SanDisk)

Fujifi lm, 
Olympus

SanDisk, 
Motorola

Variants MMCplus, 
HS-MMC 
(High Speed), 
RS-MMC 
(Reduced Size), 
SecureMMC
MMCmobile

Mini-SD MemoryStick,
ProMemoryStick, 
DuoMemory 
Stick Pro Duo

Volume (mm3) 1265 1075605 
(RS-MMC, 
MMCmobile)

5141 (Type I) 
7790 (Type II)

1613 (SD) 
602 (mini-SD)

3010992 (Duo 
and Pro Duo)

850 165

Weight (g) 2 1.5 11.4 2 (1 for 
mini-SD)

4 (2 for Duo & 
Pro Duo)

2 0.4

C
h05-H

8584.indd   210
C

h05-H
8584.indd   210

8/17/07   10:14:37 A
M

8/17/07   10:14:37 A
M



 
M

em
ory System

s 
 

 211

w
w

w
.n

ew
n

esp
ress.co

m

Interface pins 22 7–13 50 9 10 18 8

Present capacity 128 MB 1 GB 8 GB 2 GB (1 GB 
for mini-SD)

128 MB 4 GB (Pro 
and Pro Duo)

1 GB 512 MB

Content security ID copy 
protection

Depends on 
variant

No CPRM, SD MagicGate ID copy 
protection

CPRM, SD

Max data 
transfer rate

1 MB/s Write, 
3.5 MB/s Read

Up to 52 MB/s 
(depends on 
variant)

66 MB/s 10 MB/s 1.8 MB/s Write, 
2.5 MB/s Read, 
20 MB/s (Pro and 
Pro Duo)

3 MB/s 
Write, 
5 MB/s 
Read

1.8 MB/s 
typical

Comments No on-board 
controller, 
limited 
capacity

Small form factor, 
compatible with 
SD interfaces

IDE-
compatible

Mini-SD has 
adapter to fi t 
SD card slot

Mostly Sony 
products, sup-
ports real-time 
DVD-quality 
video transfer

Adapters 
available 
to other 
card types

bridges 
between 
embedded 
and remova-
ble memory 
worlds

I/O capability? No No Yes Yes Yes No No

Voltage 3.3 V/5 V 3.3 V (1.8 V/3.3 V 
for MMCplus and 
MMCmobile)

3.3 V/5 V 3.3 V 3.3 V 3.3 V 3.3 V

Interface 8-bit I/O SPI, MMC IDE SPI, SD MemoryStick NAND 
Flash

SPI, SD
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mass storage (dwarfi ng SCSI, for instance) that ATA-compliant storage has found its way into 
the PC-MCIA and CompactFlash worlds as well.

The ATA interface specifi es the way commands are passed through to the hard drive control-
ler, interpreted, and processed. The interface consists of eight basic registers: seven are used 
by the processor’s I/O subsystem to set up a read or write access, and the eighth one is used to 
perform block reads/writes in 512-byte chunks called sectors. Each sector has 256 words, and 
each access utilizes a 16-bit data bus.

The original scheme for addressing drive data followed a CHS method of accessing a particu-
lar cylinder, head, and sector (CHS) of the hard disk. A more intuitive mode known as logical 
block addressing (LBA), in which each sector on a hard disk has its own unique identifi cation 
number, was soon added. LBA led the way toward breaking through the 8 GB addressing bar-
rier inherent in the CHS approach (which allows for only 1,024 cylinders, 256 heads, and 63 
sectors).

ATA lays down timing requirements for control and data accesses. It offers two modes of data 
access—Programmed I/O (PIO) and DMA—each offering various levels of performance. PIO 
modes operate in analogous fashion to direct processor accesses to the hard drive. That is, the 
processor has to schedule time out of what it’s doing to set up and complete a data processing 
cycle. DMA modes, on the other hand, allow data transfer between the drive and processor 
memory to occur without core intervention. The term Ultra DMA refers to higher-perform-
ance levels of DMA that involve double-edge clocking, where data is transferred on both the 
rising and falling edges of the clock. Ultra DMA usually requires an 80-conductor IDE cable 
(instead of the standard 40-pin one for parallel ATA drives) for better noise immunity at the 
higher transfer rates, and it also incorporates cyclical redundancy checking (CRC) for error 
reduction.

Table 5.7 lists the several different levels of ATA, starting with ATA-1 and extending to ATA/
ATAPI-7, which is still under development. At Level 4, ATAPI was introduced, so every level 
from 4 onward is designated ATA/ATAPI. The levels differ mainly in I/O transfer rates, DMA 
capability, and reliability. All new drives at a given ATA level are supposed to be backward-
compatible to the previous ATA levels.

5.4.3.3 Other Hard Drive Interfaces

SATA
Serial ATA (SATA) is a follow-on to ATA that serializes the parallel ATA data interface, thus 
reducing electrical noise and increasing performance while allowing for longer, skinnier 
cabling. SATA uses differential signaling at very high clock rates to achieve data transfer rates 
of several hundred megabytes per second. SATA sheds the legacy 5 V power supply baggage 
that parallel ATA carries, and its differential signaling operates in the range of 200–300 mV. 
More good news: It’s software-compatible with parallel ATA. This allows simple
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SATA-to-parallel-ATA converters to translate between the two technologies in the near term, 
without disturbing the software layer underneath the different physical layers. On the downside, 
SATA allows only for point-to-point connections between a controller and a device, although 
external port multipliers are available to effect a point-to-multipoint scheme.

SATA is targeted primarily at the PC market, to improve reliability and increase data transfer 
speeds. It will slowly make its way into embedded applications, fi rst targeting those systems 
where the storage density of solid state fl ash cards isn’t adequate, leaving parallel or serial 
ATA as the only options. But as fl ash card densities grow into the several-Gbyte range, they 
will maintain a fi rm foothold in a wide swath of embedded applications due to the increased 
reliability of their solid-state nature and their small form factors.

SCSI
SCSI stands for Small Computer Systems Interface, a high-end interconnect that outperforms 
ATA but is also much more complex. It offers expandability to many more devices than ATA 
and has a feature set geared toward higher performance. SCSI is more expensive than ATA for 
the same storage capacity, and it’s typically the realm of niche applications, not very popular 
in the embedded world.

Microdrive
The Microdrive is an actual miniature hard disk in a CompactFlash Type II form fac-
tor. Invented by IBM, the product line is now owned and propagated by Hitachi. Whereas 
CompactFlash is a solid-state memory, Microdrives are modeled after conventional magneti-
cally based hard drives, with tiny spinning platters. For this reason, they are not as rugged and 
reliable as CompactFlash memory, and they also consume more power. Currently they are 
available at capacities up to several gigabytes.

ATA Version Max PIO 
Transfer Rate 

(MB/s)

Max DMA 
Transfer Rate 

(MB/s)

Added Features

ATA-1    8.3    8.3 Original standard for IDE drives

ATA-2   16.7    16.7 Logical Block Addressing

Block Transfers

ATA-3   16.7    16.7 Improved reliability, Drive security, SMART 
(self-monitoring)

ATA/ATAPI-4   16.7    33.3 Packet Interface extension. Ultra DMA (80-conductor 
ribbon cable), CRC error checking and correction

ATA/ATAPI-5   16.7    66.7 Faster Ultra DMA transfer modes

ATA/ATAPI-6   16.7   100 Support for drives larger than 137 GB

ATA/ATAPI-7   16.7   133 SATA and DVR support

Table 5.7 ATAPI summary.

Ch05-H8584.indd   213Ch05-H8584.indd   213 8/17/07   10:14:41 AM8/17/07   10:14:41 AM



214   Chapter 5

www.newnespress.com

USB/Firewire
These drives are nothing more than Parallel ATA disk drives with a USB 2.0 high-speed or 
Firewire (IEEE 1394) front end, usually used to facilitate access to a PC. However, in the 
embedded world, where USB and Firewire are gaining traction, these interfaces provide a 
handy way to add storage to a system.

USB pen drives, also called keychain drives, are not related to these ATA drives. Instead, they 
are Flash memory devices with a USB front end, similar in all respects to the NAND memory 
devices described previously.

5.4.3.4 Emerging Nonvolatile Memory Technologies

There are some exciting new technologies on the horizon that will probably be very important 
in high-performance embedded applications. Two of particular interest are FRAM and MRAM. 
FRAM, or Ferroelectric RAM, uses electric fi eld orientation to store charge. This gives it almost 
infi nite write capability. By comparison, conventional EEPROMs can only be written on the 
order of 10,000 times. MRAM, or Magnetoresistive RAM, uses electron spin to store informa-
tion. It represents the best of several memory domains: it’s nonvolatile, it has bit densities rival-
ing DRAM, and it operates at SRAM-like speeds.

5.5 Direct Memory Access

The processor core is capable of doing multiple operations, including calculations, data 
fetches, data stores, and pointer increments/decrements, in a single cycle. In addition, the core 
can orchestrate data transfer between internal and external memory spaces by moving data 
into and out of the register fi le.

All this sounds great, but in reality you can only achieve optimum performance in your appli-
cation if data can move around without constantly bothering the core to perform the transfers.

This is where a direct memory access (DMA) controller comes into play. Processors need 
DMA capability to relieve the core from these transfers between internal/external memory 
and peripherals or between memory spaces. There are two main types of DMA controllers. 
“Cycle-stealing” DMA uses spare (idle) core cycles to perform data transfers. This is not a 
workable solution for systems with heavy processing loads like multimedia fl ows. 
Instead, it is much more effi cient to employ a DMA controller that operates independently 
from the core.

Why is this so important? Well, imagine if a processor’s video port has a FIFO that needs to 
be read every time a data sample is available. In this case, the core has to be interrupted tens of 
millions of times each second. As though that’s not disruptive enough, the core has to perform 
an equal amount of writes to some destination in memory. For every core processing cycle 
spent on this task, a corresponding cycle would be lost in the processing loop.
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We know from experience that PC-based software designers transitioning to the embedded 
world are hesitant to rely on a DMA controller for moving data around in an application. This 
usually stems from their impression that the complexity of the programming model increases 
exponentially when DMA is factored in. Yes, it is true that a DMA controller adds another 
dimension to your solution. We will, in fact, explore some intricacies that DMA introduces—
such as contention for shared resources and new challenges in maintaining coherency between 
data buffers. Our goal, however, is to put your mind at ease, to show you how DMA is truly 
your friend. In this chapter, we’ll focus on the DMA controller itself.

5.5.1 DMA Controller Overview

Because you’ll typically confi gure a DMA controller during code initialization, the core should 
only need to respond to interrupts after data set transfers are complete. You can program the 
DMA controller to move data in parallel with the core while the core is doing its basic process-
ing tasks—the jobs on which it’s supposed to be focused! In an optimized application, the core 
would never have to move any data but rather only access it in L1 memory. The core wouldn’t 
need to wait for data to arrive, because the DMA engine would have already made it available 
by the time the core was ready to access it. Figure 5.16 shows a typical interaction between 
the processor and the DMA controller. The steps allocated to the processor involve setting up 
the transfer, enabling interrupts, and running code when an interrupt is generated. The dashed 
lines/arrows between memory and the peripheral indicate operations the DMA controller makes 
to move data independent of the processor. Finally, the interrupt input back to the processor can 
be used to signal that data is ready for processing.

In addition to moving to and from peripherals, data also needs to move from one memory space 
to another. For example, source video might fl ow from a video port straight to L3 memory, 
because the working buffer size is too large to fi t into internal memory. We don’t want to make 
the processor fetch pixels from external memory every time we need to perform a calculation, 

Figure 5.16: DMA controller.
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so a memory-to-memory DMA (MemDMA for short) can bring pixels into L1 or L2 memory 
for more effi cient access times. Figure 5.17 shows some typical DMA data fl ows.

Memory Peripheral

FIFO

DMA

(a)

Memory Peripheral

FIFO

DMA

Memory Memory

DMA

(b)

(c)

Figure 5.17: Typical DMA fl ows.

So far we’ve focused on data movement, but a DMA transfer doesn’t always have to involve 
data. We can use code overlays to improve performance, confi guring the DMA controller to 
move code into L1 instruction memory before execution. The code is usually staged in larger 
external memory.

In this chapter, we will use the Blackfi n processor’s DMA controller as a model to illustrate 
the basic concepts of direct memory access and how it can boost system performance. We will 
also offer some helpful ways to manage the DMA controller and review examples of “two-
dimensional” transfers that can save valuable data passes by markedly reducing the time an 
application spends traversing a data buffer.

5.5.2 More on the DMA Controller

A DMA controller is a unique peripheral devoted to moving data around a system. Think of it as 
a controller that connects internal and external memories with each DMA-capable peripheral via 
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a set of dedicated buses. It is a peripheral in the sense that the processor programs it to perform 
transfers. It is unique in that it interfaces to both memory and selected peripherals. Notably, only 
peripherals where data fl ow is signifi cant (kbytes per second or greater) need to be DMA-capa-
ble. Good examples of these are video, audio, and network interfaces. Lower-bandwidth periph-
erals can also be equipped with DMA capability, but it’s less an imposition on the core to step in 
and assist with data transfer on these interfaces.

In general, DMA controllers will include an address bus, a data bus, and control registers. An 
effi cient DMA controller will possess the ability to request access to any resource it needs, 
without having the processor itself get involved. It must have the capability to generate inter-
rupts. Finally, it has to be able to calculate addresses within the controller.

A processor might contain multiple DMA controllers. Each controller has multiple DMA 
channels, as well as multiple buses that link directly to the memory banks and peripherals, as 
shown in Figure 5.18. There are two types of DMA controllers in the Blackfi n processor. The 
fi rst category, usually referred to as a System DMA controller, allows access to any resource 
(peripherals and memory). Cycle counts for this type of controller are measured in system 
clocks (SCLKs) at frequencies up to 133 MHz. The second type, an Internal Memory DMA 
(IMDMA) controller, is dedicated to accesses between internal memory locations. Because 
the accesses are internal (L1 to L1, L1 to L2, or L2 to L2), cycle counts are measured in core 
clocks (CCLKs), which can exceed 600 MHz rates.

Figure 5.18 also shows the Blackfi n DMA bus structure, where the DMA External Bus (DEB) 
connects the DMA controller to external memory, the DMA Core Bus (DCB) connects the 

Figure 5.18: System and internal memory DMA architecture.
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controller to internal memory, and the DMA Access Bus (DAB) connects to the peripherals. 
An additional DMA bus set is also available when L2 memory is present, to move data within 
the processor’s internal memory spaces.

Each DMA channel on a Blackfi n DMA controller has a programmable priority associated with 
it. If more than one channel requests the DMA bus in a single cycle, the highest-priority chan-
nel wins access. For memory DMA channels, a “round robin” access capability exists. That is, 
one memory channel can access the bus for a programmable number of cycles before turning the 
bus over to the next MemDMA channel, which also gets the same number of cycles on the bus. 
When more than one DMA controller is present on a processor, the channels from one controller 
can run at the same time as channels on the other controller. This is possible, for example, when 
a memory-to-memory transfer takes place from L3 to L2 memory while the second controller 
feeds a peripheral from L1 memory. If both DMA controllers try to access the same resource 
(L3 memory, for example), arbitration must take place. In this case, one of the controllers can be 
programmed to a higher priority than the other.

Each DMA controller has a set of FIFOs that act as a buffer between the DMA subsystem and 
peripherals or memory. For MemDMA, a FIFO exists on both the source and destination sides 
of the transfer. The FIFO improves performance by providing a place to hold data while busy 
resources are preventing a transfer from completing.

5.5.3 Programming the DMA Controller

Let’s take a look at the options we have in specifying DMA activity. We will start with the
 simplest model and build up to more fl exible models that, in turn, increase in setup 
complexity.

For any type of DMA transfer, we always need to specify starting source and destination 
addresses for data. In the case of a peripheral DMA, the peripheral’s FIFO serves as either the 
source or the destination. When the peripheral serves as the source, a memory location (inter-
nal or external) serves as the destination address. When the peripheral serves as the destina-
tion, a memory location (internal or external) serves as the source address.

In the simplest MemDMA case, we need to tell the DMA controller the source address, the 
destination address and the number of words to transfer. With a peripheral DMA, we specify 
either the source or the destination, depending on the direction of the transfer. The word size 
of each transfer can be 8, 16, or 32 bits. This type of transaction represents a simple one-
dimensional (1D) transfer with a unity “stride.” As part of this transfer, the DMA controller 
keeps track of the source and destination addresses as they increment. With a unity stride, as 
in Figure 5.19a, the address increments by 1 byte for 8-bit transfers, 2 bytes for 16-bit trans-
fers, and 4 bytes for 32-bit transfers.
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We can add more fl exibility to a one-dimensional DMA simply by changing the stride, as in 
Figure 5.19b. For example, with nonunity strides, we can skip addresses in multiples of the 
transfer sizes. That is, specifying a 32-bit transfer and striding by four samples results in an 
address increment of 16 bytes (four 32-bit words) after each transfer.

Couching this discussion in Blackfi n DMA controller lingo, we have now described the opera-
tions of the XCOUNT and XMODIFY registers. XCOUNT is the number of transfers that need to 
be made. Note that this is not necessarily the same as the number of bytes to transfer. XMODIFY 
is the number of bytes to increment the address pointer after the DMA controller moves the 
fi rst data element. Regardless of the transfer word size, XMODIFY is always expressed in bytes. 
XMODIFY can also take on the value of 0, which has its own advantage, as we’ll see later in this 
chapter.

Whereas the 1D DMA capability is widely used, the two-dimensional (2D) capability is even 
more useful, especially in video applications. The 2D feature is a direct extension to what we 
discussed for 1D DMA. In addition to an XCOUNT and XMODIFY value, we also program cor-
responding YCOUNT and YMODIFY values. It is easiest to think of the 2D DMA as a nested 
loop, where the inner loop is specifi ed by XCOUNT and XMODIFY, and the outer loop is 

Source Destination

1D DMA
Unity Stride

(a)

Figure 5.19: 1D DMA examples.
(a) 1D DMA with unity stride.
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specifi ed by YCOUNT and YMODIFY. A 1D DMA can then be viewed simply as an “inner 
loop” of the 2D transfer of the form:

for y = 1 to YCOUNT STEP YMODIFY /* 2D with outer loop */

for x = 1 to XCOUNT STEP XMODIFY /* 1D inner loop */

 {

/*Loop goes here */

 }

While XMODIFY determines the stride value the DMA controller takes every time XCOUNT 
decrements, YMODIFY determines the stride taken whenever YCOUNT decrements. As is the 
case with XCOUNT and XMODIFY, YCOUNT is specifi ed in terms of the number of transfers, 
while YMODIFY is specifi ed as a number of bytes. Notably, YMODIFY can be negative, which 
allows the DMA controller to wrap back around to the beginning of the buffer. We’ll explore 
this feature shortly.

For a peripheral DMA, the “memory side” of the transfer can be either 1D or 2D. On the periph-
eral side, though, it is always a 1D transfer. The only constraint is that the total number of bytes 
transferred on each side (source and destination) of the DMA must be the same. For example, if 
we were feeding a peripheral from three 10-byte buffers, the peripheral would have to be set to 
transfer 30 bytes using any possible combination of supported transfer width and transfer count 
values available.

Figure 5.19: (Continued)
(b) 1D DMA with nonunity stride.

Source Destination

1D DMA 
Non-unity 

Stride

(b)
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Memory Memory

Memory

1D to 1D(a)

Memory Memory
1D to 2D(b)

Memory Memory
2D to 2D

2D to 1D

(d)

Memory

(c)

Figure 5.20: Possible Memory DMA confi gurations.

MemDMA offers a bit more fl exibility. For example, we can set up a 1D-to-1D transfer, a 1D-
to-2D transfer, a 2D-to-1D transfer, and of course a 2D-to-2D transfer, as shown in Figure 5.20. 
The only constraint is that the total number of bytes being transferred on each end of the DMA 
transfer block has to be the same.
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Let’s now look at some DMA transfer examples:

Example 5.1

Consider a 4-pixel (per line) � 5-line array, with byte-sized pixel values, ordered as 
shown in Figure 5.21a.

0x1

0x1

0x1

0x1

0x1

0x2

0x2

0x2

0x2

0x2

0x3

0x3

0x3

0x3

0x3

0x4

0x4

0x4

0x4

0x4

(a) (c)

0x1 0x1 0x1 0x1 0x1

0x2 0x2 0x2 0x2 0x2

(b)

Address

0

1

2

3

4

5

6

7
.
.
.

14

15

Data

0x1

0x2

0x3

0x4

0x1

0x2

0x3

0x4
.
.
.

0x3

0x4

0x3 0x3 0x3 0x3 0x3

0x4 0x4 0x4 0x4 0x4

While this data is shown as a matrix, it appears consecutively in memory as shown in 
Figure 5.21b.

We now want to create the array shown in Figure 5.21c using the DMA controller.

The source and destination DMA register settings for this transfer are:

Source Destination

XCOUNT � 5 XCOUNT � 20

XMODIFY � 4 XMODIFY � 1

YCOUNT � 4 YCOUNT � 0

YMODIFY � �15 YMODIFY � 0

Source and destination word transfer size � 1 byte per transfer.

Let’s walk through the process. In this example, we can use a MemDMA with a 2D-to-1D 
transfer confi guration. Since the source is 2D, it should be clear that the source channel’s

Figure 5.21: Source and destination arrays for Example 5.1.
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XCOUNT and YCOUNT are 5 and 4, respectively, since the array size is 5 lines � 4 pixels/
line. Because we will use a 1D transfer to fi ll the destination buffer, we only need to pro-
gram XCOUNT and XMODIFY on the destination side. In this case, the value of XCOUNT is 
set to 20, because that is the number of bytes that will be transferred. The YCOUNT value 
for the destination side is simply 0, and YMODIFY is also 0. You can see that the count 
values obey the rule we discussed earlier (e.g., 4 � 5 � 20 bytes).

Now let’s talk about the correct values for XMODIFY and YMODIFY for the source buffer. 
We want to take the fi rst value (0x1) and skip 4 bytes to the next value of 0x1. We will 
repeat this fi ve times (Source XCOUNT � 5). The value of the source XMODIFY is 4, because 
that is the number of bytes the controller skips over to get to the next pixel (including the 
fi rst pixel). XCOUNT decrements by 1 every time a pixel is collected. When the DMA control-
ler reaches the end of the fi rst row, XCOUNT decrements to 0, and YCOUNT decrements by 

1. The value of YMODIFY on the source side then needs to bring the address pointer 
back to the second element in the array (0x2). At the instant this happens, the address 
pointer is still pointing to the last element in the fi rst row (0x1). Counting back from 
that point in the array to the second pixel in the fi rst row, we traverse back by 15 ele-
ments. Therefore, the source YMODIFY � �15.

If the core carried out this transfer without the aid of a DMA controller, it would consume 
valuable cycles to read and write each pixel. Additionally, it would have to keep track of the 
addresses on the source and destination sides, tracking the stride values with each transfer.

Here’s a more complex example involving a 2D-to-2D transfer:

Example 5.2

Let’s assume now we start with the array that has a border of 0xFF values, shown in 
Figure 3.7.

Figure 5.22: Source and destination arrays for Example 5.2.
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We want to keep only the inner square of the source matrix (shown in bold), but we also 
want to rotate the matrix 90 degrees, as shown in Figure 5.22.

The register settings below will produce the transformation shown in this example, and 
now we will explain why.

Source Destination

XCOUNT � 4 XCOUNT � 4

XMODIFY � 1 XMODIFY � 4

YCOUNT � 4 YCOUNT � 4

YMODIFY � 3 YMODIFY � �13

As a fi rst step, we need to determine how to access data in the source array. As the DMA 
controller reads each byte from the source array, the destination builds the output array 
1 byte at a time.

How do we get started? Well, let’s look at the fi rst byte that we want to move in the 
input array. It is shown in italics as 0x1. This will help us select the start address of the 
source buffer. We then want to sequentially read the next three bytes before we skip over 
the “border” bytes. The transfer size is assumed to be 1 byte for this example.

Because the controller reads 4 bytes in a row before skipping over some bytes to move 
to the next line in the array, the source XCOUNT is 4. Because the controller increments 
the address by 1 as it collects 0x2, 0x3, and 0x4, the source XMODIFY � 1. When the 
controller fi nishes the fi rst line, the source YCOUNT decrements by 1. Since we are trans-
ferring four lines, the source YCOUNT � 4. Finally, the source YMODIFY � 3, because as 
we discussed earlier, the address pointer does not increment by XMODIFY after XCOUNT 
goes from 1 to 0. Setting YMODIFY � 3 ensures the next fetch will be 0x5.

On the destination side of the transfer, we will again program the location of the 0x1 byte 
as the initial destination address. Since the second byte fetched from the source address 
was 0x2, the controller will need to write this value to the destination address next. As 
you can in see in the destination array in Figure 5.22, the destination address has to fi rst 
be incremented by 4, which defi nes the destination XMODIFY value. Since the destina-
tion array is 4 � 4 in size, the values of both the destination XCOUNT and YCOUNT are 4. 
The only value left is the destination YMODIFY. To calculate this value, we must compute 
how many bytes the destination address moves back in the array. After the destination 
YCOUNT decrements for the fi rst time, the destination address is pointing to the value 
0x4. The resulting destination YMODIFY value of �13 will ensure that a value of 0x5 is 
written to the desired location in the destination buffer.
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For some applications, it is desirable to split data between both cores. The DMA 
controller can be confi gured to spool data to different memory spaces for the most effi cient 
processing.

Example 5.3

Consider when the processor is connected to a dual-channel sensor that multiplexes 
alternating video samples into a single output stream. In this example, each channel 
transfers four 8-bit samples packed as a 32-bit word. The samples are arranged such 
that a “packed” sample from Channel 2 follows a “packed” sample from Channel 1, and 
so on, as shown in Figure 5.22. Here the peripheral serves as the source of the DMA, and 
L2 memory serves as the destination. We want to spread the data out in L2 memory to 
take advantage of its internal bank structures, as this will consequently allow the proces-
sor and the DMA controller access to different banks simultaneously.

Because a sample is sent from each sensor, we set the destination XCOUNT to 2 (one word 
each from Sensor 1 and Sensor 2). The value of XMODIFY is set to the separation distance 
of the sensor buffers, in bytes. The controller will then write the fi rst 4 bytes to the beginning 
of Sensor 1 buffer, skip XMODIFY bytes, and write the fi rst 4 bytes of Sensor 2 buffer. The 
value of YCOUNT is based on the number of transfers required for each line. For a QVGA-
sized image, that would be 320 pixels per line � 2 bytes per pixel / 4 bytes per transfer, or 
160 transfers per line. The value of YMODIFY depends on the separation of the two buffers. 
In this example, it would be negative (buffer separation � number of line transfers – 1, which 
already accounts for the fact that the pointer doesn’t increment when XCOUNT goes to 0).

Figure 5.23: Multiplexed stream from two sensors.
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The previous examples show how the DMA controller can move data around without bothering 
the core to calculate the source and destination addresses. Everything we have shown so far can 
be accomplished by programming the DMA controller at system initialization.

The next example will provide some insight into implications of transfer sizes in a DMA oper-
ation. The DMA bus structure consists of individual buses that are either 16- or 32-bits wide. 
When 8-bit data is not packed into 16-bit or 32-bit words (by either the memory or peripheral 
subsystems), some portion of the bus in question goes unused. Example 5.5 considers the sce-
nario where a video port sends 8-bit YCbCr data straight into L2 memory. (Don’t worry if you 
are not too familiar with the term YCbCr—you will be after reading Chapter 6!).

Example 5.4

Consider the case where we want to zero-fi ll a large section—say, 1024 bytes—of L3 
memory. To do so, we can fi rst create a 32-bit buffer in internal memory that contains 
all zeros, and then perform core writes to the block of external memory, but then the 
core would not be available to do more useful tasks.

So why not use a simple 1D DMA instead? In this case, if we assume a 32-bit word trans-
fer size, the XCOUNT values for the source and destination are (1024 bytes/4 bytes per 
transfer), or simply 256 transfers. The XMODIFY value for the destination will be 4 bytes. 
The source value of XMODIFY can be set to 0 to ensure that the address of the source 
pointer stays on the same 32-bit word in the source buffer, meaning that only a single 
32-bit “zero word” is needed in L1 memory. This will cause the source side of the DMA to 
continually fetch the value of 0x0000 from the same L1 location, which is subsequently 
written to the buffer in external memory.

Earlier, we mentioned that it’s useful in some applications to set XMODIFY to 0. A short 
example will illustrate this concept.

Example 5.5

Assume we have Field 1 of a 4:2:2 YCbCr video buffer in L2 memory as shown in 
Figure 5.24a. We would like to separate the data into discrete Y, Cb and Cr buffers in L3 
memory where we can fi t the entire fi eld of data, since L2 memory can’t hold the entire 
fi eld for large image sizes. The peripheral sends data to L2 memory in the same order 
in which the camera sends it. Because there is no re-ordering of the data on the fi rst 
pass into L2 memory, the word transfer size should be maximized (e.g., to 32 bits). This 
ensures that the best performance is achieved when the data enters the processor.
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How should we separate the buffers? One viable option is to set up three 2D-to-1D 
DMAs for each line—one each for Y, Cb, and Cr pixel components. Because the data that 
needs to be separated is spread out in the array, 8-bit transfers must be used. Since there 
are twice as many values of Y as there are of Cr and Cb, the XCOUNT for the source and 
destination would be twice that of the Cb buffer, and twice that of the Cr buffer as well. 
On the source side, XCOUNT would be the number of Y values in each line, and YCOUNT 
would be the number of lines in the source buffer. This is typically some subset of a 
video fi eld size. The source XMODIFY � 2, which is the number of bytes to increment 
the address to reach the next Y value. For Cb or Cr transfers, the source XMODIFY � 4. 
YMODIFY is simply the number of bytes in the horizontal blanking data that precedes 
each line.

The destination parameters for the Y buffer in L3 memory are much simpler. Since the 
destination side of the transfer is one-dimensional, only XCOUNT and XMODIFY are 
needed. The value of XCOUNT on the destination side is equal to the product of the 
source XCOUNT and YCOUNT values. The XMODIFY value is simply 1.

This example is important because transfers to L3 memory are not effi cient when they 
are made in byte-sized increments. It is much more effi cient to move data into exter-
nal memory at the maximum transfer size (typically 16 or 32 bits). As such, in this case 
it is better to create new data buffers from one L2 buffer using the technique we just 

Figure 5.24: Source and destination buffers for Example 5.5.
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5.5.4 DMA Classifi cations

There are two main classes of DMA transfer confi guration: Register mode and Descriptor 
mode. Regardless of the class of DMA, the same type of information depicted in Table 5.8 
makes its way into the DMA controller. When the DMA runs in Register mode, the DMA 
controller simply uses the values contained in the DMA channel’s registers. In the case of 
Descriptor mode, the DMA controller looks in memory for its confi guration values.

described. Once the separate buffers are created in L2 memory as shown in Figure 5.24b, 
three 1D DMAs can transfer them to L3 memory. As you can see, in this case we have 
created an extra pass of the data (Peripheral to L2, L2 to L3, versus Peripheral to L2 to 
L3). On the surface, you may think this is something to avoid, because normally we try 
to reduce data movement passes.

In reality, however, bandwidth of external memory is often more valuable than that of 
internal memory. The reason the extra pass is more effi cient is that the fi nal transfer to 
L3 memory can be accomplished using 32-bit transfers, which is far more effi cient than 
using 8-bit transfers. When doing four times as many 8-bit transfers, the number of 
times the DMA bus has to change directions, as well as the number of actual transfers 
on the bus, eats into total available bandwidth. You may also recall that the IMDMA 
controller is available to make the intermediate pass in L2 memory, and thus the trans-
fers can be made at the CCLK rate.

5.5.5 Register-Based DMA

In a register-based DMA, the processor directly programs DMA control registers to initiate a 
transfer. Register-based DMA provides the best DMA controller performance because regis-
ters don’t need to keep reloading from descriptors in memory, and the core does not have to 
maintain descriptors.

Next descriptor pointer (lower 16 bits) Address of next descriptor

Next descriptor pointer (upper 16 bits) Address of next descriptor

Start address (lower 16 bits) Start address (source or destination)

Start address (upper 16 bits) Start address (source or destination)

DMA confi guration Control information (enable, interrupt selection, 1D vs. 2D)

X_Count Number of transfers in inner loop

X_Modify Number of bytes between each transfer in inner loop

Y_Count Number of transfers in outer loop

Y_Modify Number of bytes between end of inner loop and start of outer loop

Table 5.8: DMA registers.

Ch05-H8584.indd   228Ch05-H8584.indd   228 8/17/07   10:14:47 AM8/17/07   10:14:47 AM



 Memory Systems   229

www.newnespress.com

Register-based DMA consists of two submodes: Autobuffer mode and Stop mode. In 
Autobuffer DMA, when one transfer block completes, the control registers automatically 
reload to their original setup values and the same DMA process restarts, with zero overhead.

As we see in Figure 5.25, if we set up an Autobuffer DMA to transfer some number of words 
from a peripheral to a buffer in L1 data memory, the DMA controller would reload the initial 
parameters immediately upon completion of the 1024th word transfer. This creates a “circular 
buffer” because after a value is written to the last location in the buffer, the next value will be 
written to the fi rst location in the buffer.

Autobuffer DMA especially suits performance-sensitive applications with continuous data 
streams. The DMA controller can read in the stream independent of other processor activi-
ties and then interrupt the core when each transfer completes. While it’s possible to stop 
Autobuffer mode gracefully, if a DMA process needs to be started and stopped regularly, it 
doesn’t make sense to use this mode.

Let’s take a look at an Autobuffer example in Example 5.6.

Example 5.6

Consider an application where the processor operates on 512 audio samples at a time, 
and the codec sends new data at the audio clock rate. Autobuffer DMA is the perfect 
choice in this scenario, because the data transfer occurs at such periodic intervals.

Drawing on this same model, let’s assume we want to “double-buffer” the incoming 
audio data. That is, we want the DMA controller to fi ll one buffer while we operate 
on the other. The processor must fi nish working on a particular data buffer before the 
DMA controller wraps around to the beginning of it, as shown in Figure 5.26. Using 
Autobuffer mode, confi guration is simple.

Figure 5.25: Implementing a circular buffer.
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The total count of the Autobuffer DMA must comprise the size of two data buffers via a 
2D DMA. In this example, each data buffer size corresponds to the size of the inner loop 
on a 2D DMA. The number of buffers corresponds to the outer loop. Therefore, we keep 
XCOUNT � 512. Assuming the audio data element size is 4 bytes, we program the 
word transfer size to 32 bits and set XMODIFY � 4. Since we want two buffers, we set 
YCOUNT � 2. If we want the two buffers to be back-to-back in memory, we must set 
YMODIFY � 1. However, for the reasons we’ve discussed, in many cases it’s smarter to 
separate the buffers. This way, we avoid confl icts between the processor and the DMA 
controller in accessing the same sub-banks of memory. To separate the buffers, YMODIFY 
can be increased to provide the proper separation.

In a 2D DMA transfer, we have the option of generating an interrupt when XCOUNT 
expires and/or when YCOUNT expires. Translated to this example, we can set the DMA 
interrupt to trigger every time XCOUNT decrements to 0 (i.e., at the end of each set of 
512 transfers). Again, it is easy to think of this in terms of receiving an interrupt at the 
end of each inner loop.

Interrupt     Process first 512 bytes of buffer

Interrupt      Process second 512 bytes of buffer

Processor works on other buffer

Peripheral fills one buffer

Y Count = 2 

X Count = 512

Memory 
Buffers

Registers reload, and DMA starts over again

Figure 5.26: Double buffering.

Stop mode works identically to Autobuffer DMA, except registers don’t reload after DMA 
completes, so the entire DMA transfer takes place only once. Stop mode is most useful for 
one-time transfers that happen based on some event—for example, moving data blocks
from one location to another in a nonperiodic fashion, as is the case for buffer initialization. 
This mode is also useful when you need to synchronize events. For example, if one task 
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has to complete before the next transfer is initiated, Stop mode can guarantee this 
sequencing.

5.5.6 Descriptor-Based DMA

DMA transfers that are descriptor-based require a set of parameters stored within memory 
to initiate a DMA sequence. The descriptor contains all of the same parameters normally 
programmed into the DMA control register set. However, descriptors also allow the chaining 
together of multiple DMA sequences. In descriptor-based DMA operations, we can program 
a DMA channel to automatically set up and start another DMA transfer after the current 
sequence completes. The descriptor-based model provides the most fl exibility in managing a 
system’s DMA transfers.

Blackfi n processors offer two main descriptor models—a Descriptor Array scheme and a 
Descriptor List method. The goal of these two models is to allow a tradeoff between fl exibility 
and performance. Let’s take a look at how this is done.

In the Descriptor Array mode, descriptors reside in consecutive memory locations. The DMA 
controller still fetches descriptors from memory, but because the next descriptor immediately 
follows the current descriptor, the two words that describe where to look for the next descrip-
tor (and their corresponding descriptor fetches) aren’t necessary. Because the descriptor does 
not contain this Next Descriptor Pointer entry, the DMA controller expects a group of descrip-
tors to follow one another in memory like an array.

A Descriptor List is used when the individual descriptors are not located “back-to-back” in 
memory. There are actually multiple sub-modes here, again to allow a tradeoff between per-
formance and fl exibility. In a “small descriptor” model, descriptors include a single 16-bit 
fi eld that specifi es the lower portion of the Next Descriptor Pointer fi eld; the upper portion is 
programmed separately via a register and doesn’t change. This, of course, confi nes descriptors 
to a specifi c 64 K (�216) page in memory. When the descriptors need to be located across 
this boundary, a “large” model is available that provides 32 bits for the Next Descriptor 
Pointer entry.

Regardless of the descriptor mode, using more descriptor values requires more  descriptor 
fetches. This is why Blackfi n processors specify a “fl ex descriptor model” that tailors the 
descriptor length to include only what’s needed for a particular transfer, as shown in Figure 5.27. 
For example, if 2D DMA is not needed, the YMODIFY and YCOUNT registers do no need to be 
part of the descriptor block.

5.5.6.1 Descriptor Management

So what’s the best way to manage a descriptor list? Well, the answer is application-dependent, 
but it is important to understand what alternatives exist.
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The fi rst option we will describe behaves very much like an Autobuffer DMA. It involves setting 
up multiple descriptors that are chained together as shown in Figure 5.28a. The term “chained” 
implies that one descriptor points to the next descriptor, which is loaded automatically once the 
data transfer specifi ed by the fi rst descriptor block completes. To complete the chain, the last 
descriptor points back to the fi rst descriptor, and the process repeats. One reason to use this tech-
nique rather than the Autobuffer mode is that descriptors allow more fl exibility in the size and 
direction of the transfers. In our YCbCr example (Example 5.5), the Y buffer is twice as large 
as the other buffers. This can be easily described via descriptors and would be much harder to 
implement with an Autobuffer scheme.

The second option involves the processor manually managing the descriptor list. Recall that a 
descriptor is really a structure in memory. Each descriptor contains a confi guration word, and 
each confi guration word contains an “Enable” bit which can regulate when a transfer starts. Let’s 
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Figure 5.27: DMA descriptor models.
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assume we have four buffers that have to move data over some given task interval. If we need to 
have the processor start each transfer specifi cally when the processor is ready, we can set up all 
of the descriptors in advance, but with the “Enable” bits cleared. When the processor determines 
the time is right to start a descriptor, it simply updates the descriptor in memory and then writes 
to a DMA register to start the stalled DMA channel. Figure 5.28b shows an example of this fl ow.

When is this type of transfer useful? EMP applications often require us to synchronize an 
input stream to an output stream. For example, we may receive video samples into memory 
at a rate that is different from the rate at which we display output video. This will happen in 
real systems even when you attempt to make the streams run at exactly the same clock rate. 

Figure 5.28: DMA descriptor throttled by the processor.

Data

Data

Data

Data

Packet Info

Descriptor

Descriptor

Descriptor

Descriptor

Descriptor

Packet Info

Stop

Stop

Start

Data

(b) “Throttled” Descriptor Management

(a) Linked List of Descriptors

Ch05-H8584.indd   233Ch05-H8584.indd   233 8/17/07   10:14:49 AM8/17/07   10:14:49 AM



234   Chapter 5

www.newnespress.com

In cases where synchronization is an issue, the processor can manually regulate the DMA 
descriptors corresponding to the output buffer. Before the next descriptor is enabled, the proc-
essor can synchronize the stream by adjusting the current output descriptor via a semaphore 
mechanism. For now, you can simply consider semaphores tools that guarantee only one entity 
at a time accesses a shared resource.
When using internal DMA descriptor chains or DMA-based streams between processors, it 
can also be useful to add an extra word at the end of the transferred data block that helps iden-
tify the packet being sent, including information on how to handle the data and, possibly, a 
time stamp. The dashed area of Figure 5.28b shows an example of this scheme.
Most sophisticated applications have a “DMA Manager” function implemented in software. 
This may be provided as part of an operating system or real-time kernel, but it can also run 
without either of these. In both cases, an application submits DMA descriptor requests to the 
DMA Queue Manager, whose responsibility it is to handle each request. Usually, an address 
pointer to a “callback” function is part of the system as well. This function carries out the 
work you want the processor to perform when a data buffer is ready, without needlessly mak-
ing the core linger in a high-priority interrupt service routine.
There are two general methods for managing a descriptor queue using interrupts. The fi rst is 
based on interrupting upon the completion of every descriptor. Use this method only if you 
can guarantee that each interrupt event will be serviced separately, with no interrupt overrun. 
The second involves interrupting only on completion of the work transfer specifi ed by the last 
descriptor of a work block. A work block is a collection of one or more descriptors.
To maintain synchronization of the descriptor queue, you need to maintain in software a count 
of descriptors added to the queue, while the interrupt handler maintains a count of completed 
descriptors removed from the queue. The counts are then equal only when the DMA channel 
pauses after having processed all the descriptors.

5.5.7 Advanced DMA Features

5.5.7.1 System Performance Tuning

To effectively use DMA in a multimedia system, there must be enough DMA channels to sup-
port the processor’s peripheral set fully, with more than one pair of Memory DMA streams. 
This is an important point, because there are bound to be raw media streams incoming to 
external memory (via high-speed peripherals), while at the same time data blocks will be 
moving back and forth between external memory and L1 memory for core processing. What’s 
more, DMA engines that allow direct data transfer between peripherals and external memory, 
rather than requiring a stopover in L1 memory, can save extra data passes in numerically 
intensive algorithms.

As data rates and performance demands increase, it becomes critical to have “system perform-
ance tuning” controls at your disposal. For example, the DMA controller might be optimized 
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to transfer a data word on every clock cycle. When there are multiple transfers ongoing in the 
same direction (e.g., all from internal memory to external memory), this is usually the most 
effi cient way to operate the controller because it prevents idle time on the DMA bus.

But in cases involving multiple bidirectional video and audio streams, “direction control” 
becomes obligatory in order to prevent one stream from usurping the bus entirely. For 
instance, if the DMA controller always granted the DMA bus to any peripheral that was ready 
to transfer a data word, overall throughput would degrade when using SDRAM. In situations 
where data transfers switch direction on nearly every cycle, the latency associated with turn-
around time on the SDRAM bus will lower throughput signifi cantly. As a result, DMA con-
trollers that have a channel-programmable burst size hold a clear advantage over those with a 
fi xed transfer size. Because each DMA channel can connect a peripheral to either internal or 
external memory, it is also important to be able to automatically service a peripheral that may 
issue an urgent request for the bus.

Other important DMA features include the ability to prioritize DMA channels to meet cur-
rent peripheral task requirements, as well as the capacity to confi gure the corresponding DMA 
interrupts to match these priority levels. These functions help insure that data buffers do not 
overfl ow due to DMA activity on other peripherals, and they provide the programmer with 
extra degrees of freedom in optimizing the entire system based on the data traffi c on each 
DMA channel.

5.5.7.2 External DMA

Let’s close out this chapter by spending a few minutes discussing how to DMA data between 
the processor and a memory-mapped external device. When a device is memory-mapped 
to an asynchronous memory bank, a MemDMA channel can move data into and out of the 
external chip via the DMA FIFOs we described earlier. If the destination for this data is another 
external memory bank in SDRAM, for example, the bus turns around when a few samples 
have entered the DMA FIFO, and these samples are then written back out over the same exter-
nal bus, to another memory bank. This process repeats for the duration of the transfer period.

Normally, these Memory DMA transfers are performed at maximum speed. Once a 
MemDMA starts, data transfers continuously until the data count expires or the DMA channel 
is halted. This works well when the transfer is being made as a memory-to-memory transfer, 
but if one of the ends of the transfer is a memory-mapped device, this can cause the proces-
sor to service the transactions constantly, or impede the memory-mapped device from making 
transfers effectively.

When the data source and/or destination is external to the processor, a separate “Handshake 
DMA” mode can help throttle the MemDMA transfer, as well as improve performance 
by removing the processor from having to be involved in every transfer. In this mode, the 

Ch05-H8584.indd   235Ch05-H8584.indd   235 8/17/07   10:14:49 AM8/17/07   10:14:49 AM



236   Chapter 5

www.newnespress.com

Memory DMA does not transfer data automatically when it is enabled. Rather, it waits for an 
external trigger from another device. Once a trigger event is detected, a user-specifi ed portion 
of data is transferred, and then the Mem-DMA channel halts and waits for the next trigger.

The handshake mode can be used to control the timing of memory-to-memory transfers. In 
addition, it enables the Memory DMA to operate effi ciently with asynchronous FIFO-style 
devices connected to the external memory bus. In the Blackfi n processor, the external interface 
acknowledges a Handshake DMA request by performing a programmable number of read or 
write operations. It is up to the device connected to the designated external pins to de-assert or 
assert the “DMA request” signal.

The Handshake DMA confi guration registers control how many data transfers are performed 
upon every DMA request. When set to 1, the peripheral times every individual data transfer. 
If greater than 1, the external peripheral must possess suffi cient buffer size to provide or con-
sume the number of words programmed. Once the handshake transfer commences, no fl ow 
control can hold off the DMA from transferring the entire data block.

In the next chapter, we will discuss “speculative fetches.” These are fetches that are started but 
not fi nished. Normally, speculative fetches can cause problems for external FIFOs, because the 
FIFO can’t tell the difference between an aborted access and a real access, and it increments 
its read/write pointers in either case. Handshake DMA, however, eliminates this issue, because 
all DMA accesses that start always fi nish.
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CHAPTER 6Timing Analysis in 
Embedded Systems

Ken Arnold

CHAPTER 6

6.1 Introduction

Just as in comedy, timing is essential to the success of a microcomputer design. Often it is 
quite possible to get one system functioning by simply interconnecting the various compo-
nents. But it is signifi cantly more diffi cult to be able to guarantee that many systems will work 
under the entire range of possible conditions that they may be exposed to. There are many 
designs in production right now that have a number of unidentifi ed failures due to the lack of a 
worst-case analysis of the design. When timing or loading problems show up in a design, they 
usually appear as intermittent failures or as sensitivity to power supply fl uctuations, tempera-
ture changes, and so on.

A worst-case design takes into account all available information regarding the components 
to be used with respect to variations in performance. Even when all parameters are at their 
most adverse values, the worst-case design can still be proved to meet the specifi cations. 
These variants may be due to changing manufacturing conditions, temperature, voltage, 
and other variables. Without performing a detailed analysis, there is no way of knowing 
if the design will work reliably under all operating conditions. It is much better to design 
reliability and simplicity of manufacturing into a product using worst-case design rules than 
to attempt to correct a problem after the design has been implemented. With the emphasis 
that must be given to the quality of the fi nal product, a designer is obligated to perform a 
detailed examination of the timing in a system. As is the case in most quality improvements, 
these efforts result in direct cost and saving time. This is clearly one of the places where the 
designer can have the greatest impact on overall product quality.

6.2 Timing Diagram Notation Conventions

Timing notation is illustrated in Figure 6.1. The timing notation used in manufacturers’ data 
sheets may vary from this notation but is usually very similar. It is also important to notice 
that although the diagrams are reasonably standard, there is a wide variation in the selection of 
symbols for each timing parameter.
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Figure 6.1: Timing diagram notation as used in this book.

The purpose of timing analysis is to determine the sequence of events in each of the bus cycles 
so that we can delimit, among other things, the time available for each of the components 
to respond to changes. This time is compared to the requirements as specifi ed in the 
manufacturers’ data sheets to determine whether they are compatible and by what margin.

The most important timing specifi cations for interfacing components to a bus-oriented 
design are:

• Rise/f all time

• Propagation delay time

• Setup time

• Hold time

• Tri-state enable and disable delays

• Pulse width

• Clock frequency

There are two general classes of logic: combinatorial and sequential. Combinatorial logic 
has no memory and its output is some logical function of its current inputs, after some delay. 
Examples of combinatorial logic include gates, buffers, inverters, multiplexers, and decoders. 
Sequential logic has memory, which means that its outputs are a function of both current 
and past inputs. Examples of sequential logic are fl ip-fl ops, registers, microprocessors, and 
counters. There are two types of sequential logic. Synchronous logic is synchronized to 
change only when there is a clock transition. In contrast, asynchronous logic does not use a 
clock signal. Almost all the logic used in a microcomputer design will either be unclocked 
asynchronous logic (gates, decoders) or clocked synchronous logic (counter, latch or 
microprocessor). Some types of devices are available in either form. Each of the timing 
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specifi cations in the following discussion is described using simple logic devices as they are 
typically used in embedded computer designs.

6.2.1 Rise and Fall Times

The rise time of a signal is usually defi ned as the time required for a logic signal voltage to 
change from 20% to 80% of its fi nal value. The fall time is from 80% to 20%, as shown in 
Figure 6.2. These times are also commonly defi ned by some manufacturers as the transitions 
between the 10% and 90% levels.

Logic One–
80% of Logic One

20% of Logic One
Logic Zero

Rise Time Fall Time

Figure 6.2: Rise and fall times of a signal.

Input A

Input B

TPLH TPHL

A   NAND   B

Figure 6.3: Propagation delay.

6.2.2 Propagation Delays

The propagation delay is the time it takes for a change at the input of a device to cause a 
change at the output. All devices—even wires—exhibit some propagation delay. Some devices 
do not have symmetrical delays for positive and negative transitions. In Figure 6.3, the propa-
gation times for a high to low transition are shorter than for a low to high transition. This 
asymmetrical delay is common for TTL and open collector and open drain outputs because 
they are better at sinking current than sourcing it. Thus, the load capacitance is charged more 
slowly when the current is being supplied from the weaker “high side” or pull-up device. 
Propagation delays are usually measured from the 50% amplitude points, as shown in Figure 6.3.

6.2.3 Setup and Hold Time

In Figure 6.4, a standard D type fl ip-fl op (e.g., a 74xx74 device) is shown along with a sample 
timing diagram that illustrates the operation and key timing parameters of a fl ip-fl op. This type 
of fl ip-fl op samples the D input whenever the clock (CK) line goes high, and after a delay, the 
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Figure 6.4: Setup and hold time.
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Figure 6.5: Metastability of a fl ip-fl op.

output remains in the same state until the next rising edge on the clock line. The triangle on 
the clock input indicates that it is a rising edge sensitive input, meaning that it will only have 
an effect when there is a rising edge on the clock pin. A falling edge sensitive input would 
have a bubble outside the block where the clock enters the fl ip-fl op. In order to be able to 
guarantee that the fl ip-fl op will operate correctly, the D input must be stable during the setup 
and hold time.

Figure 6.4 also shows the propagation delay from clock to Q out (TPCKQ), the setup time (TSU), 
and the hold time (TH). Setup time is the amount of time a sampled input signal must be valid 
and stable prior to a clock signal transition. Hold time is the amount of time that a sampled 
signal must be held valid and stable after a clock signal transition occurs. If these conditions 
are not met, the Q output may become invalid or even oscillate. This condition is referred to as 
metastability. The times of these and most other signals are frequently measured with respect 
to the 50% amplitude points of the clock signal rather than the valid logic one and zero levels. 
An analogy for the fl ip-fl op as a sampling device is that of an instant camera: The clock is the 
shutter, the D input is the lens, and the output is the fi lm image. The input is sampled when 
the shutter is open, and if the subject moves with the shutter open, the picture will be blurred. 
For the fl ip-fl op, the “shutter open” time, referred to as the window of uncertainty, is shown in 
Figure 6.5, along with some possible results.
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Metastability of a storage device such as a fl ip-fl op or register is caused by the change of an 
input signal too close to the edge of the clock signal. In other words, if the setup or hold time 
requirements are not met, the output of the device is unpredictable and may even be unstable. 
The output may operate normally, take an invalid level, or oscillate (which could also explain 
why indecisive people take bad photos!).

6.2.4 Tri-State Bus Interfacing

When multiple devices are capable of driving the same line, the possibility exists that two or 
more of them will try to drive it in opposite directions at the same time. When tri-state devices 
fi ght like this it is called bus contention. Figure 6.6 illustrates this condition. Although the data 
is unpredictable during this period, there are far worse things that can happen as a result of 
this condition. Since most tri-state devices have the ability to drive many loads, they are also 
capable of sourcing and sinking large currents. When two of these devices are in contention, 
very large currents with peaks in the tens or hundreds of amperes can fl ow for time periods on 
the order of nanoseconds.

Output Enable A

Output
Enable
Display

Output
Disable
Display

Output A
Enabled

Output B
Enabled

Output A
Enabled

Output B
Enabled

Drive A Data Drive B Data A Data

Bus
Contention

Overlap =
TODA�TOEB

B Data

Design
Margin

TOE TOD

Output Enable B

Data Bus

Figure 6.6: Tri-state bus timing and contention.

The large current spikes that occur during contention may stress the devices and signifi cantly 
reduce their reliability. A far more frequent problem, however, is the temporary drop or glitch 
in the local power supply wires that can cause any other nearby devices to change state. As 
you can imagine, this can create havoc in sequential logic, particularly for micros. Based 
on past experience with Murphy’s Law, these glitches generally seem to change the current 
instruction to “jump immediate to format hard disk routine,” thereby erasing all your data. In 
a properly designed system, there is a “dead time” when no device is driving the bus to act 
as a safety margin between the times that two devices are enabled to drive their outputs. The 
problems arise when the output enable time of a device which is just turning on is less than the 
output disable time of a device which is turning off.
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6.2.5 Pulse Width and Clock Frequency

The width of a positive going pulse is the period beginning from its positive transition (rising 
edge or leading edge) to its negative transition (falling or trailing edge). Figure 6.7 illustrates 
these concepts. Pulse widths are important in defi ning the operation of control signals such 
as the memory read or write signals and clocks. Clock signals used for modern microproces-
sors usually, but do not always, have equal high and low pulse width requirements. The period 
(T ) of a signal is the sum of the rise time, high time, fall time, and low time. The frequency 
of a processor clock ( f � 1/T ) may have a lower limit as well as an upper limit. The stand-
ard NMOS 8051 family of parts has a lower frequency limit of 1.2 MHz. That means that the 
processor cannot be operated at a lower frequency. The reason is that the processor’s internal 
design requires a constant clock to correctly maintain its state. Other processors (such as 
the 80C51 series CMOS devices) can tolerate having their clock stopped completely, since 
they have been designed to maintain their internal states indefi nitely, as long as power is 
applied.

TPW

Pulse 
Width

Period � 1/Frequency

TCLK

Figure 6.7: Pulse width, period, and clock frequency.

6.3 Fan-Out and Loading Analysis: DC and AC

Another important part of worst-case design is a realistic model of the signal loading for each 
of the circuit’s outputs. If insuffi cient drive is available, buffer circuits must be added or the 
number of loads must be reduced to guarantee correct operation. Fan-out is the number of 
equivalent inputs that can be safely driven by one output. A fan-out of 10 indicates that one 
device output can drive 10 inputs. The fan-out is determined from:

• The source, type, and number of loads

• DC characteristics sources and load

• AC characteristics of the loads vs. the source test conditions 
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DC characteristics of the output and inputs consist of:

• The maximum current that can be produced by an output

• Maximum currents required to drive an input

The maximum output currents are specifi ed as:

• IOLmin. Minimum output low (sink) current for a valid zero output voltage.

• IOHmin. Minimum output high (source) current for a valid one output voltage.

Note that a low output is sinking currents that are coming out of the inputs that are being driven. 
Likewise, a high output is sourcing current that goes into the inputs that are being driven.

Maximum currents required to drive an input are specifi ed as:

• IILmax. Maximum input low current for a valid zero input voltage.

• IIHmax. Maximum input high current for a valid one input voltage.

Another important convention has to do with the sign of the current fl owing in or out of a 
device pin. In most cases, current fl owing into a device pin is given a positive sign (as shown 
in Figure 6.8), whereas current fl owing out of a pin is given a negative sign (as shown in 
Figure 6.9). In both Figures 6.8 and 6.9, the device on the left is the driving device, which tries 
to force its output to the desired logic state. In the logic one state, the output sources current 
(�50 microampere), and the receiving device absorbs that current (�50 microampere). In our 
example, the available output current is exactly equal to the input current used by the load, 
resulting in a DC fan-out of 1.

V� V�
Logic ‘‘1’’

Current
Output High

Current
Input High

Current Out
of Pin is
Negative

Current
Into Pin is

Positive

�50 	A �50 	A

IOH IIH
‘‘1’’ ‘‘1’’

Figure 6.8: Current sign for logic high.

Unfortunately, this convention is not always followed consistently, so it is up to you to recog-
nize the current direction from the context of the situation in which it appears. Generally, the 
current direction can be determined by keeping these images in mind, especially since many 
data sheets do not specify the sign for the input and output currents.
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The other type of fan-out limitation is the ability of an output to drive the capacitance of the 
loads and stray wiring capacitance, also known as AC fan-out. The AC fan-out is determined by 
the specifi ed test load for the driving chip and the load presented by the actual load capacitance. 
The capacitive load is the parallel combination of all the input capacitances of the gate 
inputs attached to the signal, plus the wiring capacitance. Since the capacitors in parallel are 
equivalent to a single capacitor equal to the sum of the individual capacitances, we simply add 
up all the load capacitor values and compare this to the output’s specifi ed test load. The driving 
device’s specifi ed load capacitance, CL, is the test load capacitance used by the manufacturer 
for specifying the AC or timing characteristics of the device. Most often, this specifi cation is 
listed in the test conditions or notes for the timing specifi cations of the chip. As long as the 
sum of the load capacitances, including the stray wiring capacitance, is less than the specifi ed 
test load for the driving device, all the timing specifi cations will be valid as specifi ed in the 
timing section of the data sheet. If the driving device is overloaded (actual CL is greater than 
specifi ed CL), then the timing specifi cations of the device need to be de-rated (slowed down), 
since additional capacitance will increase the rise and fall times of the signal line in question. 
Methods for estimating the amount that an overloaded output can withstand are described later.

AC characteristics of the outputs and the inputs consist of:

• CL. The load capacitance that an output is specifi ed to drive is listed in the timing 
specifi cations for the driving device under the name “test conditions,” which is usually 
in the notes at the bottom of the specifi cation sheet.

• Cin. Maximum input capacitance of a driven input load.

• Cstray. Wiring and stray capacitance can be approximated to be in the range of 1 to 2 
picofarads per inch of wiring on a typical PC board.

As long as the inequality below is satisfi ed, the signal will meet the timing specifi cations for 
the driving device. If the actual load is greater, it will delay:

 Driving device spec CL � actual Cload � Cin1 � Cin2 � … � Cwiring

V� V�
Logic ‘‘0’’

Current
Output Low

Current
Input Low

Current
Into Pin is
Positive

Current Out
of Pin is

Negative

�1 mA �1 mA

IOL IIL

‘‘0’’ ‘‘0’’

Figure 6.9: Current sign for logic low.
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The AC fan-out is limited by the parallel combination of the logic inputs’ capacitance, Cin, 
and the stray or wiring capacitance. Capacitors in parallel are additive, so the load presented to 
an output is the sum of the input capacitances of the logic inputs plus the wiring capacitance. 
Logic input capacitance is often diffi cult to fi nd, since it might not be listed in the component 
data sheet but rather in another section of the data book describing the characteristics common 
to all members of a given logic family. Typical logic input capacitance ranges from 1 to 5 
pF (picofarads or 10�12F) but may be outside this range. The maximum load capacitance 
that a device is specifi ed to drive (CL) is usually defi ned in the test conditions for the timing 
specifi cations of an integrated circuit, because it is the timing which is most affected by 
capacitance. Load capacitance is usually specifi ed in the range of 50 to 150 pF. Wiring 
capacitance is often in the range of 1 to 2 pF per inch of wire for a nominal printed circuit 
trace. Actual values can vary quite a bit, depending on the physical dimensions of the trace, 
proximity to surrounding signals, and distance from a ground plane, as well as the dielectric 
constant of the circuit board material.

6.3.1 Calculating Wiring Capacitance

The standard formula for determining capacitance is:

 C � (ε * A)/d

where A is the area of two closely spaced parallel plates, d is the distance between the plates, 
and ε represents the permittivity of the material. (Permittivity is the measure of how easily a 
material can carry electric lines of force.)

For the purposes of this section, we can defi ne the area, A, as the trace length multiplied by the 
trace width. Wiring capacitance is determined as a capacitance per unit length for a given trace 
width and distance from the ground or power plane.

Let’s examine a typical situation. For an eight-layer PC board with 8 mil traces and innermost 
layer ground/power planes, what is the capacitance per inch of trace on each of the signal 
layers?

Here are the terms we’ll use in the equations to solve this problem and their values:

• Trace width (w) � 8 mils (one mil equals 10�3 inch)

• Trace length (l) � 1000 mils

• Area (A) � w times 1

• Total board thickness (T) � 0.062 inch

• Number of layers (N) � 8
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• Number of layers separating power and ground plane (n) � 1

• Fringe effect and inter-trace stray capacitance adjustment factor ( f ) � 1.7

• Permittivity of air (e) � 8.859 * 10�12 * (coul2/(newton*m2))

• Relative permittivity of glass-epoxy dielectric (er) used in this example � 6

We start by determining the thickness of each dielectric layer, represented by t:

 t � T/(N – 1) � 8.857 mils

Next we need to determine the distance between the trace and ground/power plane, 
represented by d. This is found by the formula d � nt, which in this case makes for a simple 
calculation!

The capacitance as a function of the number of layers distance (Cd) is found by the formula:

 Cd � (ε * εr * A * f )/d

Using this formula,

 C(l * d) � 2.073 pF (layer closest to ground/power plane)

 C(2 * d) � 1.037 pF (layer next closest to ground/power plane)

 C(3 * d) � 0.691 pF (layer farthest from ground/power plane)

To fi nd the average capacitance per inch (Cavg), then:

 Ca vg � (C(1 * d) � C(2 * d) � C(3 * d))/3 � 1.267 pF

From this example, it is apparent that the stray wiring capacitance can vary signifi cantly 
depending on which layer of a multilayer PC board a particular trace is located. Since a signal 
may travel on different layers between source and destination, exact values might be diffi cult 
to determine.

When performing a worst-case analysis of a given design, it is most effective to calculate the 
total load capacitance based on the sum of the loads’ input capacitances, plus an estimate of 
the nominal wiring capacitance using 1 or 2 picofarads per inch of wiring using a rough guess 
for the length of the trace.

In a typical design, we might pick the diagonal distance from one corner of the board to the 
other and multiply by 1 or 2 picofarads. If the total load capacitance is less than the driving 
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device’s specifi ed test load capacitance, the device will perform as specifi ed. If not or if it’s 
very close, we might want to make a more accurate estimate or avoid the problem by using a 
driving device that has a larger specifi ed test load capacitance. Other alternatives include using 
two outputs from the same chip in parallel to double the drive capacity or splitting the loads 
into two separate groups and driving them independently from two different sources.

As digital IC technology has improved, allowing signals to be processed at ever-increasing 
rates, the other non-ideal effects of the devices that could be ignored at lower speeds become 
more important. At very high speeds, these secondary effects become much more important. A 
wire ceases to be equivalent to a 0 ohm connection with zero time delay. For the newer high-
speed logic devices, the speed of the signal traveling down the wire, distributed resistance, 
and inductance, as well as capacitance, may become very important. When the time it takes a 
signal to propagate down a wire is of the same order as the rise and fall time of the signal, it 
behaves as a transmission line rather than an ideal wire. Transmission-line effects are briefl y 
described later in this chapter.

6.3.2 Fan-Out When CMOS Drives LSTTL

A common design problem involves the determination of the number of LSTTL loads a 
CMOS output can drive. In this section, we will use the parameters shown in Tables 6.1–6.4 to 
create an example to determine the number of LSTTL loads a CMOS gate can drive.

Table 6.1: LSTTL gate DC parameters.

 Symbol Parameter Min Typ Max Units Conditions

VIL Input low voltage �0.3  0.8 V

VIH Input high voltage 2.4  Vcc�0.3 V

IIL Input low current  �120 �360 μA

IIH Input high current  30 50 μA

CIN Input capacitance   10 pF

Table 6.2: Absolute maximum operating conditions.

 Symbol Parameter Min Typ Max Units Conditions

VOL Output low voltage  0.2 0.4 V @ IOL max

VOH Output high voltage 2.8 3.5  V @ IOH max

IOL Output low current 3.2 8  mA @ VOL max

IOH Output high current �600 �1000  μA @ VOH min

Note: Test conditions RL � 1 K, CL � 100 pF.
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Thus, considering the DC specifi cations only, the maximum number of loads driven is 10, 
since the zero state is the worst-case condition. The AC parameters would not be the limiting 
factor in this case because the CMOS output is specifi ed with a CL of 150 pF, and each LS 
input is only 10 pF. Thus, 10 loads would present 100 pF plus stray wiring capacitance of 
less than 50 pF would present an AC load less than the 150 pF CMOS output load-handling 
capability.

How many additional CMOS loads could be added? There are two levels of answer for this 
problem. First, from a DC point of view all the CMOS IOL output sink current is used up, so 
from this point of view, no loads could be added. However, there is negligible current in a 
CMOS input, so it is not the practical limit. In fact, the errors in the DC computations above are 
in excess of the amount required to drive a CMOS input, so in reality the DC current is not a 
problem. The real limitation is the capacitive loading. Even if you assume that the loading from 
the TTL inputs and wiring can be ignored, the CMOS input capacitance will limit the loading. 
For the output to conform to the specs, the test load was specifi ed as 150 pF (CL). With 10 
LSTTL loads of 10 pF each, the CL on the CMOS gate output would be 10 * 10 � 100 pF. 
Since the CMOS gate timing is specifi ed at CL � 150 pF, there is only 150�100 � 50 pF 

Table 6.3: CMOS gate DC parameters.

 Symbol Parameter Min Typ Max Units Conditions

VIL Input low voltage   2.0 V

VIH Input high voltage 3.0   V

II Input leakage current   �0 μA

CIN Input capacitance   25 pF

Table 6.4: Absolute maximum operating conditions.

 Symbol Parameter Min Typ Max Units Conditions

VOL Output low voltage   0.4 V @ IOL max

VOH Output high voltage 4.5   V @ IOH max

IOL Output low current 3.6   mA @ VOL max

IOH Output high current 600   μA @ VOH min

Note: Test conditions RL � 5 K, CL � 150 pF.

For Logic one:

CMOS IOH � 600 microamperes (μA)

LSTTL IIH � 50 μA so 600μA/50μA � 12 loads

For Logic zero:

CMOS IOL � 3.6 milliamperes (mA)

LSTTL IIL � 360 μA so 3.6 mA/360μA � 10 loads
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left over to drive the additional CMOS loads. Since the CMOS Cin is 25 pF, the number of 
additional gates that can be driven is:

 50 pF/25 pF � (remaining CL)/(Cin of additional CMOS inputs) � 2

Practically speaking, the wiring capacitance on a PC board will generally be in the 2–3 pF 
per inch range, so allowing 25 pF for wiring capacitance would permit one CMOS load in 
addition to the 10 LSTTL loads from above.

What if the CMOS output were to drive only CMOS loads? The input capacitance of the 
CMOS gate is 25 pF, so even if all loads were CMOS, it can only drive CL/Cin � 150 pF/
25 pF � 6 CMOS loads and still meet its test condition limits. Since we must also allow for 
the wiring capacitance, we should limit this device to fi ve loads, leaving 25 pF for the wiring 
capacitance. The additional load capacitance from more than fi ve devices would likely result 
in timing performance that would be poorer than that specifi ed in the data sheet. Excessive 
capacitance can also make ground bounce worse, which is the change in on-chip ground 
voltage due to rapid current spikes caused by charging load capacitance, developing a voltage 
across the lead inductance of the driving IC.

6.3.3 Transmission-Line Effects

When you’re using high-speed logic and the rise and fall times are of the same order as the 
propagation of the signal, transmission-line effects become signifi cant. When a signal transi-
tion propagates down a wire, it will be refl ected back if the signal is not absorbed at the des-
tination end. At lower speeds the effect can be ignored, but with the fastest processors now in 
use, most designers will need to consider whether the effects will have a negative impact on 
their designs and take appropriate action if necessary.

Several characteristics of digital transmission lines must be addressed, including the 
following:

• Signal transition time vs. clock rate

• Mutual inductance and capacitance (crosstalk)

• Physical layout effects

• Impedance estimates

• Strip line vs. micro strip

• Effects of unmatched impedances

• Termination and other alternatives

• Series termination vs. parallel termination

• DC vs. AC termination techniques
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The techniques for high-speed design are beyond the scope of this text but are covered in 
detail in an excellent text on the subject, High-Speed Digital Design: A Handbook of Black 
Magic, by Howard W. Johnson and Martin Graham. In contrast with the subtitle, this subject is 
easily understood by applying some very basic physics.

A transmission line is a conductor long enough that the signal at the far end of the line is 
signifi cantly different from the near end, due to the time it takes the signal to propagate from 
one end to the other.

In this book, we will assume that the interconnections between the devices are not long 
enough to require transmission-line analysis. To verify that this is the case we can use a simple 
estimate. The rough estimate we will make is based on the idea that a wire does not have to be 
analyzed as a transmission line if the signal takes longer to rise or fall than it takes to get from 
one end of the wire to another. In other words, if the signal doesn’t have to travel too far, both 
ends of the wire are at approximately the same voltage. To come up with a numerical value 
to determine whether a signal must be treated as a transmission line, we can use a simple 
calculation:

 I � Tr /D

where:
 I � Length of rising or falling edge in inches (in)
 Tr � Rise time in picoseconds (pS)
 D � Delay in picoseconds per inch (pS/in)

For traces on a standard printed circuit board, the value for D will be in the range of 100 to 
200 pS/in. Depending on how much distortion you’re willing to live with, the critical trace 
length will be between one-sixth and one-quarter of the length of a trace corresponding to the 
signal’s transition. For a trace that is shorter than one-sixth the length of the signal’s rising 
or falling edge, the circuit seldom needs to be considered to be a transmission line. Traces 
that are much longer than one-quarter the length of the fastest edge will start to behave as 
transmission lines, exhibiting refl ections of the signal when the transition gets to the far end of 
the trace and is refl ected back to the near end. Once the trace is about half of the length it takes 
for a logic transition to propagate, the problems become quite pronounced.

Let’s look at an example. A logic device on a standard glass-epoxy printed circuit board has a 
2 nS rise time. This signal has a rising edge that is:

 (2 nS)/(150 pS/in) � �13 inches long

That means a trace that is one-sixth that length, or about 2 inches or less, does not have to be 
considered as a transmission line. If the trace is much longer than two inches, it will begin 
to show signifi cant distortions on the rising and falling edges due to the fact that there is a 
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different signal voltage at each end of the trace at the same instant, resulting in refl ections of 
the signal from the ends of the trace.

This is one of the most important reasons for using logic that is fast enough and not too much 
faster than required to meet the timing requirements. Although it might seem tempting to buy 
the fastest device available to reduce the delays in a device which does not meet the timing 
requirements, doing so can result in many more diffi cult problems to solve.

6.3.4 Ground Bounce

Another effect of high-speed signal transitions is called ground bounce. Ground bounce occurs 
when a large peak current fl ows through the ground pin of a chip when one or more logic 
outputs change state and discharge their load capacitances through the chip’s ground pin. The 
parasitic inductance of the ground pin might not seem very signifi cant, but in the nanohenry 
(10�9 H) range, fast transients can cause large voltages to appear across the ground pin. This 
occurs most often when multiple bus signal outputs from one chip change state at the same 
time. The rapid, parallel current pulses which result from charging or discharging stray bus 
capacitance must be carried through the ground or power pins, which have inductance.

The voltage across an inductor is equal to the inductance times the rate of change of current 
through the inductor, or:

 V � L * di/dt

where:

 V � Instantaneous voltage across the inductor (volts)

 L � Inductance (henry)

 di/dt � Rate of change of current (amperes/sec)

 current i � Q/t (amperes � coulombs per second)

The charge on a capacitor is Q � CV (coulombs � farads * volts)

 V � L * C * (delta V )/(delta t)2

approximately, or:

 V � L * C * (Voh � Vol)/(Tr )2

using the output voltage and rise time.

Because of the high-speed (nS) and large (amperes) peak currents, even the small nanohenry 
inductance can induce a voltage transient on the order of volts. (The instantaneous voltage 
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across an inductor is V � L * di/dt.) For typical high-speed signals, nanohenries * amperes/
nanoseconds � volts! This effect is minimized by the use of minimum circuit interconnect 
trace lengths, wider ground traces, power and ground planes, and small, surface mounted IC 
packages that have very short leads.

For example, a CMOS output driving a 100 pF load with a rise time of 2 nS would induce a 
voltage across a typical 1 nH inductance of the chip’s ground lead:

 V � 1 nH * 100 pF * (4.5 – 0.5 V)/(2 nS)2 � 0.1 V

Although a voltage of 0.1 volt or 100 millivolts may not seem like much, remember that a part 
with many outputs, such as a processor, will sometimes switch many outputs at the same time, 
and the current that fl ows through those pins all has to fl ow through a single ground pin. An 
8-bit output will cause 0.8 volt pulse or ground bounce. If the processor drives an 8-bit data 
bus and a 16-bit address bus low at the same time, this would result in a 2.4 V bounce! The 
ground bounce voltage across the ground lead inductance results in a different ground voltage 
reference for the chip while the chip’s ground is bouncing. Needless to say, this ground 
bounce can cause a logic level to change during the brief pulse, which can cause trouble with 
circuits, such as clock signals, which are edge sensitive. This is why high-speed logic devices 
may have multiple, short ground pins and may only be available in small, surface-mounted 
packages. To make things even worse, if two devices overlap slightly in time driving the bus, 
very large current transients may briefl y generate even larger currents that in turn generate 
larger ground bounce pulses. This can disturb several chips on the board at the same time.

The power supply leads are also subject to bounce for exactly the same reasons, and even 
though the power supply is not used as a logic voltage reference, the resulting drop in the local 
power supply voltage to the chip can result in errors.

Exact ground lead inductances may prove diffi cult or impossible to measure, but there is 
always some inductance in the ground lead, and the longer the lead, the greater the inductance. 
The example above illustrates another reason that it makes sense to avoid logic that is faster 
then necessary and to use very short ground and power wires. In fact, high-speed PC boards 
should use separate inner layers of a multilayer board to provide large ground and power 
planes, allowing the chips’ power and ground leads to be connected using very short wires.

The magnitude of the bounce depends on the number and direction of logic transitions, so 
the noise is also data dependent. This is an apparently intermittent hardware design fault 
with symptoms that act like a software bug, since it might only happen at certain points in 
executing a program, with certain data values.

The example also shows why it is so important to maintain suffi cient tolerance to noise in the 
logic. This noise tolerance is referred to as noise margin, which is covered in the next section. 
Noise margin analysis is especially important in a high-speed logic design, to prevent transient 
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logic errors, which are extremely diffi cult to track down. This is another example of how a 
proper analysis and worst-case design can save a lot of time and money while delivering much 
higher quality and, ultimately, reliability. In the next section, the noise margin analysis process 
is described in detail.

6.4 Logic Family IC Characteristics and Interfacing

The three most common logic families are:

• TTL. Transistor-transistor logic (also known as bipolar logic).

• NMOS. n-channel metal oxide semiconductor fi eld effect transistor logic.

• CMOS. Complementary (n- and p- channel) MOS logic.

All three logic families have versions with TTL compatible inputs, once the most common 
type, followed by later NMOS and CMOS. Because of its lower power density and 
relatively high circuit density, however, CMOS has become the most common form of logic, 
particularly in high-density and low-power battery-operated systems. TTL logic uses bipolar 
transistors requiring input drive currents on the order of hundreds of microamperes to a few 
milliamperes, depending on the version. Input voltage ranges for TTL-level compatible logic 
are generally 0 to 0.8 V for logic zero and 2.4 to 5 V for logic one. Output voltages are from 
0 to 0.4 V for logic zero and 2.8 to 5 V for logic one. The 0.4 V difference is called the noise 
margin voltage because additive noise at or below this level will not change zeros to ones or 
vice versa. The logic threshold voltage (VT) or “0/1 decision point” for TTL logic is typically 
around 1.5 V. It may range anywhere between 0.8 and 2.0 V depending on supply voltage and 
temperature and varies from one device to another. For TTL circuits, the noise margin is at 
least 0.4 V. Figure 6.10 shows the concepts of noise margin and logic threshold voltages.

Vcc

VOH min

VOL max

�5 Volts

2.8 Volts

0.4 Volts

0 Volts

Valid One
Output

Valid 
One
Input

Valid 
Zero
Input

VIH min  

~1.5 Volts

0.8 Volts

2.4 Volts

VT

VIL max‘‘0’’ Noise Margin

‘‘1’’ Noise Margin

Undefined

Valid Zero
Output

Gnd

Figure 6.10: Typical TTL logic voltages and noise margin.
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Interconnecting different logic families, such as CMOS and TTL, requires the designer to 
assure the compatibility of the logic signal voltage levels and adapt the circuit as necessary 
to maintain appropriate noise margins. The equivalent resistance or impedance of the signal 
network also has an impact on the noise in a specifi c circuit. High-impedance inputs are more 
prone to noise than are low-impedance inputs. The interface design process is illustrated by an 
example at the end of this chapter.

TTL logic is capable of sinking high currents and is used for driving very fast, large, heavily 
loaded buses. Both active and passive pull-up output devices are used with TTL. The active 
pull-up, referred to as a totem-pole output, uses one transistor to source current and one to 
sink it. The passive pull-up uses a transistor to sink current and a resistor connected to V� as 
a current source. If a pull-up resistor is not connected to the gate’s output pin and the collector 
is connected only to the output pin, it is referred to as an open collector output. In both cases, 
the output current sinking capabilities are greater than current source capacity. Many devices 
can sink a few milliamperes but can only source hundreds of picoamperes. Figure 6.11 shows 
both totem pole and open collector outputs.

Vcc
Vcc

External
Resistor

Output
Pin

Output
Pin

Device Package

From
Internal
Circuits

Passive Pull Up
Open Collector

Active Pull Up
Totem Pole

Device Package

Figure 6.11: TTL outputs: totem pole and open collector.

TTL and CMOS logic are available in several versions, each identifi ed by a distinctive prefi x 
in the part number. Some of the more common versions and their prefi xes are:

• 74xx. Standard TTL.

• 74LSxx. Low-power Schottky clamped TTL.

• 74ALSxx. Advanced LS TTL.

• 74Fxx. (Fast) high-speed TTL.

• 74HCxx. High-speed CMOS with CMOS compatible inputs (Vt � �Vcc/2).

• 74HCTxx. High-speed CMOS with TTL compatible inputs (Vt � �1.5 V).
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• 74FCTxx. High-speed CMOS with TTL compatible inputs (Vt � �1.5 V).

• 74ACTxx. Advanced high-speed CMOS with TTL compatible inputs.

• 74BCTxx. Very high-speed CMOS/Bipolar with TTL compatible inputs.

Schottky logic (74ALSxx 74LSxx and 74Sxx) incorporates a low Vf (forward voltage drop) 
Schottky diode across the collector-base junction of a transistor to prevent it from saturating. 
This increases the speed for turning the transistor off. TTL is generally used where low cost, 
output drive, and high speed are important and there is no objection to the relatively high 
power consumption and resulting heat.

NMOS logic was used for moderate complexity logic ICs such as more mature microproces-
sors. Most NMOS logic ICs have TTL compatible voltage specs and operate at a lower power 
and speed than TTL. The power consumed by NMOS lies between TTL and CMOS, as does 
its speed. The input current is nearly zero since the MOSFETs have extremely high input 
resistance. Unfortunately, they do have fairly large input capacitance, limiting the circuit 
speed. The output confi gurations are similar to TTL except the transistors are n-channel fi eld 
effect transistors (FETs) rather than bipolar NPN. Both active totem pole and passive (open 
drain) outputs are used in microprocessor and microcontrollers. Because of the constant oper-
ating current drain, these devices tend to be limited in size and complexity.

CMOS logic has a signifi cant advantage since it does not use any signifi cant amount of power 
when it is static (not changing state). Most of the power used in an operating device is due to 
the charge and discharge of internal capacitance and the current transient when both N and P 
devices are partially on. As a result, power consumption is a function of clock rate for CMOS 
devices. Some processors are even designed to take advantage of this fact by incorporating 
“sleep” or low-power modes, stopping some or all of the clock operations when nothing 
important is going on. This is frequently required for battery-operated systems to maintain a 
reasonable battery life. Another advantage is the standard CMOS logic threshold is one-half 
the supply voltage and the output voltages tend to be very close to Vcc and ground voltage, 
resulting in higher noise margins than those of TTL devices. This is particularly important for 
CMOS devices that operate at reduced power supply voltage. CMOS devices that operate at 
3 V or less are available.

Because CMOS logic is inherently symmetrical, the rise and fall times tend to be nearly equal. 
The symmetry also results in equal source and sink capabilities. The inherent increase in noise 
margin makes CMOS less susceptible to noise than TTL and NMOS. Figure 6.12 illustrates this 
concept. CMOS devices operating at voltages other than 5 V, such as 3.3 V, will have a thresh-
old voltage corresponding to Vcc/2. Some versions of CMOS logic operate with a reduced 
noise margin to have TTL-compatible input voltages. This is accomplished by artifi cially low-
ering the input threshold voltage to 1.5 V, the same as used for TTL. These TTL input threshold 
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Figure 6.12: Typical CMOS logic voltages and noise margin.

compatible circuits have a T in their number (74HCT, 74BCT, etc.), indicating they have TTL 
compatible inputs. A series of high-speed logic compatible with the TTL logic family in func-
tion and input voltage is the 74HCTxx (high-speed CMOS TTL compatible) series. The advan-
tage of the T series CMOS devices is they can be driven directly by devices having TTL output 
voltage levels. The T series of CMOS devices has the disadvantage that the noise margin is less 
than it is for true CMOS compatible inputs due to the shifted threshold voltage. The 74HCxx 
series is pure CMOS with a threshold voltage of one-half the supply voltage (2.5 V for a 5 Vcc) 
and correspondingly higher noise margins. As a result, a standard TTL output VOHmin of 2.8 
volts is not enough to guarantee a logic one value for a 74HCxx gate input.

6.4.1 Interfacing TTL Compatible Signals to 5 V CMOS

Interfacing a CMOS output to a TTL input is a direct connection as long as the CMOS output 
is capable of sinking the TTL device’s input low current. Interfacing a TTL output to a stand-
ard CMOS input requires the use of at least a pull-up resistor. A resistor on the TTL output to 
Vcc will ensure that the output voltage is pulled high enough to guarantee the logic one output 
signal is interpreted as a logic one by the CMOS input. Another useful technique when using 
5 V logic to drive CMOS circuits is to use a higher-voltage open collector or open drain output 
with a pull-up resistor connected to the higher supply voltage. This level-shifting technique 
can also be used for driving other high-voltage circuits such as high-voltage outputs. In either 
case, the objective is to guarantee that there is suffi cient noise margin to guarantee a valid 
logic one when the TTL compatible output drives a CMOS input.

It is important to note that when a TTL output is pulled above its normal output high voltage, 
it will not source any signifi cant current. This is because the TTL output source is equivalent 
to a high resistance in series with a voltage source that is effectively limited to around 3 V, 
due to internal design constraints. As the output voltage increases until it equals the internal 
voltage, the output can no longer source any current. When the voltage is increased beyond the 
internal circuitry (up to a limit of Vcc), the internal circuitry is equivalent to a reverse biased 
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diode, so only leakage currents in the sub-microampere range will fl ow into the output device. 
As a result, the effect of a TTL output on external circuits is negligible when the pin is pulled 
high by an external resistor.

Also, a 5 V TTL compatible output is often compatible with a 3 V CMOS device input, since 
the CMOS threshold (Vcc/2 � 1.5 volt) is the same as a 5 volt TTL gate (TTL Vt � 1.5 V). 
Most of the 3 V CMOS devices are designed to withstand a 5 V input signal, so it is often 
possible to interface 5 V TTL outputs directly to 3 V CMOS inputs. However, if the 3 V 
CMOS inputs are not designed to handle 5 V inputs, the CMOS device could be destroyed 
with an input signal greater than 3 V, so it is important to verify this. A 3 V CMOS device 
output will be close to 3 V, so it can drive a 5 V TTL compatible input directly.

A 3 V CMOS output would probably be marginal driving a 5 V CMOS input (Vt � Vcc/2 � 
2.5 volt), leaving less than 0.5 V CMOS output generally cannot withstand a pull-up resistor to 
5 V, it is necessary to add a level shifting IC to convert 3 V logic levels to 5 V.

Level shifters are available for converting logic levels from one family to another, including 
3 V to and from 5 V, or 5 V TTL to �/ – V ECL (emitter-coupled logic), and 5 V levels to 
�/–12 V RS-232 signals. There are also special ICs for driving output loads requiring either 
a high voltage or high current output, such as a light, motor or relay. Most microcontrollers 
have very weak output drive capability, so external driver ICs may be necessary. These would 
typically be needed to drive LEDs, a vacuum fl uorescent display, or a motor. Solid-state relays 
even allow large AC loads to be controlled by a micro. Likewise, there are other devices 
(i.e., optical isolators), allowing high voltages (like 110 V AC inputs) to be safely converted 
to logic levels for input to a microcontroller. Devices that use potentially hazardous high 
voltages should be isolated from the rest of the circuitry for reasons of safety. It might be 
possible to connect such devices directly to our circuits, but they would allow us to come into 
contact with potentially fatal voltages. The standard 50 or 60 cycle AC power supply used 
almost everywhere has the unfortunate characteristic that it is very nearly the optimal voltage 
to guarantee that a human heart will stop functioning due to muscle fi brillation. Customer 
death by electrocution is sure to result in the next of kin hiring an attorney to relieve you of 
all your assets … unless, of course, they’re your next of kin! There are many isolation devices 
available, most of which use the same basic approach.

The isolation can be accomplished using optical or magnetic means, which can provide a 
barrier to transient voltages that can be on the order of thousands of volts. The barrier is 
transparent and so allows light to pass, but it is made of a good insulator to prevent electrical 
current from fl owing across the boundary. Figure 6.13 shows a simple optical isolation circuit.

This isolation approach can be used to input high voltages to a microcontroller safely by 
connecting the LED to a high-voltage source in series with a resistor and protective diode to 
limit the LED’s current and prevent the LED from being exposed to the potentially destructive 
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reverse voltage. The output transistor will then be turned on whenever the LED is turned on by 
one half of the AC power cycle. This is useful for time-of-day clock functions, since the AC 
power mains frequency is maintained very accurately by the power utilities over a period of 
time. The output switch can be connected to the processor counter or interrupt input, allowing 
the processor to keep track of time and synchronize its operation with the AC power cycle.

High voltage outputs can also be controlled safely by using the micro’s output to turn 
on the LED that turns the output switch on. In this case, another type of switch such as a 
silicon-controlled rectifi er (SCR) or TRIAC (an AC version of the SCR) is used rather than 
a transistor. SCR and TRIAC switches can be obtained to handle relatively large AC loads, 
such as lamps and motors. These devices are often referred to as solid-state relays (SSR), 
since they are equivalent to an electromechanical relay except that they are implemented 
with solid-state semiconductor devices instead of using a coil to move a switch. Both isolated 
inputs and outputs are available in complete modules that have all the necessary circuits to 
monitor and control high voltage and power devices, using optical isolation for safety. They 
have microcontroller-compatible I/O on one side that is optically isolated from the high-power 
outputs on the other side.

Very often, even when safety is not an issue, microcontroller chips simply cannot handle the 
voltages or currents required to interface with other devices. In some cases it is required when 
connecting one logic family to another, incompatible family, such as emitter-coupled logic 
(ECL) levels or RS-232 interfaces utilizing negative voltages.

Sometimes a plain, old-fashioned electromechanical relay is a better solution, since relays 
usually have contact resistances that are far lower than can be found in a semiconductor 
switch. In some cases, a simple transistor or MOSFET switch can be used to control a load 
operating at voltages which are greater than the logic supply, such as motors, solenoid 
actuators, and relays that might require 12 or more volts to operate.

The circuitry required to interface between logic levels and high-level circuits is described in 
detail elsewhere, including an excellent book titled The Art of Electronics, by Horowitz and 

High Voltage 
Isolation 

Boundary

Light 
Crosses 

Boundary

Current Flows in 
LED, it Emits Light

Light from LED 
Turns on the Switch, 
Allowing Current Flow

Figure 6.13: Optical isolation allows connection to hazardous voltages.
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Hill. If you don’t already have this very handy book—and you have to do much electronic 
design or interfacing—you should defi nitely obtain a copy.

The real world is an analog place, and interfacing between the discrete, digital world of 
computers and the real world demands signifi cant attention. The interface between low-level 
analog signals and logic is handled in another chapter of this book.

At this point, it is time to look at some simple examples so that we can see exactly how a 
worst-case analysis should be performed. The next section illustrates part of the worst-case 
analysis for a real laboratory instrument that is still used in the healthcare industry. This 
product’s poor reliability was seriously inconvenient for the medical staff and patients who 
depended on it, and if it had led to an incorrect diagnosis, a truly fatal error! It is in these types 
of applications that worst-case design is most important, and the cost of unreliable hardware 
in the fi eld almost always greatly exceeds the cost of avoiding the problem by using proper 
design and analysis techniques. Now let’s turn our attention to the analysis of the worst-case 
noise margin for an 8051-based design example.

6.5 Design Example: Noise Margin Analysis Spreadsheet

The spreadsheet in Table 6.5 shows the results of a noise margin on a design that was already 
in production at the time of the analysis. The product’s users had complained about intermit-
tent glitches, and the author was consulted to determine the source of the problem. After a 
quick look at a few of the noise margin values, it became obvious that there were defi ciencies 
in the design in that area. A portion of the spreadsheet used in that analysis is shown in Table 
6.5, with problems shown in bold italic underline font.

The fi rst column of Table 6.5 is the signal name, followed by the pin number and chip that 
is the source of the signal, followed by the source’s worst-case output voltages, Volmax and 
Vohmin. The next columns list the loads on the signals and their respective worst-case input 
voltages Vilmax and Vihmin. The noise margins are shown in the last two columns, Vil–Vol 
for the logic zero case and Voh–Vih for the logic one case. As shown, the logic zero noise 
margins are all probably acceptable, since the lowest value is 0.3 V. The logic one noise 
margin is zero or negative for most of the devices listed, which is completely unacceptable. 
Any noise on the power supply, ground, or the signal lines themselves can easily cause a 
logic input to interpret the wrong logic state, causing an error. An interesting thing to observe 
is that none of them were very far out of spec, and the instrument worked perfectly most of 
the time. These problems can be virtually impossible to fi nd in the fi eld. Hooking up a test 
instrument like a scope or logic analyzer to the problem signals often makes the problem 
go away due to changing the ground currents and impedances of the circuit. The specs that 
cause the problem in this case are the high Vih specs of the loads, especially the SRAM chip. 
The example design in the spreadsheet represents a relatively common problem with devices 
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 Output Input Noise Margin

Signal Pin(s) Source Volmax Vohmin Load(s) Signal Vilmax Vihmin logic zero logic one

PSEN/ 29 8051 0.40 2.00 EPROM OE/ 0.80 2.00 0.40 0.00

RD/ 17 8051 0.40 2.00 SRAM OE/ 0.80 2.20 0.40 0.20

(P3.7)   0.40 2.00 82C55 RD/ 0.80 2.00 0.40 0.00

WR/ 16 8051 0.40 2.00 SRAM WR/ 0.80 2.20 0.40 �0.20

(P3.6)   0.40 2.00 82C55 WR/ 0.80 2.00 0.40 0.00

A15(P2.7) 28 8051 0.40 2.00 74LS138A  0.80 2.00 0.40 0.00

A8..14 21–27 8051 0.40 2.00 SRAM A8..14 0.80 2.20 0.40 �0.20

(P2.0–P2.6)   0.40 2.00 EPROM A8..14 0.80 2.00 0.40 0.00

   0.40 2.00 GAL A8..14 0.80 2.00 0.40 0.00

ALE 30 8051 0.40 2.00 74LS373LE  0.80 2.00 0.40 0.00

AD0..7 39–32 8051 0.40 2.00 74LS373 A0..7 0.80 2.00 0.40 0.00

(P0.0–P0.7)   0.40 2.00 SRAM D0..7 0.80 2.20 0.40 �0.20

   0.40 2.00 82C55 D0..7 0.80 2.00 0.40 0.00

  SRAM 0.40 2.20 8051 D0..7 0.80 2.40 0.40 �0.20

  EPROM 0.45 2.40 8051 D0..7 0.80 2.40 0.35 0.00

  82C55 0.40 3.50 8051 D0..7 0.80 2.40 0.40 1.10

RAM enable  16V8 0.50 2.40 SRAM /CE 0.80 2.20 0.30 0.20

EPROM enable  16V8 0.50 2.40 EPROM /CE 0.80 2.00 0.30 0.40

Table 6.5: 8051 Noise Margin Analysis Sample.
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that are advertised as “compatible” with other logic families. The solution to the problem is 
very simple and inexpensive: the addition of pull-up resistors to the signals that have zero 
or negative noise margin in the logic one state. This also impacts the output low current that 
must be handled by the signal source chip outputs, so it must be taken into account in the load 
analysis, and pull-up resistors should be chosen accordingly.

It is important to note that there are four sources listed for AD0 .. 7, since there are four 
devices that drive the data bus. Only the data paths that are used need to be evaluated vs. 
loading analysis, where unused paths load the bus. The load analysis for another similar 
design is shown in Table 6.6, which tabulates the capabilities of the various driving devices 
and the loads that are presented to them. The fi rst three columns (signal, pin, and source) 
identify the signal source; the next three (IOL, IOH, and CL) list the corresponding source’s 
output drive current and capacitive load values. The next two columns (load, and signal) 
identify the load’s signal names. The Qty column is the number of loads in the case of 
multiple signals connected to the same output or the number of inches of wire in the case of 
the wire capacitance. The next three columns (IIL, IIH, and Cin) defi ne the load characteristic 
of a single input’s input current and input capacitance. For the interconnect wiring, Cin is the 
estimated stray wiring capacitance per inch of the printed circuit trace. The last three columns 
show the extended totals and grand totals for each signal, followed by the design margin, 
which should be a positive number. In this case there is only one problem, due to excessive 
capacitive loading of the SRAM when it drives the data bus, AD0 .. 7.

The output capacitive load specs are usually found as notes within the AC section of the chip 
specifi cation listing the various timing parameters. This is because the capacitive loading 
affects the rise and fall time of the signal, so the capacitance value is really used as a test 
condition for the timing measurements. Input capacitance may be diffi cult to fi nd in the 
specifi cation sheet, it might be in a different “family” specifi cation sheet or handbook, or 
might not be specifi ed at all. When it is not specifi ed, a reasonable estimate can be made by 
substituting values for similar parts in the same type of package.

The SRAM output is specifi ed with a Cload value of 50 pF, which is relatively low value. By 
using a very low load capacitance, the SRAM’s timing specs look good due to shorter than 
normal rise and fall times, since the chip is not driving a realistic load. This is a good example 
of a manufacturer’s “specsmanship.” They are intentionally playing games with the test 
conditions to make their device appear to be better than it is. That way when someone looks 
at their timing specs, the shorter rise and fall times make their chip appear to be faster than 
another equivalent chip that is specifi ed with a larger capacitive load value when the chips are 
actually identical. Unfortunately, this practice is all too common, so the designer must view 
the claims on the cover of a data sheet very critically. If it looks too good to be true, then it 
probably is!
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Table 6.6: Load analysis for a similar design. 

 Source      Load   Unit Load Total
   uA uA pF    uA uA pF uA uA pF
Signal Pin# Source IOL IOH CL Load Signal Qty IIL IIH Cin IIL IIH Cin

PSEN/ 29 8051 3200 �60 100 EPROM OE/ 1 �1 1 12 �1 1 12

      wire cap  2   2   4

         Total   �1 1 16

         Margin   3199 59 84

RD/ 17 8051 1600 �60 80 SRAM OE/ 1 �1 1 7 �1 1 7

(P3.7)      82C55 RD/ 1 �1 1 10 �1 1 10

      wire cap  3  2    6

         Total   �2 2 23

         Margin   1598 58 57

WR/ 16 8051 1600 �60 80 SRAM WR/ 1 �1 1 7 �1 1 7

(P3.6)      82C55 WR/ 1 �1 1 10 �1 1 10

      wire cap  3   2   6

         Total   �2 2 23

         Margin   1598 58 57

A15 28 8051 1600 �60 80 74LS138 A 1 �200 20 10 �200 20 10

(P2.7)      wire cap  2   2   4

         Total   �200 20 14

         Margin   1400 40 66

A8..14 21-7 8051 1600 �60 80 SRAM A8..14 1 �1 1 7 �1 1 7

(P2.0–P2.6)      EPROM A8..14 1 �1 1 12 �1 1 12

      wire cap  3  2    6

         Total   �2 2 25

         Margin   1598 58 55

ALE 30 8051 3200 �60 100 74LS373 LE 1 �400 20 10 �400 20 10

      wire cap  2   2   4

         Total   �400 20 14

         Margin   2800 40 86
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AD0..7 39–2 8051 3200 �800 100 74LS373 A0..7 1 �400 20 10 �400 20 10

(P0.0–P0.7)      SRAM D0..7 1 �1 1 7 �1 1 7

      EPROM D0..7 1 �1 1 12 �1 1 12

      82C55 D0..7 1 �10 10 20 �10 10 20

      wire cap  5   2   10

         Total   �412 32 59

         Margin   2788 768 41

  SRAM 1600 �600 50 74LS373 A0..7 1 �400 20 10 �400 20 10

      8051 D0..7 1 �1 1 20 �1 1 20

      EPROM D0..7 1 �1 1 12 �1 1 12

      82C55 D0..7 1 �10 10 20 �10 10 20

      wire cap  5   2   10

         Total   �412 32 72

         Margin   1188 568 �22

  EPROM 1600 �600 100 74LS373 A0..7 1 �400 20 10 �400 20 10

      SRAM D0..7 1 �1 1 7 �1 1 7

      8051 D0..7 1 �1 1 12 �1 1 12

      82C55 D0..7 1 �10 10 20 �10 10 20

      wire cap  5   2   10

         Total   �412 32 59

         Margin   1188 568 41

  82C55 1600 �60 80 74LS373 A0..7 1 �400 20 10 �400 20 10

      8051 D0..7 1 �1 1 20 �1 1 20

      EPROM D0..7 1 �1 1 12 �1 1 12

      SRAM D0..7 1 �1 1 7 �1 1 7

      wire cap  5   2   10

         Total   �403 23 59

         Margin   1197 37 21 
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When an output like this is operated with actual capacitive load greater than the test condi-
tions, the related timing specs for the device must be de-rated due to the degraded rise and fall 
times that will occur. As long as the load capacitance is no more than twice the spec value, 
this will be suffi cient. The excess C load will increase the stress on the driver. If the overload 
is much greater than two times normal, the device can be overstressed due to the relatively 
large currents that will fl ow into the load capacitance on transitions when the C is charged and 
discharged through the driving output. As long as the output is not overloaded too much, the 
resulting increase in the rise/fall time can be estimated, resulting in a de-rated timing spec. All 
we have to do is calculate the additional rise time and add that to the timing values specifi ed 
in the data sheet. To do that, we need to evaluate the output circuit’s performance. This can be 
accomplished by noting that the output current drives the load capacitance from a logic low 
to high or vice versa. For our purposes, we will assume that the interconnect does not behave 
like a transmission line, which is most often the case for garden variety microcontroller com-
ponents. If the chips used have a fast rise time and trace length greater than about one-sixth 
the edge length of the pulse, it is necessary to analyze the circuit as a transmission line. In this 
case we will look at the simpler problem.

By assuming a constant current charging the capacitance, the voltage will ramp linearly from 
one logic level to the other. To make a rough estimate, we can use the source’s output current 
and load capacitance to determine the signal slew rate and the difference between the high and 
low logic levels to determine the delay. Figure 6.14 illustrates this idea.

V

T

Rise Time with Spec’d C

Rise Time
with

Excess C

delta V

delta T

Vil max

Vih min

Figure 6.14: De-rating delay for excess CL.

Let’s next look at a simple example showing how to de-rate the timing based on the 
approximation technique just described.

First we make the assumption that the signal timing measurements in the data sheet are made 
under the specifi ed test conditions, usually with the output loaded by RL and CL in parallel to 
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ground. The output delay specifi cations in the data sheet include the internal delay as well as 
the rise time. The output drive current charges CL within the specifi ed time. The circuit can 
be divided into two parts: the specifi ed load, and the additional output current available to 
drive the excess load C. So the additional delay (delta T) we are looking for depends upon the 
leftover drive current (delta I) which is available to charge the excess load capacitance (delta 
C). The equation for this is:

 Delta T � (delta V * delta C)/(delta I)

Let’s look at a typical example. An SRAM is specifi ed with a 50 nS access time, but the 
outputs are overloaded with respect to the CL spec in the data sheet. What access time spec 
should be used for the actual conditions specifi ed below?

• The output is specifi ed to drive CL � 50 pF, but the actual load is 100 pF.

• The output is specifi ed to drive 20 mA into the load, but the load is only 10 mA.

• The driven device has input voltage specs Vilmax � 0.4 V, Vihmin � 3.4 V.

 Voltage: Vih – Vil � 3.4 – 0.4 � 3 V � delta V

 Delta T � (delta V * delta C)/(delta I)

 Delta T � (3 V * 50 pF)/(10 mA) � 15 nS

So in this case 15 nS should be added to all the output delay specs for the driving device. The 
access time used should be:

Taa(actual) � Taa(spec) � (delta T) � 50 nS � 15 nS � 65 nS

Since the output current from most devices is larger at the beginning of the transition and 
smaller near the end of the transition, the approximation is only a rough guide. Also, the delta 
V calculation is conservative, since the input threshold voltage is typically halfway between 
the Vih and Vil values.

So, the estimate as shown will usually be conservative compared to actual performance. All 
of the above must be used with caution and is only an approximation of the additional delay 
caused by excess CL, so it is wise to allow additional margin in the timing for any de-rated 
specs.

 Spec values Actual Values Difference

 CL � 50 pF 100 pF 50 pF � delta C

 Io � 20 mA 10 mA 10 mA � delta I
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Here’s another typical example. An LSTTL gate is to be used to drive one LSTTL load and a 
CMOS processor clock input, as shown in Figure 6.15. An interface must be made which will 
guarantee the CMOS input voltage requirement will be met with the same noise margin as a 
standard LSTTL input. The LSTTL and CMOS gates have the specs as defi ned below:

LSTTL Gate DC Parameters.

 Symbol Parameter Min Typ Max Units Conditions

VIL Input low voltage   �0.3    0.8 V

VIH Input high voltage    2.4    Vcc�0.3 V

IIL Input low current    �120    �360 μA

IIH Input high current    30    60 μA

Vcc

LSTTL

LSTTL

CMOS
R � ?

Figure 6.15: TTL-to-CMOS interface example.

Absolute Maximum Operating Conditions.

 Symbol Parameter Min Typ Max Units Conditions

VOL Output low voltage   0.2    0.4 V @ IOL max

VOH Output high voltage    2.8  3.5  V @ IOH max

IOL Output low current    3.2  8  mA @ VOL max

IOH Output high current   �600  �1000  μA @ VOH min

Note: Test conditions RL � 1 K, CL � 100 pF.

CMOS Gate DC Parameters.

Symbol Parameter Min Typ  Max Units Conditions

VIL Input low voltage       2.0 V

VIH Input high voltage     3.0   V

II Input leakage current       �1 μA

Here is how we would determine the answer. Since the LSTTL VOL is 0.4 V and the CMOS 
VIL is 2.0 V, the CMOS input low voltage is compatible with the LSTTL low output voltage. 
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However, the LSTTL output high voltage of VOH � 2.8 V is not suffi cient to meet the CMOS 
input high VIhmin � 3.0 V. A pull-up resistor is required to allow the LSTTL output to go to 
a higher voltage, VIH � Vnoise margin � 3.0 � 0.4 � 3.4 V. There is no exact solution, but the 
range of resistors meeting the requirements can be determined.

The lowest resistor value that will work is the value which will source enough current so the 
LSTTL output is just able to sink the resistor current plus the additional LSTTL load when 
the signal is low and still meets the maximum output low voltage specifi cation. Negligible DC 
current is fl owing from the CMOS input. The voltage across the resistor is Vcc – VOLmax. for 
the LSTTL input, or 5 – 0.4 � 4.6 V. The current required is I � IILmax � IRPU where IILmax 
is the current coming from the LSTTL input load and IRPU is the current fl owing through the 
pull-up resistor. The current the LSTTL output must sink is the sum of the IIL of the LSTTL 
load and the current through the pull-up resistor.

The equation is:

 IOLmin ��IILmax � IRPU � 360 μA � (Vcc – VOLmax)/Rmin

Solving for Rmin:

 Rmin � � (5 – 0.4 volts)/(3.2 mA – 360 μA) � 4.6 V/2.84 mA � 1.62 kilohms

 Rmin is 1.62 Kilohms

This value is also greater than specifi ed as a test load of 1 kilohms.

The maximum acceptable value, Rmax, is determined by the minimum output high voltage 
that will guarantee a CMOS high input plus noise margin. The resistor must be able to supply 
the LSTTL maximum input high current and not have too large a voltage drop across it. This 
will determine the upper limit for the resistor value.

Specifi cally, the resistor voltage is:

 Vcc – (CMOS VIH min � Vnoise margin) � 5 – (3.0 � 0.4) � 1.6 volts

Absolute Maximum Operating Conditions.

 Symbol Parameter Min Typ Max Units Conditions

VOL Input low voltage   0.4 V @ IOL max

VOH Output high voltage 4.5   V @ IOH max

IOL Output low current 3.2   mA @ VOL max

IOH Output high current 600   μ @ VOH max

Cin Input capacitance   20 pF 

 Note: Test conditions RL � 5 K, CL � 150 pF.
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This voltage is maintained while sourcing the LSTTL IIH max of 60 μA.

Solving for Rmax:

 Rmax �� 1.6 V/60 μA � 26.7 kilohms maximum

Thus, the acceptable range for the pull up resistor is:

 1.62 kilohms �� Rpu �� 26.7 kilohms

An acceptable standard value such as 10 kilohms would be appropriate.

Another limit relates to the rise time of the signal under load, due to the R-C time constant of 
the pull-up resistor charging the load capacitance, CL. From the example above, let’s see what 
the effect of this time constant is on the selection of the resistor value.

The maximum R value can be approximated by the equation:

 R � T/CL

where T is the rise time and CL is the total load capacitance.

Ignoring the Ioh current of the LSTTL driver, if the circuit above had an allowable rise time 
T � 50 nS and CL � 20 pF, then the maximum R value would be:

 Rmax � 50 nS/20 pF � 2.5

kilohms maximum to maintain the 50 nS rise time.

So a better choice might be a standard 2.2 kilohm pull-up resistor. Since the driver will supply 
some current to charge the load capacitance, this is a fairly conservative value. We would also 
have to allow for the additional rise time as part of the timing analysis for the low-to-high 
transition.

6.6 Worst-Case Timing Analysis Example

Let’s suppose an LSTTL gate is used to enable the D input of a fl ip-fl op frequency divider, as 
shown in Figure 6.16. Figure 6.17 shows a functional timing diagram for the circuit in 
Figure 6.16, and Figure 6.18 illustrates a specifi cation timing diagram for the same circuit. 

IN

Clock CK

D Q

Figure 6.16: Example of worst-case timing.
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Figure 6.17: Functional timing diagram for Figure 6.16.

Clock

Q

IN

D

overall
TSU

TPCKQ TPLH
or

TPLH

TSU
for
FF

Figure 6.18: Specifi cation timing diagram for Figure 6.16.

Flip-Flop Timing Specs

 Symbol Min Typ Max Units

TSU 10   nS

TH 1   nS

TPCKQ   15 nS

TPWCK 10   nS

FCLK   50 MHz

Gate Timing Specs

 Symbol Min Typ Max Units

TPHL 1 2 5 nS

TPLH 2 4 6 nS

Test Conditions RL � 1 K, CL � 100 pF.
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The timing of the input signals must conform to the combined specs of both devices, as 
defi ned below:

For the circuit shown in Figure 6.16 and the accompanying specifi cations, what is the 
maximum guaranteed clock rate?

From the timing fi gures on the previous page, note that the minimum clock cycle time is 
defi ned by the sum of the following times: the time it takes for the transition from the active 
edge of the clock for the signal at D to propagate through the fl ip-fl op through the NAND gate 
and the time the signal must be stable before the next clock. The maximum propagation times 
and minimum setup times are used as they are the most severe requirements.

 TPCKQ � TPLH � TSU � 15 � 6 � 10 � 31 nS

 f � 1/t � 1/31nS � 32.26 MHz

Now let’s determine the setup and hold time requirements for the overall circuit. The overall 
setup time is lengthened by the delay of the NAND gate; therefore, the system setup time is 
the sum of the fl ip-fl op setup time and the worst-case propagation delay.

 TSU(system) � TPLH � TSU(fl ip-fl op) � 16 nS minimum

For the overall system hold time, the hold time of the fl ip-fl op is offset by the minimum delay 
through the NAND gate, since this is the minimum amount of time that can be counted on to 
delay a changing D input to the fl ip-fl op.

 TH(system) � TH(fl ip-fl op) – TPHL(min) � 1 – 1 � 0 nS

The delay in the D signal path reduced the hold time requirement from 1 nS to 0 nS, meaning 
that the input can change at the same time as the clock edge or later. This is actually an 
improvement on the performance of the fl ip-fl op by itself, which requires that the D line be 
held stable for 1 nS after the clock edge.

Endnotes

Horowitz, Paul and Winfi eld Hill, The Art of Electronics. Cambridge, UK: Cambridge 
University Press, 1989.

 Johnson, Howard W., and Martin Graham, High-Speed Digital Design: A Handbook of Black 
Magic. Upper Saddle River: NJ: Prentice Hall, 1993.
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Choosing a Microcontroller and 
Other Design Decisions

Lewin Edwards

CHAPTER 7

7.1 Introduction

The start of a complex embedded project, particularly in a small organization without engi-
neers who can be dedicated full-time to component procurement, can be extremely stressful. 
Until a fi rst-round prototype is built and tested (and often even after this stage), it is usual for 
hardware requirements to be at least slightly vague, particularly vis-à-vis the exact breakdown 
of which functions are expected to be integrated into the microcontroller and which will be 
off-chip. As the design engineer, some of your goals are obviously ease of fi rmware and hard-
ware development, low bill-of-materials cost, and reliability of sourcing. You will probably 
start with a list of hardware requirements and match those up against selection matrices from 
different vendors to fi nd a part that has as many of your features as possible on-chip.

At this point, what you really want is a vendor-neutral parametric search engine for which you 
can select the performance and peripherals you want and obtain a list of suggestions collated 
from everybody’s catalogs. Unfortunately, most of the search facilities available online leave 
much to be desired. Many manufacturers don’t have full parametric search engines available, 
and those that do obviously only list their own parts. Third-party search engines do exist, but 
they are usually premium services for which you will have to pay—and again, they only list 
products from manufacturers with whom they have a relationship. Also, the total startup cost 
of development—evaluation boards, tools, etc.—is an important factor to us (for some readers, 
perhaps even more important than the unit cost of the microcontroller), and this cost will not 
be listed by parametric search engines. Finally, as with any other search facility, it can be dif-
fi cult to match your needs with the list of keywords provided in the search engine.

This is one occasion when there is no substitute for peer support. Even if you think you’ve 
found a perfect match already, it’s well worth searching Usenet archives (groups.google.com) 
for discussions on similar applications to your own. A carefully phrased question may lead 
to even more useful suggestions. Even if you are intimately familiar with every IC vendor 
that impinges on your industry, you might miss a new product announcement and thereby not 
know to check manufacturer X’s catalog. Sometimes the only clue you need to lead you to the 
right part is the information that manufacturer X makes 32-bit microcontrollers! Furthermore, 
other engineers who have worked with the part may be able to point you to low-cost, third-party 
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evaluation platforms or off-the-shelf appliances that can be used as demo boards, and they will 
be better positioned than anyone else to give you relatively unbiased opinions on real-world 
diffi culties of using a specifi c device.

In the early days, it is also doubly hard to make an optimal price/performance choice, because 
the selection sheets generally won’t show pricing. For any part that can’t be bought anony-
mously off the shelf (and unfortunately the majority of 32-bit microcontrollers fall into this 
category), most chip vendors expect you to establish a relationship with their distributors. This 
can waste a lot of time in profi tless face-to-face meetings. My own experiences with local reps 
and distributors in the United States have been very patchy, and I have often found that their 
knowledge of the 32-bit parts on their line card is limited to whatever bullet points the manu-
facturer printed on the sales literature. The distributors want accurate annual usage forecasts 
before they will give you sensible pricing, and they obviously have little or no incentive to 
deal with small-volume purchasers like students or hobbyists. Political diffi culties related to 
sales commissions also arise when you are designing the product in one country but intend to 
manufacture it in another. Furthermore, the distributors and reps will be most likely to quiz 
you on your other requirements and try vigorously to sell you other parts from their line card. 
Although this possibly has some marginal convenience benefi ts if you intend to source and 
manufacture locally, it certainly isn’t the ideal way of minimizing the bill-of-materials cost of 
your product.

It’s all too easy to become trapped in an endless circle trying to seek an optimal solution to 
all these problems, so you shouldn’t attempt it. Recognize from the outset that this is a classic 
“traveling salesman” problem (perhaps even in the literal mathematical sense) and that your 
goal is merely to fi nd an acceptable solution in time to fi nish your project and send it to the fac-
tory (or submit it to your professor, if you’re a student). Your goal is not to fi nd the best possible 
solution. If your team has enough personnel to dedicate a lot of person-hours to sourcing com-
ponents, you will probably be able to fi nd a better solution than the one-person “team” scouring 
catalogs on a time limit, but a suboptimal one-person solution can always be refi ned later if the 
project goes into production in quantities that justify it. As in any other industry, our goal is to 
develop a product that works properly and is ready to manufacture in a timely fashion.

With that said, I employ the following useful heuristics to fi lter my short list for 32-bit micro-
controller selection:

• The device should be available for anonymous online or catalog ordering in single-
piece quantity from at least one major distributor. (In the U.S., the big names com-
monly mentioned are Digi-Key, Newark, and Avnet Marshall. Digi-Key and 
Newark in particular have very broad inventories and generally allow purchases in 
small quantity. Avnet Marshall seems to cater more to manufacturing rather than 
prototype runs; they typically have 25- or even 250-piece minimum orders 
on parts.)
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• Full data sheets for the device should be available without requiring a nondisclosure 
agreement or committing to any kind of purchase.

• A low-cost development board should be available for the part—either the manufac-
turer-recommended board, a third-party board, or even some appliance based around 
the chip, as long as suffi cient documentation exists to enable use of the appliance as 
a test bed for your own code. You should also ask the manufacturer and distributor 
if loaner boards are available; if you can borrow a board for a month or two, it will 
be enough to get at least bootstrap code up and running and establish a basic level of 
familiarity with the microcontroller. You can then move to your own hardware and 
return the evaluation board.

• There should be a direct technical contact available at the chip vendor, at least for 
emergency issues; it should not be necessary to route all questions through distribu-
tion. (Note that I’m not advising you to abuse such a privilege—if you have a direct 
manufacturer contact, it’s best to contact him or her only when absolutely necessary. 
But there are times when a complex problem will take weeks to solve when there are 
several layers in the communication chain, versus only a day or two if you can com-
municate directly with the cognoscenti at the chip manufacturer. As a small customer, 
the less you use this resource, the better chance you will have that your next urgent 
question will be answered speedily.)

• The device should have been shipping to OEMs for at least three to six months.

• The core should be supported by the GNU toolchain.

• There should be at least one currently shipping commercial product that uses the 
device, and the larger the market for this device, the better. All too often, parts that are 
consumed only by small niche markets are discontinued in favor of parts with more 
general applicability.

These are not absolutely binding rules (in particular, the last one can be hard to obey for 
a brand-new part), but they provide a good way of thinning a short list of any undesirable 
parts that are going to cause logistical problems later. The fi rst criterion above is especially 
important to note because it can give you some idea of the part’s longevity. One little-
mentioned fact of the microcontroller industry is that very few high-end parts are designed 
only for the marketplace in general; many of the “standard” 32-bit parts and ASSPs 
started life as proprietary ASICs developed under contract for some specifi c electronics 
manufacturer. These contracts typically have large guaranteed order quantities and forward-
planned production schedules. However, once that manufacturer’s exclusivity expires, 
the chip vendor is free to sell it to other people, if it conceivably has any generally applicable 
function.
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The fi rst step in this process is usually to offer the part quietly to other existing customers or 
to carefully selected others, without a highly visible product announcement or other publicity. 
This small group of privileged customers will, again, work on large volume pre-orders with 
long-term schedules. If a chip goes on from this stage into retail distribution channels (such 
as Digi-Key and other stores catering to small orders) it is a very good sign because it usually 
means one of two things:

1. The chip vendor is seeking to gain market share in the fi eld addressed by this part and 
is pushing it heavily (also implying that excellent support will be available both from 
the manufacturer and other users), or

2. The product is so wildly successful that the chip vendor is producing reasonable 
quantities of it in advance of any fi rm order, in expectation of future unscheduled orders.

In either case, the part is in wide-scale production, and it is a fairly safe bet to design it into 
your product. You can be reasonably certain that the part will not be discontinued in the imme-
diate future.

7.2 Choosing the Right Core

Unfortunately, even with the greatest care in choosing parts that appear to be supported for the 
long term, there are never any guarantees. Parts are discontinued or superseded all the time for 
marketing reasons that are sometimes not obvious and far from predictable. For that matter, 
sometimes your requirements change slightly and your previous choice of microcontroller is 
suddenly no longer suitable. This is particularly annoying when a design change of this sort is 
a result of entirely external forces. I have been involved in several projects where the micro-
controller has been changed just before production, or even after production starts, simply 
because of sudden supply shortages of other parts.

Obviously, the more careful you are in choosing a part that exactly meets your requirements, 
the more disruptive it is likely to be to have to substitute a different part. A large customer 
might be able to guarantee the chip vendor enough volume for them to continue occasional 
production runs or even perhaps migrate an old part to a new process and continue general 
production. Since we’re going to be a tiny customer, we won’t have this luxury.

The only truly effective preparation for this inevitability is to anticipate it and pick a micro-
controller based around a popular core to minimize the workload of porting to a new proc-
essor when circumstances demand it. Generally speaking, there are six very widely used 
32-bit cores on the market at the moment: Motorola 680x0, Intel x86, PowerPC, MIPS, 
SuperH, and ARM. Numerous less popular or proprietary architectures also exist, of course; 
many of these are associated with specifi c applications such as laser printers or DVD 
players.
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At the risk of antagonizing its userbase, I recommend against choosing the 680x0 series for 
a new design. Use of this core appears to be in decline, and it is perhaps actually close to the 
end of its life; the principal consumer use at this time is in PalmOS® devices. These PDAs are 
now migrating toward ARM, and even Motorola has introduced an ARM-cored processor as 
its new fl agship PDA part. The entry-level laser printer market, which formerly consumed a 
lot of MC68000 and MC68008 parts, has largely been dominated by cheap devices that lack 
a rasterizer (they rely on the driver software running on the attached PC), so they only require 
simple servo control on the printer mainboard.

Architectures based around the high-end x86 family (and code-compatible parts from AMD, 
National Semiconductor, Via Technologies, etc.) have some immediate advantages:

• You can use almost any PC-compatible operating system and free software develop-
ment tools.

• Installing operating systems is simple; in most cases there are automated installers that 
will probe your hardware combination and automatically install appropriate kernels, 
drivers, etc. Compare this to the norm with embedded systems, where you will need to 
look at the board, work out the hardware confi guration yourself, and sysgen the kernel 
and driver set on external hardware, probably using a cross-compiler.

• It is simple to interface literally thousands of peripheral components for almost any 
imaginable function. Because these components are produced for the consumer mar-
ket, with its enormous volumes and bloodthirsty price competition, peripheral compo-
nents are cheap and fairly easy to acquire.

• Driver support exists (within the framework of most off-the-shelf operating systems) 
for almost any piece of hardware you could want to attach to your system.

• Highly integrated mainboards are available with many possible combinations of 
peripherals, in a wide variety of form factors.

• Migrating to a slightly different hardware platform due to shortages of support parts or 
evolving customer needs is relatively simple; in many cases, it simply involves recom-
piling and reinstalling the operating system and preparing a new master disk image for 
duplication.

Having extolled the obvious virtues of these parts, we must also point out some of the 
downsides:

• x86 parts are very expensive, in production quantities, compared to RISC alternatives 
of comparable performance. This may affect your ability to commercialize your device.

Note: that we mention only general-purpose microprocessor cores here. DSPs are a 
separate world beyond the scope of this chapter.
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• There are relatively few x86 variants that are true “system on chip” devices, so you are 
likely to need quite a bit of external hardware in addition to the microprocessor itself. 
Often, to obtain one specifi c function, you will need to add a complex multifunction 
part because the single function you want isn’t available as a discrete component. 
Again, this brings up your system complexity and total bill-of-materials cost.

• x86 has signifi cant power consumption, heat, and size disadvantages. (The Transmeta 
Crusoe x86-compatible device combats these disadvantages, but it is currently 
rather expensive and not very many vendors have products based around this 
microprocessor.)

• Modern x86 parts and their support chips are very high-speed devices in dense pack-
ages. It is virtually impossible to hand-prototype your own design based around these 
parts; unless you want to spend many thousands of dollars on equipment, at the very 
least you will have to contract out some assembly work.

• PC peripheral ICs often have very short production life spans; twelve to eighteen 
months is not uncommon, so ongoing sourcing may be an issue.

• Code to cold-boot a “bare” PC platform is usually very complicated because you have 
to replace numerous layers—motherboard BIOS, expansion card BIOS, and various 
OS layers. The CPU architecture is also complex.

• Although I personally don’t consider this to be a serious downside, it bears pointing 
out that JTAG-based or other hardware debugging systems aren’t usually available on 
commercial single-board x86 computers.

I recommend x86 as the platform of choice if you are either building just a few of your appli-
ance or if you are prototyping something and want to pull together a lot of miscellaneous 
hardware features without spending a great deal of time debugging the hardware design. It’s 
also a good choice for an initial production run that you can ship to early adopters while you 
are developing a cheaper second-round customized hardware design. There are other special 
situations where you might fi nd x86 to be a good choice, but these are the major ones.

Of course, you aren’t restricted to using Intel parts; for instance, one x86-compatible part that 
is fairly popular in embedded applications is the Geode series from National Semiconductor 
(based on intellectual property acquired from Cyrix). This part was designed for Internet 

Note: The fi rst statement above needs qualifi cation. Although the x86 CPU is quite 
expensive, you might fi nd that a given system confi guration is cheaper when built around 
an x86 than a RISC processor such as PowerPC because of the signifi cant economies of 
scale in producing large volumes of the x86 board.
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appliances and can be found in several such devices on the market today. There are also 
numerous single-board computers built around Geode chips, with various peripheral func-
tions according to the intended application. Geode was also used as the reference platform to 
develop and showcase the new Microsoft Smart Display device, so the product family is likely 
to be supported for quite a while.

Using x86 also doesn’t mean that your device needs to have a large PC motherboard and 
expansion cards inside it. Unless your needs are highly specialized (and perhaps even if they 
are), it is probable that you will be able to fi nd a single-board computer with most or all of 
your required hardware already integrated. These boards range in size from “biscuit PCs” with 
the same footprint as a 5.25
 disk drive down to a fairly new standard (consisting of a user-
designed baseboard holding an off-the-shelf module containing the CPU and some peripher-
als) usually referred to as ETX. Embedded computer boards like this typically have PC/104 
expansion buses (a condensed, stackable version of ISA using 100 mil headers) or Mini-PCI. 
Some of the larger boards will have regular PCI slots, but these start to make the overall 
system unavoidably rather bulky, approaching the size of a normal slim-line PC.

Note that PC-compatible SBC pricing falls into two widely separated categories: industrial 
and commercial. Industrial SBCs are extremely expensive—at least twice the cost of commer-
cial versions. Commercial SBCs, though substantially more expensive than consumer-grade 
PC hardware of the same nominal specifi cations, are a much better choice for the budget-
constrained purchaser. Many SBC vendors specialize in industrial automation only, so if the 
prices you are being quoted seem unrealistically high, you should investigate other vendors 
before concluding that x86 is too expensive for your project.

Moving onto the RISC platforms, MIPS, SuperH and PowerPC are good candidates for many 
applications, and in particular the SuperH family is large and contains a wide variety of use-
ful devices, though MIPS seems to be a more widely licensed core in third-party ASICs and 
ASSPs. PowerPC seems to be found mainly in applications requiring very high performance. 
In evaluating all these parts for various projects, I have found them to be fairly diffi cult to 
develop with on a shoestring budget; evaluation hardware is usually costly, and most variants 
of these parts are not readily available to buyers who are unable to demonstrate a need for 
large quantities. However, all these cores are likely to remain available and well supported for 
the foreseeable future, so they are all viable choices as long as you can obtain development 
systems and parts.

At least in the case of SuperH and MIPS, your cheapest path to a prototype based on these parts 
is generally to repurpose some existing piece of hardware such as a PDA; for PowerPC, I would 
suggest buying a commercial single-board industrial control computer based around the chip 
of interest. Be warned that this is likely to be expensive; PowerPC boards don’t have the same 
kind of mass-market pricing as x86-compatible boards and you can expect to pay between two 
and three times as much for a PowerPC SBC as for a comparable x86-based board.
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Bearing the above discussion in mind, unless some of the Intel arguments apply to your case, 
my primary recommendation for a 32-bit embedded platform is ARM. This architecture has 
many important advantages (some of these are also applicable to the other RISC platforms 
mentioned above, of course):

• It is a mature, well-understood architecture with a solid engineering history and many 
refi nements. The large number of current licensees and now-shipping parts makes 
ARM a very safe bet for future availability.

• The cores are small and have excellent power consumption vs. performance 
characteristics.

• Many features—coprocessors, external bus widths, memory-management unit, cache 
size, etc.—are tunable by the chip designer, meaning that a core variant can be found 
to meet almost any performance/size/power requirement.

• There are a huge number of attractively priced standard, custom, and semi-custom 
parts on the market with a wide variety of integrated peripherals.

• Since ARM provides reference designs for many different peripherals as well as the 
core itself, there are often similarities in peripheral control on different ARM imple-
mentations, even from different vendors. To take a trivial example, code to send data 
out of a serial port can usually be ported from one ARM variant to another with little 
effort.

• Partly due to the above factors, there is a huge amount of freely available intellectual 
property—reference designs, ready-ported operating systems, etc.—already extant for 
this core.

The cliché is that “ARM is the 32-bit 8051,” meaning that it is the universal 32-bit microcon-
troller core known to everybody and used everywhere. This is barely an exaggeration; ARM is 
to the embedded world what x86 is to the desktop PC world.

It’s important to keep your priority—low overall development cost—in sight at all times dur-
ing the selection process. For example, I almost always reject parts that are only available in 
BGA packages, because it is practically impossible to hand-build prototypes around these 
devices, and it’s costly to hire an external contract assembly house to build your initial devel-
opment boards. You’ll also need to consider the price and availability of evaluation hardware 
for the devices you’re comparing, as well as the complexity of building a working hardware 
platform of your own. For example, a chip that requires complex analog support circuitry and 
careful PCB layout will be very diffi cult to work with in a hand-prototype environment. For 
such a chip, you would quite likely be better off investing in an expensive known-good evalu-
ation board before attempting to build your own PCB. Diving straight into the deep end by 
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designing your own board around such a part is likely to be costly because of the need for sev-
eral respins of your board to resolve layout-related and other analog issues.

7.3 Building Custom Peripherals with FPGAs

While you are evaluating different chips for your application, you are likely to fi nd yourself 
tempted by specialized system-on-chip devices offered by various manufacturers. These chips 
will have interesting peripherals specifi c to various applications—for example, dedicated 
motion compensation and colorspace conversion hardware for digital video playback or dis-
crete cosine transform (DCT) engines for image compression, typical in devices intended for 
the digital camera market. Unfortunately, these are usually precisely the sorts of devices that 
are unobtainable to the hobbyist or small-scale developer. They are usually only available with 
solid, up-front quantity commitments, and often nondisclosure agreements are also required. 
In some cases, just to view the data sheet for a part, you will need to pay large fees to join 
some kind of specialized industry cartel. (DVD/DVB playback hardware can be like this, for 
instance, because of the numerous patents in the fi eld and vested copyright interests at stake.)

Because of this annoying fact, one of the most useful money-saving skills you can acquire is 
experience working with synthesizable hardware design language (HDL) code on CPLDs and 
FPGAs. Using such devices, you can design your own custom peripherals, optimized for your 
specifi c application, and avoid the trouble of trying to source a rare ASSP. FPGAs are avail-
able off-the-shelf in many different packages and complexities, and in many cases the manu-
facturers supply free development tools.

In fact, there are now products available, such as Altera’s Nios® and Excalibur™ devices, 
which consist of a high-performance RISC core “wrapped” in an FPGA, all on the one chip. 
Nios is a proprietary microcontroller core; Excalibur is built around a high-performance 
ARM922T core. With a part like this, you can effectively create your own custom ASIC; it 
is an extremely powerful tool and it seems likely that we can expect to see many more such 
devices in the future. ARM and other vendors also supply some cores in soft form, so you 
could in theory build your own entirely customized system-on-chip using a generic FPGA 
device. However, because of the hefty licensing fees involved, the per-unit breakeven point is 
only reachable with very large production volumes.

If you plan to use FPGAs, much as with microcontrollers you will fi nd that the manufacturer-
recommended evaluation boards and commercial development tools can be very expensive. 
Trenz electronic (www.trenz-electronic.de) is one possible source of lower-cost FPGA boards. 
However, you might not even need an evaluation board—FPGAs are, after all, fi eld-program-
mable, and the interior functionality is controlled by the fi rmware you upload to them, so 
you can be fairly confi dent about dropping an FPGA directly onto a fi rst-run prototype PCB 
and debugging your design in-circuit. If you’ve never used FPGAs before, however, I would 
advise getting a small evaluation board with which to experiment. Connect the I/O lines to 
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pushbuttons, LEDs, or perhaps an RS232C level-matching IC like the Maxim MAX232A and 
play with the device to see what you can achieve with it.

Since I’m talking about fi eld-programmable logic, I should also mention Opencores (www.
opencores.org), an invaluable resource of free, open source intellectual property ready to 
be compiled into your FPGA. If you need a core of some sort—a UART, for example, or a 
DRAM controller—then before starting to write your own, you should visit Opencores to see 
if there is already a free core available for you to adapt. Opencores is something like the Linux 
of hardware; at the time of writing, there are free cores for SDRAM controllers, UARTs, cryp-
tographic hardware, microcontrollers, a VGA/LCD controller and many others.

7.4 Whose Development Hardware to Use—Chicken or Egg?

The textbook development cycle recommended by chip vendors is as follows:

1. Choose a microcontroller from the vendor’s selection matrix.

2. Buy the vendor’s evaluation board for this part.

3. Buy one of the commercial compilers and possibly a hardware debugging module 
recommended for the evaluation board.

4. License one of the operating systems recommended for the evaluation board.

5. Develop your application in vitro on the evaluation board.

6. Develop your hardware.

7. Port the operating system and your known-good application to the real hardware.

One of the driving ideas behind this methodology is that the software team doesn’t have to 
wait for the hardware team to fi nish designing and debugging the circuit. Unfortunately, as 
with most textbook descriptions, the cycle described above ignores some important realities, 
not the least of which is that in many small shops, the job of both the software and hardware 
“teams” will be performed by a single person.

The evaluation board and software tools recommended by the chip manufacturer are usu-
ally expensive, for reasons touched upon in the introduction to this book. Additionally, if you 
intend to use complex off-chip functionality, it can be extremely diffi cult to attach this to an 
evaluation board. For instance, if you intend to implement a PCMCIA socket in your appli-
ance and the microcontroller evaluation board doesn’t include one as an option, it could be 
hard to hand-build a PCMCIA interface board and harder still to graft it onto the evaluation 
board. The majority of 32-bit parts are quite closely targeted at specifi c applications; evalu-
ation boards tend to have all the hardware required to demonstrate the maximum possible 
bells-and-whistles confi guration of the CPU’s intended application, and this can get in the way 
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of adding your own peripherals to the evaluation board. For example, I was once evaluating a 
chip targeted at the PDA market. The appliance I intended to build wasn’t a PDA, so I didn’t 
need most of the hardware on the evaluation board—audio I/O, Ethernet, color LCD, touch 
screen, USB interface, etc. Not only did I have to pay for all these peripherals (this particular 
evaluation board is US$1500, and the microcontroller itself only costs about US$12), but I had 
to cut several dozen traces, remove a 160-pin surface-mounted chip, and add literally a couple 
of hundred patch wires in order to be able to bolt on my own peripherals.

Finally, and following on rather neatly from that anecdote, you should remember that the time 
required to understand the memory map and any special quirks of the evaluation board, and to 
get its specifi c combination of hardware running, is time that you are “stealing” from the task 
of getting your own circuit debugged. This is an acceptable price when you have a large team 
working simultaneously on the hardware and fi rmware of the fi nal product, but in a smaller 
or even one-person environment working on a tight time budget, it is often more effi cient to 
design your own circuit and start working directly on your own hardware.

There are three major ways around these problems, in roughly increasing order of diffi culty:

• Locate a third-party demonstration platform for the part of interest.

• Locate a consumer appliance based on the chip that interests you and reverse-engineer 
it enough to load your own fi rmware and patch on your own hardware.

• Design your own PCB and have it etched and populated either locally or (if this is 
a commercial project) by your factory; develop your fi rmware on this board while 
debugging the hardware at the same time.

The fi rst option is rarely available but is usually well supported by the board manufacturer. I 
should point out that in some cases it can be diffi cult to use these development boards unless 
you also possess a hardware debugging module such as a JTAG pod. Most diffi culties center 
around how to upload initial bootstrap code to the board. Some microcontrollers, such as the 
Cirrus Logic CL-EP7212 and 7312 parts, contain a tiny on-chip bootstrap ROM that allows 
you to upload code to RAM over a serial port. You can implement your own Flash loader quite 
easily using this method and thereby load your own code onto any board that has a serial port. 
Some evaluation board vendors will supply the board preloaded with a ROM monitor such as 
Angel or gdb stubs, and you can communicate with this monitor over a serial link. In a few 
instances, the board will feature socketed EPROM or Flash memory devices, which you can 
simply remove and reprogram with your own code. Unfortunately, in a handful of cases, the 
board is shipped with blank, soldered-down Flash memory and there is no way of getting new 
code into it short of buying a JTAG pod or some other specialized hardware device. Third-
party “demo platforms” tend to be devices that were originally designed for some specifi c pur-
pose, then later sold to hobbyists with no housing but more detailed technical documentation. 
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Easy fi eld reprogrammability with minimal external equipment may not have been a design 
criterion of the original appliance.

Repurposing consumer appliances can vary in complexity from extremely simple to down-
right impossible, depending on the microcontroller you’re interested in and its target market. 
It can be exceedingly diffi cult to locate a consumer appliance based on the specifi c chipset it 
contains, and you will often need to do quite a lot of reverse-engineering to determine mem-
ory maps and so forth. It also isn’t necessarily cheap to cannibalize a brand-new appliance, 
though it’s almost always cheaper than buying an expensive evaluation board. The repurpos-
ing approach does have advantages for projects that meet certain prerequisites; in particular, it 
works best when you have a fairly good idea of the hardware capabilities you need (at a mac-
roscopic level, e.g., “Must have Ethernet,” “Must have TV output”) but you don’t much care 
what specifi c parts are used in your hardware platform. As a result, this method is particularly 
attractive for hobbyist and student projects that are very price-sensitive and don’t need to 
worry about ongoing component availability. People in this category can revel in the rich 
variety of items available on today’s surplus market.

The third development option, prototyping directly on your own circuit and debugging the 
hardware and fi rmware simultaneously, is the option I personally use most often. Although 
this method is common for low-speed 8-bit circuits, it is fairly rare in the development of 
32-bit systems. However, I fi nd it necessary to work this way because most of the projects 
I work on involve bringing together several fairly complex devices that aren’t found together 
on any pre-existing evaluation platform. This method does have the advantage that you can 
tweak the hardware design to simplify fi rmware development right up until the last PCB revi-
sion before manufacture. Unfortunately, it also has the disadvantage that any bottleneck in 
the hardware development timeline is also a bottleneck in the software development timeline, 
which unavoidably pushes your delivery date further out.

I should warn you that prototyping like this is similar to bungee jumping: just one cata-
strophic failure, and you won’t get a second chance. If you make a really fatal, unpatchable 
error in your PCB, in the worst-case scenario you will have to throw it away (and more than 
likely the parts on it too; hand-reworked surface-mount devices have high failure rates) and 
halt fi rmware development until the next batch of boards arrives. This can make the process 
expensive, but with careful fault analysis and rigorous checking of your work before submit-
ting a PCB layout for manufacture (“measure twice, cut once”!), you can keep the expense to 
a minimum.

To summarize the above choices succinctly:

• If your code can be developed on a readily available, affordable development board 
(either third-party or direct from the chip manufacturer), you should use this develop-
ment board as your prototype hardware platform.
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• If you are building a one-off piece (e.g., a student project or technology demonstra-
tion), if you are certain you will never need to build more such units, and if you don’t 
need to build around any specifi c component, your easiest route may be to repurpose a 
piece of consumer equipment with appropriate hardware features.

• If you are designing around a specifi c component or combination of components and 
either the available evaluation boards are too expensive or it isn’t feasible to add the 
peripherals you need to them, your best option is to design your own circuit, make a 
couple of prototype PCBs, and debug the application directly on your own hardware.

If none of the above options seems to be right for your application, I suggest that you develop 
and demonstrate your software on an embedded PC type platform and use this demonstration 
to secure suffi cient funding to pursue one of the options above.

7.5 Recommended Laboratory Equipment

One question that arises frequently at this point is “What other equipment do I need to buy 
to equip my laboratory?” There seems to be a fairly widespread belief that developing high-
end embedded systems requires a great deal of expensive specialized hardware: storage 
oscilloscopes, logic analyzers, in-circuit emulators, and so on. Although this equipment can 
sometimes be useful, the truth is that expensive state-of-the-art equipment is only absolutely 
necessary for a few special applications. For example, when developing cellular phones, to 
test your device without causing annoyance to local cellular carriers and the public, you need 
to be able to emulate a cellular network. To debug circuits that have extremely high-speed 
buses or delicate RF or analog sections, you might also need some extra equipment, but for 
a large number of embedded designs, your needs are unlikely to exceed the following major 
appliances:

• A reasonably feature-rich multimeter.

• A good analog oscilloscope. Steer clear of generic, no-brand, entry-level scopes 
intended for the hobbyist market (even if you are a hobbyist). You’ll fi nd much better 
value in a refurbished piece of name-brand equipment. A quick search of the Internet 
will show you a large number of dealers who specialize in sales and rental of refur-
bished test equipment. (You can also buy secondhand equipment from auction sites 
like eBay, but secondhand test equipment from a private seller frequently needs recali-
bration, especially after being shipped a long distance. It is often worth the additional 
cost to buy a certifi ed, properly packed unit from a reputable vendor of refurbished 
equipment.) Brand-name units (Tektronix and Hewlett-Packard are the two most 
popular) that were state-of-the-art three to fi ve years ago are now very affordable and 
more than adequate for most tasks. Your exact needs will obviously depend on 
what you’re developing, but I would recommend a minimum 150 MHz bandwidth 
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two-channel scope and 10x probes. Look for scopes with many triggering options—
these options give you different ways of focusing on the specifi c section of the wave-
form you’re interested in, and the more fl exibility you have there, the better.

• A laboratory power supply. It should have at least two independently adjustable DC 
current-limited outputs (30 V is the maximum you’re likely to need), with inbuilt cur-
rent and voltage indicators.

• A bench-mounted illuminated magnifi er. This item is mandatory when working with 
surface-mounted parts, and it’s useful even when working on larger packages.

• A temperature-controlled soldering iron. Always keep a few spare tips on hand, also—
especially if you work with surface-mount packages, you will want to keep at least 
one tip fi led to a very fi ne point. This point will erode quickly and you’ll need to keep 
fi ling it down as necessary.

If you’re working on something that will be powered from household wall current and that you 
intend to distribute to other people, it’s also a wise idea to have a variac on hand so that you can 
test how your device will behave in mains brownout conditions, but this isn’t essential.

Note that I haven’t mentioned a digital oscilloscope. If you do want to buy one, by all means 
do so, but I suggest you make it a secondary purchase after acquiring a good analog unit. The 
main reason for this is simply cost; the same money will buy a much more capable analog 
than digital scope. Digital oscilloscopes are a time-saving luxury rather than an essential for 
many applications. I have a reasonably powerful digital scope on my workbench, and I rarely 
power it up. In fact, I most commonly use it when I run out of channels on my analog scope 
and I need to look at a large number of signals simultaneously.

I also recommend, in general, against the false economy of oscilloscope add-ons for PCs. The 
quality of the analog-digital converter side of these software/hardware packages is critical to 
the usefulness of the device. Expensive, high-speed data acquisition cards are outside the cost 
range of interest to the average reader of this book; cheap 8-bit digitizer devices with no inter-
nal buffering (typical of low-end PC oscilloscopes, especially those sold in kit form) are not 
money well spent, in my view. This type of hardware might be useful if you know you will be 
spending a lot of time looking at and storing signals at audio frequencies (up to a few tens of 
kilohertz); you can use the device as a poor man’s logic analyzer. As a primary signal inspec-
tion tool, I feel this hardware lacks fl exibility and, at worst, may be very misleading and coun-
ter-productive because it hides information that might be vital for debugging purposes.

7.6 Development Toolchains

A large majority of 8-bit and smaller embedded systems in the real world use proprietary 
(if any) operating systems, often written using a monolithic assembler/linker package. 
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(“Proprietary” in this context means “developed specifi cally for one product or family of prod-
ucts,” rather than the more general English meaning of “exclusively owned.”) A great deal 
of literature for the embedded fi eld deals with specifi cs about close-tolerance timing (cycle 
optimization of code) and single-byte memory-saving techniques. Professional debugging 
toolchains for these parts often center around using a hardware in-circuit emulator for the 
microcontroller to simulate the processor in vivo, capturing and analyzing its behavior in real 
time by means of an attached PC.

Design processes and priorities are usually very different when we’re targeting 32-bit parts. To 
begin with, these parts are so fast that hardware emulators are unfeasibly expensive and almost 
all debugging is performed on the real microcontroller. (Sometimes the microcontroller itself 
is used as a kind of in-circuit emulator using the JTAG interface. However, this serial interface 
is too slow for full real-time debugging.)

Also, particularly in the case of a demonstration or hobbyist project, the designer would prob-
ably like to avoid handcrafting all the code necessary to bring up a complex system, which 
implies that some kind of ready-made operating system will be used where possible. RAM 
and ROM are usually plentiful, making it unnecessary for users to spend a great deal of time 
squeezing a few extra bytes’ effi ciency out of their code. Algorithms are also much more 
complicated and have more points of interaction with each other and the external environment, 
requiring a signifi cantly different style of design rigor.

As for cycle-exact performance issues, pipeline and cache features on these more advanced 
processors make hand-optimizing assembly language programs extremely diffi cult; in fact, 
instruction timing on a cached, pipelined CPU core under varying system load can be so 
complex that these systems sometimes actually appear to be nondeterministic. Optimization 
for speed is generally best left to a high-level language compiler on 32-bit platforms. Only if 
observed performance is inadequate and actual profi ler results point to a specifi c area of the 
code is it generally worth the effort of hand-optimizing in assembly language.

Given these differences, which tools do we choose for our exciting new 32-bit project? With a 
few rather rare exceptions, the choice of embedded operating system will mandate the choice 
of a particular toolchain. Despite the proliferation of fairly well-defi ned binary fi le standards 
such as ELF, COFF, and PE, differences in such compiler- and linker-specifi c behavior as 
symbolic debugging information, special directives for memory allocation, and C�� name 
mangling semantics usually make it very diffi cult to move operating systems from their 
intended compiler to an alien compiler. This problem is even worse with operating systems 
that are shipped partly or wholly precompiled, without source code. Although it is possible, 
in some cases, to force specifi c combinations of products to work together (e.g., object fi les 
compiled with the ARM Developer Suite can be massaged to link with code generated by 
gcc), this is rarely a wise expenditure of time.
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Keep in mind that this interrelationship works in reverse too—in other words, if you don’t 
want to spend the money on a costly commercial toolchain, this is probably going to limit 
your choice of operating systems. This section focuses on platforms that are supported by free 
compilers. For all practical purposes, this means platforms supported by the GNU tools; gcc et 
al. There exist a few free, manufacturer-supplied proprietary compilers, but these vary widely 
in quality and are generally nonstandardized. Unless your chip or operating system vendor 
is going to supply you with a huge variety of free, useful intellectual property in the form of 
libraries that can only be linked with the proprietary compiler and for which you can’t obtain 
open source equivalents, I strongly advise that you stay on the far better-traveled path of GNU 
tools. It’s hard to imagine any algorithm from cryptographic applications to video decoding for 
which GNU or other open source intellectual property isn’t already available. Freely available 
source probably won’t be optimized for your hardware platform and will require some tweak-
ing for best results, but even so the benefi t of having the source code is very signifi cant.

I should pause here to point out that if you are using the Intel x86 family for your platform, 
there are at least two other viable free compiler options for you. Borland has released the com-
mand-line version of Borland C�� 5.5 as a free download, and the Watcom C�� compiler 
(now owned by Sybase®) is in the process of being released as an open source product named 
OpenWatcom (www.openwatcom.org). OpenWatcom is not available for general download 
at the time of this writing, but when it does fi nally make it to the outside world, it should be a 
very exciting product. Watcom C�� supports numerous Intel targets—Win32, Win16, OS/2®, 
Novell® NLMs, and both 16-bit and 32bit DOS. With a little external massaging, it can be 
used to develop almost any x86 code for embedded platforms, especially when combined with 
a free operating system like FreeDOS (www.freedos.org). In the heyday of DOS, Watcom 
C�� was also famous for generating highly speed-optimized object code for DOS-based 
games, which may be an interesting advantage for your application.

The GNU suite is a software-only toolchain, meaning that we need to establish our own link 
to the target hardware for code uploading and debugging. Most of the 32-bit parts we mention 
in this book, and certainly virtually all ARM-cored parts (including ASICs), include on-chip 
JTAG hardware debugging support. For those who haven’t used it, this is a simple serial inter-
face that allows external hardware to halt the processor core and inspect and manipulate its 
state. (The JTAG interface can, of course, be used to directly manipulate other on-chip 
hardware. However, doing so would require device-specifi c knowledge of the on-chip periph-
erals. By taking control of the core, we can generate read and write cycles to access other 
system hardware without proprietary knowledge of each different microcontroller.) Through 
this mechanism, it is possible to generate read/write cycles that appear to originate from the 
core and thereby operate and examine on-chip peripherals and external hardware. To use this 
interface, you need a JTAG pod; these range in complexity from fully autonomous standalone 
units that connect to your computer via Ethernet to simple devices that level-match and buffer 
your PC’s parallel port signals onto the target’s JTAG port pins. The only readily available 
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JTAG pod I have found that lies within a small budget is the Macraigor Wiggler, illustrated in 
Figure 7.1.

Figure 7.1: Macraigor JTAG Wiggler.

The Wiggler belongs to the category of simple parallel port devices; however, it is an 
extremely powerful tool. With it, you can halt the processor and inspect its state, as well as 
being able to read and write hardware registers and other memory locations. This capability 
will save you a lot of time when you’re working out how to bring up a new system; instead of 
having to recompile, upload, and test your bootstrap code iteratively, you can simply connect 
the debugger and tinker with the hardware registers directly until the peripherals are behaving 
the way you want them to. Moreover, because the JTAG interface is entirely hardware-based 
(on the microcontroller end), you can use it to breathe the “kiss of life” into a board with 
blank Flash memory.

There are a few hardware projects that duplicate the Wiggler’s functionality (it’s a very simple 
device); however, the really tricky part is not the hardware but learning the scan chain codes 
for the chips you intend to debug. This information is usually closely guarded by the chip 
manufacturers, and you really need to be a large corporate entity to have access to it. For 
this reason, I recommend sticking with a hardware vendor like Macraigor that has good 
relationships with the chip vendors, to ensure ongoing support for new parts.

7.7 Free Embedded Operating Systems

Having introduced the common choices for free development tools above, let’s briefl y explore 
some of the operating system choices available to us. Fortunately, the open source movement 
has generated a plethora of free or nearly free operating systems, probably the best-known 
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of which is Linux. One great advantage of Linux is that not only has it been ported to a great 
many architectures, but the install process for many reference platforms is relatively well 
documented. Being able to download a working, precompiled kernel and fairly precise instal-
lation instructions will save you an enormous amount of frustration at the start of a new 
project.

In the last year or two, Linux has also attracted quite a lot of attention from the embedded 
world, and as a result we are starting to see some embedded-specifi c features emerging in the 
mainstream Linux code. For example, current kernel versions directly support ROM-based 
fi le systems (including compressed fi le systems) as well as several forms of Flash technology, 
including NAND Flash (SmartMedia et al) and M-Systems DiskOnChip.

For some applications, it may be valuable to note that “pure” Linux has three important 
limitations:

1. It requires a hardware memory-management unit (MMU) in the target processor.

2. It is not, strictly speaking, a real-time operating system.

3. It is licensed under the GNU General Public License, which may have privacy 
implications for your own code.

The reason I qualifi ed the second point above is because off-the-shelf Linux can often be 
thought of as “real time, for small values of real time.” In other words, stock Linux may be 
quite real-time enough for your needs, especially if you are willing to massage the kernel a 
little. Developers who are accustomed to working with actual real-time operating systems will 
doubtless cringe at my cavalier treatment of this issue, but for many noncritical applications, 
simply using a fast enough processor and removing unnecessary background tasks will be 
suffi cient to ensure that your application gets enough processor time to appear to be working 
in real time. The difference between this and a true RTOS is that the RTOS will have APIs to 
guarantee that, for example, a level 0 interrupt will be serviced within 2 ms of the hardware 
receiving the interrupt request, or that a given process will always get at least 25 ms out of 
every 100 ms of processor time. Whether or not you can get away with a non-real-time operat-
ing system depends on your application; principally, if physical or fi nancial safety depends 
on your appliance being truly real time, then you must either use a true RTOS or modify your 
existing OS so that you can guarantee that any critical code will be allowed to run when it 
needs to.

If you need a truly real-time version of Linux, there are a few options open to you, but prob-
ably the best-known is a commercial distribution called Hard Hat Linux from Monta Vista 
Software (www.hardhatlinux.com). Monta Vista also makes a specialized version of Hard 
Hat Linux for the telecommunications industry. Another option, and one that you can down-
load freely, is RTLinux (available at www.fsmlabs.com). Despite what you might be told, the 
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“real-time” versions of Linux are not really fundamentally different operating systems; they 
essentially consist of a small real-time subsystem melded to a normal Linux system. If your 
real-time needs are modest, you might be able simply to add your own minor patches to the 
Linux kernel to run your own critical tasks when necessary, rather than inheriting any idiosyn-
crasies of someone else’s “two-pronged-kernel” real-time Linux design.

If you need a version of Linux that will run on microcontrollers lacking a memory-management 
unit, there is also a version to accommodate you: ucLinux (www.uclinux.org). ucLinux is a 
public project with a strong leaning toward projects that involve repurposing existing appli-
ances such as Palm PDAs. The ucLinux website also features links to some interesting, mod-
erately priced hobbyist 32-bit development boards based on processors such as the Motorola 
Dragonball series.

Without a doubt, Linux is the operating system de rigeur in the hobbyist arena. Partly because 
of the percolation of hobbyists into the commercial world and partly simply due to the oper-
ating system’s own merits, there is large and growing commercial use of and support for 
Linux-based embedded solutions. For some examples of this support, you should visit www.
linuxdevices.com, which is probably the most comprehensive portal site for news of the 
embedded Linux world. There are a surprising number of product announcements from major 
vendors aiming at the consumer electronics market. Linux’s position as the server operating 
system of choice on the Internet seems to have helped to make it the top contender to run the 
next generation of networked home entertainment and other appliances. (It’s also well worth 
visiting linuxdevices.com when you’re searching for a ready-built hardware platform for some 
embedded application or even just for prototyping purposes. The site contains numerous inter-
esting articles and product lists for various embedded computing platforms that can run Linux, 
and of course there is no reason that you couldn’t load your own operating system onto one of 
those boards. Some reviewers of this text have pointed out to me that there’s almost nothing 
at this portal site that you can’t fi nd by some reasonably diligent Web searching, but after all, 
the primary purpose of a portal is to collect audience-targeted information into one convenient 
location so you don’t have to do the searching legwork yourself.)

Another popular free UNIX variant is NetBSD (www.netbsd.org). This operating system has 
one major advantage over Linux: It is unconditionally free. (Although the NetBSD operating 
system kernel is covered by a virtually unrestricted free license, individual components of a 
distribution may be covered by different licenses such as GPL.) Like Linux, NetBSD has been 
ported to a huge variety of platforms and supports a wide range of miscellaneous hardware. 
The main disadvantage to NetBSD is that it has not attracted very much attention from hard-
ware OEMs, at least compared with Linux. The Linux community is suffi ciently large and 
vocal that hardware vendors generally provide at least token support, whereas NetBSD is a 
poor cousin, relatively speaking. There is a fair amount of code interchange (within licensing 
limits) between NetBSD and Linux, and a large number of Linux projects can be rebuilt on a 
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NetBSD base, but overall if you are looking for sheer breadth of ready-made hardware drivers 
and availability of peer support, Linux is probably a better choice. However, if it is important 
to you to keep every line of code you write secret, you should look more closely at NetBSD. 
Although with due care and attention to licensing details you can build a Linux system that 
doesn’t require much (if any) disclosure, you may fi nd it easier to get NetBSD past a reluctant 
management team who has been frightened by or is otherwise doubtful about the legal status 
of open source projects. You can simply tell your managers that NetBSD is unambiguously 
free, there is no disclosure of source code required, and that will (hopefully) be the end of 
those managerial objections.

Linux and NetBSD are both very “heavy” operating systems; they require a relatively large 
amount of RAM and nonvolatile storage space (ROM, Flash memory, or another device such 
as a hard disk). This can be mitigated to a certain degree by very carefully pruning the kernel 
and deleting unnecessary binaries and libraries, and by using special slimmed-down system 
libraries, but neither product was originally designed for embedded systems. Both products 
are also very fl exible general-purpose operating systems, and of course this fl exibility comes 
at a price.

A slightly lesser-known free operating system but one with growing popularity is eCos from 
RedHat (sources.redhat.com/ecos). The great advantage of eCos is that it was purpose-built 
from the ground up as an embedded operating system, unlike Linux and NetBSD. Although 
it is monolithic in the sense that it compiles into a single library that you link with your own 
program (as opposed to being a heterogeneous collection of executables, confi guration fi les 
and libraries that need to be stored in some kind of fi le system), eCos is a very well-designed 
modular operating system. The presence or absence of drivers for various hardware, and all 
confi guration options, are controlled easily with conditional compile macros. RedHat even 
includes the unaccustomed luxury of a graphical confi guration editor that lets you set all the 
build options with checkboxes, drop-down lists and so forth, and build the operating system 
library with a single keystroke.

eCos can also be compiled for operation from RAM (extremely useful for debugging; you 
leave the ROM monitor in control of the board and simply upload new versions of your appli-
cation as you debug it), ROM (useful when you go to burn the fi rmware into your device!) or 
a combination of RAM/ROM startup, where the code is initially located in ROM but relocates 
itself to RAM for performance reasons. The operating system is supported by a highly fl exible 
bootloader called RedBoot; this bootloader is a very interesting product in its own right, since 
it offers a simple command-line loader accessible over serial or Ethernet (where supported), 
Flash rewriting commands, and other useful functionality.

At the time of writing, there are basically two publicly available versions of eCos and its sup-
port tools: an ancient “offi cial release” and the current CVS version. (CVS is a version-control 
tool commonly used in the free software world.) If you intend to play with eCos, download 
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the current CVS version. Instructions for doing this can be found at the eCos website, sources.
redhat.com/ecos. The “offi cial release” version is ancient; the CVS version, though it is some-
thing of a moving target (since it is not a frozen version, it changes frequently), supports many 
more hardware platforms and has many more features than the old release. If you’re using 
Windows, however, I do suggest you download and install the offi cial eCos release and then 
update it with the latest CVS version. By doing this, all the necessary default confi guration 
information, registry values, and so on can be initialized by the automated installer. Be sure to 
read all the download pages carefully, however—all the old utilities supplied with the release 
version of eCos must be updated manually with newer versions if you are using the CVS 
version of the operating system source code.

Another operating system which isn’t truly free but is effectively free is the Palm OS. The 
reason I describe it as “effectively” free is that the only way you’re likely to be using this 
operating system in a shoestring-budget project is if you’re implementing your project as an 
application running on a dedicated Palm device (or third-party compatible; Sony Clié, Visor, 
IBM WorkPad, etc). Since the operating system comes bundled with the hardware platform 
and free development tools and documentation are available, shipping applications based on 
this OS is basically free. In fact, quite a few niche market products work precisely this way; 
you pay for an off-the-shelf Palm device preloaded with custom application software and pos-
sibly some special external hardware such as a GPS receiver, barcode reader, or digital cam-
era. An obvious advantage of implementing your project in this way is that as new and more 
powerful hardware platforms become available, you can upgrade to them quite painlessly; 
Palm will handle all the work of porting their operating system to the new hardware and you 
can reap the benefi ts. (A similar situation applies to Windows CE. At least at the time of writ-
ing, you can download free Windows CE compilers at Microsoft’s website.) This technique, 
however, barely falls under the heading of embedded systems development, and so I will not 
discuss it further here.

Of course, depending on what functionality you require, it might not be necessary to port and 
bring up an entire operating system simply to acquire some ready-rolled functionality.

Some vendors provide modular packages for specifi c functions (these are usually supplied as 
precompiled libraries, so make sure that they can be linked with your toolchain of choice). For 
example, US Software (now owned by Lantronix) sells standalone modules for TCP/IP net-
working (USNet®) and DOS/Windows-compatible VFAT fi le systems (USFiles®), in addition 
to several embedded operating systems.

It might also be feasible for you to “mine” small fragments of code out of an existing operat-
ing system and create your own libraries. If you are thinking that this latter path is the best 
route for your own project, remember that as the size of the code piece you’re extracting 
increases, so do the number of structural assumptions you’re inheriting. For example, if 
you want to borrow a fi le system driver out of an operating system, you will have to either 
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modify it heavily to fi t your own code or duplicate the fi le descriptor semantics at the top 
end and the low-level disk-access device driver semantics at the bottom end, not to mention 
task synchronization primitives and so on. Effectively, you may fi nd yourself emulating or 
rewriting large segments of the operating system from which you borrowed your “single” 
piece of code.

Remember also that even if you start out building a prototype around a ready-made OS, it is 
entirely possible to “wean” your code off that OS at a future date—though it will be much eas-
ier if you start out by designing your code with this intention in mind. When you start a new 
project from scratch, it is very helpful to have some piece of code around that you can trust to 
work properly, even if only for reference purposes. This is especially valuable if that piece of 
code can teach you the correct method and order of initializing the components of a complex 
system. For example, I once worked on a project based around an ill-documented Super-VGA 
controller IC. The chip vendor actually supplied free reference source code to bring up the 
SVGA chip, but it wasn’t complete and didn’t work. Fortunately, they also provided a work-
ing RTOS preloaded on the evaluation board. I obtained the necessary magic register values 
to get my own code working by booting up the vendor’s proprietary RTOS, letting it initialize 
the display control registers, and then dumping the entire chip state (including, as it transpired, 
many undocumented registers!) to a serial port for inspection.

Because of the possibility of issues like this, you might want to use a ready-made operating 
system (on your real hardware) to get your application up and running quickly, and gradually 
replace parts of that operating system with code of your own until eventually you have dupli-
cated all the desired external functionality in your own application. This is an exceptionally 
valuable method of doing things when the only operating system that explicitly supports your 
reference platform has expensive royalty fees but is free for in-house research use. You can 
simultaneously cut your per-unit costs and your development time by starting your program 
out as an application on top of the expensive OS. Once you’ve determined what services you 
actually need out of the operating system, you can go through your code replacing all the 
operating system calls with your own hand-written versions of the same functionality. Once 
you’re done, you have a shippable proprietary application that doesn’t use any of the expen-
sive third-party code. Obviously, this is a lot more work than simply writing your program 
around a ready-made operating system, but on the other hand it does save you a lot of 
debugging work in the initial bring-up stage, and it avoids potentially large operating system 
license fees.

Note that this technique is subtly different from the technique of prototyping your application 
code on some arbitrary hardware platform, with the intention of porting it to real hardware 
once the algorithms have been verifi ed on the demonstration hardware. Using the method 
above, we are developing on our real hardware (or at least the reference platform we are using 
to develop the real hardware). At any point, we could bundle together the current code base, 
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load it onto a piece of real hardware, and call it a shippable product (at least from a functional 
perspective); the only delay is caused by the need to remove expensive licensed code. By con-
trast, the in vitro code prototyping system doesn’t result in a shippable product until the very 
end of the prototyping and porting process.

In the simplest case, you might not need to use an operating system or third-party libraries at 
all; you can roll your own entirely proprietary code.

7.8 GNU and You: How Using “Free” Software Affects Your Product

In the modern era, almost any nontrivial embedded project of the type we are discussing will 
require an enormous volume of essentially boilerplate code; TCP/IP networking, data com-
pression, fi le systems (particularly MS-DOS-compatible FAT fi le systems; “Where can I get 
code to read a FAT-formatted hard disk?” is a frequently asked question in embedded news-
groups), audio/video codecs, and GUI libraries are common examples. Of necessity, therefore, 
implementing such a project from the ground up involves reinventing many wheels. At the 
very least, this is an ineffi cient use of your expert time. At the worst, it can mean a project that 
never gets off the ground because you don’t have the manpower needed to get the pedestrian 
code fi nished so you can move on to building the value-added magic that makes your product 
something special and saleable.

In the past, these unpleasant facts could be worked around only by purchasing expensive com-
mercial RTOS packages. However, in recent years, many free alternatives have become avail-
able and viable, and the use of open source “free” software in commercial ventures has been 
greatly legitimized.

Note: “Open source software” is a politically loaded term with multiple more or less 
widely accepted meanings. In this context, I am using the phrase to mean “royalty-free 
software for which the complete source code is readily available without payment of fees.”

Despite this legitimacy, there is still a state of confusion in the minds of many embedded 
engineers and entrepreneurs alike as to just what it means to use open source software—what 
rights and benefi ts it confers and what obligations it entails. This situation is not ameliorated 
by the fact that most of the outspoken experts in this fi eld are vigorously pursuing commercial 
or political agendas and in many cases intentionally obscuring the facts. To fully understand 
the implications of using some of this free software, it is therefore necessary to be armed with 
at least small amount of background information about this political situation. Please note that 
this is intentionally only a brief description, and of course it constitutes neither formal legal 
advice nor a complete analysis of the social and legal issues surrounding any particular soft-
ware license.
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The reason you need to read this chapter is that when you’re implementing a complex project, 
sooner or later you will be forced to choose between a proprietary operating system or a free 
product covered by some kind of “open source” license. Chances are good that you will be 
facing one or more salespersons and free software advocates, each of whom will not necessar-
ily present you with complete information to make your decision. Depending on your organi-
zation’s structure and history, you may also be combating misconceptions in management 
about the implications of using “free” software in your product. Free software, used properly, 
can be part of any totally reliable, legally sound, high-performance product; this approach to 
software development can no longer be considered trailblazing, and it remains only to select 
which type of free software you should be using.

The most popular free software license (in terms of lines of code freely available on the 
Internet, at any rate) is unquestionably the GNU General Public License, commonly abbrevi-
ated GPL. Most Linux software, for instance, including the Linux kernel itself, is released 
under this license, and most free software controversy in the public press centers around GPL. 
The rationale behind GPL, simply stated, is to force all derivative works of open source prod-
ucts to remain open source. (The actual rationale goes somewhat deeper than this; it is based 
on the idea that all software should be free, in the philosophical sense of the word; a true free 
software purist abhors the concept of closed-source applications.) The two aspects of the GPL 
that will affect you most are:

1. You can experiment with GPLed software as much as you want in private. You 
only “accept” the license and therefore become bound by its provisions once you 
“distribute” products derived from GPL code.

2. If you distribute a product that is derived from or closely linked to GPL code, your 
code must also be released under the GPL. This means that you must release source 
code (or disclose a means of obtaining the source code) to anyone who requests it. 
There is an important exception to this rule for the Linux kernel: You do not need 
to GPL a piece of software whose only link to the Linux kernel is that it calls kernel 
services using documented interfaces. The original intent of this rule was to allow 
people to develop Linux device drivers for products whose hardware documentation is 
covered by nondisclosure agreements (an intent largely nullifi ed by later philosophical 
changes in the license), but it also provides a very useful way of allowing profi t-
making use of the large amount of engineering in the Linux kernel.

For in-house prototypes and private experimental research of all kinds, the fi rst rule above 
is a largely unrestricted free ride. You can take an existing mostly GPL project (like a Linux 
distribution) and use it as the foundation for your prototype without restrictions. Once you’re 
satisfi ed that your code and/or hardware are working nicely, you can decide exactly how to 
bring the product as a whole to market and remain license-compliant. However, you should 
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plan now for what you intend to do when you commercialize your product. Otherwise, you’ll 
demonstrate a fantastic but legally unsaleable prototype at a trade show, people will come to 
you ready to write orders, and you’ll have a huge auditing and rewriting job before you can 
cash their checks. Your options are as follows, in ascending order of person-hours typically 
required:

• Release your entire product under GPL. This option can make a lot of sense, par-
ticularly when your product is largely special hardware that just happens to require 
control software (as opposed to general-purpose hardware running special software, 
where all the value lies in the bundled software). If you take this route, you can also 
ride a certain amount of bonus publicity from the free software movement, which will 
be only too happy to promote your product as an example of embedded engineering 
done right. This extra goodwill can be very useful in some markets. However, some-
times there can be other issues—typically, nondisclosure agreements required by other 
product vendors you work with, patents and various other trade secret problems—that 
preclude this option, even if you are personally willing to try it.

• Establish a clear separation between GPL and non-GPL code in your product, and 
open source only the GPL components of your software bundle. This technique is 
exceedingly useful when your product is based around Linux, because the Linux kernel 
exception to rule 2 mentioned above gives you a convenient place to draw the “GPL vs. 
non-GPL” line in your software bundle. The Linux-based TiVo digital video recorder 
appliance and Sharp’s range of Linux-based PDAs (such as the Zaurus SL-5600) are 
excellent contemporary examples of this technique. All you are required to release are 
the special device drivers and other kernel modifi cations you may have written to get 
Linux up and running on your hardware; your application code remains secret.

• Determine exactly what GPLed functionality you’re using, write your own implemen-
tation of all that functionality (or buy someone else’s proprietary implementation), and 
remove all GPLed code from your software bundle prior to release. This is obviously 
the brute-force approach. I’ve listed this option last because it is usually the most 
labor-intensive, but this isn’t necessarily true for all applications. If you’re very careful 
to maintain an abstraction layer between your application and external libraries and 
operating system calls, or your application is of such a nature that it doesn’t require 
many external services, this option might be the best for you. However, the applica-
tions that are easy to “de-GPL” in this way are precisely those applications that prob-
ably wouldn’t have required importing a whole operating system in the fi rst place.

Besides the special rules for the Linux kernel, there are some other varieties of GPL. One of 
the most useful is the “LGPL,” which originally stood for Library GPL but is now referred to 
as the Lesser GPL. The LGPL is very similar to the Linux kernel license, except that it refers 
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to a single library rather than the kernel itself. Libraries that are licensed under the LGPL can 
be used by your program without triggering a requirement to GPL your own code, as long as 
you only use documented calling mechanisms.

One of the most common licensing cases that people ask about in embedded discussion 
forums is exactly how they can build Linux into their system without having to release all 
their source code. The answer to this is that the code you write will fall into three categories, 
with different licensing implications for each:

1. Kernel modifi cations. This includes patches you have made to the public sources as 
well as additional loadable kernel modules you may have written. Source code for 
these must be disclosed.

2. Modifi cations to LGPL libraries. You will need to disclose all your source code for 
these.

3. Your own application. As long as you only use the kernel’s documented interfaces, 
and documented interfaces to any LGPL libraries you use, your application code 
can remain secret. You must not use any libraries or other modules that carry a 
full GPL license, or you trigger a full GPL disclosure requirement on your own 
code. You must also avoid any undocumented interfaces to LGPL libraries or the 
kernel itself.

In practice, a large majority of embedded Linux projects will use exactly one library—glibc, 
or a cut-down variant of it such as uclibc—without ever needing to modify it, so the caveats in 
cases 2 and 3 above are never encountered.

At the opposite end of the spectrum from GPL you will fi nd the NetBSD license. This is a 
refreshingly simple license that allows you to download the free source code, experiment with 
it, use it and release derivative products, with or without source code disclosure as you see fi t. 
The only real limitation is that your product and its advertising materials must acknowledge 
the original author, typically with a phrase such as “This product includes software developed 
by X.” (Some variants of the NetBSD license have dropped this last requirement.) There are 
also some common-sense requirements that are in no way onerous: You agree not to use the 
original author’s name to promote your derivative product, and you agree that the code you 
received has no warranty. The NetBSD license is literally something for nothing; you get the 
source code for free, you can distribute your binaries and charge money for them if you wish, 
and there is no requirement for source code disclosure (though of course it is encouraged to 
release as much as you can). A splendid example of NetBSD in widespread commercial use is 
Apple’s latest generation of Macintosh operating systems.

There are innumerable other open source licenses, many of which are associated with just
one specifi c product. For example, the RedHat eCos operating system described in the 
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previous chapter is released under the “RHEPL” license similar in philosophy to the NetBSD 
license. All these miscellaneous licenses lie in a spectrum roughly bounded by GPL at one
end and NetBSD at the other (in terms of source code disclosure requirements vs. recognition 
of proprietary trade secret rights), with special conditions in some cases. However, you
will fi nd that the majority of the interesting open source projects in the world are 
GPL-licensed.

One incidental pitfall does bear mentioning: There is a surprisingly large amount of open 
source material which implements patented algorithms. For whatever reason—a love of aca-
demic freedom of speech, a desire to avoid expensive legal action, or simple lassitude—the 
owners of these patents often don’t see fi t to enforce them for free products. Even if you 
comply with the license agreement for the freeware product, that does not imply that you 
have somehow inherited a right to use the patented intellectual property in your project. For 
instance, there are freeware DVD playback programs readily available on the Internet. (For 
the benefi t of those who know about such things, let’s leave the thorny issue of DeCSS and the 
evil MPAA out of the equation and consider only an unambiguously legal freeware MPEG-
2 player capable of playing unencrypted, legal DVD content such as you might produce if 
you use a consumer DVD recorder to convert your home movies from VHS to DVD format.) 
Notwithstanding the free nature of the code license, if you use one of these players as the 
core of your own consumer electronics DVD player project, you’ll fi nd the DVD consortium 
knocking on your door very quickly indeed looking for monies related to use of the DVD 
video trademark. You’ll also be facing litigation on a raft of patent issues surrounding the 
MPEG-2 decoder.

Several jurisdictions are currently evaluating possible changes to the way software patents are 
granted, with the abolition of such patents (or at least limiting them to a few years) being one 
of the options under consideration. Until such an enlightened, forward-thinking step occurs, 
however, you need to be willing to research possible patent protection of the algorithms used 
in your project, regardless of what the licensing conditions might be on any particular imple-
mentation that you have referenced in your code.

Whatever third-party intellectual property you wind up using—even if you don’t include 
third-party code in your fi nal product release—it is absolutely essential to maintain an audit 
document for your software. This need not be a particularly onerous task; at its simplest, it can 
be a document listing each item you have included in your product (operating system kernel, 
third-party libraries, example source code, clip art, fonts and so on) along with a copy of the 
license agreement that accompanied each of these items when you obtained them. This latter 
is particularly important because some licenses evolve over time (GPL is an example)—the 
license you obtain today may not be the same license that you would obtain by downloading 
the software tomorrow. With this document in hand, you have a documented legal defense 
against any accusations of license violations.
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One last note: With the plethora of useful open source code fl oating around the Internet, free 
for the downloading, there might be a temptation simply to download and use whatever you 
please and assume that nobody will ever know because nobody will ever see your source code. 
Even ignoring the moral issues, this is suicidal folly. Anything from a disgruntled (or simply 
talkative) staff member to an interested hacker or a competitor reverse-engineering your prod-
uct will destroy your company; discovery is inevitable, particularly if your project turns out 
to be a success. At the time of writing, several major American corporations are writhing in 
the throes of government investigations into accounting fraud; if your major product contains 
plagiarized code, discovery will lead to similar consequences. Worse—and this also applies to 
privately held companies, because it’s not just a stock price issue—you may be unable to ship 
any more units without an expensive major rewrite of your operating system. Don’t take this 
kind of risk. If you use free code, honor the license.
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The Essence of Microcontroller 
Networking: RS-232

Fred Eady 
Creed Huddleston

CHAPTER 8

8.1 Introduction

Now let’s explore the RS-232 protocol. Knowing how to manipulate data with RS-232 will 
help you master more complex communications protocols. You’ll also fi nd RS-232 techniques 
to be invaluable in the development phase of your projects.

The information you see in the terminal emulator window in Figure 8.1 was generated by 
some very simple fi rmware and a not-so-complicated, off-the-shelf, two-buck microcontroller. 
I used a tiny 8-bit microcontroller that does not contain a built-in hardware USART to transfer 
the ASCII characters you see in Figure 8.1 from one of its I/O pins to an RS-232 converter 
IC. A serial cable connected between the microcontroller/RS-232 converter IC circuitry and 
my personal computer’s serial port allowed the ASCII characters to fl ow from the little micro-
controller’s fi rmware out of the microcontroller’s I/O pin, through the RS-232 converter IC, 

Figure 8.1: Effecting RS-232 communications with a microcontroller is a snap. You will 
fi nd that knowing how to implement simple RS-232 with a microcontroller can assist 

you in building and debugging more complex microcontroller projects.
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across the serial cable to the personal computer’s USART/RS-232 circuitry, fi nally ending up 
in the terminal emulator window you see in Figure 8.1.

What I’ve just described is one of the simplest forms of microcontroller networking. It is 
commonly known as serial or RS-232 communications. As you can see in Figure 8.2, RS-232 
was designed to tie Data Terminal Equipment (DTE) and Data Communications Equipment 
(DCE) devices together electronically to effect bidirectional data communications between the 
devices.

An example of a DTE device is the serial port on your personal computer. Under normal con-
ditions, the DTE interface on your personal computer asserts Data Terminal Ready (DTR) 
and Request to Send (RTS). DTR and RTS are called modem control signals. A typical DCE 
device interface responds to the assertion of DTR by activating a signal called Data Set Ready 
(DSR). The DTE RTS signal is answered by Clear to Send (CTS) from the DCE device. A 
standard external modem that you would connect to your personal computer serial port is a 
perfect example of a DCE device.

Figure 8.2: The DTE and DCE interfaces usually consist of some sort of voltage-conversion 
circuitry to translate RS-232 voltage levels to voltage levels that are compatible with the 

computing equipment on each end of the communications link. The simplest form of 
an RS-232 link uses only the TXD and RXD signals with a common ground.
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8.2 Some History

In May 1960 it was evident that a standard was needed to identify the electrical interface 
between computers and modems. It was decided to establish a standard voltage with standard 
signal parameters and a standard nomenclature to identify the conductors in the cable that con-
nected computers and data sets. Even today, you will sometimes hear the term data set applied 
to modems and DCE equipment.

To compete as well as exist in the current communications environment, telecommunications 
vendors needed common ground to assure that each vendor’s equipment set could talk to any 
other vendor’s telecommunications equipment set. In other words, the industry needed a work-
ing standard. Without a standard, the whole teleprocessing industry could come to a grinding, 
nonstandardized halt.

To help establish some harmony, a committee named the Electronic Industries Association 
(EIA) was formed. The EIA drafted a standard known as EIA RS-232(X). Though it was a 
great idea, the original specifi cation was broad in meaning and didn’t guarantee compatibility. 
The new RS-232 specifi cation also had a competitor outside the United States, known as 
the CCITT, or Consultative Committee on International Telegraphy and Telephony, recom-
mendation V.24.

The RS-232 proposal defi ned a logical and physical interface between DTE equipment and 
DCE equipment. The computer’s DTE serial port presents both a physical and a logical 
interface to a modem or data set’s DCE port and consists of several conductors for control-
ling, transmitting, and receiving data. Timing and clocking signals are also intermixed within 
the RS-232 interface. The logical and physical attributes of the RS-232 proposal eventually 
became a set of standards known today as the EIA RS-232 interface.

Once the signals reach the DCE device, a second interface provides a physical path to the 
communication channel (RF link, telephone line, fi ber optic link, satellite link, and so forth). 
For most of you, that second interface is a standard two-conductor analog telephone line, 
which is terminated inside your modem.

The EIA standard originally identifi ed seven interface conductors and no specifi c connector. 
Signal voltages were defi ned as at least 3 V but not greater than 20 V with respect to ground.

In October 1963, RS-232 became RS-232-A and was modifi ed to include a 25-pin connector 
with a maximum cable length of 50 feet. This revision established fi xed relationships between 
a circuit and specifi c pin numbers on the 25-pin connector. Also, an alphabetic coding system 
for each type of interface circuit was presented. The fi rst character of the coding system desig-
nated A for ground, B for data, C for control, and D for clocking. Table 8.1 lays out the pinout 
and various names for each RS-232 signal.
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There are a couple of confusion points. Note the total lack of logic when associating DB-25 
pins with DB-9 pins. In addition, this table is based on the DTE side of the circuit. To get 
things to work, you must switch the TD and RD pins on the DCE side of the circuit. When 
you do, the switch that puts the DTE TD pin’s data into the DCE RD pin and the DCE’s TD 
pin’s data into the DTE RD pin. If you’re using the modem signals, you have to tie them 
together properly between the DTE and DCE as well.

The original seven basic circuits and the signal-level defi nition of �3 V for mark and �3 V 
for space were retained intact, adding 10 additional optional circuit defi nitions. The maximum 
permissible open-circuit voltage was changed to 25 V, and a current maximum between any 
two conductors, including ground, was set at 0.5 ampere. Conductors that permit auto-answer 
capability were introduced in this revision.

Table 8.1: Specifi cations list for RS-232 interface.

 Pin  Line  Line Name  Signal  Level
  Label  Direction

 1 AA Positive ground N.A. A,B C

 2 BA Transmitted data To DCE A B,C

 3 BB Received data To DTE A,B,C

 4  CA Request to send To DCE A B,C

 5 CB Clear to send  To DTE A B,C

 6  CC Data set ready  To DTE A B,C

 7  AB Signal ground  N.A. A B C

 8 CF Received line signal detector (RS-232);  To DTE A,B,C
   data carrier detect (RS-232A/B)

 11 N.A. Select standby  To DCE C

 12 SCF Secondary receive line signal detector  To DTE C

 13 SCB Secondary clear to send To DTE C

 14 SBA Secondary transmitted data To DCE C

 14 N.A. New sync To DCE A,B,C

 15 DB Transmitter signal element timing  To DTE A B C

 16 SBB Secondary received data To DTE C

 17 DD Receiver signal element timing  To DTE A,B,C

 18 N.A. Test To DCE C

 19 SCA  Secondary request to send To DCE C

 20 CD Data terminal read To DCE A,B,C

 21 CG Signal quality detector  To DTE  C

 22  CE Indicate ring/calling  To DTE  A,B,C
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October 1965 brought about RS232-B, which defi ned terminating impedances that permitted 
circuit designers to build hardware with greater reliability. Open-circuit signal levels remained 
unchanged at �3 to �25 V as mark and �3 to �25 V as space, but revision B added an 
important voltage specifi cation: By specifying that signal ground on pin 7 be tied to frame 
ground on pin 1 in the DCE equipment, a defi nite signal reference is established between DTE 
and DCE devices.

The Interface Between Data Terminal Equipment and Data Communication Equipment 
Employing Serial Binary Data Interchange specifi cation was released in August 1969. It fur-
ther clarifi ed conductor defi nitions and stated that properly terminated RS-232 circuits shall 
not exceed �15 V.

RS-232-C came along later and defi ned the interface between DTE and DCE. In the early 
days, a piece of DTE hardware was usually a dumb terminal. The Digital Equipment 
Corporation (DEC in those days; Hewlett-Packard/Compaq these days) VT100 was and is the 
most well-known dumb terminal and is still emulated today.

As you would imagine, a standard DTE device should be capable of emitting and receiving 
a serial data stream. As you have already seen, that includes microcontrollers and personal 
computers in the “could be a DTE” category. Although DCE equipment can also transmit and 
receive a serial data stream, the primary purpose of DCE equipment is to receive the DTE-
generated bit stream over an RS-232 interface and convert it to a form that’s suitable for trans-
mission over a telecommunication medium. In the case of a personal computer modem, that 
telecommunications medium is most likely a voice-grade telephone line.

Ever noticed that every serial port interface on your personal computer is male and every 
modem serial port interface you’ve ever seen is female? There’s a reason for that. The RS-
232-C standard states that physical DTE port connectors will be male and physical DCE port 
connectors will be female.

Older personal computers and modems used a 25-pin connector. Today’s 9-pin serial connec-
tors aren’t really standards, although they have become so by proxy. The 9-pin interface fi rst 
appeared commercially on AT-class PCs in the early 1980s.

8.3 RS-232 Standard Operating Procedure

Today the majority of commercially available equipment is based on the RS-232-C or 
RS-232-D standard. (The CCITT V.24 and V.28 standards are also common and widely used.) 
There are 25 circuits defi ned in the RS-232 standard. The good news is that most of the 25 
RS-232 circuits don’t have to be used to effect an asynchronous communications session 
between a DTE and DCE device. Things could be different for synchronous communications 
sessions that employ complex communications protocols, and that’s why the timing and clock-
ing signals are defi ned in the RS-232 standard. There’s a good reason that a 9-pin connector 
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is on your personal computer instead of the standard appointed 25-pin connector. You only 
need nine RS-232 signal lines to communicate asynchronously using a standard asynchronous 
modem. Let’s look at them from a “commented” standards point of view.

• Pin 1 (Protective Ground Circuit, AA). This conductor is bonded to the equipment 
frame and can be connected to external grounds if other regulations or applications 
require it.

 Comment: Normally this is either left open or connected to the signal ground. This 
signal is not found in the DTE 9-pin serial connector.

• Pin 2 (Transmitted Data Circuit BA, TD). This is the data signal generated by the 
DTE. The serial bit stream from this pin is the data that’s ultimately processed by a 
DCE device.

 Comment: This is pin 3 on the DTE 9-pin serial connector. This is one of the three 
minimum signals required to effect an RS-232 asynchronous communications session.

• Pin 3 (Received Data Circuit BB, RD). Signals on this circuit are generated by the 
DCE. The serial bit stream originates at a remote DTE device and is a product of the 
receive circuitry of the local DCE device. This is usually digital data that’s produced 
by an intelligent DCE or modem demodulator circuitry.

 Comment: This is pin 2 on the DTE 9-pin serial connector. This is another of the 
three minimum signals required to effect an RS-232 asynchronous communications 
session.

• Pin 4 (Request to Send Circuit CA, RTS). This signal prepares the DCE device for a 
transmit operation. The RTS ON condition puts the DCE in transmit mode, while the 
OFF condition places the DCE in receive mode. The DCE should respond to an RTS 
ON by turning ON Clear to Send (CTS). Once RTS is turned OFF, it shouldn’t be 
turned ON again until CTS has been turned OFF. This signal is used in conjunction 
with DTR, DSR, and DCD. RTS is used extensively in fl ow control.

 Comment: This is pin 7 on the DTE 9-pin serial connector. In simple three-wire imple-
mentations, this signal is left disconnected. Sometimes you will see this signal tied to 
the CTS signal to satisfy a need for RTS and CTS to be active signals in the communi-
cations session. You will also see RTS feed CTS in a null modem arrangement.

• Pin 5 (Clear to Send Circuit CB, CTS). This signal acknowledges the DTE when 
RTS has been sensed by the DCE device and usually signals the DTE that the DCE is 
ready to accept data to be transmitted. Data is transmitted across the communications 
medium only when this signal is active. This signal is used in conjunction with DTR, 
DSR, and DCD. CTS is used in conjunction with RTS for fl ow control.
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 Comment: This is pin 8 on the DTE 9-pin serial connector. In simple three-wire imple-
mentations, this signal is left disconnected. Otherwise, you’ll see it tied to RTS in null 
modem arrangements or where CTS has to be an active participant in the communica-
tions session.

• Pin 6 (Data Set Ready Circuit CC, DSR). DSR indicates to the DTE device that the 
DCE equipment is connected to a valid communication medium and, in some cases, 
indicates that the line is in the OFF HOOK condition. OFF HOOK is an indication 
that the DCE is either in dialing mode or in session with another remote DCE. When 
this signal is OFF, the DTE should be instructed to ignore all other DCE signals. If 
this signal is turned off before DTR, the DTE is to assume an aborted communication 
session.

 Comment: This is pin 6 on the DTE 9-pin serial connector. DSR is sometimes used in 
a fl ow control arrangement with DTR. Some modems assert DSR when power to the 
modem is applied, regardless of the condition of the communications medium.

• Pin 7 (Signal Common Circuit, AB). This conductor establishes the common-ground 
reference for all interchange circuits, except Circuit AA, protective ground. The 
RS-232-B specifi cation permits this circuit to be optionally connected to protective 
ground within the DCE device as necessary.

 Comment: This is pin 5 on the DTE 9-pin serial connector and is the only ground 
connection. This is the third wire of the minimal three-wire confi guration. Thus, an 
RS-232 asynchronous communications session can be effected with only three signals: 
TX (Transmit Data), RX (Receive Data), and signal ground.

• Pin 8 (Data Carrier Detect Circuit CF, DCD). This pin is also known as Received 
Line Signal Detect (RSLD) or Carrier Detect (CD). This signal is active when a suita-
ble carrier is established between the local and remote DCE devices. When this signal 
is OFF, RD should be clamped to the mark state (binary 1).

 Comment: This is pin 1 on the DTE 9-pin serial connector. Normally in use only if a 
modem is in the communications signal path. You will also see this signal tied active 
in a null modem arrangement.

• Pin 20 (Data Terminal Ready Circuit CD, DTR). DTR signals are used to control 
switching of the DCE to the communication medium. DTR ON indicates to the DCE 
that connections in progress shall remain in progress, and if no sessions are in progress, 
new connections can be made. DTR is normally turned off to initiate ON HOOK 
(hang-up) conditions. The normal DCE response to activating DTR is to activate DSR.

 Comment: This is pin 4 on the DTE 9-pin serial connector. Unless you specify differ-
ently or run a program that controls DTR, usually it is present on the personal 
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computer serial port as long as the personal computer is powered on. Occasionally you 
will see this signal used in fl ow control.

• Pin 22 (Ring Indicator Circuit CE, RI). The ON condition of this signal indicates that 
a ring signal is being received from the communication medium (telephone line). It’s 
normally up to the control program to act on the presence of this signal.

 Comment: This is pin 9 on the DTE 9-pin serial connector. This signal follows 
the incoming ring to an extent. Normally this signal is used by DCE auto-answer 
algorithms.

That is all that’s needed RS-232 signal-wise to establish a session between a DTE and a DCE 
device. Now that you have a feeling for what each RS-232 signal does, let’s review how they 
react to each other with respect to the transfer of data between a DTE and DCE device:

1. Local DTE (personal computer, microcontroller, etc.) is powered up and DTR is 
asserted.

2. Local DCE (modem, data set, microcontroller, etc.) is powered up and senses the DTR 
from the local DTE.

3. Local DCE asserts DSR. If the DCE device is a modem, it goes off-hook (picks up 
the line). If a dial-up session is to be established, the DTE sends a dial instruction and 
phone number to the modem.

4. If the line is good and the other end (remote DCE) is ready or answers the dial-up 
from the local DCE, a carrier is generated/detected and the local and remote DCE 
devices assert DCD. The session is established.

5. The transmitting DTE raises RTS.

6. The transmitting DCE responds with CTS.

7. The control program transmits or receives data.

In our historical review, the DTE or personal computer and DCE or modem took care of con-
verting the RS-232 signal levels to appropriate personal computer circuitry levels. To perform 
RS-232 asynchronous communications with microcontrollers, we must employ a voltage 
translation scheme of our own. Fortunately, there are many ways to do this and all of them are 
easy to implement.

8.4 RS-232 Voltage Conversion Considerations

RS-232 converter ICs like those made by Maxim and Sipex convert the negative RS-232 volt-
ages to positive logic voltage levels that microcontroller circuits can understand. The positive 
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RS-232 voltages are converted to a microcontroller’s logical 0 (zero) voltage level. If the 
microcontroller circuitry is powered by �5 VDC, then an RS-232 1 or mark is converted to a 
Transistor-Transistor Logic (TTL) high or 1 and an RS-232 0 or space is translated into a TTL 
low or 0. With the advent of 3 V logic, special RS-232 converter ICs that can operate at the 
3 V power supply levels have been introduced. The bottom line is that the RS-232 marks and 
spaces must be converted to voltage levels the microcontroller can understand before any 
communications and data transfer can be realized between devices.

In reality, the full-positive and negative voltage swing called out by the RS-232 standard 
doesn’t have to be employed to effect RS-232 communications links. With the right cable an 
RS-232 voltage of �3 V is suffi cient to generate a 1 or mark while �3 V will produce a 0 
or space. The area between �3 V and �3 V (shown in Figure 8.3) is a transition zone and is 
where most of the nasty line noise can and should be found. By defi ning this �3 V threshold, 
the signal-to-noise ratio of the RS-232 physical link is improved. If a high-quality serial cable 
is used and the distance between stations is relatively short, RS-232 voltages that resemble 
microcontroller logic voltages can be used to transfer information between a DTE and DCE 
device. In addition, using a high-quality cable could extend the 50-foot maximum cable length 
specifi ed by the RS-232 specifi cation. Reducing the speed of the data transmission can also 
extend the maximum cable length between a wired set of DTE and DCE devices as well.

Figure 8.3: Cheap RS-232 implementations dare to use the 0 VDC to �5 VDC region for 
marks and spaces with 0 VDC being a mark and anything over �3 VDC representing a 

space. The “NOISE ZONE” I’ve marked is actually called the transition zone.
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The good news is that you don’t have to know the nitty-gritty details of the RS-232 specifi cation 
to use RS-232 as a means of communicating with a microcontroller. In fact, I’ve already given 
you more RS-232 history and theory than you really need to know to make a microcontroller 
talk asynchronously. Our goal is the practical application of RS-232 as it pertains to microcon-
trollers. So, let’s look at some RS-232 hardware and the fi rmware behind it.
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8.5 Implementing RS-232 with a Microcontroller

Now that you’ve completed “RS-232 History 101,” let’s look at implementing RS-232 on a 
microcontroller. We’ll use the Microchip® PIC12F675 as our RS-232 engine and we’ll power 
our RS-232 engine with code written with the Custom Computer Services C Compiler.

You can build the circuits in this chapter from scratch. I’ve chosen to use the Microchip 
PICkit™ 1 as my “breadboard” because it contains circuitry to program the PIC12F675 and 
an experimenter area that is perfectly suited for additional RS-232 circuitry.

8.5.1 Basic RS-232 Hardware

Let’s begin by looking at a simple microcontroller implementation. In its most basic form, an 
operational microcontroller-based circuit consists of the microcontroller, a simple power sup-
ply, and a clock source. For this project, we’ll use the most basic of microcontrollers, an 8-pin 
Microchip PIC12F675.

The PIC12F675 has an internal clock source but does not contain a USART. That means we 
will have to implement the functionality of a hardware USART in the PIC12F675’s fi rmware. 
To do that, we need to know just a bit more about RS-232 signaling. Let’s begin by designating 
the desired RS-232 signaling speed, or baud rate. A common baud rate is 9600 bps (bits per 
second), and most everything RS-232 can operate at this speed. So, 9600 bps it is.

At 9600 bps, our data packet bit width is the reciprocal of the baud rate, which is 104 μS (104 
microseconds). The idea is to try to see if the incoming RS-232 bit is a 1 or 0 by having the 
PIC12F675 microcontroller USART program check the incoming bit in the dead center of the 
104 μS bit width. Since our baud rate is 9600 bps and our bit width for 9600bps is 104 μS, that 
means we must have the microcontroller check the incoming bit stream every 104 μS.

There are still other things to consider. For instance, how does the microcontroller know when to 
start and stop the 104 μS bit check intervals? For the answer, let’s draw again from the RS-232 
specifi cation. We assigned a speed of 9600 bps for our data stream. However, we must also spec-
ify the number of data bits that will be transmitted and received in a data packet and the number 
of stop bits that will indicate the end of the data packet. We do have a choice as to the number of 
data bits we can stash into a data packet. The data packet bit length choices are 5 bits, 7 bits, 8 
bits, and 9 bits. Since the PIC12F675 is an 8-bit device, let’s designate a data packet as 8 bits in 
length. Designating an 8-bit data packet allows the transfer of all readable ASCII characters plus 
control codes and hexadecimal or Binary Coded Decimal (BCD) data. We could have chosen
7 bits for ASCII transmission as well, but 8-bit data packets are more common, and choosing a 
7-bit packet inhibits sending a byte of miscellaneous information in a single-data packet.

The PIC12F675’s built-in oscillator operates at 4 MHz, which equates to an instruction execu-
tion time of 1 μS. That means that the PIC12F675 can theoretically execute 104 instructions 
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during a stop-bit width, which is the same as the data-bit width of 104 μS. That time could be 
used to do some other processing if necessary—104 μS is a long time in microcontrollerland, 
so for us a single-stop bit will be suffi cient.

There’s another RS-232 component that can also be defi ned, called parity. To keep things 
easy, we will not assign a parity bit. Parity bits are used to check the integrity of the data 
packet by inserting an extra bit to make the number of data packet marks even or odd, depend-
ing on how the user has set up the communications equipment.

Now we have an asynchronous data stream consisting of a start bit, 8 data bits, no parity bit, 
and 1 stop bit. The word asynchronous here means that the data packet can begin at any time 
without regard to any predetermined timings. If receiving, the presence of a start bit signals 
the PIC12F675 that a data packet is starting. So far, so good; we haven’t done or defi ned any-
thing out of the RS-232 ordinary.

Let’s walk through the voltages that are generated when an RS-232 data packet is sent con-
taining the ASCII representation of the number 2. A 2 is represented in ASCII by hexadecimal 
0x32 or binary 00110010. An idle RS-232 signal is defi ned as having the voltage on the trans-
mit pin maintain a marking condition for a time that exceeds one data packet bit width. For 
9600 bps, the steady marking condition must be greater than 104 μS in length. As you 
already know, a mark is a negative voltage between �3 and �25 V and represents a 1 in 
RS-232 lingo.

To signal the start of a data packet, the transmitting device will drive the RS-232 transmit pin 
positive into the space voltage region of �3 to �25 V. This transition from a steady marking 
state that is greater than or equal to one data packet bit width to a spacing state is called a start 
bit. Since we are running at 9600 bps, our start bit width is 104 μS, which is equal to our data 
packet bit width for a baud rate of 9600 bps.

Now here’s where things get a bit tricky. Remember that the idea is to sample the incoming 
bits as closely to their center as possible to determine whether the bit is a 1 or a 0. Under ideal 
conditions, the start bit is recognized immediately by the receiving microcontroller. If the 
104 μS interval begins at the same instant that the start bit is sensed, the microcontroller will 
sample at the end of the start bit time, which is 104 μS. The fi rst data bit in the incoming data 
packet will be lost and so will the rest of the data bits because the microcontroller will be sam-
pling the bits on their leading edges instead of in their centers.

A valid marking condition must exist before a start bit is initiated. So, with that we have a very 
good idea as to when a start bit should occur. We also know from the RS-232 specifi cation that 
every valid RS-232 data packet starts with a start bit and ends with at least one stop bit. So, 
to sync up with the incoming data bits within the incoming RS-232 data packet, the receiving 
microcontroller is instructed to wait 1.5 RS-232 data packet bit width times after sensing a valid 
start bit. This allows the receiving microcontroller to begin the bit sampling in the center of 
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the fi rst incoming data bit. From there all the microcontroller has to do is sample every 104 μS 
seven more times to get the full 8 bits contained within the incoming RS-232 data packet.

A stop condition is indicated by the transmitting device when the RS-232 voltage being trans-
mitted is returned to the marking state for at least one data bit width time, which is 104 μS for 
9600 bps, after the correct number of RS-232 data packet bits are generated. This stop condi-
tion, or marking state, is actually the stop bit. Everything just described down to the microsec-
ond is summed up in Figure 8.4.

Let’s run through it again. The transmitting microcontroller is holding it’s RS-232 transmit pin 
in a marking condition. We know that this marking condition must be at least 104 μS in length to 
satisfy our bit timing for a 9600 bps baud rate. In fact, the marking condition can exist for hours, 
days, or forever as the receiving microcontroller is continually looking for a valid start condition.

The transmitting device drives its transmit pin to a space condition for one data bit time 
(104 μS for 9600 bps) to indicate the start of an RS-232 data packet. The receiving 

Figure 8.4: This is a graph of a 9600 bps asynchronous RS-232 transmission versus time. The 
time between each vertical double-dotted line represents 104 μS. Since we are only sampling for 
each bit one time, the idea is to try to sample as close to the center time of each bit as possible.
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microcontroller senses the start bit on its receive pin and waits for 156 μS (1.5 � 104 μS). At 
the 156 μS interval, the receiving microcontroller samples what should be the center of the 
least signifi cant bit of the incoming RS-232 data packet, bit 0. The microcontroller samples 
the second bit of the incoming RS-232 data packet 104 microseconds later. The receiving 
microcontroller samples every 104 μS until the most signifi cant bit of the RS-232 data packet 
is sampled (bit 7 since we are sending 8-bit data packets).

The receiving microcontroller has 8 bits of data and expects to see its receive line go to a mark-
ing condition indicating a stop condition or stop bit. Note that the receiving microcontroller and 
the sending microcontroller sync up on every RS-232 data packet using the start bit. From there, 
every bit inside the RS-232 data packet is expected to be sent and arrive on time according to the 
baud rate. Later, you’ll see that microcontrollers with internal USARTs will perform all the start 
bit and receive/transmit timing tasks automatically for you. For now, let’s do it caveman style.

8.5.2 Building a Simple Microcontroller RS-232 Transceiver

To convert the RS-232 theory I’ve presented into real-world events, let’s assemble some hard-
ware and implement a simple three-wire RS-232 session between our PIC12F675 microcon-
troller and a personal computer.

A personal computer is most always confi gured as a DTE device. Recalling what we already 
know about the RS-232 specifi cation, that implies that the personal computer’s serial port uses 
a male 9-pin or male 25-pin connector. From here on out, unless I say otherwise, we’ll use the 
9-pin connector and pinout for both DTE and DCE devices. So, with that, pin 3 is the DTE 
transmit pin and pin 2 is the DTE receive pin. For the record, on a 25-pin male serial connec-
tor, pin 2 is the DTE transmit pin and pin 3 is the DTE receive pin. The third wire in our three-
wire RS-232 connection is the common ground connection. For a 9-pin male serial connector, 
the ground pin is pin 5 for both DTE and DCE devices and is designated signal ground in the 
RS-232 specifi cation. From your history lesson, you know that the 25pin DTE serial connec-
tor’s signal ground is found on pin 7.

Applying logic (and your knowledge of the RS-232 specifi cation) to the gender of the per-
sonal computer’s serial connector would lead one to believe that since a DTE device is repre-
sented by a male connector then a DCE device would most likely support a matching female 
connector. Once again, logic prevails, as that is the real-world case. Again, using common-
sense logic, one would be led to conclude that since the personal computer is a DTE device, 
our PIC12F675 would be the center of attention in a DCE device. If that is also true, which it 
is, that means I can literally plug the personal computer’s male DTE serial interface directly 
into the PIC12F675’s female DCE interface and pass data between the personal computer and 
the PIC12F675. What makes this possible is the DCE serial connector pinout versus the DTE 
connector pinout. Basically, the DCE device’s transmit pin is connected directly to the DTE 
device’s receive pin and the DTE device’s transmit pin is wired directly to the DCE device’s 
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receive pin with signal ground being common between the DTE and DCE interfaces. Don’t 
confuse this with a “null modem” arrangement; a null modem circuit is intended to attach a 
DTE device directly to another DTE device by tying complementary modem signals to each 
other. Therefore, that makes pin 3 on the DCE side the receive pin and pin 2 the DCE transmit 
pin. Using the standard DTE and DCE pinouts on my connectors means that I can now com-
municate PIC to personal computer without the need for any special “crossed over” cables. In 
fact, all I need is three wires.

8.5.2.1 RS-232 Interface Hardware

Because true RS-232 signals are not TTL compatible, the incoming RS-232 voltage levels must 
be converted to voltage levels compatible with the circuitry behind the serial connector. On the 
other side of that, the outgoing TTL voltage levels must be shifted to RS-232 signal levels for 
transmission between the DTE and DCE devices. The easiest way to effect the RS-232 voltage 
translation process and stay within the RS-232 specifi cation’s guidelines is to use a special 
RS-232 converter IC. One such IC is the industry standard Maxim MAX232CPE.

In the past, if you really wanted to adhere to the RS-232 specifi cation you designed in a 
�12 V or �15 V power supply to drive the MC1488 (now called the DS1488) quad line 
driver. The negative supply voltage coupled with the MC1488 made the marks possible, while 
the positive 12 V provided the voltage level necessary to produce a space. On the receiving 
side, an MC1489 (these days it’s called a DS1489) picked up the marks and spaces, converted 
them to TTL levels and fed them to the device’s UART.

The DS1488 and DS1489 are still in production and are great choices for low-cost RS-232 
interfaces if the power supply voltages are already in the design anyway. However, to really 
keep it simple and within specifi cation, using a MAX232CPE or similar IC at each end of the 
RS-232 link is the way to go. The MAX232CPE requires a single �5 VDC and with the help 
of four common 1 μF capacitors, the MAX232CPE internally generates the voltages necessary 
to effect marks and spaces on the transmit pin using an internal charge pump. Not only does 
the MAX232CPE perform the TTL-to-RS-232 conversion duties, it is the “other side” also 
converting the incoming RS-232 signals into TTL voltages. The MAX232CPE charge pump is 
capable of producing �10 VDC when no signifi cant load is present.

You can build the PIC12F675-based RS-232 transceiver from scratch or you can take a value-
added and easier way out by using the Microchip PICkit™ 1 FLASH Starter Kit. Before we 
move on, let’s stop and talk a little about the PICkit 1 (see Schematic 8.1 and Figure 8.5).

The PICkit 1 FLASH Starter Kit is designed to allow easy and inexpensive evaluation of 
Microchip’s new 14-pin Flash-based PICs and some of the legacy 8-pin fl ash parts like 
our PIC12F675. The PICkit 1 FLASH Starter Kit programming hardware is centered on the 
PIC16C745, which contains a USB engine in addition to the normal stuff you would fi nd in a 
PIC microcontroller.
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Schematic 8.1: This is the “formal” way to do it. Capacitors C2-C5 help the 
Sipex SP232ACP’s internal charge pump provide the RS-232 voltages that adhere 

to the RS-232 specifi cation. The PICkit 1 uses this formal approach.

Figure 8.5: Intended for beginners, the PICkit 1 is simple to understand 
and operate. An 8-pin PIC12F675 is mounted in the evaluation socket. 

All the USB circuitry is to the far left of U1, a PIC16C745.
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Along with the hardware and fi rmware contained in a USB microcontroller, the magic of USB 
is performed within the Windows operating system. Special programs and drivers running 
under Microsoft Windows form an alliance between the microcontroller’s I/O ports, the micro-
controller’s USB interface, and the application that is running under the Microsoft Windows 
operating system. In effect, all the work is done up front and all the pent-up USB program-
ming in the microcontroller and on the personal computer is unleashed when the user plugs a 
USB device into a personal computer’s USB port.

A really neat feature of the PICkit 1 FLASH Starter Kit is that after you have initially down-
loaded a hex fi le, you can compile the fi le again and as long as you tell the compiler to always 
replace the old hex fi le after a compile, the PICkit 1 will automatically bring in the newly 
compiled hex fi le for programming when you click on the Write Device command button. The 
PICkit 1 FLASH Starter Kit programming interface does this by checking the timestamp of the 
loaded hex fi le and loading in the latest time-stamped hex fi le of the same name.

The target PIC’s power is controlled (on or off) by clicking on the Device Power button in the 
Board Controls box. I used this feature extensively to turn off the PIC12F675 after program-
ming it so I could move it over to the snap-off board socket to run the spin of code I had just 
compiled and programmed.

The PICkit 1 FLASH Starter Kit hardware communicates with the PICkit 1 FLASH Starter 
Kit programming interface (Figure 8.6) that runs under Microsoft Windows. The PICkit 1 
programming interface allows the user/programmer (that’s us) to view PIC Program Memory 
and EEDATA Memory in hexadecimal format. The Program Memory and EEDATA Memory 
windows contain the contents of a standard Intel hex fi le the user/programmer loads into 
the programming interface that has been generated by either a compiler like PicBasic™ Pro 
Compiler or Custom Computer Services C Compiler or an assembler like PicBasic Pro’s PM 
or Microchip’s MPASM™.

The idea is to generate an Intel hex fi le, load it into the PICkit 1 FLASH Starter Kit program-
ming interface, and “burn” or program the binary code into the physical PIC device in the 
PICkit 1’s evaluation socket. A compiled program fi le (Intel hex fi le generated by the compiler 
or assembler) is downloaded into the PICkit 1 FLASH Starter Kit programming interface 
using the Import HEX menu item. When the fi le download is complete, the data contained 
within the downloaded hex fi le will appear in the Program Memory and EEDATA windows. 
At this point, the user/programmer can click on the Write Device button and burn the down-
loaded code into the target PIC. If all goes well, a green banner will be displayed at the bottom 
of the PICkit 1 FLASH Starter Kit programming interface window. A red banner signifi es that 
something went wrong in the program cycle.

Providing that the target PIC has not been code protected, the user/programmer can read the 
contents of the target PIC and save the data as a hex fi le using the Export Hex menu item.

Ch08-H8584.indd   316Ch08-H8584.indd   316 8/17/07   6:16:47 PM8/17/07   6:16:47 PM



 The Essence of Microcontroller Networking: RS-232   317

www.newnespress.com

Two other command buttons allow the user/programmer to verify existing code in a PIC 
mounted in the PICkit 1 program socket with the contents of a hex fi le and to erase the target 
PIC part.

The PICkit 1 FLASH Starter Kit shown in Figure 8.6 is a preassembled PIC development 
board with an unpopulated snap-off experimenter board. The PICkit 1 FLASH Starter Kit is 
unique in that it doubles as a PIC programmer, but not just any old PIC programmer. A spe-
cial Visual Basic program that runs on a host personal computer controls the PICkit 1 FLASH 
Starter Kit. The personal computer is attached to the PICkit 1 FLASH Starter Kit via USB. 
The bonus is that all the source code for both the Visual Basic personal computer program and 
the USB interface is included, in addition to the PIC tutorial and project source code. So, if 
you’re curious about how PIC programmers work and have an interest in how USB works, the 
PICkit 1 FLASH Starter Kit is a must-have device.

Figure 8.6: Once you load a hex fi le for programming, each time you issue a 
Write Device command, the PICkit 1 program fi nds and reloads the latest version 

of the hex fi le you originally specifi ed before programming the PIC.
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I left the snap-off experimenter board attached to the PICkit 1 FLASH Starter Kit and rigged 
a standard personal computer’s diskette drive power connector to get �5 VDC and ground 
to the snap-off board. These days, personal computer power supplies are cheap, and using a 
personal computer power supply gave me a power switch and keyed power receptacle for the 
experimenter board side of the PICkit 1 FLASH Starter Kit while eliminating the need to sol-
der in a 7805 �5 VDC regulator and its supporting circuitry.

I also substituted a pin-for-pin compatible Sipex SP232ACP for the MAX232CPE, since I 
don’t have a through-hole MAX232CPE in my parts inventory. I completed the assembly of 
my PICkit 1 FLASH Starter Kit experimenter board by installing the TX (transmit) and RX 
(receive) header pins and the 14 header pins around the PIC socket. Installing the headers will 
allow easy connections between the Sipex SP232ACP and the PIC12F675.

Even though the pins of the 14-pin socket on the programmer side of the PICkit 1 are con-
nected directly to LEDs, you can still use the pins to run our RS-232 transceiver project. Just 
solder in the J3 header and use a jumper wire to connect the programmer side TX and RX pins 
to the snap-off board’s TX and RX pins. This allows you to program and execute the programs 
without having to move the PIC12F675 from the programming socket to the snap-off test 
socket.

Although the PICkit 1 is nice to have, if you already have a PIC programmer that will burn the 
PIC12F675 you can build up the “formal” circuit shown in Schematic 8.1 or you can get down 
and dirty with the “dirty” RS-232 implementation shown in Schematic 8.2.

Schematic 8.2: If you don’t have a MAX232 or Sipex SP232ACP on hand or if you want to save 
some bucks and have some fun at the same time, lash up this “dirty” RS-232 transceiver.
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In the “dirty” version, Q1, Q2, and the fi ve resistors perform the RS-232 voltage conversion. 
Any positive voltage coming in on P1’s pin 3 that is capable of turning on Q1 will be con-
sidered “RS-232 OK” and will pass as a binary 0, or space, to the PIC12F675’s GP3 receive 
pin. If the incoming RS-232 voltages are up to specifi cation and the RS-232 cable is of good 
quality, this receiver circuit formed by Q1, R1, and R2 will work very well in most instances. 
The same is true for the transmit circuit, which is driven using Q2, R4, and R5. If the RS-232 
cable is not too long and is of a high quality, Q2 will send a “dirty” mark (0 VDC instead of 
�3 VDC or better) when it is turned on by the PIC12F675’s transmit pin, GP2. A clean space 
will be transmitted when Q2 is off. If your project can tolerate possible RS-232 bit errors, the 
“dirty” RS-232 circuitry shown in Schematic 8.2 is a cheap and easy way to implement an RS-
232 link.

8.5.2.2 Writing Some Simple RS-232 Firmware

No matter which direction you took, “dirty” PICkit 1 or homebrew “formal,” I’m sure you’ll 
agree that the RS-232 hardware was easy to obtain and assemble. The RS-232 code for our 
minimal RS-232 system is just as easy to write.

A variety of C compilers on the market target the Microchip PIC® family of microcontrollers. 
I’ve chosen to use the Custom Computer Services C Compiler for Microchip PIC microcon-
trollers to write the code for the PICkit 1 FLASH Starter Kit RS-232 circuit I’ve assembled. 
The inexpensive Custom Computer Services C Compiler is easy to use and has features 
that take the pain out of writing code for PICs. I’ve written a couple of programs that simply 
send the ASCII character A to a HyperTerminal™ or Tera Term Pro™ terminal emulator 
program.

For those of you who don’t “do” C, I’ve selected the PicBasic Pro Compiler from microEngi-
neering Labs to represent the RS-232 fi rmware on the BASIC side of the house. Like Custom 
Computer Services C Compiler, the PicBasic Pro Compiler is dedicated to producing clean 
and tight code for Microchip PIC microcontrollers.

Before I describe the code, let’s make sure you have your terminal emulator set up 
correctly. HyperTerminal is included as an accessory communications program with the 
Microsoft Windows operating system. It’s fairly easy to prepare HyperTerminal to 
receive our RS-232 data. Once you open HyperTerminal, the fi rst thing you want to do is 
name your session. In Figure 8.7, I named my HyperTerminal session “Simple PIC 
RS-232.”

After you name your session, another window like the one in Figure 8.8 will appear, asking 
which COM port you want to use. That all depends on what’s available on your machine. In 
my case, I had both COM ports 1 and 2 open and chose COM 1.

Ch08-H8584.indd   319Ch08-H8584.indd   319 8/17/07   6:16:48 PM8/17/07   6:16:48 PM



320   Chapter 8

www.newnespress.com

The fi nal step in setting up your HyperTerminal session is the defi nition of the communica-
tions parameters. We defi ned those earlier as 9600 bps, no parity bit, 8 data bits, and 1 stop bit. 
Set up your serial port as it is shown in Figure 8.9.

Figure 8.7: Doing this allows you to save the HyperTerminal session with a name for later use.

Figure 8.8: Select an open COM port on your personal computer here.
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Flow control hasn’t been covered yet, and for this project we’ll assume there isn’t any. Flow 
control comes in a multitude of fl avors. Normally, fl ow control is implemented using the 
modem control signals CTS and RTS. Flow control can also be initiated using software com-
mands like those used to implement XON/XOFF fl ow control. One could also use a logic sig-
nal from a standard I/O pin to effect an unoffi cial fl ow control. Flow control excepted, the goal 
is to end up with a blank terminal emulator window and a blinking cursor in the upper left cor-
ner of the terminal emulator window.

Unless you purchase some upgraded HyperTerminal software, you won’t be able to do much 
more than open a HyperTerminal emulator session and send or receive data with the version 
that is bundled with Windows. Another terminal emulator called Tera Term Pro provides a bit 
more functionality and fl exibility than HyperTerminal and it costs nothing but your time to 
download it from the Internet. Tera Term Pro setup is similar to that of HyperTerminal, and 
as you will see in the pull-down menus, there are some things Tera Term Pro can do that the 
stock HyperTerminal can’t. Tera Term Pro’s most useful feature is the scripting language that 
is built into it. Tera Term Pro’s script commands provide a means of automating the process 
of transferring and receiving fi les. We won’t need any Tera Term Pro scripting for our simple 
RS-232 project.

Figure 8.9: No modem control or software signals (fl ow control) are 
needed in a simple three-wire RS-232 connection.
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Under the Setup pull-down menu you will fi nd an entry for Serial Port. Selecting the Serial 
Port menu item will bring up a window like the one depicted in Figure 8.11 and allow you 
to manually set the communications parameters, which are identical to the communications 
parameters we set in HyperTerminal (9600 bps, 8 data bits, no parity, 1 stop bit).

Figure 8.10: Use the Serial side of Tera Term and enter a COM 
port number that’s open on your personal computer.

Editing the TERATERM.INI fi le, which resides inside the Tera Term Pro directory, can be 
used to set up all Tera Term Pro’s communications parameters. Here, I’ll show you how to get 
a basic Tera Term Pro emulation session to work on your personal computer manually. The 
fi rst thing you want to do is tell Tera Term Pro that you will be using a serial interface. As 
you can see in Figure 8.10, Tera Term Pro is capable of doing many other things on differing 
interfaces.

Figure 8.11: The Transmit delay is used to pace the characters. For instance, 
changing the msec/char fi eld to a 1 would send a character wait 1 ms and 

then send another character and so on.
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Again, just as with HyperTerminal, you should end up with a blank terminal emulation win-
dow with a fl ashing cursor in the upper left corner. To complete the personal computer and 
terminal emulator setup, all that’s left to do is to attach a pin-for-pin (pin 1 to pin 1, pin 2 to 
pin 2, etc.) 9-pin male-to-female cable between the personal computer’s serial (COM port you 
selected in the setup) port and the PICkit 1 FLASH Starter Kit’s 9-pin serial connector on the 
PICkit 1’s snap-off experimenter board. Now, let’s pick apart the RS-232 C code.

I’m not going to assume you know every nuance of C, so this time I’ll take us through line 
by line. The #include lines at the top of the listing tell the compiler about the physical 
attributes of the PIC12F675. The “physical attributes” of a microcontroller device may include 
the number of I/O pins or the types of special purpose modules that reside inside the micro-
controller, such as analog-to-digital converters or timers. The include fi les also defi ne associa-
tions. For instance, for operations that need to express a TRUE or FALSE condition, it’s much 
easier to remember TRUE for 1 and FALSE for 0. Using real words also makes the 
code easier to read and follow. Another example of what include fi les do involves equating 
I/O port names. Instead of having to remember that PORTA is actually address 0x005, the 
#include allows you to simply type in “PORTA” when you are performing tasks against 
address 0x005.

The C include fi les are readable and you can examine them as you would any other text fi le. 
Perusing a microcontroller’s data sheet and include fi les are a good way to learn about what 
the microcontroller can really do for you. The Custom Computer Services C Compiler comes 
with an include fi le for each PIC microcontroller it supports. If there are physical attributes 
you need to access and they aren’t already included in the stock include fi le, there’s nothing to 
stop you from putting together your own include fi le. I used the PIC12F675 data sheet to build 
the f675.h include fi le, which includes defi nitions and associations from the PIC12F675 data 
sheet that were not included in the canned PIC12F675 include fi le.
#include <12F675.h>
#include <f675.h>

The data sheet is the most important tool in working with any microcontroller device. 
Checking the PIC12F675 data sheet tells us that the PIC12F675 is equipped with an on-chip 
oscillator that does not require an external crystal or resonator. Another look at the PIC12F675 
data sheet tells us the internal clock speed of the internal oscillator is a nominal 4 MHz. 
Another plus in using the Custom Computer Services C Compiler is that once the clock speed 
is defi ned to the compiler, things like delays and baud rates are automatically calculated and 
applied inside the compiler routines that rely on the microcontroller’s clock speed. So, the line 
#use delay (clock = 4000000) sets the PIC12F675 clock rate at 4 MHz and tells 
the compiler to use 4 MHz for its delay and baud rate calculations.

Bits inside fuse words are used to turn on or turn off certain special-purpose modules, 
functions, or features that the PIC12F675 offers to the programmer. Again, checking the 
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PIC12F675 data sheet, we know that the PIC12F675 can be instructed to use the internal 
oscillator or depend on an external crystal arrangement. The INTRC_I/O fuse instruction 
sets a fuse bit that activates the PIC12F675’s internal 4 MHz oscillator. In addition to selecting 
the clock type, the INTRC_I/O bit deactivates the clock signal from being accessible via a 
PIC12F675 I/O line.

#fuses INTRC_IO,NOWDT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT

The next fuse instruction, NOWDT, deactivates the PIC12F675 watchdog function. Watchdog 
timers are commonly used to monitor the microcontroller’s execution of instructions. If the 
microcontroller “hangs” or “loops” and the watchdog timer doesn’t get reset, the microcon-
troller is forced to reset itself and restart the application that is programmed into it. For simple 
programs like this one, the watchdog timer function is not necessary.

As you’ve probably already fi gured out, the “NO” in front of the rest of the fuse instructions 
turns off a particular PIC12F675 function. NOMCLR saves an I/O line on the PIC12F675 by 
not requiring the MCLR reset pin to be offered to the programmer externally. Instead, the 
MCLR pin function is performed internal to the PIC12F675.

Activating code protection makes it impossible to read the PIC12F675’s program memory 
with a PIC programmer. Since I haven’t written any code that would stop an alien attack, 
NOPROTECT and NOCPD allow the code loaded into the PIC12F675 program memory to be 
accessed by the standard methods.

I’m also not anticipating my personal computer power’s supply voltages to dip or “brown out” 
under load, so there is no need for brownout protection, and NOBROWNOUT is pretty obvious 
as to how I feel about that.

While we’re on the fuse bit subject, the Custom Computer Services C Compiler has a really 
nice pull-down View menu feature that describes and lists the valid fuses for the microcon-
troller you’re writing code for. In that same pull-down View menu, the compiler also gives 
you access to the microcontroller datasheets, which are stored in a directory as standard PDF 
fi les. The scope of this book isn’t really about teaching you C or tutoring you on how to use 
the Custom Computer Services C Compiler. However, as we continue on this networking hop, 
I’ll point out goodies inside the compiler packages that will help you write the best code with 
the least effort. If you’re not a C person, who knows—you might pick up enough C to become 
profi cient with the language.

The Custom Computer Services C Compiler does many things behind the scenes to assist 
you but sometimes it comes at the expense of extra code that is generated by the compiler. If 
you’re a control freak like I am, I want to be in command as much as possible. So, the #use 
fast_io(A) code line tells the Custom Computer Services C Compiler to allow me and not 
the compiler to determine the direction (input or output) of each PIC I/O line.
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Our simple RS-232 C program actually consists of three subprograms: TX_program_1, TX_
program_2, and TX_program_3. Each program does the same thing—transmits the ASCII 
character 0x41, or A. By simply placing each subprogram between a set of #ifdef and 
#endif preprocessor statements, I can compile one of the subprograms at a time by “defi n-
ing” which program is active during the compilation time. The subprogram to compile is 
chosen by “commenting out” the other subprograms I don’t want to be compiled. For instance, 
to select TX_program_1 in Code Snippet 8.1, I comment out #defi ne TX_program_2 and 
#defi ne TX_program_3. When I run the Custom Computer Services C Compiler, all that 
will be included in the fi nal output fi le will be the common code plus all the code between 
#ifdef TX_program_1 and its corresponding #endif preprocessor statement. I’ve used 
the Custom Computer Services C Compiler to write more complex programs, and you’ll get a 
taste of that as we progress.

//******************************************************
// COMMENT OUT THE PROGRAMS YOU DON’T WANT TO RUN
//******************************************************
#defi ne TX_program_1 //this program will be compiled
//#defi ne TX_program_2 //this program will not be compiled
//#defi ne TX_program_3 //this program will not be compiled

Code Snippet 8.1: When you begin to write larger C microcontroller programs, 
you’ll use the // to comment out parts of code instead of deleting them.

All C programs have a main function like the one shown in Code Snippet 8.2. The main 
microcontroller application program actually fl ows inside the main function braces. In our RS-
232 code, any code that is not fenced in by #ifdef TX_program_x and a related #endif 
is always compiled and can react with the selected TX_program_x code segment.

//******************************************************
// MAIN PROGRAM STARTS HERE
//******************************************************
// This code fragment will always be compiled
void main() {

 setup_adc_ports(0);
 setup_adc(ADC_OFF);
 setup_timer_1(T1_DISABLED);
 setup_comparator(NC_NC_NC_NC);
 setup_vref(FALSE);

    //PORTA pin 2 = TX line
 SET_TRIS_A(0b00001000); //PORTA pin 3 = RX line

Code Snippet 8.2: The Custom Computer Services C Compiler 
program wizard generated all the setup statements.
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In addition to the on-chip analog-to-digital converter, the PIC12F675 also contains an analog 
comparator, a voltage reference, and some timers. Since we won’t be using any services pro-
vided by these modules, the setup_xxxxx lines of code are there to turn off TIMER_1, 
the analog-to-digital converter, the comparator, and the voltage reference. Executing the 
“setup” lines will also free up any I/O pins that the service modules may have wanted 
to use.

All the subprograms have a few things in common; each subprogram transmits the letter A 
and each subprogram uses the same PIC12F675 I/O pins for transmitting and receiving. That 
means that I can set the I/O direction of the PIC12F675’s receive and transmit pins in the com-
mon code. The SET_TRIS_A(0b00001000) code line completes the manual I/ O direc-
tion task and feeds my control freak animal because I, not the compiler, set the PIC12F675’s 
I/O pin direction.

8.5.2.3 A Bit of RS-232 Transmit Code

Earlier I talked about how each of the data bits inside a data packet must be 104 μS in dura-
tion to be recognized as a 9600 bps bit stream. The fi rst program, TX_program_1, is a crude 
9600 bps algorithm that uses delays and bit voltage levels to transmit the ASCII character 
A. To make things a bit easier to read in the TX_program_1 main code, I’ve defi ned the TX 
(transmit) pin, PIN_A2, and the RX (receive) pin, PIN_A3, in the PIN DEFINITIONS area 
before the main program code, as shown in Code Snippet 8.3.

//******************************************************
// TX_PROGRAM_1 PIN DEFINITIONS
//******************************************************
#ifdef TX_program_1
#defi ne TX PIN_A2
#defi ne RX PIN_A3
#endif

Code Snippet 8.3: It’s best to keep the C code human readable.

TX_program_1 begins by placing the TX line in a marking state for 1 ms. The out-
put_high(TX) instructs the PIC12F675 to present a TTL high (binary 1) to the Sipex 
SP232ACP’s TTL input. The Sipex SP232ACP inverts that to present a RS-232 mark on pin 2 
(DCE transmit pin) of the communications cable. The while(1) statement says that while 
the tested condition is 1 or while the tested condition is TRUE, the code between the braces 
({}) will run. Since 1 never changes value and 1 represents TRUE, the code will run in this 
loop inside the braces forever. This is one way of creating a continuous loop. I could have 
also used for(;;) to accomplish the same thing. I’ve included both statements in the source 
code and Code Snippet 8.4 for you to try.
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//******************************************************
// TRANSMIT PROGRAM 1
//******************************************************
#ifdef TX_program_1

 output_high(TX); //mark for more than 104uS
 delay_ms(1);

 while(1)
 //for(;;)
 {
 output_low(TX);  //send 0  START BIT
 delay_us(104);  
 output_high(TX);  //send 1  LSB of ‘A’
 delay_us(104);  
 output_low(TX);  //send 0
 delay_us(104);  
 output_low(TX);  //send 0
 delay_us(104);  
 output_low(TX);  //send 0
 delay_us(104);  
 output_low(TX);  //send 0
 delay_us(104);  
 output_low(TX);  //send 0
 delay_us(104);  

 output_high(TX);  //send 1
 delay_us(104);
 output_low(TX);  //send 0  MSB of ‘A’
 delay_us(104);
 output_high(TX);  //send 1  STOP BIT
 delay_us(104);
 delay_ms(1000);  //pace the transmission
 }
#endif

Code Snippet 8.4: I like to use while(1).

The fi rst output_low(TX) is a start bit. The TTL low (binary 0) from the PIC12F675 I/O 
pin is inverted by the Sipex SP232ACP and comes out as a space on the RS-232 side. Note 
that the ASCII A is transmitted to the personal computer’s least signifi cant bit fi rst. Eight bits 
and eight output_XXX/delay_us(104) sequences later, Tera Term Pro displays the A it 
received in the terminal emulator window I’ve captured in Figure 8.12.

I’ve put a pacing statement at the end of the loop. This will allow you to see the characters as 
they appear in 1-second (1000 milliseconds � 1 second) intervals in the Tera Term Pro emula-
tor window. You can comment this statement out to see the As zip by.
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Let’s comment out #defi ne TX_program_1 and #defi ne TX_program_3 to select 
TX_program_2. Note the #use rs232 statement. This is Custom Computer Services’ way 
of having the compiler set the baud rate and assign the RS-232 I/O pins for you without having 
to consult the datasheet to make the adjustments manually on a bit-by-bit basis. Remember, the 
baud rate here is calculated based on the microcontroller’s clock speed which is defi ned at the 
beginning of the program using the #use delay(clock=4000000) statement. Since 
the PIC12F675 has no internal USART, we can choose almost any pair of I/O pins to be TX 
and RX. Note that I said that “almost” any pair of PIC12F675 I/O pins could be chosen. The 
PIC12F675 has an input only pin (GP3) and since this is an input only pin, it can’t be used 
as an output and thus can’t be used as a transmit pin. You’re probably also wondering where 
I’m getting these PORTA defi nitions when the PIC12F675 datasheet states that GPIO is used 
to defi ne the PIC12F675 I/O port names. That’s a Custom Computer Services C compiler 
thing. It uses PORTA designations instead of GPIO names. GPIO and PORTA are both located 
in their respective data memory maps at location 0x05. So, it’s only a name difference. The 
whole of TX_program_2 is shown in Code Snippet 8.5.

//******************************************************
// TRANSMIT PROGRAM 2
//******************************************************
#ifdef TX_program_2

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)

 while(1)
 {

  printf(“A”);
  //printf(“Your fi rst name here”);

Figure 8.12: Notice I “paced” the transmission in Code Snippet 8.4. After the 
fi rst A was sent, each A thereafter was sent one per second (delay_ms(1000)).
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  delay_ms(1000);
 }
#endif

Code Snippet 8.5: Wow! Consider doing this in PIC assembler. Are you beginning to like C?

TX_program_1 consists of 23 lines of C statements (25 if you include the defi nes for the TX 
and RX lines). TX_program_2 is comprised of only three C statements and does the exact same 
thing as TX_program_1. What gives? The trick is the plenty powerful printf statement. I’m 
not going to explain the coding in detail, but you can see for yourself that using printf has 
more advantages than drawbacks. Replace the A with your fi rst name and compile and run the 
program again. Cool, huh? That’s what the C compiler printf services buys you. Of course, 
in the embedded world nothing is free. So, to gain the ease of use of the printf function, 
you pay in the increased amount of code the function generates and the additional amount of 
program memory that is consumed. To get an idea of how much extra code is generated, the 
Custom Computer Services C Compiler allows you to view the assembler code it generates. 
Compile TX_program_2 yourself and take a look at the list fi le to get an idea of what I’m talk-
ing about. Even though more code is generated, it’s only generated once and placed in memory 
for use by other calls to the printf code. So in the long run, for the price of a little additional 
code, you get increased functionality with a minimum of coding effort.

The TX_program_3 in Code Snippet 8.6 is a simplifi ed version of TX_program_1. However, 
it is very similar to TX_program_2 as it is short and sweet and it sends a single A to the Tera 
Term Pro emulator window. Compile and run TX_program_3 to see the As sequence through. 
Then comment out the putc (put character) line and try to compile and run with the You can’t 
put but 1 character here line. The compiler will choke and tell you that you can’t do this. 
Why? Because putc is an abbreviation for put character. That means a single character and 
not a string of characters.

//******************************************************
// TRANSMIT PROGRAM 3
//******************************************************
#ifdef TX_program_3

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
 while(1)
 {

  putc(‘A’);
  //putc(‘You can’t put but 1 character here’);
  delay_ms(1000);

 }
#endif

Code Snippet 8.6: Use putc when you want to conserve program memory and 
have small canned messages or single characters to send.
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As you can see from the example code, using C for RS-232 work removes most of the house-
keeping hassles associated with setting up RS-232 hardware and lets you concentrate on 
getting your data transferred from point A to point B. If I haven’t convinced you that C is 
the easier road to RS-232 happiness and if you just really have to write some assembler to 
transmit a byte, Code Snippet 8.7 is a working example of C-less assembler RS-232 transmit 
routine:

;*********** RS-232 TRANSMIT SUBROUTINE
;
SENDIT
 MOVWF  XMTREG  ;LOAD BYTE TO TRANSMIT
XMTR
 MOVLW  8  ;LOAD NUMBER OF BITS TO SEND
 MOVWF  COUNT  
 BCF  RS232,TX  ;WRITE 0 TO SERIAL PORT
 CALL  DELAY1  ;WAIT 1 BIT PERIOD
XNEXT   
 BCF  STATUS,C  ;CLEAR CARRY
 RRF  XMTREG,F  ;ROTATE TRANSMIT REGISTER RIGHT THRU CARRY
 BTFSC  STATUS,C  ;CHECK CARRY STATUS AFTER THE ROTATE
 BSF  RS232,TX  ;IF CARRY IS SET, WRITE A 1 TO SERIAL PORT
 BTFSS  STATUS,C  ;CHECK CARRY STATUS AFTER THE ROTATE
 BCF  RS232,TX  ;IF CARRY IS CLEAR, WRITE A 0 TO SERIAL PORT
 CALL  DELAY1  
 DECFSZ  COUNT,F  ;DECREMENT THE COUNT REGISTER
 GOTO  XNEXT  ;NOT DONE, GO GET NEXT BIT AND SEND IT
 BSF  RS232,TX  ;Send Stop Bit
 CALL  DELAY1  ;WAIT ONE BIT PERIOD
 RETLW  0  ;DONE, RETURN TO CALLER
DELAY1   
 MOVLW  BAUD  ;104uS for 9600 BAUD
STARTUP   
 MOVWF  DLYCNT  
REDO1   
 NOP   
 NOP   
 NOP   
 DECFSZ  DLYCNT,F  
 GOTO  REDO1  
 RETLW  0  

Code Snippet 8.7: This homegrown code was all I had when I started 
writing microcontroller RS-232 communications functions.

 To make the assembler transmit routine work, all you have to do is calculate the bit delay 
time (number of cycles to expend) versus the clock frequency your project is using and plug 
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your results into the BAUD variable. Remember, if you choose to do this as a C program, the C 
compiler and its related RS-232 libraries perform the automagic RS-232 setup work.

Now that you have an idea of the hows and whys of sending data with a minimal microcontroller 
like the PIC12F675, let’s fi gure out how to make that PIC12F675 receive RS-232 data.

8.5.2.4 Some RS-232 Receive Code

One would believe that we could take what we know about data packet timing and write a few 
lines of C code akin to TX_program_1 to receive some characters from our Tera Term Pro 
session. That cannot easily be done, however; even though your RS-232 receive C code will 
consist of mostly C statements, you’ll probably still end up writing the time-critical routines in 
assembler. We actually got lucky in TX_program_1 because our delay loop overhead was small 
enough to not disrupt our data packet bit timing. Why reinvent the wheel by writing RS-232 
receive code from scratch? Let the C compiler and RS-232 libraries do the work. Code Snippet 
8.8 is an example of writing a receive routine in Microchip assembler for our PIC12F675.

;*********** RS-232 RECEIVE SUBROUTINE
;
GETBYTE
 CLRF  RCVREG
 BTFSC  RS232,RD  ;LOOK FOR A START BIT
 GOTO  GETBYTE  

 CALL  STARTBIT  ;go do start bit delay
RCVR   
 MOVLW  8  ;load W with 8
 MOVWF  COUNT  ;load w to count
R_NEXT   
 BCF  STATUS,C  ;clear the carry bit
 BTFSC  RS232,RD  ;look for data bit
 BSF  STATUS,C  ;if 0..skip this instruction
 RRF  RCVREG,F  ;ROTATE BIT FROM CARRY INTO RECREG
 CALL  DELAY1  ;go wait 104 uS
 DECFSZ  COUNT,F  ;decrement COUNT..skip if 0
 GOTO  R_NEXT  ;skip this instruction if COUNT=0

 RETLW  0  

STARTBIT   

 MOVLW  STARTDLY  ;DELAY FOR 156uS
 GOTO  STARTUP  
DELAY1   
 MOVLW  BAUD  ;104uS for 9600 BAUD
STARTUP   
 MOVWF  DLYCNT  
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REDO1   
 NOP   
 NOP   
 NOP   
 DECFSZ  DLYCNT,F  
 GOTO  REDO1  
 RETLW  0  

Code Snippet 8.8: Timing is very critical in this code, and the faster the 
baud rate, the more critical the timing becomes.

Again, to make this code return a character you have to calculate the value of the BAUD variable, 
which depends on the microcontroller’s clock frequency and the amount of loop overhead in the 
code. In short, you have to count instruction cycles and translate them to elapsed time to set the 
BAUD value correctly. This is how I used to do it before the introduction of C for PIC microcon-
trollers. I can tell you that if you don’t have a way to view the register values in the debugging 
process, you will be forced to use time-consuming, trial-and-error coding techniques.

What if you wanted to transmit a random character and not just the character A? I ask this 
question because if we are to continue with our building of simple RS-232 routines, we 
must be able to view the results of our receive algorithms. Assuming we would want to test 
the assembler RS-232 receive code you were just introduced to, how would we transmit the 
received character to our Tera Term Pro emulator session?

What if we chose to use TX_program_1 to echo the character received by our RS-232 receive 
assembler program? TX_program_1 would need some heavy-duty modifi cations to scan the 
received character’s bits and translate them to output_low or output_high states used 
in the TX_program_1 algorithm. The overhead of the code needed for the TX_program_1 
modifi cation would most likely interfere with the RS-232 data packet bit timing and cause the 
RS-232 transmit character code to fail or operate erratically. In that case, incorporating the 
assembler transmit routine would be a better choice than modifying the TX_program_1 code.

Although there is nothing wrong with either the assembler transmit code or the assembler 
receive code, a couple of simple C statements can eliminate a truckload of RS-232 coding 
grief. Those little C statements are putc and getc. The getc instruction performs the 
same task as our RS-232 assembler receive routine. Code Snippet 8.9 an example of how the 
getc function is written in a C program.

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
int8 character_in;
//Receive a character
character_in = getc();

Code Snippet 8.9: This simple concept will take you far when you’re writing 
your own microcontroller RS-232 communications programs.
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The variable character_in is a byte, which is defi ned by the int8 (8-bit integer) data 
type descriptor. The getc function returns a character, which in this code snippet’s case is 
placed in the character_in memory location.

Let’s write a C program called RX_program_1 that receives a keyboarded character from 
our Tera Term Pro session and echoes it back to the same Tera Term Pro session. Don’t 
blink or you’ll miss it. The whole program consumes three lines of actual code in Code 
Snippet 8.10.

//******************************************************
// RECEIVE PROGRAM 1
//******************************************************
#ifdef RX_program_1

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)

 while(1){
 putc(getc());
 }
#endif

Code Snippet 8.10: The getc function is called fi rst, and as soon as a character is received, the 
putc part of the statement pushes the character out of the microcontroller’s serial port.

Ah—the beauty of C! In RX_program_1, the getc function is executed fi rst and returns an 
8-bit character. The putc function sends the results of the getc function, which is the key-
boarded and received ASCII character, out to the Tera Term Pro session. The while(1) 
statement assures that this get and put operation will continue until power is removed from the 
PIC12F675.

You are trained to and can now write and execute a basic RS-232 routine in either C or assem-
bler using the smallest of microcontrollers. It’s also evident (I hope) that C is the easier choice. 
Notice I used the word “easier” and not the word “better,” because there could be situations 
where C is “too big” for your application. In those cases, assembler can be more effi cient and 
more compact. What if neither programming C nor assembler is comfortable for you? Keep 
reading. Most of you will be in for a pleasant surprise.

8.6 Writing RS-232 Microcontroller Routines in BASIC

In embedded design, it’s diffi cult for “hardware engineers” to avoid software, or at least 
fi rmware. In the preceding chapter, I’ve attempted to convert those of you that are still writ-
ing your microcontroller code in assembler to writing your microcontroller code using the C 
programming language. However, I learned personal computer assembler fi rst, and then as the 
personal computer BASIC language evolved I moved to that as my primary personal computer 
programming language. After getting a grip on just what programming was, I fi nally ended 

Ch08-H8584.indd   333Ch08-H8584.indd   333 8/17/07   6:16:56 PM8/17/07   6:16:56 PM



334   Chapter 8

www.newnespress.com

up using C for most of my personal computer programming needs. Note that I said “most of,” 
not “all of.” If the personal computer application fi ts, I will revert to using some form of the 
BASIC programming language because BASIC is still a viable and powerful programming 
tool. This section will prove to you that the BASIC language is just as meaningful and just as 
powerful in the microcontroller programming world as it still is today in the personal compu-
ter programming environment.

At fi rst, this wasn’t as “BASIC” as I would have liked. It took some effort to understand 
the PicBasic Pro system, but once I had a grasp of what was going on, things got better in 
a hurry.

Like the Custom Computer Services C Compiler, microEngineering Labs’ PicBasic Pro has 
very good intentions about making things easy for the PIC programmer. For instance, in 
PicBasic Pro the watchdog timer is enabled by default and the PicBasic Pro compiler automati-
cally inserts clear watchdog timer commands into the code at the appropriate locations. Akin to 
Custom Computer Services C Compiler, some PicBasic Pro instructions actually change the PIC 
port pin to an input pin or output pin automatically to effect their function. The PicBasic Pro 
built-in functions SerIn and SerOut are examples of PicBasic Pro instructions that automati-
cally set the I/O pin direction (input for SerIn and output for SerOut) when called.

PicBasic Pro comes with its own special IDE, CodeDesigner Lite, and also melds seamlessly 
with the latest version of MPLAB IDE. Let’s put together a simple PicBasic Pro program 
using CodeDesigner Lite that receives a character from Tera Term Pro and then echoes that 
character back to Tera Term Pro.

Just like before, the fi rst thing we must do is provide a means of defi ning the RS-232 baud 
rate, parity setting, stop bit setting, and bit inversion setting. In PicBasic Pro, the bit inver-
sion setting is used to emulate an RS-232 converter IC when connecting the serial I/O pins 
directly to another serial device such as your personal computer’s serial port. Remember that 
the TTL bits in the data packet are inverted and voltage-shifted after passing through the Sipex 
SP232ACP RS-232 converter on our PICkit 1. A binary 1 becomes a mark or negative voltage 
and a binary 0 becomes a positive voltage space. If you look at the voltage levels of an RS-232 
signal, you’ll see that it is possible to fool a serial interface using the PIC’s TTL I/ O levels. 
Most serial ports will sense a TTL low (1.8 V or below) as a mark and a TTL high (3 V and 
above) as a space. If we use a PIC microcontroller to send an A without using an RS-232 con-
verter IC, the TTL binary sequence LSB (least signifi cant bit) to MSB (most signifi cant bit) 
would look like this:

START BIT (0) 10000010 (1) STOP BIT

If an RS-232 converter IC is used, we know that a binary 1 becomes a mark and a binary 0 
translates to a space on the RS-232 side of the converter IC. In this case, we don’t have the 
inversion (and voltage conversion) at the sending serial port because the RS-232 converter IC 
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is not in the circuit. If the receiving side of our serial link uses an RS-232 converter IC, the 
incoming data will be presented to the receiving device’s application inverted. So, after its 
RS-232 converter at the receiver does its thing, the receiving device would actually see:

START BIT (1) 01111101 (0) STOP BIT

What a mess. First of all, the start bit will not be recognized and will be seen as the fi rst data 
bit. Second, the binary pattern is an inverse of the character A and because the start bit was 
detected one bit too late, the data bit are shifted as a result. Finally, the stop bit is wrong and if 
this bit pattern gets through to the application at all, the stop bit will be incorrectly recognized 
as a data bit. The receiving application will most likely throw this RS-232 data packet (and 
any similar to this that follow) in the trash. PicBasic Pro’s bit inversion option is used to avoid 
situations like the one we just discussed that stem from not having an RS-232 converter IC at 
one end of the link. As you can see, the bit inversion takes the place of an RS232 converter IC 
and allows direct connection to a “true” serial port. Although you can hook raw microcontrol-
ler port I/O pins directly to an RS-232 port, be careful as the RS-232 voltages will damage 
your microcontroller.

PicBasic Pro’s SerIn and SerOut functions use predefi ned modes to set up the baud rate. 
The modes are defi ned in an include fi le that comes with the PicBasic Pro Compiler package 
called modedefs.bas. For the SerIn and SerOut functions, 8N1 (8 data bits, no parity 
and 1 stop bit) is the default setting for an RS-232 data packet and can’t be changed. We’ll 
choose 9600 bps as our baud rate and since we do have a Sipex SP232ACP RS-232 converter 
IC in our PICkit 1 circuit there is no need to specify bit inversion. Thus, our mode will be 
specifi ed as T9600, where the T stands for True. If inversion were required, our mode specifi -
cation would change to N9600, with N signifying that the TTL data will be inverted.

Another automatic feature of PicBasic Pro is its assumption that the target PIC is running a 
4 MHz clock. Although other clock speeds can be defi ned, the 4 MHz clock default is a good 
thing for us since our PIC12F675 is running on its internal 4 MHz clock. To maintain as accu-
rate an internal clock as possible, the PIC12F675 uses an oscillator calibration value called 
OSCCAL. The OSCCAL value is kept in program memory space. The PicBasic Pro “DEFINE 
OSCCAL_1K” defi nition automatically moves the OSCCAL value that resides in program 
memory to the OSCCAL register every time the program is run. If you’re not careful, you 
can erase the OSCCAL value. No worries. The PICkit 1 host program has an option that will 
rebuild the OSCCAL value for you.

There’s another way to generate serial I/O using PicBasic Pro. The DEBUG and DEBUGIN 
functions allow most any I/O pin to become a serial transmitter or serial receiver. As you may 
ascertain from their names, the DEBUG functions are primarily intended to help you debug your 
code by allowing you to insert the DEBUG statements at various points inside your code to send 
variable values to a Tera Term Pro or HyperTerminal session. To use the DEBUG functions 
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the I/O port, the I/O pin, the baud rate and the bit inversion mode must be specifi ed. I’ll stick 
with the PIC12F675 RS-232 port, pin, baud and bit inversion values we’ve used throughout 
our discussion, which makes GPIO our DEBUG and DEBUGIN port with GP2 acting as the 
transmit pin and GP3 doing the receiver duty. Our selected baud rate is 9600 bps and there is no 
bit inversion. Like the SerIn and SerOut functions, the number of bits in the RS-232 data 
packet, the parity and the number of stop bits is set at 8N1 and cannot be altered by the pro-
grammer. Code Snippet 8.11 is our PicBasic Pro BASIC code up to this point:

INCLUDE “modedefs.bas”
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2
DEFINE DEBUGIN_BIT 3
DEFINE DEBUG_BAUD 9600
DEFINE DEBUG_MODE 0
DEFINE DEBUGIN_MODE 0
DEFINE NO_CLRWDT 1

Code Snippet 8.11: Hmmm … looks kind of like C.

I went ahead and threw in the last DEFINE line because it’s important if you want to change 
one of PicBasic Pro’s automatic features such as whether the watchdog timer runs or not.

How a PicBasic Pro source fi le is compiled depends on the assembler and some confi gura-
tion fuse settings found in the PicBasic Pro PIC12F675 include fi le. Code Snippet 8.12 is the 
PicBasic Pro PIC12F675 include fi le that determines what microcontroller fuses are active 
versus which assembler is invoked. CodeDesigner Lite uses the native PicBasic Pro assembler, 
PM. Notice that I have modifi ed the original code turning the watchdog timer off (wdt_off) 
and internalizing the PIC12F675 MCLR function freeing the GP2 pin for I/O use with 
mclr_off. The last DEFINE statement, DEFINE NO_CLRWDT 1, instructs the PicBasic 
Pro Compiler not to insert the clear watchdog statements into the fi nal code.

MPLAB IDE allows the use of either the PicBasic Pro’s PM or Microchip’s MPASM assem-
bler. The code we generate with CodeDesigner Lite will compile without modifi cation under 
the MPLAB IDE. Notice that I have made the same confi guration fuse adjustments in the 
MPASM header code in Code Snippet 8.12.

;****************************************************************
;* 12F675.INC
*
;*
*
;* By   : Leonard Zerman, Jeff Schmoyer
*
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;* Notice   : Copyright (c) 2002 microEngineering Labs, Inc.
*
;*   All Rights Reserved
*
;* Date   : 09/27/02
*
;* Version *  : 2.43
;* Notes   :
*
;****************************************************************
 NOLIST
  ifdef PM_USED
 LIST
 INCLUDE ‘M12F675.INC’  ; PM header
 device pic12F675, intrc_osc_noclkout,bod_off, wdt_off,
pwrt_on, mclr_off, protect_off
 XALL
 NOLIST
  Else
 LIST
 LIST p = 12F675, r = DEC, w = -302
 INCLUDE “P12F675.INC” ; MPASM Header
 __confi g _INTRC_OSC_NOCLKOUT & BODEN_OFF & _WDT_OFF & _PWRTE_ON
& _MCLRE_OFF & _CP_OFF
 NOLIST
  EndIF
 LIST

Code Snippet 8.12: The trick is to recognize that both the PM and
MPASM confi guration code is included in this fi le.

Unlike the Custom Computer Services C Compiler, the PicBasic Pro Compiler does not have 
preprocessor directives like #ifdef. So, I’ll sacrifi ce a byte to simulate the C preprocessor 
directives and add some PIC12F675 setup information to our PicBasic Pro code. Two bits 
are assigned to debug_prog and serio_prog and I’ve allocated a byte, chr, to hold 
the ASCII character our program will send and receive. Equating a 1 to a bit allows the pro-
gram represented by that bit to be compiled. Conversely, a 0 assigned to a bit effectively turns 
that program off to the compiler. Normally, this kind of code would not be something you’d 
want to include in a professional project. I’m incorporating it here to make the PicBasic Pro 
Compiler serial communications example easier for you to understand and compile by stuffi ng 
two programs into one as we did with the Custom Computer Services C Compiler C source.

Recall that we had to generate some C code to turn off the analog section of the PIC12F675 
so we could use those dual-purpose pins for digital I/O. Well, we’re using the same microcon-
troller hardware, a PIC12F675, and we must perform the same analog deactivation process 
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using PicBasic Pro code (adcon0 � 0). Our C code example also included a “TRIS” statement 
to setup the input or output status of the PIC transmit and receive I/O lines. We don’t need to 
code any BASIC “TRIS” statements here as the DEBUG/DEBUGIN and SerIn/SerOut 
functions automatically set the selected PIC’s I/O pin for input or output depending on the 
function call. The conveniences provided by the PicBasic Pro Compiler make for a very tidy 
set of RS-232 echo routines, as shown in Code Snippet 8.13.

INCLUDE “modedefs.bas”
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2
DEFINE DEBUGIN_BIT 3
DEFINE DEBUG_BAUD 9600
DEFINE DEBUG_MODE 0
DEFINE DEBUGIN_MODE 0
DEFINE NO_CLRWDT 1

debug_prog VAR BIT
serio_prog VAR BIT
chr VAR BYTE

adcon0 = 0

;PROGRAM TO RUN = 1
debug_prog = 1
serio_prog = 0
loop:
 ;CHARACTER ECHO USING DEBUG FUNCTIONS
 IF debug_prog Then
 DebugIn [chr]
 Debug chr
 EndIF

 ;CHARACTER ECHO USING SER_IO FUNCTIONS
 IF serio_prog Then
 SerIn GPIO.3,T9600,chr
 SerOut GPIO.2,T9600,[chr]
 EndIF

 GoTo loop

End

Code Snippet 8.13: A bit wordier than its C counterpart, but that’s BASIC no matter 
where you encounter it. The bottom line is that it works just like the C code.

To me, writing code in BASIC is fun. The neat thing about BASIC is that it’s easy to learn 
no matter what microcontroller or personal computer you’re writing an application for. The 
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microEngineering Labs PicBasic Pro package is easy to use and powerful in function. No mat-
ter which programming language you choose to write your RS-232 code, you’ll need some 
hardware that is capable of turning your typing into reality. Let’s round up some RS-232 com-
ponents, a PIC microcontroller, and turn on the soldering iron.

8.7 Building Some RS-232 Communications Hardware

Enough theory and coding already—let’s solder some stuff. But before we can start connect-
ing components together to form our physical hardware, there are a few more things you need 
to know about microcontrollers and RS-232.

Up to now we’ve been sending and receiving under the guidance of the RS-232 standard 
with a microcontroller that doesn’t contain any internal serial communications circuitry. The 
PicBasic Pro Compiler and the Custom Computer Services C Compiler compensate for this 
lack of circuitry and allow us to emulate the missing serial hardware using the compiler’s 
fi rmware. The fi rmware implementation of a serial port works fi ne until you have to do other 
things and look for incoming serial data simultaneously.

8.7.1 A Few More BASIC RS-232 Instructions

When other tasks are being serviced by the microcontroller, it may be possible to miss an 
incoming RS-232 message. PicBasic Pro handles this situation by allowing the user/pro-
grammer to “time out” after checking for incoming serial data. Let’s add Code Snippet 8.14, 
another module to our PicBasic Pro source code to demonstrate how that would work.

INCLUDE “modedefs.bas” ;get mode defs
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2 ;serial out GP2
DEFINE DEBUGIN_BIT 3 ;serial in GP3
DEFINE DEBUG_BAUD 9600 ;9600,N,8,1
DEFINE DEBUG_MODE 0 ;no inversion
DEFINE DEBUGIN_MODE 0 ;no inversion
DEFINE NO_CLRWDT 1 ;don’t add clrwdt

debug_prog VAR BIT
serio_prog VAR BIT
serio_wait_prog VAR BIT

chr VAR BYTE ;for ASCII character

adcon0 = 0 ;turn off analog I/O

;PROGRAM TO RUN = 1
debug_prog = 0
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serio_prog = 0
serio_wait_prog = 1

loop:
 ;CHARACTER ECHO USING DEBUG FUNCTIONS
 IF debug_prog Then
 DebugIn [chr]
 Debug chr
 EndIF

 ;CHARACTER ECHO USING SER_IO FUNCTIONS
 IF serio_prog Then
 SerIn GPIO.3,T9600,chr
 SerOut GPIO.2,T9600,[chr]
 EndIF

 ;CHECK FOR A CHARACTER EVERY SECOND
 IF serio_wait_prog Then
 SerIn GPIO.3,T9600,1000,no_data,chr
 SerOut GPIO.2,T9600,[chr,13,10]
 GoTo loop
no_data:
 SerOut GPIO.2,T9600,[“no character”,13,10]
 EndIF

GoTo loop

End

Code Snippet 8.14: The microEngineering Labs PicBasic Pro Compiler has as many built-in tricks 
up its sleeve as the Custom Computer Services C Compiler does.

As you can see in Code Snippet 8.14, I’ve added a third module and a corresponding third bit, 
serio_wait_prog. The serio_wait_prog code looks for an incoming character for 
1000 ms (1 second). If no character is received after waiting for 1 second, the program jumps 
to the “no_data” label and prints “no character” followed by a carriage return (decimal 13) and 
a linefeed (decimal 10). If a character is detected within the 1-second window, the received 
character is sent followed by a carriage return/linefeed (CRLF) sequence.

Things are a bit different on the C side in Code Snippet 8.15, but the results are the same.

#include <12F675.h>
#include <f675.h>
#use delay(clock=4000000)
#fuses INTRC_IO,NOWDT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT

#use fast_io(A)

int32 timeout;
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//******************************************************
// COMMENT OUT THE PROGRAMS YOU DON’T WANT TO RUN
//******************************************************
//#defi ne TX_program_1
//#defi ne TX_program_2
//#defi ne TX_program_3
//#defi ne RX_program_1
#defi ne SERIO_program

////////////////////////////////////////
//******************************************************
// SERIO WAIT PROGRAM
//******************************************************
#ifdef SERIO_program

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
 while(1)
 {
 timeout=0;
 while(!kbhit()&&(++timeout<50000))
   delay_us(10);
 if(kbhit())
   printf(“%c\r\n”,(getc()));
 else
   printf(“no character\r\n”);
 }
#endif

Code Snippet 8.15: This C code is a bit more complicated than the BASIC version.

I added int32 timeout to allocate a 32-bit area of PIC memory to hold a timeout value 
and another #defi ne statement to point at our new C source module, SERIO_program. 
Instead of having the PicBasic Pro luxury of inserting a timeout value in the function call, our 
C source code uses the kbhit function to signal the presence of a character. Since we have 
no “real” serial hardware functionality inside our PIC12F675, the kbhit function returns a 
TRUE after detecting a valid start bit on the PIC12F675’s GPIO receive line. So, every 10 μs 
our C program looks for a start bit and increments the timeout value. After about a second or 
so, if no character has been detected, our C program sends “no character” followed by a CRLF 
sequence (\r\n). If a valid start bit is detected and followed by a valid character, the character 
is retrieved using the getc function and sent to the Tera Term Pro terminal emulator using the 
printf function, which also appends the sent character with a CRLF sequence.

If you’re working with a microcontroller like the PIC12F675, the serial I/O routines I’ve just 
described will work well for you. The only drawback is that you have to continually run the 
routines in conjunction with your main application to “poll” for an incoming character. There 
will be times when you won’t have enough processing time or processor resources to do the 
polling. That’s when you call in some bigger guns.
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8.8 I2C: The Other Serial Protocol

RS-232 is a great point-to-point protocol for communicating between two distinct and some-
times distant pieces of equipment. However, at times you’ll need to be able to talk to multi-
ple electronic modules across a communications link that only spans the distance of a single 
printed circuit board. It would be possible to “network” the board-sharing modules using the 
RS-232 9-bit addressing protocol, but there are lots of caveats in that approach. Even though 
you could eliminate the RS-232 voltage conversion circuitry, you would fi nd yourself doing 
a tremendous amount of USART transmit and receive line housekeeping. For instance, you 
would have to generate an algorithm to handle collisions between modules attempting to 
transmit at the same time or collisions that occur in the middle of a message another module is 
already transmitting. The USART transmit and receive lines are not automatically passive or 
tri-stated when inactive. Thus, you would also have to write some code to make sure the trans-
mit and receive lines are inactive when they’re supposed to be. If you want an RS-232 LAN, it 
can be done, but there is a better way.

Initially designed for use in commercial audio and video systems, the inter-IC or I2C bus is a 
Philips Semiconductor creation. Just as its name implies, the I2C bus is a bidirectional two-
wire bus that is used to transport data between ICs (integrated circuits). Unlike RS-232, the 
I2C bus doesn’t need any voltage converters or special interface parts. If an IC is I2C-bus com-
patible, everything needed to operate on the I2C bus is incorporated on-chip within the IC.

If you take another look at our RS-232 schematic (Schematic 8.3), you’ll see that there are 
two bus lines integral to the PIC18F452: a serial data line (SDA) and a serial clock line (SCL). 
The SDA and SCL bus lines make up the I2C interface, and since these lines are designated as 
an integral part of the PIC18F452 that makes the PIC18F452 an I2C-compatible device. Being 
I2C-compatible, the PIC18F452 has provisions for a unique I2C bus address. Using the built-
in I2C functionality, the PIC18F452 can act as either the master or slave on an I2C network. 
If the PIC18F452 is confi gured as an I2C master, it can act as a master-transmitter or master-
receiver. Conversely, if the PIC18F452 is chosen to be a slave on the I2C bus, its internal I2C 
electronics can act in either slave-receiver or slave-transmitter mode. Remember one of my 
RS-232 “LAN” caveats and collisions? I2C is a true multimaster bus that includes arbitration 
safeguards against data collisions, which prevents data corruption on the I2C bus. Like RS-
232, I2C is an 8-bit bidirectional serial communications method. That’s where the similarity 
ends. I2C operates at a speed of 100 kbs in standard-mode, 400 kbs in fast-mode and up to 
3.4 Mbps in high-speed mode. The only limitation as to how many devices can exist on a sin-
gle I2C bus is the total capacitance the devices place on the bus.

Advantages of using I2C are numerous, and there are a multitude of various I2C building 
blocks to choose from. By employing I2C in a design, we can eliminate much of the auxiliary 
support circuitry such as address decoders and standard logic gates needed for other commu-
nications methods.
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In this chapter, we’re going to use I2C to network our partially assembled Easy Ethernet 
CS8900A to our partially assembled Easy Ethernet AVR. Since each microcontroller in the 
network has on-chip I2C resources, we already have a solid basis for an I2C microcontroller 
network, but before we start slinging solder, let’s take a course in I2C.

8.8.1 Why Use I2C?

For folks who make their living designing the neat gadgets we buy at department stores and 
over the Internet, putting out a product at the least possible cost is paramount. Chances are your 
television and stereo both contain an I2C bus. Using I2C is cheap because you don’t have to do 
anything special to set up the physical communications link. Two wires or two traces are all 
that’s needed for the physical I2C-bus signal path. Although I2C can operate at a very high speed, 

Schematic 8.3: This is a schematic of our partially assembled Easy Ethernet CS8900A. 
Resistors R9 and R10, plus the PIC18F452’s internal I2C engine, are all that’s needed 

to effect an I2C network. Notice we’ve added a new component.
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most of the time that’s not a factor in the design. So, the serial nature of I2C is well suited for 
low-speed control type applications. I2C also solves a majority of the design problems one would 
encounter when connecting dissimilar devices on a network. Slow devices must be able to talk 
to higher-speed devices and vice versa, and everyone on the network must be able to speak the 
same language. Most important, somebody has to be the network boss, and as in the real world, 
there could be more than one boss on the bus. I2C has an answer for all these potential problems.

8.8.2 The I2C Bus

As you already know, I2C is built around a two-wire serial bus, SDA (serial data) and SCL 
(serial clock). Each device on the I2C bus is identifi ed by a unique address. An I2C device can be 
a microcontroller such as our PIC18F452, a memory device such as a standard I2C EEPROM, or 
a special-purpose device like an LED display driver. Some I2C devices are capable of transmit-
ting and receiving on the I2C bus; other I2C devices may only be able to receive. In any case, a 
master-slave environment always exists on the I2C bus. The I2C master device always initiates an 
I2C bus data transfer and generates the clock signals to make the data transfer happen. The I2C 
device that responds to the master’s calling is considered the slave device.

Microcontrollers are normally defi ned as masters on a typical I2C bus, with other special-
purpose I2C devices acting as their slaves. In our application, even though all the I2C devices 
are microcontrollers capable of being an I2C master, only one of the microcontrollers will be 
granted master status.

If more than one master exists on a single I2C-bus, there will be confl ict when one of the mul-
tiple masters attempts to transmit in unison with another peer master device on the I2C bus. 
The I2C specifi cation solves this problem with something called arbitration. Arbitration is 
the process of allowing only one master to control the I2C bus at any time. Before I can really 
explain arbitration to you, there are some basic I2C rules you need to know.

In an ideal world, if the master wanted to communicate with slave, the master would address 
the slave. The master is now in master-transmitter mode, and the slave is in slave-receiver 
mode. The master would clock-out data to the slave and terminate the data transfer after all the 
desired bytes were transmitted (see Schematic 8.4).

On the other side of that, let’s say that the master wanted to receive some data from the slave. 
Again, the master would clock-out an address aimed at the slave. Instead of assuming master-
transmitter mode, this time the master would become the master-receiver with the slave acting 
as slave-transmitter. Data would be clocked-in by the master, which would terminate the trans-
fer after receiving the desired bytes. For every bit of data moved, one clock pulse is generated 
and the data on the SDA line must be stable during the HIGH period of SCL. The logic level 
of the data line can only change when the SCL line is LOW.

Note that in either of the aforementioned cases, the master did all of the clocking and control-
led the initiation and termination of the I2C session. The I2C master is always responsible for 
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generating the clock on the I2C bus. For an I2C bus with multiple masters, each master gener-
ates its own specifi c clock. The only things that can alter a master’s clock are a slower slave 
device holding down the clock line or another master I2C device during arbitration.

As you can see in both Schematic 8.4 and Schematic 8.5, the I2C bus SDA and SCL lines are 
pulled high by a pair of pull-up resistors. To participate on the I2C bus, an I2C device must 
present an open collector interface to the bidirectional SDA and SCL I2C-bus lines. This type 
of open collector interface performs a wired-AND function. As long as the 400 pF I2Cbus 
capacitance limit is not exceeded, any number of I2C devices can coexist on a single I2C bus.

The wired-AND confi guration used in I2C could really cause lots of confusion on the bus if it 
were not for the strict protocol that makes up the logical side of the I2C bus. Remember the start 
and stop bits you were exposed to in RS-232? Well, I2C has start and stop bits too, but instead 
of bits they are technically known as I2C START and STOP conditions. The I2C START and 
STOP logic levels can be seen in Figure 8.13. The SCL line must be in a HIGH state for either a 
START or a STOP condition to occur. An I2C START condition is defi ned as a HIGH to LOW 
transition of the SDA line while the SCL line is HIGH. An I2C STOP condition occurs when 
the SDA line toggles from LOW to HIGH while the SCL line is HIGH. The I2C master always 
generates the S and P conditions. Once the I2C master initiates a START condition, the I2C bus is 
considered to be in a busy state.

I know what you’re thinking. I2C has STOP and START bits like RS-232 does, and I2C trans-
fers 8 bits of data in a data packet, just like RS-232 does. That means that an I2C data packet 

Schematic 8.4: For the sake of simplicity, I’ve left out all of the 
standard microcontroller connections to help us focus on the I2C bus. 

I fl ipped a coin to choose the master microcontroller.
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is just like an RS-232 data packet with 8 bits of data sandwiched between a START and STOP 
bit. Not exactly …

It is true that I2C requires that the data be transferred in bytes. It is also true that I2C starts a 
transmission with a START condition and ends the transmission with a STOP condition. The 
difference between an RS-232 transmission and an I2C transmission is that an unrestricted 
number of data bytes can fl ow between an I2C START and STOP condition while only a 
single byte of information can be transferred between the start and stop bits of an RS-232 

Schematic 8.5: This is a representation of how an I2C device connects to the 
I2C bus. Note that the type of transistors and associated circuitry would depend 

on the technology (CMOS, NMOS, bipolar) of the I2C device.
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data packet. Another major difference in I2C and RS-232 is that the data is transferred most 
signifi cant bit fi rst in an I2C data packet instead of least signifi cant bit fi rst, as it is in RS-232. 
Regardless of the order in which the bits are transmitted, the real enabler for I2C multibyte 
transfers is the I2C acknowledge bit. Every byte that fl ows on the I2C bus must be followed by 
an acknowledge bit. Since the acknowledge bit is very important for I2C communications, let’s 
get a better understanding of how it works.

8.8.3 I2C ACKS and NAKS

The acknowledge bit (ACK) rides on the master-generated clock pulse train. During an 
acknowledge, the transmitting device releases the SDA line and uses the wired-AND func-
tionality of the I2C bus to pull the SDA line to a HIGH state. The I2C master generates an 
acknowledge clock pulse and during the acknowledge bit time (HIGH SCL), the receiving I2C 
device must pull the SDA line down to a LOW state for the time that SCL is in the acknowl-
edge clock pulse HIGH state. Standard I2C protocol expects the receiving I2C device to 
acknowledge every byte that is received.

There could be times when the slave can’t acknowledge the master. For instance, the slave is 
busy taking analog readings and “can’t come to the I2C phone.” In this case, the slave leaves 
the SDA line in a HIGH state. The I2C master senses this negative acknowledge (NAK) and 
can choose to either end the transaction with a STOP condition or begin a new transfer by 
issuing a repeated START condition. The repeated START condition allows the current I2C-
bus master to keep control of the I2C-bus to issue another START bit instead of relinquishing 
the bus and attempting to recapture it to issue another START condition.

What if the slave “answers the I2C phone” in slave-receiver mode but later gets called by a 
process that doesn’t allow the slave to receive any more bytes? When the slave can’t continue, 
it allows the SDA line to go HIGH during the acknowledge bit time, which in turn sends a 
NAK to the I2C master. At this point, the I2C master can either abort the transfer or attempt a 
restart.

A NAK condition isn’t always a bad thing. When the I2C master is in master-receiver mode, it 
signals the end of the data transfer from the slave-transmitter by generating a NAK on the last 
byte it clocked out of the slave-transmitter. The slave-transmitter senses the NAK and releases 
the SDA line so the I2C master can either generate a STOP condition or a repeated START 
condition. Logical examples of ACKs and NAKs are depicted in Figure 8.14.

8.8.4 More on Arbitration and Clock Synchronization

Now that you’re up to your ankles in I2C theory, let’s talk a bit more about arbitration. I2C 
depends heavily on accurate clocking from each master on the I2C bus, and the wired-AND-
based I2C bus connections have a hand in the clock synchronization process as well.
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Data on the I2C bus is only valid when the SCL line is in the HIGH portion of a clock pulse. 
Let’s use our example I2C bus with two microcontrollers attached, as shown in Schematic 8.2. 
If each microcontroller can clock the I2C bus at a specifi c speed, that means that the internal 
master I2C engine of each microcontroller on the I2C bus has a means of counting to effect the 
elapsed times needed to swing the I2C bus HIGH and LOW at a specifi c rate.

The AVR being the master of the I2C bus wants to communicate with the PIC slave. The AVR 
generates the clock on the SCL line and sends a byte of data. The PIC acknowledges the data 
and then has to go off to service an external interrupt. If the AVR continues to try to commu-
nicate with PIC, the AVR will soon miss the acknowledgement it is expecting from the slave 
PIC, and the transmission would have to be aborted or restarted by the AVR. This is where the 
I2C-bus wired-AND logic comes into play to help avoid such a situation.

Think of the I2C bus as a simple AND gate. The truth table for a two-input AND gate is shown 
graphically in Figure 8.15.

Now, in Figure 8.16, let’s substitute the AVR’s and the PIC’s SCL line states for the inputs 
with the AND gate outputs representing the resultant state of the I2C bus SCL line.

When the PIC is able to service the AVR’s requests immediately, the PIC leaves the SCL line 
alone by driving its SCL interface HIGH. You can see this in states 1 and 3 of our substituted 
AND gate example in Figure 8.16. If the PIC needs more time to respond to AVR’s requests, 

Figure 8.14: The receiver data output is shown twice here to 
illustrate the difference between an ACK and a NAK.
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Figure 8.15: This is plain old everyday logic. Any presence of a LOW on 
either of the inputs results in a LOW on the AND gate output.
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Figure 8.16: The I2C bus is a wired-AND confi guration.
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it can pull the SCL line down to a LOW state. The act of the PIC pulling down the SCL line is 
called clock stretching. As you can see in states 2 and 4, the AVR is unable to change the state 
of the SCL line when the PIC is holding the SCL line LOW. So, the AVR goes into a HIGH 
wait state and sits there until the PIC releases the SCL line and allows it to return to a HIGH 
state. The bottom line is that the SCL line will be held LOW by the I2C device with the long-
est LOW period. The I2C device with the shortest HIGH period determines how long the SCL 
line will remain in a HIGH state during clocking. This is how the I2C bus is synchronized.

It is possible for two or more I2C masters to initiate a start condition at the same time. When 
that occurs, the masters requesting the use of the I2C bus must utilize the I2C arbitration proc-
ess. I2C arbitration is performed using the SDA line while the SCL line is at a HIGH level. 
Both the SCL and SDA lines are wired-AND confi gurations. So, we can apply the same logic 
to the arbitration process as we did to the I2C bus clock synchronization.

We must assume that both the AVR and the PIC in Schematic 8.2 are masters on the I2C bus. 
Figure 8.17 shows us that when any master on the I2C bus takes the SDA line LOW, the other 
masters on the I2C bus are unable to drive the SDA line high. Thus, the I2C-bus arbitration 
loser is the master that attempts to transmit a HIGH, while another master is transmitting a 
LOW on the SDA line. The master transmitting a HIGH when the SDA line is LOW senses 
that the SDA line is not at the same level as it is transmitting and switches off its data output 
stage. The losing master applies a HIGH to the SDA line and reverts to slave mode if it is 
confi gured to perform the slave function. By presenting a HIGH to the SDA line, the losing 

Figure 8.17: The wired-AND logic also applies to the I2C SDA line.
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master releases the SDA line to the winning master. Let’s say the AVR is the winning master, 
and the PIC is the losing master. In Figure 8.17, states 1 and 3 defi ne the state of the SDA line 
while the AVR was in charge of the I2C bus. If the PIC was declared the winner and the AVR 
the loser, states 1 and 2 would go into effect while the PIC was in control of the I2C bus.

Arbitration can be performed for a number of bits into the transaction. For instance, the mas-
ters may all be addressing the same slave in the same manner. In that case, the address bits 
from each master would be identical. The good news is that the winning master’s address and 
data are the only valid items on the I2C bus and nothing in terms of address and data informa-
tion is lost in the arbitration process.

Clock synchronization is always going on in the SCL domain while arbitration may be occur-
ring at the SDA level. A slave I2C device can throttle the speed in which it accepts data bytes 
by dragging the SCL line LOW. In standard mode, any smart device on the I2C bus that can 
extend the LOW period of the clock can control the speed of other devices on the I2C bus 
because the device with the longest LOW period determines the top speed of every other mas-
ter device on the I2C bus.

As long as we follow the rules and use a device with built-in I2C capability, I2C is dead-easy 
to implement. Before we write some I2C code to go along with our AVR and PIC RS-232 code 
modules, let’s take a look at how data fl ows across an I2C bus.

8.8.5 I2C Addressing

You already know that a START condition begins the I2C data transfer process. Since multi-
ple devices can coexist on the I2C bus, there must be a way to differentiate them. This is done 
with I2C addressing. I2C devices can be addressed using a 7-bit or 10-bit format. I2C 10-bit 
addressing isn’t diffi cult to grasp once you understand 7-bit addressing. So, instead of try-
ing to school you on 10-bit addressing, I’ll concentrate on showing you how 7-bit addressing 
works as we’ll only be using 7-bit addressing in our project.

The fi rst byte sent on the I2C bus after the start is usually an address byte. One exception 
involves sending a “general call” address following the start condition. The “general call” 
addresses everyone on the I2C bus. Our project doesn’t use the “general call.” So, let’s move 
on with picking apart the I2C 7-bit address mechanism.

The seven ADDRX bits in the 7-bit address scheme shown in Figure 8.18 are taken from the 
fi rst seven bits of the address byte that follows the start condition. Remember, in I2C land, the 
most signifi cant bit is transmitted fi rst. So, bits 7 through 1 of the address byte actually carry 
the I2C address information. The least signifi cant bit, bit 0, determines whether the I2C opera-
tion will be a read or write. A binary zero in bit 0 of the address byte tells the slave that the 
master will be writing data to the slave device. Conversely, a binary 1 in the least signifi cant 
bit (LSB) position will allow the master to read information from the slave. Each device on the 
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I2C bus sees the address byte. Only the device that contains the match for the fi rst seven bits of 
the address byte will ultimately respond to the I2C master’s call. If the I2C operation is a write 
from the master, the slave device enters slave-receiver mode. An I2C-bus read operation will 
put the addressed slave device into slave-transmitter mode.

Let’s write some I2C code.

8.8.6 Some I2C Firmware

Custom Computer Services PIC Compiler easily handles the I2C master chores. Custom 
Computer Services C for PICs provides built-in code for the standard I2C functions such as 
i2c_start, i2c_read, i2c_write, and i2c_stop. In this section, we’re also 
going to be producing AVR I2C code in parallel with the PIC C code using ICCAVR. The 
ImageCraft C compiler doesn’t have built-in AVR I2C functions, but we can easily write our 
own. Reading and writing in I2C master mode is straightforward. The real coding work comes 
in when exercising the slave side of these common I2C functions.

You’ve already seen Schematic 8.3, which contains the PIC18F452 I2C circuitry. Schematic 
8.6 shows the AVR I2C circuitry, which is very similar to the PIC I2C circuitry.

8.8.7 The AVR Master I2C Code

Atmel’s term for I2C is Two-Wire Interface (TWI). For I2C master operation, we will deal 
with only four AVR registers: the Two-Wire Interface Data Register (TWDR), the Two-Wire 
Interface Control Register (TWCR), the Two-Wire Interface Bit Rate Register (TWBR), and 
the Two-Wire Interface Status Register (TWSR). The TWBR is set and forget. So, we’ll only 
be exercising the contents of three AVR I2C registers.

You can read data sheets as well as I can, so let’s examine the AVR TWI subsystem as we 
write some code to drive it. To make this easier to digest, we want to write our AVR TWI code 
to look as much like our PIC I2C code as we can. So, I’ll use the Custom Computer Services C 
Compiler nomenclature for I2C in the TWI AVR ICCAVR C source code.

The fi rst thing we want to do is initialize the AVR’s TWI module. The TWCR, which is used 
rather heavily, is shown in Figure 8.19.

Clearing the TWEN bit of the TWCR disables the AVR’s TWI module, and stuffi ng 0x1E into 
the TWBR bit puts our I2C bus on the I2C SLOW train. There’s a formula for calculating the 

ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 R/W
MSB LSB

Figure 8.18: Think of this as subtracting 1 from the real I2C address to write and 
adding 1 to the I2C address to read. The ADDRX bits make up the actual slave address.
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I2C-bus bit rate in the data sheet, but there’s an easier application to do the bit rate calculation 
included with ICCAVR (Figure 8.20).

Once the I2C bit rate is set, we can enable the AVR’s TWI module. Our application will be 
simple enough to preclude the use of interrupts, and our AVR master will not be confi gured to 
also act as a slave. Therefore, the TWIE bit will remain clear for now. I’ve coded the TWI reg-
isters in Code Snippet 8.16 to refl ect that. The fl ags variable is used to identify certain states of 
operation in our I2C code.

Schematic 8.6: This is the partially assembled Easy Ethernet AVR circuitry with an 
added 74HCT573D octal transparent latch. For both the PIC and the AVR, the only 

parts I’ve added that are really required are the I2C pull-up resistors. In some instances, 
the AVR doesn’t require pull-up resistors because it can pull up the I2C port pins

internally. You only need one set of pull-up resistors on the I2C bus.
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Figure 8.19: You’ve already fi gured out that TW stands for Two-Wire 
Interface. Bits 7:4 are the busiest bits in this register.
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unsigned char fl ags;
//******************************************************************
//* INITIALIZE THE TWI
//******************************************************************
void twi_init(void)
{
 fl ags = 0x00;
 TWCR= 0x00; //disable twi
 TWBR= 0x1E; //set bit rate
 TWSR= 0x00; //set prescale
 TWAR= 0x00; //set slave address
 TWCR= 0x04; //enable twi
}

Code Snippet 8.16: Since the AVR will be the master on the I2C bus, 
we’ll leave the slave address at 0x00 for now.

Like its PIC counterpart, our AVR I2C master will need some code to implement the basic 
elements of I2C that allow it to participate on an I2C bus. Since a START condition is the 
beginning of every I2C transfer, let’s begin by writing the AVR I2C start routine. The Custom 
Computer Services C Compiler provides a built-in I2C start routine called i2c_start (Code 
Snippet 8.17).

Figure 8.20: Hmmm … which method do you think I used 
to get the value for the I2C SLOW bit rate?
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#defi ne START_i2c 0x08
//******************************************************************
//*  AVR i2c START
//******************************************************************
void i2c_start(void)
{
 TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
 while (!(TWCR & (1<<TWINT)));
 if ((TWSR & 0xF8) != START_i2c)
   printf(“i2c Start Error\r\n”);
}

Code Snippet 8.17: Note that the 0xF8 masks out the prescale bits in the TWSR. 
The status codes specifi ed in the AVR data sheet do not include the prescale bit values.

Writing a 1 to the TWINT bit of the TWCR clears the TWINT bit. Everything revolves around 
the state of the TWINT bit, as when it is set the TWI has fi nished an operation and is waiting 
for the application to respond. Normally an interrupt is generated every time the TWINT goes 
from a low to high state. Since we’re not using I2C interrupts, we must poll the TWINT bit 
after we reset it and look for it to return to a high state.

An I2C START is issued when the TWINT, TWSTA and TWEN bits are set. When the 
TWINT bit returns to a set state, the I2C START has completed. A successful I2C START con-
dition is signaled by 0x08 in the TWSR. I’ve added some diagnostic printf code to fl ag an 
I2C START condition error.

We must also be able to stop the I2C transfer. That is done within the Custom Computer 
Services C Compiler with a built-in i2c_stop function. Guess what we will call our AVR 
stop function. Our AVR stop code is shown in Code Snippet 8.18.

//******************************************************************
//*  AVR i2c STOP
//******************************************************************
void i2c_stop(void)
{
 TWCR = (1<<TWINT)|(1<<TWEN) | (1<<TWSTO);
}

Code Snippet 8.18: In slave mode, the STOP condition can be used to recover 
from an error condition by forcing the slave to release the SCL and SDA lines.

A STOP condition is generated by setting TWINT, TWEN, and TWSTO. The TWSTO bit is 
automatically cleared once the STOP condition has executed on the I2C bus.

Once a START condition is generated, the next thing that happens in a normal I2C data trans-
fer is the transmission of the slave address and mode bit. The slave address and mode bit are 
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transmitted using an I2C write command. We’ll name our AVR code in Code Snippet 8.19 
after the Custom Computer Services C Compiler I2C function called i2c_write.

#defi ne addrfl ag 0x01 //00000001
#defi ne clr_modeSLA fl ags &= ~addrfl ag
#defi ne set_modeSLA fl ags |= addrfl ag
#defi ne MODE_SLA (fl ags & addrfl ag)

#defi ne modeMRfl ag 0x02 //00000010
#defi ne clr_modeMR fl ags &= ~modeMRfl ag
#defi ne set_modeMR fl ags |= modeMRfl ag
#defi ne MODE_MR (fl ags & modeMRfl ag)

#defi ne modeMTfl ag 0x04 //00000100
#defi ne clr_modeMT fl ags &= ~modeMTfl ag
#defi ne set_modeMT fl ags |= modeMTfl ag
#defi ne MODE_MT (fl ags & modeMTfl ag)

//******************************************************************
//*  MASTER TRANSMITTER MODE STATUS CODES
//******************************************************************
#defi ne MT_SLA_ACK 0x18 //Master Transmitter Slave Addr ACK
#defi ne MT_DATA_ACK 0x28 //Master Transmitter Data ACK
//******************************************************************
//*  MASTER RECEIVER MODE STATUS CODES
//******************************************************************
#defi ne MR_SLA_ACK 0x40 //Master Receiver Slave Addr ACK

//******************************************************************
//*  AVR i2c WRITE
//******************************************************************
void i2c_write(unsigned char datum)
{
 TWDR = datum;
 TWCR = (1<<TWINT)|(1<<TWEN);
 while (!(TWCR & (1<<TWINT)));
 if(MODE_SLA && MODE_MT)
 {
  if ((TWSR & 0xF8) != MT_DATA_ACK)
  printf(“i2c Data Transfer Error MT Mode %x\r\n”,(TWSR & 0xF8));
  else
  {
   clr_modeSLA;
   clr_modeMT;
  }
 }
 else if (MODE_SLA && MODE_MR)
 {
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  if ((TWSR & 0xF8) != MR_DATA_ACK)
  printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));
  else
  {
   clr_modeSLA;
   clr_modeMR;
  }
 }
 else
 {
  if ((TWSR & 0xF8) == MT_SLA_ACK)
   {
     set_modeMT;
     set_modeSLA;
   }
 else if ((TWSR & 0xF8) == MR_SLA_ACK)
 {
      set_modeMR;
      set_modeSLA;
 }
 else
 {
     printf(“i2c Start Error %x\r\n”,(TWSR & 0xF8));
     clr_modeSLA;
     clr_modeMR;
     clr_modeMT;
 }
  }
}

Code Snippet 8.19: Everything in this snippet fl ows on status codes.

Before initiating the I2C transmission, the slave address and mode bit are loaded into the 
TWDR. Toggling the TWINT bit in the TWCR kicks off the slave address and mode bit write 
process. The TWEN bit is set to ensure that the AVR’s I2C interface is activated.

When the slave address and mode bit write has completed without error, status codes of 
0x18(MT_SLA_ACK) or 0x40(MR_SLA_ACK) will appear within the TWSR. If the mode 
bit is set, an I2C slave read operation will be performed and fl ags will be set to denote this 
state (MODE_SLA and MODE_MR for a read operation, MODE_SLA and MODE_MT for a write 
operation).

If the mode is set for the AVR to become a Master Transmitter (MODE_MT), the next I2C oper-
ation will perform the writing of the data. Our application will only send one byte per trans-
mission, and again we will call upon the services of the AVR i2c_write function we just wrote. 
This time the slave address and mode bit are replaced by the actual data we want to send to 
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the slave. At this point, the AVR is considered a Master Transmitter and the slave is in slave-
receiver mode. Our AVR I2C code has set the MODE_SLA and MODE_MT fl ags indicating that 
the AVR is in Master Transmitter mode and that the slave has been successfully addressed. A 
clearing of the TWINT bit sends the data onto the I2C bus. If everything goes as planned, the 
TWSR will contain 0x28, which says that the slave acknowledged the data transfer. The AVR 
Master Transmitter then issues a STOP condition to end the I2C session.

8.8.8 The AVR I2C Master-Receiver Mode Code

There will be times with the AVR master must retrieve some information from the PIC slave. 
That’s when we deploy the AVR i2c_read function in Code Snippet 8.20.

//******************************************************************
//*  MASTER RECEIVER MODE STATUS CODES
//******************************************************************
#defi ne MR_DATA_ACK 0x50 //Master Receiver Data ACK 
#defi ne  MR_DATA_NAK 0x58 //Master Receiver Data NAK

#defi ne ACK_i2c 0x01
#defi ne NAK_i2c 0x00
//******************************************************************
//* AVR i2c READ
//******************************************************************
unsigned char i2c_read(unsigned char acknak)
{
 if(acknak == ACK_i2c)
 {
  TWCR = 0xC4;
  while (!(TWCR & (1<<TWINT)));
  if ((TWSR & 0xF8) != MR_DATA_ACK)
  printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));
 }
 else //acknak == NAK_i2c
 {
  TWCR = 0x84;
  while (!(TWCR & (1<<TWINT)));
  if ((TWSR & 0xF8) != MR_DATA_NAK)
  printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

  clr_modeSLA;
  clr_modeMR;
 }
 return(TWDR);
}

Code Snippet 8.20: The important thing to do here is to always send a 
NAK when reading the last byte from the slave.
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Figure 8.21 lays out the bit pattern written to the TWCR after the START condition and slave 
addressing has successfully completed. The AVR is in master-receiver mode, and the slave is 
in slave-transmitter mode when the AVR i2c_read function is entered.

Figure 8.21: The TWI Enable Acknowledge (TWEA) bit is a 
“don’t care” bit until we enter master-receiver mode.

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

1 1 0 0 0 1 0 0

TWCR

Notice that we purposely set the TWEA bit, which we have been ignoring until now. Setting 
the TWEA bit generates an ACK on the I2C bus when a data byte is received by the AVR 
master receiver. When things go right, the TWSR will hold the value of the MR_DATA_ACK 
(0x50) after each byte received by the AVR in Master Receiver mode. Our I2C application is 
setup to read 4 bytes from the slave device.

The last byte we receive from the slave transmitter must be NAKed. That’s where the TWEA 
bit in Figure 8.22 gets the other 7.5 minutes of its 15 minutes of fame. By writing a 0 (zero) 
to the TWEA bit, a NAK is generated, which results in termination of the I2C read session 
between the master receiver and the slave transmitter. The TWSR will contain a 0x58 (MR_
DATA_NAK) if all goes well with the NAK operation.

Figure 8.22: Writing a 0 to the TWEA bit temporarily disconnects the AVR from the I2C bus.

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

1 1 0 0 0 1 0 0

TWCR

I have a project in mind. Let’s combine our AVR RS-232 skills with our newfound AVR 
I2C skills to transfer data between the partially assembled Easy Ethernet AVR and the Easy 
Ethernet CS8900A boards. Before we put the whole of the AVR code together, let’s write 
some PIC I2C slave code fi rst.

8.8.9 The PIC I2C Slave-Transmitter Mode Code

To implement I2C on the Microchip PIC, there are only three PIC registers we need to be 
concerned with: SSPCON, SSPSTAT, and SSPBUF. SSPCON is used to determine whether 
or not a collision has occurred (WCOL) and to ensure we are not stretching the clock when 
we shouldn’t be (CKP � 1). Clock stretching is legal for an I2C slave device when it can’t 
respond in a timely manner. SSPSTAT gives us the status of the data transfer, whereas 
SSPBUF is the register that actually transfers the data to and from the I2C bus.
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The PIC’s Master Synchronous Serial Port (MSSP) does several other things for us, includ-
ing double buffering our received I2C data using the SSPSR/SSPBUF register combination, 
providing a holding register for the slave address, and generating I2C interrupts on START 
and STOP conditions. Double buffering is the act of holding or collecting data in an input or 
output buffer while operating on a totally separate input or output buffer. In short, double buff-
ering allows data to be assembled for transmission while previously accumulated data is being 
transmitted. Receive double buffering occurs when the microcontroller is working on pulling 
previously received data from an input buffer while yet another input buffer is taking in new 
data and holding it until the microcontroller can start processing it.

As simple as the I2C concept is, if you’re not careful, you can get your I2C code wrapped 
around the axel. To make I2C coding more manageable, the I2C transmission and reception 
process can be broken down into fi ve states. Everything that’s normal in I2C begins with a 
START condition. The START condition must be detected (S � 1) no matter what, and nothing 
begins until a valid START condition is sensed. Once we have detected a valid START bit, we 
can use the other bits inside the SSPSTAT register to determine which state the I2C transaction 
is currently in. We used the TWSR for this in the AVR I2C code. The MSSP issues an interrupt 
on every byte transfer. This allows us to write I2C code, such as the code presented in Code 
Snippet 8.21, using the fi ve states to take advantage of the MSSP module’s interrupt generation.

//******************************************************************
//* SLAVE RAM DEFINITIONS
//*****************************************************************
int1  update_latch;
int8  index,digit;
int8  numbers[] = {0,1,2,3,4,};
//******************************************************************
//* I2C SLAVE RECEIVE
//******************************************************************
#INT_SSP
   ssp_interrupt ()
{
//#bit SMP = SSPSTAT.7
//#bit CKE = SSPSTAT.6
//#bit D_A = SSPSTAT.5
//#bit P = SSPSTAT.4
//#bit S = SSPSTAT.3
//#bit R_W = SSPSTAT.2
//#bit UA = SSPSTAT.1
//#bit BF = SSPSTAT.0

   int8 dummy;
//---------------------------------------------------
// The I2C code below checks for 5 states:
//---------------------------------------------------
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// State 1: I2C write operation, last byte was an address byte.
//
// SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
//
// State 2: I2C write operation, last byte was a data byte.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
//
// State 3: I2C read operation, last byte was an address byte.
//
// SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
//
// State 4: I2C read operation, last byte was a data byte.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
//
// State 5: Slave I2C logic reset by NACK from master.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
//
//---------------------------------------------------

//State 1
   if(S && !D_A && !R_W && BF )
     dummy = SSPBUF;
//State 2
   else if(S && D_A && !R_W && BF )
     {
       digit = SSPBUF;
       update_latch = TRUE;
     }
//State 3
   else if(S && !D_A && R_W && !BF )
     {
       index = 0x00;
       while(BF);
       do{
       WCOL = 0;
       SSPBUF = numbers[index];
       }while(WCOL);
       ++index;
       CKP = 1;
     }
//State 4
   else if(S && D_A && R_W && !BF )
     {
       while(BF);
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       do{
       WCOL = 0;
       SSPBUF = numbers[index];
       }while(WCOL);
       if(++index > 0x04)
       index = 0x00;
       CKP = 1;
     }
//State 5
  else if(S && D_A && !R_W && !BF )
  index = 0;
}

Code Snippet 8.21: The update_latch variable and numbers[] 
array will be used by in our AVR-to-PIC grand I2C ball.

The I2C SLAVE RECEIVE routine is the PIC18F452 I2C interrupt handler code that responds 
to every interrupt issued by the PIC18F452’s microcontroller’s MSSP module. I’ve moved the 
bit defi nitions of the SSPSTAT register into the routine’s air space for clarity.

Notice that in each of the fi ve defi ned states that S � 1 is common. The bit S is defi ned as the 
third bit of the SSPSTAT register. If a valid START condition is detected, this bit will be set.

The slave address byte immediately follows the START bit. Since the slave microcontrol-
ler’s MSSP will always generate an interrupt if the incoming address byte matches the slave’s 
internally stored address (in SPPADD), the matching address byte just received triggers our 
fi rst interrupt and its subsequent response. The MSSP module will also automatically issue an 
acknowledge (ACK) pulse upon detecting an address match.

The D_A bit signals if the last byte received was data or address. In this case, we know that 
a START bit was generated and was indeed followed by a 7-bit address. Therefore, D_A is 
cleared to zero, indicating that the last byte received was an address byte.

The R/W bit of the address is cleared for a write operation and set for a read operation. The 
R_W bit of the SSPSTAT registers refl ects the level of the R/W bit in the address byte. Note 
that if the operation is a write operation, the Buffer Full (BF) bit is always set, indicating that 
data is in the buffer. The State 1 code runs following the reception of the address byte. The 
address byte is read and discarded as the slave MSSP module has already digested the address 
byte’s contents. The act of reading SSPBUF also clears the BF bit. If the BF bit is not cleared 
at this point, the next incoming byte would cause an overfl ow condition. Let’s follow the 
entire state-by-state chain of events involved with sending some data from the AVR master I2C 
microcontroller to the PIC slave I2C microcontroller.

Suppose that the AVR master I2C microcontroller needs to send a message via I2C to the PIC I2C 
slave microcontroller that tells the slave microcontroller to write 0x55 to its onboard 74HCT573 
latch. The basic AVR TWI code would consist of what you see in Code Snippet 8.22.
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i2c_start();
i2c_write(0x18);
i2c_write(0x55);
i2c_stop();

Code Snippet 8.22: The Easy Ethernet CS8900A’s I2C address is 0x18.

After initiating a START condition, the master microcontroller clocks out the slave micro-
controller’s I2C address, hexadecimal 18 (0x18). The code i2c_write(unsigned char 
datum) indicates that an I2C write operation has been requested as the R/W bit in the I2C 
address byte is cleared. At this point in time, every slave microcontroller on the I2C bus is 
listening on the I2C link looking to match its address against the incoming address byte. Our 
PIC I2C slave microcontroller compares the incoming address with the address stored in its 
SSPADD register and detects a match. The slave’s BF bit is set, an ACK pulse is generated by 
the slave microcontroller’s MSSP hardware, and an SSP interrupt is generated. The PIC I2C 
slave microcontroller enters the I2C SSP interrupt routine and using the SSPSTAT bits 
determines that the I2C transaction is in State 1, which tells us that the last byte received was 
an address byte. The BF bit is set, which means that the contents of the SSPSR register have 
been transferred to the SSPBUF register. To avoid an overfl ow condition, the PIC’s SSPBUF 
register must be read even though we don’t have any further use for the address data.

It’s the slave microcontroller’s duty to translate the incoming I2C data stream.

#defi ne le_pin PORTC,1

#defi ne latchdata bit_set(le_pin); \
   delay_us(1); \
   bit_clear(le_pin);
//******************************************************************
//* SLAVE MAIN
//******************************************************************
   do{
       {
   if(update_latch)
   {
       output_d(digit);
          latchdata;
       update_latch = FALSE;
   }
       }
       }while(1);
}

Code Snippet 8.23: Now you know what the update_latch variable 
you saw in Code Snippet 8.21 is for.
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The data that was sent from the I2C master that is to be output to the slave’s 74HCT573 latch 
was collected into the digit variable in the PIC’s I2C interrupt handler routine. In the same 
stroke, the PIC I2C interrupt handler updated the update_latch fl ag to TRUE.

The code in Code Snippet 8.23 is the main routine that runs continuously inside the Easy 
Ethernet CS8900A’s PIC18F452. The PIC I2C slave’s code picks up the state of the update_
latch variable. If the update_latch variable is TRUE, the data within the digit vari-
able is output to the 74HCT573 latch by the latchdata macro and the update_latch 
variable is cleared to a FALSE condition. Each time a value is received by the slave via the I2C 
bus, it is transferred to the latch.

If the master microcontroller wants data from the slave microcontroller, State 3 starts things 
off and the slave microcontroller is coaxed into slave-transmitter mode while the master 
microcontroller becomes a master-receiver. In Code Snippet 8.24, the master microcontrol-
ler initiates a START condition and follows it with a “read” address byte. Since the R/W bit 
is the least signifi cant bit in the address byte, the write address is simply the base address 
incremented by 1 (0x19 in our case). Incrementing the address byte has the effect of setting 
the R_W bit inside the I2C address byte. In this mode the master microcontroller, not the slave 
microcontroller, generates the I2C ACKs and NAKs on the I2C bus.

#defi ne  ACK_i2c    0x01
#defi ne  NAK_i2c    0x00

   i2c_start();
   i2c_write(0x19);
   for(x=0;x<3;++x)
   {
     datum = i2c_read(ACK_i2c);
     printf(“datum = 0x%x\r\n”,datum);
   }
   datum = i2c_read(NAK_i2c);
   i2c_stop();
   printf(“datum = 0x%x\r\n”,datum);

Code Snippet 8.24: No worries: We read every byte except the last within the for loop.

Things on the I2C bus are a bit busier when a master is reading from a slave. We already know 
that the slave microcontroller has four bytes of information the master can access stored in 
the numbers[] array. Let’s use the AVR and the I2C bus to retrieve the four bytes from the 
slave’s numbers[] array and print them out to a master Tera Term Pro session.

The slave microcontroller must be ready to send the fi rst byte of data after the ACK follow-
ing the address byte. The State 3 code attempts to load the SSPBUF with that fi rst byte of 
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data while looking out to make sure the SSPBUF is clear and ready for the byte to be loaded. 
In our code, the fi rst byte of the array numbers[] (0x00) is loaded and sent following the 
reception of the address byte. The index variable is incremented to point to the next element 
of the numbers[] array. Setting the CKP (SCK release control) bit assures that the slave 
microcontroller is not holding the clock line low and thus “stretching” the clock.

The master microcontroller is coded to collect a total of four bytes. Since the last byte read 
was not the address byte, we can move on to State 4 in the PIC interrupt handler code. The 
remainder of the four bytes of data required by the master microcontroller are clocked out of 
the slave-transmitter microcontroller in State 4. To halt the I2C read operation, the master gen-
erates a NAK after the last byte is read. The NAK_i2c in the i2c_read(NAK_i2c) tells 
the AVR I2C read function to send the NAK. That brings us to State 5 and the end of the I2C 
read operation.

8.8.10 The AVR-to-PIC I2C Communications Ball

Let’s put everything we’ve written for RS-232 and I2C for the AVR together with everything 
we’ve written for RS-232 and I2C for the PIC and move some data. The source code PIC slave 
application and the AVR master I2C application is contained within Code Snippets 8.25 and 
8.26, respectively.

/////////////////////////////////////////////////////////////////////
// PIC I2C SLAVE DRIVER
// EASY ETHERNET CS8900A BOARD
// Author: Fred Eady
// Version: 1.0
// Date: 08/25/03
// Description: I2C SLAVE FUNCTION WITH 74HCT573 CODE
/////////////////////////////////////////////////////////////////////
#include <18F452.h>
#include <f452.h>
#device ICD=TRUE
#fuses
DEBUG,HS,NOWRT,NOWDT,NOPUT,NOPROTECT,NOBROWNOUT,NOLVP,NOCPD,NOEBTR
#id 0x0812

#use fast_io(A)
#use fast_io(B)
#use fast_io(C)
#use fast_io(D)
#use fast_io(E)

#defi ne esc 0x1B
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//******************************************************************
//* I2C SLAVE ADDRESS
//******************************************************************
// LANE ADDRESS IS UPPER NIBBLE
#defi ne i2c_addr 0x18
//******************************************************************
//* RS232 AND I2C DEFINITIONS
//******************************************************************
#use delay(clock=20000000)
#use i2c(Slave,Slow,sda=PIN_C4,scl=PIN_C3,force_hw,address=i2c_addr)
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7)
//******************************************************************
//* SLAVE FUNCTION PROTOTYPES
//******************************************************************
void cls(void);
//******************************************************************
//* SLAVE RAM DEFINITIONS
//******************************************************************
int1  update_latch;
int8  index,digit;
int8  numbers[] = {0,1,2,3,4,};

#defi ne le_pin PORTC,1
#defi ne latchdata bit_set(le_pin); \
   delay_us(1); \
     bit_clear(le_pin);
//******************************************************************
//* I2C SLAVE RECEIVE
//******************************************************************
#INT_SSP
   ssp_interrupt ()
{
//#bit SMP = SSPSTAT.7
//#bit CKE = SSPSTAT.6
//#bit D_A = SSPSTAT.5
//#bit P = SSPSTAT.4
//#bit S = SSPSTAT.3
//#bit R_W = SSPSTAT.2
//#bit UA = SSPSTAT.1
//#bit BF = SSPSTAT.0

   int8 dummy;
//;---------------------------------------------------
//; The I2C code below checks for 5 states:
//;---------------------------------------------------
//; State 1: I2C write operation, last byte was an address byte.
//;
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//; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
//;
//; State 2: I2C write operation, last byte was a data byte.
//;
//; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
//;
//; State 3: I2C read operation, last byte was an address byte.
//;
//; SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
//;
//; State 4: I2C read operation, last byte was a data byte.
//;
//; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
//; 
//; State 5: Slave I2C logic reset by NACK from master.
//; 
//; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
//; 
//;---------------------------------------------------

//State 1
   if(S && !D_A && !R_W && BF )
     dummy = SSPBUF;
//State 2
   else if(S && D_A && !R_W && BF )
     {
       digit = SSPBUF;
       update_latch = TRUE;
     }
//State 3
   else if(S && !D_A && R_W && !BF )
     {
       index = 0x00;
       while(BF);
       do{
       WCOL = 0;
       SSPBUF = numbers[index];
       }while(WCOL);
       ++index;
       CKP = 1;
     }
//State 4
   else if(S && D_A && R_W && !BF )
     {
       while(BF);
       do{
       WCOL = 0;
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       SSPBUF = numbers[index];
       }while(WCOL);
       if(++index > 0x04)
       index = 0x00;
       CKP = 1;
     }
//State 5
   else if(S && D_A && !R_W && !BF )
     index = 0;
}
void main() {

   int8 x;
   SET_TRIS_A(0b11111111);
   SET_TRIS_B(0b11111111);
   SET_TRIS_C(0b11111101);
   SET_TRIS_D(0b00000000);
   ADCON1 = 0x06;   //00000110 all ports set for digital
   ADCON0 = 0;
   update_latch = FALSE;
//******************************************************************
//* INITIALIZE COMMON VARIABLES
//******************************************************************
   SSPSTAT = 0x80;
   SSPCON2 = 0x00;
//******************************************************************
//* ENABLE SLAVE INTERRUPTS
//******************************************************************
   enable_interrupts(INT_SSP);
   enable_interrupts(GLOBAL);
//******************************************************************
//* SLAVE MAIN
//******************************************************************
   do{
      {
        if(update_latch)
        {
        output_d(digit);
      latchdata;
        update_latch = FALSE;
        }
      }
   }while(1);
}

Code Snippet 8.25: Don’t worry; I’ve included the code on the CD-ROM 
so you won’t have to burn up your fi ngers typing code.
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You already have a good handle on the inner workings of the PIC I2C slave code in Code 
Snippet 8.25. However, I’ve thrown in the kitchen sink in the AVR master code coming up 
in Code Snippet 8.26. So, I’ll break it up and discuss the code parts as they are encountered. 
Consider the rest of the code in this section as part of Code Snippet 8.26.

/////////////////////////////////////////////////////////////////////
// AVR I2C MASTER DRIVER
// EASY ETHERNET AVR BOARD
// Author: Fred Eady
// Version: 1.0
// Date: 08/26/03
// Description: RS232 FUNCTIONS AND I2C MASTER FUNCTIONS
/////////////////////////////////////////////////////////////////////

#include <iom16v.h>
#include <stdio.h>
#include <macros.h>

#pragma interrupt_handler USART_RX_interrupt:iv_USART_RX
#pragma interrupt_handler USART_TX_interrupt:iv_USART_UDRE

Code Snippet 8.26a: There’s nothing here you can’t talk about intelligently.

It looks like we’re going to include some interrupt driven RS-232 on the AVR side. The 
#pragma statements in Code Snippet 8.26a are a dead giveaway. The confi rmation of an 
RS-232 resurrection is confi rmed in Code Snippet 8.26b. 

//******************************************************************
//* FUNCTION PROTOTYPES
//******************************************************************
int recvchar( void );
int sendchar( int );
unsigned char CharInQueue(void);
void init_USART(unsigned int baud);

void twi_init(void);
void i2c_start(void);
void i2c_write(unsigned char datum);
unsigned char i2c_read(unsigned char acknak);
void i2c_stop(void);

Code Snippet 8.26b: These declarations are a preview of what’s to come.

The code in Code Snippet 8.26c should look familiar as well. All of the USART-related code 
is contained in this snippet.
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//******************************************************************
//* BAUD RATE NUMBERS FOR UBRR
//******************************************************************
#defi ne  b9600  47  // 7.3728MHz clock
#defi ne  b19200 23  
#defi ne  b38400 11  
#defi ne  b57600  7  

#defi ne USART_RX_BUFFER_SIZE 16 /* 1,2,4,8,16,32,64,128 or 256
bytes */
#defi ne USART_RX_BUFFER_MASK ( USART_RX_BUFFER_SIZE - 1 )
//#if ( USART_RX_BUFFER_SIZE & USART_RX_BUFFER_MASK )
//#error RX buffer size is not a power of 2
//#endif
#defi ne USART_TX_BUFFER_SIZE 128 /* 1,2,4,8,16,32,64,128 or 256
bytes */
#defi ne USART_TX_BUFFER_MASK ( USART_TX_BUFFER_SIZE - 1 )
//#if ( USART_TX_BUFFER_SIZE & USART_TX_BUFFER_MASK )
//#error TX buffer size is not a power of 2
//#endif
//******************************************************************
//* AVR RAM Defi nitions
//******************************************************************
unsigned char
USART_RxBuf[USART_RX_BUFFER_SIZE],USART_TxBuf[USART_TX_BUFFER_SIZE];
unsigned char USART_TxHead,USART_TxTail,USART_RxHead,USART_RxTail;
unsigned char fl ags,datum,byteout,cntr;
//******************************************************************
//* Init USART Function
//******************************************************************
void init_USART(unsigned int baud)
{
  UCSRB = 0x00; //disable while setting baud rate
  UCSRA = 0x00;
  UCSRC = 0x86;
  UBRRL = baud; //set baud rate lo
  UBRRH = 0x00; //set baud rate hi
  UCSRB = 0x98;
}
//******************************************************************
//* USART Receive Interrupt Handler
//******************************************************************
void USART_RX_interrupt(void)
{
  unsigned char data;
  unsigned char tmphead;
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  data = UDR; /* read the received data */
   /* calculate buffer index */
  tmphead = ( USART_RxHead + 1 ) & USART_RX_BUFFER_MASK;
  USART_RxHead = tmphead;        /* store new index */

  if ( tmphead == USART_RxTail )
  {
    /* ERROR! Receive buffer overfl ow */
  }
  USART_RxBuf[tmphead] = data; /* store received data in buffer */
}
//******************************************************************
//* USART Receive Character Function
//******************************************************************
int recvchar( void )
{
  unsigned char tmptail;
 /* wait for incoming data */
  while ( USART_RxHead == USART_RxTail );
 /* calculate buffer index */
  tmptail = ( USART_RxTail + 1 ) & USART_RX_BUFFER_MASK;
  USART_RxTail = tmptail;  /* store new index */

  return USART_RxBuf[tmptail];  /* return data */
}
//******************************************************************
//* USART Transmit Interrupt Handler
//******************************************************************
//interrupt [iv_USART_UDRE]
void USART_TX_interrupt(void)
{
  unsigned char tmptail;
     /* check if all data is transmitted */
  if ( USART_TxHead != USART_TxTail )
  {
 /* calculate buffer index */
  tmptail = ( USART_TxTail + 1 ) & USART_TX_BUFFER_MASK;
  USART_TxTail = tmptail; /* store new index */

  UDR = USART_TxBuf[tmptail]; /* start transmission */
  }
  else
  {
    UCSRB &= ~(1<<UDRIE); /* disable UDRE interrupt */
  }
}
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//******************************************************************
//* USART Transmit Character Function
//******************************************************************
int sendchar( int data )
{
  unsigned char tmphead;
 /* calculate buffer index */
  tmphead = ( USART_TxHead + 1 ) & USART_TX_BUFFER_MASK;
 /* wait for free space in buffer */
  while ( tmphead == USART_TxTail );
 /* store data in buffer */
  USART_TxBuf[tmphead] = (unsigned char)data;
  USART_TxHead = tmphead;     /* store new index */

  UCSRB |= (1<<UDRIE);        /* enable UDRE interrupt */

  return data;
}
//******************************************************************
//* USART Character Waiting Function
//******************************************************************
unsigned char CharInQueue(void)
{
  return(USART_RxHead != USART_RxTail);
}

Code Snippet 8.26c: We’ve already examined this code down to the 
bit level using emulators and in-circuit debuggers.

The code in Code Snippet 8.26d is the full complement of AVR I2C routines we cloned to 
match the built-in I2C functions provided by the Custom Computer Services C Compiler.

#defi ne addrfl ag 0x01 //00000001
#defi ne clr_modeSLA fl ags &= ~addrfl ag
#defi ne set_modeSLA fl ags |= addrfl ag
#defi ne MODE_SLA (fl ags & addrfl ag)

#defi ne modeMRfl ag 0x02 //00000010
#defi ne clr_modeMR fl ags &= ~modeMRfl ag
#defi ne set_modeMR fl ags |= modeMRfl ag
#defi ne MODE_MR fl ags & modeMRfl ag)

#defi ne modeMTfl ag 0x04 //00000100
#defi ne clr_modeMT fl ags &= ~modeMTfl ag
#defi ne set_modeMT fl ags |= modeMTfl ag
#defi ne MODE_MT (fl ags & modeMTfl ag)

#defi ne hexfl agbit 0x08 //00001000
#defi ne clr_hex fl ags &= ~hexfl agbit
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#defi ne set_hex fl ags |= hexfl agbit
#defi ne hexfl ag (fl ags & hexfl agbit)

#defi ne iorwport PORTD
#defi ne LE_pin 0x08 //PORTD3 00001000
#defi ne set_le_pin iorwport |= LE_pin
#defi ne clr_le_pin iorwport &= ~LE_pin

#defi ne latchdata set_le_pin; \
 delay_us(1);\
 clr_le_pin;

#defi ne START_i2c 0x08
#defi ne ACK_i2c 0x01
#defi ne NAK_i2c 0x00
//******************************************************************
//* MASTER TRANSMITTER MODE STATUS CODES
//******************************************************************
#defi ne MT_SLA_ACK 0x18 //Master Transmitter Slave Addr ACK

#defi ne MT_DATA_ACK 0x28 //Master Transmitter Data ACK
//******************************************************************
//* MASTER RECEIVER MODE STATUS CODES
//******************************************************************
#defi ne MR_SLA_ACK 0x40 //Master Receiver Slave Addr ACK
#defi ne MR_DATA_ACK 0x50 //Master Receiver Data ACK
#defi ne MR_DATA_NAK 0x58 //Master Receiver Data NAK
//******************************************************************
//* INITIALIZE THE TWI
//******************************************************************
void twi_init(void)
{
  fl ags = 0x00;
  TWCR= 0x00; //disable twi
  TWBR= 0x1E; //set bit rate
  TWSR= 0x00; //set prescale
  TWAR= 0x00; //set slave address
  TWCR= 0x04; //enable twi
}
//******************************************************************
//* AVR i2c START
//******************************************************************
void i2c_start(void)
{
  TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
  while (!(TWCR & (1<<TWINT)));
  if ((TWSR & 0xF8) != START_i2c)
    printf(“i2c Start Error\r\n”);
}
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//******************************************************************
//* AVR i2c WRITE
//******************************************************************
void i2c_write(unsigned char datum)
{
  TWDR = datum;
  TWCR = (1<<TWINT)|(1<<TWEN);
  while (!(TWCR & (1<<TWINT)));
  if(MODE_SLA && MODE_MT)
  {
    if ((TWSR & 0xF8) != MT_DATA_ACK)
    printf(“i2c Data Transfer Error MT Mode %x\r\n”,(TWSR & 0xF8));
  else
    {
      clr_modeSLA;
      clr_modeMT;
    }
  }
  else if (MODE_SLA && MODE_MR)
  {
    if ((TWSR & 0xF8) != MR_DATA_ACK)
    printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));
  else
    {
      clr_modeSLA;
      clr_modeMR;
    }
  }
  else
  {
    if ((TWSR & 0xF8) == MT_SLA_ACK)
    {
      set_modeMT;
      set_modeSLA;
    }
  else if ((TWSR & 0xF8) == MR_SLA_ACK)
    {
      set_modeMR;
      set_modeSLA;
    }
  else
    {
      printf(“i2c Start Error %x\r\n”,(TWSR & 0xF8));
      clr_modeSLA;
      clr_modeMR;
      clr_modeMT;
    }
  }
}
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//******************************************************************
//* AVR i2c READ
//******************************************************************
unsigned char i2c_read(unsigned char acknak)
{
  if(acknak == ACK_i2c)
  {
    TWCR = 0xC4;
    while (!(TWCR & (1<<TWINT)));
    if ((TWSR & 0xF8) != MR_DATA_ACK)
    printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));
  }
  Else
  {
    TWCR = 0x84;
    while (!(TWCR & (1<<TWINT)));
    if ((TWSR & 0xF8) != MR_DATA_NAK)
      printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

    clr_modeSLA;
    clr_modeMR;
  }
  return(TWDR);
}
//******************************************************************
//* AVR i2c STOP
//******************************************************************
void i2c_stop(void)
{
  TWCR = (1<<TWINT)|(1<<TWEN) | (1<<TWSTO);
}

Code Snippet 8.26d: Nothing to it so far. You haven’t seen anything 
new unless you “chapter hopped” to this point.

Here’s where all our RS-232 and I2C work comes to fruition. I attached an MPLAB ICD 2 to 
the Easy Ethernet CS8900A and an AVR JTAG ICE to the Easy Ethernet AVR. The PIC slave 
code will run under control of MPLAB and the MPLAB ICD 2, and the AVR master code will 
run on the Easy Ethernet AVR under control of the AVR JTAG ICE and AVR Studio.

I also connected the PIC’s I2C interface (SDA, SCL and ground) to the AVR’s TWI. The Easy 
Ethernet CS8900A has an I2C “port,” whereas the Easy Ethernet AVR’s TWI is bundled in 
with the AVR’s PORTC pins. The RS-232 communications will be handled by the AVR I2C 
master, and I’ve attached the Easy Ethernet AVR’s serial port to a personal computer Tera 
Term Pro serial session. All of the in-circuit debuggers are attached to a single personal com-
puter, and Tera Term Pro, MPLAB and AVR Studio are running on that same personal 
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computer. I attached the Microchip MPLAB ICD 2 using USB, and the Atmel AVR JTAG ICE 
is communicating with AVR Studio using the COM1 serial port. The Easy Ethernet AVR’s 
serial port is attached to the personal computer’s COM2 serial port, which is under the control 
of Tera Term Pro.

OK, here’s how it all works!

The slave Easy Ethernet CS8900A is started and is listening on the I2C bus. Once the Easy 
Ethernet AVR master’s USART and TWI are initialized, the Easy Ethernet throws up the 
“Networking with Microcontrollers is dead easy …” banner in the Tera Term Pro window and 
waits for a character to be received by the Easy Ethernet AVR’s serial port.

If the incoming character is a * (0x2A), the hexfl ag fl ag bit is set and the byte counter vari-
able cntr is cleared. The * sets up the Easy Ethernet AVR to take the next two ASCII bytes 
following the * from the Easy Ethernet AVR’s serial port and convert them into a single 
hexadecimal digit. Once the hexadecimal digit is assembled, the hex digit is sent via I2C to 
the slave, Easy Ethernet CS8900A, where it is latched out to the Easy Ethernet CS8900A’s 
74HCT573 latch. The Easy Ethernet AVR sends a message to the Tera Term Pro session 
informing you what was sent over the I2C bus.

Entering a $ symbol from the Tera Term Pro session puts the Easy Ethernet AVR into mas-
ter-receiver mode, and the four bytes stored in the slave’s number[] array are read into the 
AVR’s memory and displayed in the Tera Term Pro session.

If you don’t enter a * or a $ character, everything you type is echoed back to the Tera Term 
Pro session.

//******************************************************************
//* MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN
//******************************************************************
void C_task main(void)
{
  unsigned char x;
  CLI(); //disable all interrupts
  PORTA = 0xFF;
  DDRA = 0x00;
  PORTB = 0xFF;
  DDRB = 0x00;
  PORTD = 0xFF;
  DDRD = 0x00;

  for(x=0;x<USART_RX_BUFFER_SIZE;++x)
    USART_RxBuf[x] = ‘R’;
  for(x=0;x<USART_TX_BUFFER_SIZE;++x)
    USART_TxBuf[x] = ‘T’;
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  USART_RxTail = 0x00;
  USART_RxHead = 0x00;
  USART_TxTail = 0x00;
  USART_TxHead = 0x00;

  MCUCR = 0x00; //disable sleep modes
  GICR = 0x00; //set interrupt vectors at start of fl ash
  TIMSK = 0x00; //disable timer interrupt sources
  init_USART(47);
  twi_init();
  SEI(); //re-enable interrupts
  printf(“Networking with Microcontrollers is dead easy...\r\n”);

while(1){
++cntr;
  while(!(CharInQueue()));
    datum = recvchar();
  if(hexfl ag)
{
    if(datum >= ‘0’ && datum <= ‘9’)
  datum -= 0x30;
    else if(datum >= ‘A’ && datum <= ‘F’)
      datum -= 0x37;
    else if(datum >= ‘a’ && datum <= ‘f’)
      datum -= 0x67;
else
{
      cntr = 0x00;
    clr_hex;
}

if(cntr == 1)
  byteout = datum << 4;
    if(cntr == 2)
{
  byteout |= datum & 0x0F;
      i2c_start();
        i2c_write(0x18);
        i2c_write(byteout);
        i2c_stop();
    clr_hex;
        printf(“\r\nByte Sent Via i2c = 0x%x\r\n”,byteout);
  }
}
if(datum == ‘*’)
{
  set_hex;
cntr=0;
}
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else if(datum == ‘$’)
{
  printf(“\r\n”);
  i2c_start();
  i2c_write(0x19);
  for(x=0;x<3;++x)
  {
    datum = i2c_read(1);
    printf(“datum = 0x%x\r\n”,datum);
  }
  datum = i2c_read(0);
  i2c_stop();
  printf(“datum = 0x%x\r\n”,datum);
  }
  else
    sendchar(datum);
  }
}

Code Snippet 8.26e: This little application shows just how easy it is 
to move data between multiple devices using RS-232 and I2C.

You’ve succeeded in building the RS-232 and I2C hardware for both a PIC and an AVR 
microcontroller. Along the way, you’ve also written some pretty nifty code to drive that 
hardware.

8.9 Communication Options

A broad variety of other interfaces allow communication with other devices on the same 
printed circuit board or with remote systems. These interfaces include:

• The Synchronous Peripheral Interface (SPI)

• The Controller Area Network (CAN) interface

Let’s look at the SPI and the CAN interfaces in detail.

8.9.1 The Serial Peripheral Interface Port

The Serial Peripheral Interface, or SPI as it is more commonly called, is a synchronous serial 
interface that is designed primarily to transfer data between devices that are all located on a 
single printed circuit board (PCB), although it can be used to communicate between PCBs as 
well. The interface is fairly simple, consisting of a Serial Data Out (SDO) signal, a Serial Data 
In (SDI) signal, a Serial Clock signal (SCK), a Chip Select (CS) signal, and a Slave Select 
(SS) signal. All of these signals are single-ended digital signals, one of the reasons that the 
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SPI is not well suited to long data links or noisy environments. Because it is so easy to imple-
ment and troubleshoot, many devices, both microprocessors and peripheral chips, employ SPI. 
For example, the dsPICDEM board uses one of its two SPI ports to communicate with the 
on-board temperature sensor, sending confi guration data to the sensor and reading temperature 
and status values from it.

Over the years, the SPI has evolved to support four basic modes of operation (imaginatively 
denoted Mode 1, Mode 2, Mode 3, and Mode 4), that operate in basically the same manner 
but which employ different timing relationships between the SCK clock edge and the SDO 
and SDI data signals to determine when to transmit data and when data is valid at the receiver. 
Most devices support only a subset of these modes, so it’s important to make sure that both 
the transmitting and receiving device are able to support at least one common operating mode. 
Figure 8.23 shows the four possible SPI operating mode combinations. In our examples, we 
will use Mode 0 since it is one of the more common confi gurations.

Figure 8.23: The four SPI operating mode combinations.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SPI Mode 1

SPI Mode 0

SPI Mode 2

SPI Mode 3

CKP CKE

0

0

1

1 1

0

0

1

SCK

SCK

SCK

SCK

SDO

SDO

SDO

SDO

SPI Mode Combinations

The Microchip 16-bit Peripheral Library does a good job of implementing a useful framework 
of functions to control and access SPI ports on its parts. Unlike the interfaces for the UART 
and the CAN bus that we’ll look at shortly, the SPI is usually used to transfer small, often 
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byte-size or word-size chunks of data. Because its transfer rate is so high, this means that we 
can essentially treat the transfers as in-line operations that are completed in real-time as the 
code that uses them executes. For instance, if we’re reading two bytes of temperature data 
from a sensor connected via the SPI, often we can afford to issue the request and wait for the 
response since the data transfer will not signifi cantly slow our operation. This is not the case 
when transferring large amounts of data through other communication ports (or even through 
the SPI); generally, we have to implement a buffered, interrupt-driven framework to deal with 
that situation. Fortunately, the Microchip 16-bit Peripheral Library already has all of the func-
tionality we need.

8.9.2 The Controller Area Network

The Controller Area Network (CAN) is one of the more sophisticated of the serial interfaces. 
It incorporates a very advanced internal hardware controller that supports moderate speed 
(up to 1 Mbps) data transfers with built-in hardware error detection, a sophisticated message 
prioritization scheme, and the ability to set fi lters that allow only messages of interest to be 
received, all with very little processor overhead. Widely used in the automotive and industrial-
processing world, the CAN architecture offers a robust way to link together multiple nodes on 
a single network.

With all of these positives, why would anyone not use the CAN interface? There are two main 
reasons: complexity and cost. One big advantage of CAN is that it’s highly confi gurable, but 
one big disadvantage is that CAN is so highly confi gurable. Because it’s so fl exible, a CAN 
topology can be used in a wide variety of applications using basically the same hardware. (In 
this case, topology is simply the technical term for the arrangement of nodes in a network.) 
Unfortunately, that fl exibility must be confi gured fairly precisely or the channel will be either 
unreliable or completely unusable, and debugging problems with the channel can be both 
time-consuming and frustrating.

8.9.2.1 Basic CAN Architecture

Developed by Bosch in the early 1980s, the CAN architecture is pretty simple. Although the 
CAN standard itself is intentionally media-neutral, one of the most common implementations 
uses a single differential serial bus running at 1 Mbps (1,000,000 bits per second) or less to 
connect two or more nodes together. Along with the associated ground signal, a reliable inter-
face can consist of only three wires!

Note: Media-neutral simply means that the protocol does not specify the physical 
medium required to implement the protocol. This was intentionally left out of the speci-
fi cation so that the protocol can operate over a variety of physical media (so long as the 
media supports the ability to have a dominant and a recessive bit state).
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The CAN’s communication protocol is a member of the CSMA/CD family, a cryptic acronym 
that stands for Carrier Sense Multiple Access/Collision Detection. Although the family name 
is long, the concepts behind it are easy. In a carrier sense system, all nodes have to monitor the 
network for a period of inactivity before they can attempt to send a message. Once this inactive 
period has elapsed, however, any of the nodes in the network can transmit data, hence the term 
multiple access. As one would expect, there will be times when two or more nodes try to send 
data at the same time, a condition known as collision, so the network has to have some way to 
perform collision detection. Individual members of the CSMA/CD family handle these tasks 
differently, but all members of a given type (such as CAN) do so in the same manner.

Of these tasks (carrier sensing and collision detection), the more diffi cult by far is collision 
detection. The CAN designers came up with an ingenious solution to this problem, one that 
allows the system designer to prioritize message traffi c so that more important messages are 
always able to gain access to the bus ahead of less important messages (in much the same 
way that interrupts are prioritized by the dsPIC DSC). Not only does the CAN allow message 
prioritization, its network arbitration scheme is nondestructive to the higher-priority message 
and ensures that the higher-priority message experiences no transmission delay. Since 
message arbitration is so important, we’ll look at that in detail after we fi rst get some more 
background information under our belt.

Note: In this case, arbitration is the process by which one of two or more nodes that are 
competing for access to the network is allowed to transmit data. Interrupt arbitration 
is the process by which the dsPIC DSC’s interrupt controller determines which interrupt 
condition to service. Nondestructive arbitration means that the message that ultimately 
is transmitted on the bus is left intact. Destructive arbitration would determine which 
message should be allowed onto the bus, but it would corrupt the message, meaning 
that the node that is allowed to transmit would have to resend the message from the 
beginning, which adds to the overall transmission time and reduces the resulting avail-
able bandwidth.

Another of the CAN’s key features is its built-in error-detection circuitry that fl ags problems 
with the bus and that will gradually remove an individual network node from the bus should 
the node generate too many errors. Although the protocol does not support error correction, 
its error-detection feature helps avoid the serious problem of a single erroring node bringing 
down the entire network. Unfortunately, because errors can accumulate quickly when there is 
a problem, tracking down the source of the problem can be diffi cult because it may go away 
once the node stops trying to transmit.

If all of this functionality sounds as though it imposes a severe load on the processor, you can 
relax; because of its complexity, the vast majority of the CAN interface is contained in two 

Ch08-H8584.indd   381Ch08-H8584.indd   381 8/17/07   6:17:15 PM8/17/07   6:17:15 PM



382   Chapter 8

www.newnespress.com

hardware components: a CAN controller state machine that handles all of the arbitration and 
error detection and a CAN bus driver that drives and monitors the CAN bus physical medium. 
In most systems, these two hardware components are housed in individual integrated circuit 
(IC) packages. (ICs are the silicon chips that contain much of the electronic circuitry in a sys-
tem.) Once the CAN interface circuitry has been confi gured, it simply presents fully formed 
data messages and status bits to the receiver and transmits complete data messages to other 
nodes. Since all error detection and handling are performed in hardware, the processor over-
head associated with the CAN interface is minimal.

One last high-level consideration is just how far one can run a CAN bus, and the answer is that 
the maximum bus length depends on the data rate that the bus must support. Table 8.2 shows 
the recommended maximum bus lengths for a variety of bit rates.

Table 8.2: Recommended maximum CAN bus lengths.

 Bit Rate (Kbps)  Bus Length (m)

 1,000  30

 500  100

 250  250

 125  500

 62.5  1,000

Source: Microchip Application Note 713, Controller Area Network 
(CAN) Basics, available on the Microchip website (document 
DS00713A)

As the table clearly demonstrates, the maximum bus length drops off rapidly with increasing 
data rates, but even at 1 Mbps (1,000 Kbps), the maximum bus length is reasonably robust.

8.9.2.2 CAN Data Formats

According to the CAN 2.0 specifi cation (CAN Specifi cation 2.0, Robert Bosch GmbH, 1991), 
data sent over the CAN bus is in one of four basic data formats, called frames:

• The data frame, which transmits data from one node to all other nodes on the bus

• The remote transfer frame, which requests data from another node on the bus

• The error frame, which reports that a communication error has been detected

• The overload frame, which reports that the transmitting node is busy processing a pre-
vious message and cannot accept more data at this time

The most commonly used format is the data frame, which comes in two fl avors: the 
standard frame and the extended frame. The two data frame formats, illustrated in 
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Figures 8.24a and 8.24b, are essentially identical, the only real difference being the shorter 
arbitration ID of the standard frame. All data frame formats have the following basic elements:

• an arbitration ID fi eld whose size varies with the frame type

• A 6-bit control fi eld

• A data fi eld of 0 to 8 bytes in length

• A 2-byte CRC fi eld

• A 2-bit acknowledge fi eld

• A 1-bit end-of-frame marker

Figure 8.24a: Standard CAN data frame format.
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Key Points

1. Each message consists of four main fields and some framing bits:
A. 12-bit Arbitration ID Field
B. 6-bit Control Field
C. 8N-bit Data Field of N data bytes
D. 16-bit CRC Field

The user has control of the first three fields only; the CAN controller 
hardware sets the data in the CRC field and the framing bits.

3. Bus arbitration to determine which node can transmit its message 
is based on the value of the Arbitration ID field, with the message 
that has the first dominant bit value in the field having priority and 
thus being allowed to transmit on the bus. In practice, this means 
that the lower the value of the field, the higher the message priority.

4. Standard-format data frames have priority over extended-format 
data frames.

2-bit
Acknowledge Field

2. A bit value of 1 is considered to be the recessive state, and a bit 
value of 0 is considered to be the dominant state.
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Of these fi elds, the user has control over the arbitration ID, the control, and the data fi elds, 
whereas the CAN controller hardware automatically generates and validates the CRC fi eld, 
the acknowledge fi eld, and the end-of-frame marker. Let’s delve a little deeper into the fi elds 
before examining the CAN arbitration technique.

In a standard data frame, the arbitration ID fi eld consists of an 11-bit identifi er and a 1-bit 
Remote Transmission Request (RTR) fl ag. The extended data frame format is slightly differ-
ent, but it is designed so that if there is a collision between a standard frame and an extended 
frame, the standard frame has priority. For an extended frame, the identifi er is 29 bits, with 
the 11 most signifi cant bits being transmitted after the Start of Frame, followed by a 1-bit 
Substitute Remote Request (SRR) fl ag, a 1-bit Identifi er Extension (IDE) fl ag, and then the 
remaining 18 bits of the identifi er, with the 1-bit RTR fl ag completing the fi eld. There are also 
slight differences in the control fi eld layout for the two data frame formats, although it is 6 bits 
wide in both cases. In the standard frame, the leading bit of the control fi eld is the IDE fl ag, 
which is followed by a single reserve bit denoted as r0 in the CAN specifi cation. The fi nal 4 
bits of the fi eld comprise the Data Length Code (DLC), which specifi es the number of data 
bytes that will follow in the message. Although the DLC is 4 bits wide, it can only assume a 
value of 0 to 8, since the protocol supports a maximum of 8 data bytes per message.

Figure 8.24b: Extended CAN data frame format.
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C. 8N-bit Data Field of N data bytes 
D. 16-bit CRC Field
The user has control of the first three fields only; the CAN controller
hardware sets the data in the CRC field and the framing bits. 
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is based on the value of the Arbitration ID field, with the message 
that has the first dominant bit value in the field having priority and 
thus being allowed to transmit on the bus. In practice, this means
that the lower the value of the field, the higher the message priority.

4. Because of the bus arbitration scheme and the fact that the 0-
valued (dominant) RTR bit of a standard data frame is aligned with 
the1-valued (recessive) SRR bit of an extended data frame, 
standard data frames always have priority over extended data 
frames.
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Because the extended frame includes the IDE fl ag as part of the arbitration ID fi eld, it has two 
reserved bits in the control fi eld, r1 and r0. The DLC is the same as in the standard data frame 
and labors under the same restrictions.

The cyclic redundancy code (CRC) fi eld is not of much interest to us as designers, since it is 
handled exclusively in hardware and is therefore transparent to the programmer. For the sake 
of completeness, note that the CRC itself is a 15-bit value, and the CRC fi eld is composed of 
the CRC value and a 1-bit CRC delimiter bit.

The fi nal fi eld in a CAN message is the 2-bit acknowledgement (ACK) fi eld, which consists of 
a leading ACK Slot bit that is set to the recessive state (defi ned in the next paragraph) by the 
transmitting node and then set to the dominant state by all nodes that receive the message suc-
cessfully, whether they actually use the message or not. The fi nal bit in the ACK fi eld (and the 
message) is the ACK delimiter bit, which simply returns the bus to the recessive state to signal 
that the transmission is complete.

Remote transfer frames are used to request the automatic transmission of data from a node 
(the data having been already loaded into the CAN module in anticipation of the request), and 
error frames are generated by a node when it detects an error condition on the bus. Because 
error frames intentionally violate the timing parameters of the CAN bus, they cause all the 
nodes that were transmitting data to stop, reset the transmission, and start their transmissions 
again.

8.9.2.3 Bus Arbitration

As we’ve already noted, because data transfers are asynchronous, some sort of access arbitra-
tion is required to determine which node may transmit if two attempt to send data simultane-
ously. The CAN designers came up with an ingenious solution to this problem, creating a 
nondestructive arbitration scheme that uses the value of the arbitration IDs of the colliding 
messages to decide which node has priority. To understand how this scheme works, we fi rst 
need to learn two terms that apply to CAN-based systems. Data on the CAN bus is said to be 
in either a dominant state (a logical 0) or a recessive state (logical 1). When two bits of differ-
ent state are transmitted at the same time, the dominant state “wins,”—in other words, that is 
the resulting state on the bus.

The CAN uses this fact for its transmission access arbitration. Whenever two or more nodes 
try to transmit a message simultaneously, the dominant bit state is the one that is present on the 
bus. As each node transmits data onto the bus one bit at a time, it checks to see whether the 
data on the bus refl ects the state of the most recently transmitted bit. If a transmitting node 
sends a recessive bit but detects that the bus is in the dominant state, the node knows that there 
is another node that is also transmitting, and the node whose data was recessive knows to get 
off of the line. The recessive node immediately disables its transmitter and waits until the end 
of the current transmission before attempting to transmit its own data again.
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By handling the arbitration in this manner, the CAN assures both that there is a structured 
approach to transmission access and that collisions don’t result in lost data that forces all 
nodes to retransmit their messages. Since the dominant state is 0, designers of CAN-based 
systems select arbitration IDs such that the most important messages have low ID values and 
thus the highest priorities. For instance, by choosing arbitration ID values of 000H�01FH 
for alarm conditions and ID values of 020H�7FFH for normal operating messages, the 
designer ensures that alarm messages always have priority over normal operating messages. 
The example shown in Figure 8.25, in which an alarm message with an arbitration ID value of 
010H is sent at the same time as a normal operating message with an arbitration ID value of 
040H, illustrates this. In addition, the scheme allows both standard and extended data frames 
to reside on the bus, with the standard frame messages having priority over the extended data 
frames.

Figure 8.25: Example arbitration of two simultaneous messages.
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8.9.3 Acceptance Filters

One optional aspect of the CAN protocol that all CAN controllers implement is message fi lter-
ing, which allows the controller to accept only messages whose arbitration ID fi elds match a 
programmable bit-mapped fi lter value. In this case, when we refer to a fi lter, we’re not talking 
about a digital fi lter that processes the digitized signal; rather, we’re referring to the process 
by which only a limited group of messages that meet certain criteria are selected for process-
ing by the CAN controller. Note that even when the controller chooses to ignore the message, 
it always responds with the ACK Slot bit set appropriately. Filtering is a midlevel technique 
by which we can reduce the overhead on the processor by limiting the types of messages we 

386 Chapter 8
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choose to handle, whereas the acknowledgment process is a low-level requirement for ensur-
ing the accurate delivery of the network traffi c to all nodes.

Filtering the CAN messages consists of two steps, both of which are confi gurable by the 
designer but which are executed by the CAN controller hardware. First, we need to set the 
acceptance fi lter values (the dsPIC DSC supports up to six different fi lters), which are logi-
cally ANDed with the arbitration ID of each received message on a per-bit basis. The resulting 
value is then compared to an acceptance mask on a per-bit basis, and if the result of applying 
the fi lter matches the acceptance mask, the incoming message is added to the CAN receive 
buffer (assuming there’s room in the buffer).

This can be a point of signifi cant confusion for new (and sometimes more experienced) CAN 
designers, so an example is appropriate. Let’s assume that we want to accept any standard 
CAN data frame whose arbitration ID fi eld is in the range of 300H to 3FFH. In that case, 
the acceptance fi lter is simply F00H and the acceptance mask is also 300H, since ANDing the 
acceptance fi lter with the 12-bit arbitration ID fi eld of any received message will make the 
lower byte of the arbitration ID fi eld a don’t care condition (since the entire lower byte will 
be ANDed with 0), and the fi lter will pass through the upper nibble. Only arbitration ID fi elds 
whose upper nibbles are equal to 3 will match with the acceptance mask and thus be accepted.

Endnote

Microchip Application Note 713, Controller Area Network (CAN) Basics, Microchip website 
(document DS00713A).
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Interfacing to Sensors and Actuators
Kamal Hyder

Bob Perrin

CHAPTER 9

9.1 Introduction

This chapter is concerned with the practicalities of attaching sensors and actuators to digital 
controllers. The Rabbit RCM3400 prototyping board is used for all the examples in this chap-
ter, but the concepts covered are applicable to most embedded systems.

9.2 Digital Interfacing

There are many books devoted to digital design. Most are concerned with formal methods for 
logic reduction or techniques used to implement sequential logic. Even with all the available 
material, device manufacturers are compelled to publish application notes and white papers 
describing the practical application of their devices.

The working engineer will seldom refer to textbooks discussing canonical equations and 
logic reduction by Karnaugh map. Engineers are often too busy trying to fi gure out how to 
prevent their circuits from being damaged by ESD or being overheated from driving too 
much current.

We will cover these issues here. We begin with a look at how to bridge the gap between 3.3 V 
systems (such as most Rabbit-based designs) and 5 V systems.

9.2.1 Mixing 3.3 and 5 V Devices

Not so long ago, TTL-based digital systems were designed to operate on 5 V rails. As new 
CMOS logic technologies have become mature and robust, there has been a natural migration 
to lower-voltage systems.

Note: If you happen to be in need of a truly excellent textbook on combinatorial logic, 
sequential state machine, and asynchronous state machine design, Richard Tinder’s 
book Digital Engineering Design: A Modern Approach (Prentice Hall) will be an excellent 
addition to your library.
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Power consumption is proportional to the square of the voltage. In simple DC circuits, we 
know that:

 
Power voltage

resistance
�

2

In AC systems, effects of capacitance and operating frequency also enter into the equation. 
CMOS devices have very small quiescent currents (very high resistance), but the energy stored 
in their internal parasitic capacitors is governed by:

 
EnergyCAP �

1
2

2⋅ ⋅C V

As digital states change, these parasitic capacitors must be charged and discharged. The resis-
tive paths through which this charge is moved dissipate power. The more capacitive nodes 
involved in a system-level state change mean more energy that must be moved and power dis-
sipated. The faster the state changes occur means that more power is dissipated over a given 
time interval.

This brings us to the equation:

 
PowerCONSUMED ∝ ⋅ ⋅ ⋅ ⋅k

R
C F V

1 2

where:

 k is a catchall constant

 F is the system’s frequency of operation

 R is derived from quiescent currents

 C is determined from dynamic currents

 V is the switching voltage

The important bit is that if we drop the voltage by half, we decrease our power about four times.

Energy is related to power by:

 
Energy Power

time

� ⋅∫ dt

For the simple case of a static system, we can simply multiply watt (W � J/s) by time to get 
energy.

So by reducing the rail voltage of a system, the power consumed is reduced by an inverse 
square and so, therefore, is the energy required to operate the system.
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In this age of laptop computers, PDAs, and cellphones, energy storage directly translates 
to weight (and volume). Ultimately, the push for smaller, lighter, portable, energy-effi cient 
devices has pushed the digital world to lower supply rails.

Older 5 V systems are still ubiquitous. Design engineers are often faced with the challenge of 
interfacing newer 3.3 V technology to legacy 5 V systems.

There are two main issues to consider. When driving 3.3 V inputs with 5 V outputs, the CMOS 
inputs will be driven above their 3.3 V supply rail. If the 3.3 V device has a high-side ESD 
diode this will lead to smoke. This will be discussed further in the next section (see Figure 
9.5b) when we discuss input protection diodes.

The Rabbit 3000 has 5 V tolerant inputs. A Rabbit powered from 3.3 V rails may have its 
inputs driven with either 3.3 or 5 V. No damage will occur.

The second issue to consider is how the 3.3 V outputs will drive the inputs of a 5 V device. 
With a large array of logic families from which to choose the 5 V CMOS device, the issue of 
noise margin is easily solved.

Since CMOS devices drive their outputs very close to ground, the VIL(MAX) characteristic of 
the 5 V powered device is seldom a concern. However, VIH(MIN) is often a concern. Table 9.1 
shows a comparison of VIH(MIN) for some common logic families.

Table 9.1: Logic families comparison.

 Logic Families  TinyLogic™ Single-Gate Devices 

 HC HCT VHC VHCT LVT LVX  HS  HST UHS

VIH(MIN)  0.7 � VCC  2.0 V  0.7 � VCC  2.0 V  2.0 V  2.0 V 0.7 � VCC  2.0 V  0.7 � VCC 

The “T” families, such as HCT, VHCT, and HST have input stages optimized for interfacing 
to older TTL devices. This is perfect for interfacing to 3.3 V CMOS systems.

Other families exist with input thresholds fi xed at 2.0 V regardless of supply voltage. 
Fairchild’s LVT and LVX families fall into this category.

The potential problem with devices that have a minimum high-input voltage of 0.7*VCC is 
that with a supply rail of 5 V, the input threshold is only guaranteed valid if it exceeds 3.5 V. 
This says that if a 3.3 V device is driving a 5 V device with a 0.7*VCC input threshold, the 
confi guration will not work.

For most CMOS families, the 0.7*VCC VIH(MIN) has a bit of a safety margin built in. This 
means that a lot of the time, a 3.3 V device will drive a 5 V device just fi ne. This is espe-
cially true if the 3.3 V rail is a little hot and the 5 V rail a little low. This is a most unfortunate 
situation.
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Systems designed without proper noise margins may work fi ne at room temperature on an 
engineer’s workbench. Once these poorly designed systems hit mass production and are 
shipped to customers, however, invariably problems result. Sometimes the design fl aws show 
up at temperature extremes or when parts from a specifi c batch of ICs from a particular 
manufacturer are used.

When interfacing 5 V logic to 3.3 V devices such as the Rabbit 3000, be careful to select a com-
patible 5 V logic family. The HCT, VHCT, and HST devices are ideally suited for this situation.

9.2.2 Protecting Digital Inputs

Digital devices are susceptible to damage from all manner of electrical stresses. Protecting 
these devices is both art and science.

The science comes from our ability to model circuits and methodically test our designs. The 
art comes from the necessity to make sound trade-offs so that our designs are affordable yet 
well suited to their intended market. Fortunately, an ever-growing array of protective devices 
is available.

Gas discharge tubes (GDTs), also called spark gap suppressors, are found in telecommunica-
tions equipment. These devices are constructed by precisely placing two or three electrodes in 
a sealed glass chamber fi lled with specifi cally selected gasses.

The GDT is placed between a protected line and ground. Under normal line conditions, the 
GDT looks like an open circuit. When a transient event pushes the voltage between the two 
electrodes above a spark-over threshold, the gas ionizes and conducts. The GDT diverts the 
potentially destructive transient energy from the protected electronics to ground.

Once the gas inside the GDT is ionized, it only takes a relatively low voltage, called the 
holdover or glow voltage, to keep the device in conduction. This feature precludes most 
GDTs from AC power protection.

For example, consider a GDT with a 700 V spark-over voltage and a 50 V holdover voltage 
that is placed on a 110 VAC line. Assume that a transient event causes spark-over to occur. 
Once the fault clears, the normal AC mains voltage would hold the GDT in conduction. The 
110 VAC nominal line voltage is higher than the 50 V holdover voltage. The GDT would 
cause a short circuit and would self-destruct.

There are GDTs specifi cally designed for AC operation that will cease to conduct at the AC 
zero crossing. Most GDTs do not stop conducting quickly enough and are not intended for AC 
power line protection but rather for telco and other lower-voltage protection.

GDTs are capable of repeatedly shunting thousands of amps for short periods of time. These 
devices generally cost $1.50–5.00. Figure 9.1 shows several GDTs. These devices are fairly 
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large compared to the components found on a microprocessor’s PCB. The right-most GDT in 
Figure 9.1 is an SMT (Surface Mount Technology) device.
If a system has long external sensor leads, a GDT is good insurance against transient voltage 
induced by near lightning strikes. GDTs are the slowest of the transient suppression devices we 
will examine. GDTs are best suited if transient events are expected to last milliseconds or longer.
GDTs operate best when they are used with another form of protection. This cascaded 
arrangement is called “coordinated protection.” The GDT is generally placed nearest the tran-
sient event and is considered the primary protective element.
Figure 9.2 shows a GDT combined with a metal oxide varistor (MOV) in a coordinated pro-
tection scheme. The designer should select a MOV that has a lower clamping voltage than the 

Figure 9.1: GDTs are available with two or three electrodes and in PTH or SMT.

GDT MOV

 

Transient Event

Protected
Device

VCC

Figure 9.2: Coordinated protection provides multiple layers of incrementally faster protection.
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GDT spark over voltage. The resistors limit current and will help to dissipate the transient 
energy as heat.

MOVs are faster devices than GDTs. They can be purchased in a variety of physical sizes. The 
larger the MOV, the more energy it can dissipate before suffering permanent damage. Surface 
mount (SMT) MOVs are small devices and have limited ability to dissipate energy. The pin-
through-hole (PTH) devices can be quite large and can dissipate much larger amounts of heat.

MOVs are formed by mashing together tiny bits of zinc oxide until they form a shape to which 
two electrodes can be soldered. “Secret sauce” ingredients are also added, most consisting of 
other metal oxides.

Each boundary between zinc oxide particles acts as a little zener diode. The massive combina-
tion of random particles statistically acts like one big back-to-back zener diode.

The breakdown voltage for MOVs is less accurate than that for zener diodes. The response 
time of MOVs is usually slower than zener diodes. A MOV’s primary advantage over a zener 
is the ability to dissipate more power than a zener diode. MOVs are available with breakdown 
voltages in the 10’s to 100’s of volts.

Many engineers believe that MOVs, like fuses, are sacrifi cial devices. A MOV is expected 
to splatter its guts all over the PCB while valiantly protecting the electronics. This is fl awed 
thinking. MOVs fully recover after a transient event occurs. This assumes that the power dis-
sipated in the MOV was within the MOV’s specifi ed safe operating area (SOA).

It is true that the breakdown voltage of a MOV may change a few percent during the fi rst sev-
eral clamping episodes.

For a MOV to provide long-term protection, the system designer must select a large enough 
MOV to handle the anticipated currents. Also, the MOV’s initial specifi ed breakdown voltage 
must be high enough that if the breakdown voltage should decrease 10%, it will not drop low 
enough to fall in the operating voltage range of the protected signal.

Because MOVs have a relatively fast response time and are capable of dissipating large 
amounts of energy for short periods, they often fi nd application in protecting AC power lines. 
Figure 9.3 shows a common AC protection scheme.

When a transient over-voltage condition occurs, the MOVs will clamp the high-voltage spike to 
ground. If the fault is sustained, the sustained high current through the fuses will cause one or 
both fuses to open. The MOVs protect against momentary transients. In the event of sustained 
overvoltages, the combination of MOVs and fuses protects both the “protected device” and the 
MOVs from damage. The only sacrifi cial protective elements in Figure 9.3 are the fuses.

A device often confused with a MOV is a proper transient voltage suppressor (TVS). The TVS 
is a semiconductor device that can be modeled as two back-to-back zener diodes. Figure 9.4 
shows the schematic symbol for several protective devices.
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A TVS is the fastest of the clamping devices. They are also the least capable of carrying large 
currents for extended periods of time.

Marketing departments are forever trying to differentiate their product from the competition. 
Years ago, General Semiconductor (now part of Vishay) coined the word “Transorb” to distin-
guish their TVS from the competition. Figure 9.4 shows the symbol used for a Transorb.

TVS devices are best suited in protecting against electro-static discharge (ESD). These devices 
are often found as a secondary or even tertiary protective devices in coordinated protection 
networks.

There are other protective devices. Cooper Bussmann has a device it dubbed Polymer ESD 
Suppressors with SurgX® Technology. They are small SMT devices and can carry only a few 
tens of amps.

Line

Neutral

Ground

Sustained Fault
Protection

Line to Ground
Protection

Line to Line
Protection

Protected
Device

Figure 9.3: Although useful for protecting digital lines, MOVs are often found across AC lines.

TVS Transorb MOV MOVBack-to-Back
Zener Diodes

Polymer ESD
Suppressor

Figure 9.4: The schematic symbol for a TVS, Transorb, or polymer ESD suppressor 
derives from the schematic for two back-to-back zener diodes.
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As technology advances, the number of options open to the system designer for circuit protec-
tion increases. One of the simplest tools available to the designer is the diode. These can be 
used to great effect as an ESD protection device. Many IC’s have ESD protection diodes on 
their I/O pins. A simplifi ed model of on-chip ESD protection is shown in Figure 9.5a.

VDD

5.0V

(c)

(a)

CMOS Device

ESD Protection
Diodes

Digital
Input

CMOS Device

5.0V

Big Current

3.3V Phoot

(b)

3.3V

Protected
Digital
Input

CMOS Device
5 volt tolerant

5.0V 3.3V

Protected
Digital
Input

ferrite bead

Primary
Protection

Secondary
Protection

CMOS Device
5 volt tolerant

(d)

Figure 9.5: On-board ESD protection diodes offer protection but 
can also complicate the design of multivoltage systems.
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The internal protection diodes in Figure 9.5a can be problematic in mixed rail systems. For 
example, consider the circuit in Figure 9.5b, where a CMOS device is powered from a 3.3 V 
rail and the device’s input is driven from a 5 V rail. The CMOS’s VDD side diode will enter 
conduction under forward bias. Unless a there is a device to limit current, the high-side diode 
will be damaged. Most likely a signifi cant portion of the device will also be collaterally 
damaged.

Some device families are “5 V tolerant.” A common way to implement this is to remove the 
high-side internal ESD protection diode. Figure 9.5c shows a 5 V tolerant CMOS device.

To protect the input in a mixed rail system, an external diode will need to be added between 
the highest rail and the IC’s input. Schottky diodes are often used because of their fast switch-
ing times. Figure 9.5c shows a confi guration suitable for protecting a mixed 3.3 and 5.0 V 
system.

The resistor in Figure 9.5c limits the current into either diode. Coupled with the parasitic 
capacitance of the schottky and the CMOS device’s input capacitance, the resistor forms an 
RC low-pass fi lter. This will slow down high-speed transient events allowing the diodes extra 
time to enter conduction.

Plain, old-fashioned carbon-composition resistors are the best type of resistors for this 
application.

Metal fi lm resistors have patterns etched into their fi lm to trim the resistance to the desired 
value. ESD has a tendency to jump the insulative gaps in the metal fi lm. During a transient 
event, this reduces the effective resistance of the resistor. Furthermore, if ionized or carbon-
ized paths form, the resistor’s value will be altered permanently.

Surface-mount resistors have an added disadvantage over their larger PTH brethren. Under 
conditions of high current, “hot spots” will form in SMT resistors. This is due to nonuniform 
current densities in the resistive fi lm. These hot spots can permanently alter the resistor’s 
value. Ohm’s law tells us that if we have voltages in the thousands or tens of thousands of 
volts, we will have high currents during ESD events.

A coordinated network can be constructed to offer protection beyond that of Figure 9.5c. 
Figure 9.5d shows a two-stage network. The primary protection is a TVS working against the 
impedance generated by a ferrite bead. The two diodes and resistor provide the secondary 
protection.

These solutions are fairly expensive in terms of component count, board space, and assembly 
cost. If protection must be added to a digital input and cost is an overriding factor, a simple 
RC network coupled with the internal protection diodes can provide a reasonable amount of 
protection.
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The biggest problem with an RC network as a front line of defense against high-speed, high-
energy transients is the capacitor’s parasitic effective series resistance (ESR) and effective 
series inductance (ESL). The ESR allows undesired high voltages to develop on the protected 
node. The ESL reduces the response time of the capacitor. The good news is that the internal 
protection diodes can usually handle the leading edge of a transient event. This gives the RC 
network time to act as a fi lter.

Some integrated circuit manufacturers integrate high-end ESD suppression into their devices. 
For example, RS-232 and RS-485 transceivers are available with protection that guarantees 
the device can withstand repeated �15 KV ESD hits. Analog switch manufacturers now offer 
devices with similar levels of protection.

The protected RS-232 and RS-485 transceivers are plug-in replacements for older, unprotected 
transceivers. The protected devices are not signifi cantly more expensive than their unprotected 
counterparts. In this day and age of CE marks and emphasis on building robust devices, there 
is little reason not to use an ESD protected transceiver.

The best way to evaluate the level of protection any of these circuit topologies provide is 
through testing with an ESD generator. Schaffner EMC Inc, has excellent ESD simulators, 
also called ESD guns. These tools allow an engineer to zap a circuit under test with up to 
�21 kilovolts of simulated ESD.

Testing a few sample circuits on a bench isn’t a particularly large sample set. But design is an 
exercise in trade-offs and risk management. For most products, ESD testing of a handful of 
model samples is suffi cient.

Testing will also unmask hidden problems that will not show up in mathematical models or 
design equations. For example, consider the sample PCB layout shown in Figure 9.6. ESD 
will arc between the vias and damage the microprocessor. The best ESD protection can be 
made useless by sloppy PCB routing. Auto-routers should never be allowed to route 
protected networks. Unprotected signals should be kept well away from traces that go off 
board.

During ESD testing, a valuable technique is to darken the lab and while injecting ESD, look 
at the circuit board and visually check for arcing. Problems such as those shown in Figure 9.6 
will become apparent.

9.2.3 Expanding Digital Inputs

One challenge faced by designers is how to add I/O to a processor. Greg Young, while work-
ing as a design engineer at Z-World, once said, “Every I/O pin has two struggling to get out.” 
There are numerous techniques for expanding inputs, shown in Figure 9.7. Each has advan-
tages and disadvantages.
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Figure 9.6: Even the best ESD protected input may be defeated by bad PCB layout.

All of the circuits shown in Figure 9.7 refer to HC logic devices. The HC logic family devices 
operate well from 3.3 or 5 V rails. An abundance of logical functions are available.

An engineer faced with the task of building an interface between a 5 V external system and a 
3.3 V processor core will have to consider noise margins. For example, the circuits in Figure 
9.7 will work well if the HC devices are powered from 5 V as long as there exists an HCT or 
HST buffer between the 3.3 V core and the HC device. In most cases this means that HCT 
should be used for the glue logic.

In other cases, if the engineer can locate HCT or VHCT parts with equivalent logic functions 
to the HC parts shown, it may be preferable to replace the HC parts with another logic family. 
From this point on, we will assume that we are not interfacing to 5 V external logic and the 
HC logic parts are driven from a 3.3 V rail. This will allow us to focus on the issues of capaci-
tive loading, simultaneous sampling, and general interfacing logic techniques.

As we look through these interfacing examples, we should consider that the underlying logical 
concepts are more important than the particular device implementations shown. The specifi c 
devices shown have been quite useful in designs, but there are always newer logic families and 
alternate devices available.

For example, the 74HC244 shown in Figure 9.7a is an example of an octal buffer. There are 
other parts available that perform the same function but with different pin outs. For exam-
ple, the 74HC245 is a bidirectional buffer that is often used in place of the 74HC244. The 
74HC245 has a shorter propagation delay than the 74HC244 and may already be a line item 
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on a design’s bill of material. Of course the designer must decide which way to hard wire a 
74HC245’s DIR pin to ensure the device operates as a buffer in the correct direction.

Figure 9.7a is one of the most often seen methods for adding digital inputs to a processor’s data 
bus. When a processor wants to read the digital inputs, the 74HC244’s output-enable is asserted 
and data fl ows through the 74HC244 and onto the data bus. The biggest disadvantage of the 
74HC244 is the 20pF worst-case capacitance of a tri-stated output. If more than a couple of these 
are added to a data bus, the capacitive load on the CPU’s data bus may become intolerable.

The Rabbit 3000 offers a helping hand to the designer that wants to plop down a fi stful of 
74HC244s on the data bus. The Rabbit’s Auxiliary Data Bus was added to the processor to 
minimize the capacitive loading on the high-speed memory bus.

If many 74HC244’s are used to expand the I/O in a Rabbit-based design, the designer should 
consider using the Auxiliary Data Bus.

Figure 9.7b shows a technique that uses multiplexers to implement additional inputs. The 
74HC257’s SEL signal determines if the A0..3 or B0..3 inputs are presented to the Y0..3 out-
puts. Each 74HC257 tri-stated output capacitance is 15pF worst-case. Since each output actu-
ally corresponds to two inputs, the total data bus loading is 7.5pF per input. This compares 
favorably to the 20pF per input of the 74HC244 solution.

Sometimes a system is required to simultaneously sample more inputs than the data bus has 
bits. In this case, a latch can be employed. Figure 9.7c shows how two 74HC574’s can be used 
to simultaneously capture 16-bits of data. The 74HC574’s tri-state capacitance is 15pF per pin.

The 74HC574’s sister chip, the 74HC374, has the same functionality but a different pinout. 
Depending on the PCB routing, one or the other IC’s will be preferable. The 74HC574 has all 
of the inputs on one side of the chip, the outputs are on the other side. Most of the time, rout-
ing a PCB will be easiest with the 74HC574.

When minimizing capacitive loading on the bus is paramount, the scheme shown in Figure 
9.6d should be considered. The serial shift chain only uses a single bit from the data bus. The 
only capacitive load on the bus is that presented by the tri-state buffer.

Each 74HC597 contains 16 fl ip-fl ops comprising two 8-bit registers. One register is the input 
latch. This is loaded by a rising edge on RCLK. The second register is the shift register. Data 
is moved from the input latch to the shift chain by asserting SLOAD(L) (active low).

Once the data is in the shift register rising edges on SCLK cause the data to be shifted out 
through QH. Each time a shift occurs, the “A” bit of the shift register is loaded from the SER 
input. 74HC597’s can, for all practical purposes, be cascaded indefi nitely.

SCLR(L) clears all of the registers in the shift-chain. This can be connected to the system’s 
RESET(L) signal if the designer wants the shift-chain to be initialized with all zeros. Many 
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designs will just tie SCLR(L) HIGH (inactive) and save the trouble of routing the trace. The 
shift chain will be loaded from the input latches on each read.

The concepts demonstrated in Figure 9.7 can be mixed and matched to suit the application. 
For example, eight shift chains from Figure 9.7d could use a single 74HC244 from Figure 
9.7a as the tri-state output buffer.

Now, we can hear all the recent graduates leafi ng through these very pages and wondering 
aloud, “Where are the FPGAs and CPLDs? That’s what real engineers use to implement dig-
ital logic. Right?”

Unless the designer has some reason to use CPLDs or FPGAs beyond expanding digital 
I/O, they are a bad idea. They are expensive, require programming, are power hungry, and 
worst of all, are often single-source components (meaning they are available from only one 
manufacturer).

About the only advantage an FPGA or CPLD has over discrete HC or VHC components is 
board space. That’s only true if the number of I/O pins is fairly high. If only 8 inputs need to 
be added, the board area-per-input (mm2 � input�1) is tough to beat for a single 16-pin SSOP. 
Further marginalizing the FPGA/CPLD density advantage is the fact that most external I/O 
signals will require ESD protection networks. Since a large board area will be needed, using a 
high pin-density TSOP doesn’t practically buy anything.

Surprisingly, it’s hard to beat the simplicity, price, and power consumption of HC and VCH 
logic parts for expanding digital inputs.

9.2.4 Expanding Digital Outputs

Expanding a system’s digital output count is similar to expanding the digital inputs. It boils 
down to adding fl ip-fl ops that retain and present (to other devices) values written by the proc-
essor. The same issues of capacitive data bus loading exist for output logic as did for input 
logic. Additionally, issues of initialization, current drive capability and tri-state ability must be 
considered.

Figure 9.8 shows four schemes for implementing digital outputs. Each circuit has subtleties 
that will make it suited to some applications but not to others.

Figure 9.8a shows a simple 8-bit latch (74HC574). This is the same device used in Figure 9.7c 
to implement digital inputs. One troubling issue is that of initialization. The 74HC574 doesn’t 
have a RESET pin.

The design shown in Figure 9.8a works around the lack of a RESET pin on the 74HC574. 
Upon system reset, 74HC574’s outputs are tri-stated by the external fl ip-fl op. This allows 
the external resistors to fi x the port’s state. The advantage of this method is that some of the 
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outputs may be tied low and some high. This allows greater fl exibility over a latch that uses a 
RESET (or CLR) pin to fi x all the outputs low upon initialization. Of course, the resistors will 
not be able to source or sink as much current as the 74HC574’s outputs.

The added expense of the external fl ip-fl op and resistors may be undesirable. This is espe-
cially true if an “all zero” initialization state is required. The circuit in Figure 9.8b shows 
how a 74HC273 can be used to implement a digital output with an all zero initialization. The 
CLR(L) pin can simply be wired to the system reset.
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Figure 9.8: A variety of latches and shift registers allows the designer to 
make trade-offs to meet the application’s requirements.
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Both the circuits in Figures 9.8a and 9.8b suffer from the problem of placing a fairly high 
capacitive load on the data-bus per digital output. Figure 9.8c shows how to use a 74HC259 
bit addressable latch with global CLR(L) to reduce capacitive bus loading. The 74HC259 has 
one annoying feature: The LOAD(L) signal that writes data into the fl ip-fl ops is level sensi-
tive. This places a requirement on the processor bus to hold the data bit (DO in Figure 9.8c) 
valid after the LOAD(L) is brought high.

Some processors do not expect this hold time requirement. I/O devices are expected to cap-
ture their data when the WRITE single is fi rst asserted. The processors have setup and hold 
time around the leading edge of the WRITE signal assertion. When the WRITE signal is de-
asserted, some processor datasheets state a zero minimum hold time. The Rabbit has confi g-
urable hold times.

Figure 9.8d shows how to use the 74HC594 to implement a series of digital outputs. The 
74HC594 does not offer an output tri-state. A similar chip, the 74HC595 swaps the output 
latch clear (RCLR(L)) for an output enable. Using a 74HC595 and a series of pull-up and 
pull-down resisters, as in Figure 9.8a, allows individual outputs to be initialized to HIGH or 
LOW states as the application may require.

There are other schemes for adding digital I/O to a processor. CPLDs and FPGAs are cur-
rently “all the rage.” For reasons described earlier, they should be used only when absolutely 
required. Regardless of the technique used to implement the digital output, there is a question 
of protecting the output from an over-current condition. Most of the CMOS parts presented 
have a maximum output current rated at 20 mA. If an output is inadvertently shorted to a 
power rail, damage can occur.

In systems with multiple PCBs, cable harnesses carry digital outputs between boards. If the 
outputs are used purely for logic functions, then a resistor placed in series with the output is 
well tolerated. Low input-current requirements ensure that the drop across a series resistor 
will be minimal. Under a fault condition, such as when a cable harness is incorrectly con-
nected, the series resistor limits the current into or out of the digital output thereby protecting 
the driver IC.

ESD protection techniques are based on the same principles discussed earlier for digital 
inputs. GDTs, MOVs, and TVSs are all good options for diverting potentially damaging tran-
sient energy away from a digital output pin.

9.3 High-Current Outputs

Digital outputs are fi ne and dandy, but embedded systems usually need to control actuators 
with digital ICs. The limited current available from a CMOS output is seldom enough to drive 
much beyond an LED.
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The usual suspects for implementing high-current outputs are bipolar junction transistors 
(BJTs), Darlington pairs, MOSFETs, electromechanical relays, and solid-state relays 
(SSRs). We will have a brief look at each of these tools and examine the strengths and pitfalls 
of each.

9.3.1 BJT-Based Drivers

Bipolar junction transistors (BJTs) are one of the most cost-effective ways to implement a 
“high-current driver.” Discrete transistors are available in PCB mountable packages from the 
rice-sized SOT-23 to strawberry-sized TO-3.

When a BJT is saturated, Vce(sat) will be fi nite and nonzero. For small signal transistors switch-
ing small collector currents, 100 mV is a good estimate for Vce(sat). As the collector current 
goes up, so will Vce(sat).

The power dissipated in a transistor due to the collector current will be Vce(sat) * Ic. The base 
current will also contribute Vbe * Ib watts to the total power dissipated.

Smaller devices can shed less heat than larger packages. Transistors like the MMBT2222A 
in a SOT-23 can only dissipate about 350 mW @ 25ºC. The PN2222A in a pin-through-hole 
TO-92 is rated for 650 mW @ 25ºC.

Transistors such as the Zetex FMMT625 have a combination of low Vce(sat) and high current-
transfer ratio (also called beta in saturation, βSAT, or hFE(SAT)). This combination minimizes 
power dissipation.

Figure 9.9a shows the simplest single transistor low-side driver, also called a sinking driver. 
After power dissipation, the biggest issue to consider in this topology is the base current 
required to keep the transistor in saturation.

Over temperature, a ten is a conservative value for hFE(SAT). Some higher-end devices such as 
the FMMT625 have an hFE(SAT) twice that. This is a far cry from the value of 100 that many 
engineers use.

The reason for this discrepancy is that transistors biased in the active region have a much 
higher current gain than transistors in saturation. While a β of 100 might be a conserva-
tive parameter for amplifi er design, it is 10 times too high for most transistors operating in 
saturation.

The practical implication is that the base drive for a single transistor driver may be a burden 
on the CMOS output connected to the BJT. For example, if the high-current driver in Figure 
9.9a is expected to switch a 500 mA load, a base current of 50 mA is required.

CMOS devices specify a maximum Icc that may be pulled from VCC or sunk into GND. The 
74HC574, which is one of the more robust CMOS parts, has an Icc(max) of 70 mA.
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If all eight outputs are used then only (70 mA / 8 outputs) 8.75 mA per output (on average) is 
available. That leaves no safety margin for the 74HC574.

Most CMOS devices are less capable than the 74HC574. The 74HC259 has an Icc(max) of only 
50 mA. Distributed over eight outputs, only 6.25 mA per output (on average) is available.

Building drivers capable of sourcing or sinking many amperes will usually require multiple 
stages of current amplifi cation.

Figure 9.9b shows a two-stage driver. Heating in the PNP’s base resistor is a key design 
consideration.

The voltage imposed across the PNP’s base resistor is �RAIL � | VBE(PNP)| � VCE(SAT)NPN. 
This approximates to (�RAIL � 0.8). For high rail voltages the V2/R heating in the PNP’s 
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Figure 9.9: Even simple transistor drivers require careful attention to design details.
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base resistor can be very high. For every doubling of voltage imposed across the resistor, the 
power dissipated quadruples.

For example, if the circuit shown in Figure 9.9b is designed to allow a 50 mA PNP base cur-
rent and �RAIL is 30 volts, then RB(PNP) will have to be approximately 600 ohms. The power 
dissipated in RB(PNP) will be:
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⋅
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2
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( . ) .� watts

If eight channels are designed into a device, then (8 * 1.5 watts) 12 watts of heat will have to 
be removed from the circuit. This may require ventilation and possibly a fan.

The least expensive transistors cost only pennies, but the assembly cost dwarfs the component 
cost. A good rule of thumb to use for insertion cost is $0.12 per part. This can be used for both 
PTH and SMT parts. Devices that require a heat sink, like a TO-3 or TO-220, will have addi-
tional charges.

Figure 9.9a requires two parts. The resistor and transistor may only cost a couple of pennies, 
but the insertion cost will be 2 � $0.12 � $0.24. The circuit in Figure 9.9b has fi ve compo-
nents for a total of $0.12 � 5 � $0.60 in assembly costs. For systems that require many I/O 
pins, this will quickly become expensive. For applications requiring many high-current driv-
ers, there are ICs available containing eight channels of Darlington drivers.

Figures 9.10a and 9.10b show the ULN2803 and UDN2985 respectively. The ULN2803 is 
a sinking driver and the UDN2985 is a sourcing driver. Both of these devices may be driven 
from CMOS outputs.

The ULN2803 can sink up to 500 mA per pin, although the device is limited by the total power 
the DIP package can dissipate. This means the entire device can sink about 500 mA split up 
between the eight channels.

The UDN2985 can source around 250 mA. The maximum rail voltage is 30 V. Like the 
ULN2803, the UDN2985 is limited by the package’s heat-shedding ability.

Both devices have integral fl y-back suppression diodes. When driving electromechanical 
relays, the fl y-back suppression diodes protect the transistors from the back EMF generated by 
the relay coil.

One disadvantage of these integrated drivers is the Darlington’s inability to pull the output 
to the rail. In a Darlington, the output transistor is never driven fully into saturation. 
A Darlington can only pull an output within 1.2–2.5 V of the rail.
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Figure 9.10: Prepackaged drivers simplify a designer’s life.

The UDN2985’s output stage is not a proper Darlington confi guration but is most accurately 
referred to as a compound PNP output stage. As with the Darlington confi guration, the 
drive transistor is never saturated and subsequently the output stage will only drive within a 
volt or two of the rail.
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For example, let’s say a ULN2803 is going to drive a relay with a 5 V coil and the top of the 
relay is connected to a 5 V rail. The Darlington can only develop about a 3.5 V drop across the 
relay coil. The remaining 1.5 V will be across the Darlington.

Many 5 V relays have a pick-up voltage (the voltage at which the relay is guaranteed to oper-
ate) that is higher than 3.5 V. This means the ULN2803 may not be capable of driving the 5 V 
relay with only a 5 V rail.

Another place prepackaged Darlington drivers fall short is when people use them to drive 
digital inputs. The Darlington’s voltage drop can eat up all of a CMOS device’s noise margin, 
especially when the CMOS device is being driven from a 3.3 V or 2.7 V rail.

9.3.2 MOSFETs

Metal oxide semiconductor fi eld effect transistors (MOSFETs) have many advantages over 
BJTs. Their low RDS(ON) allows MOSFETs to switch much higher currents than BJTs. 
They can be paralleled to share current. MOSFETs have a theoretically zero sustained drive 
current.

Disadvantages include maximum VGS restrictions—usually around �20 V. MOSFETs are 
notoriously sensitive to ESD damage. Through careful design, these issues can be managed.

There are hundreds of MOSFETs on the market. Table 9.2 highlights several inexpensive 
devices that cover a range of performance. The devices in Table 9.2 can be driven with a 
| VGS | of 5 V, allowing 5 V logic to turn them on and off.

The last two lines in Table 9.2 indicate that very high-drain currents are possible. The condi-
tions under which these currents could be obtained are highly unlikely to be realized in a prac-
tical design. The case temperatures must be maintained at 25ºC to get the �74 or �75 amp 
drain currents listed by the manufacturer. Perhaps with some sort of spray cooling or chilled 
heat-sink technology this might be possible. Most designs are lucky to have circulating air in a 
vented box. Under these conditions, using the IRF4905S or IRF1010NS to switch a few amps 
is reasonable, provided that suffi cient VGS is available.

The circuit shown in Figure 9.11 uses an IRF4905S to switch a 30 V source into a load. A 
zener diode is used to clamp the maximum VGS to less than the 20 volt maximum allowed by 
the data sheet.

Unlike BJTs, there are no gate resistors associated with MOSFETs that carry a signifi cant cur-
rent. This means less power is dissipated driving a MOSFET than driving a BJT; refer back to 
Figure 9.9b.

A neat trick that can be used to save a few pennies in a design, such as that shown in Figure 
9.11, is to use a reverse-biased base-emitter junction in place of the zener diode. The Zetex 
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FMMT491 can be used for both the current sink NPN shown in Figure 9.11 and in place of the 
zener diode. The base-emitter junction breaks down around 10 V. Since the IRF4905S turns on 
pretty hard with a VGS of �10 V, this technique will allow the elimination of a line item from 
the BOM without compromising the circuit’s performance.

10 K 

G

D

S

CMOS
OUTPUT

FMMT625
4.7 K

LOAD

IRF4905S

�30V 

100 K VZ � 12 V

Figure 9.11: A zener diode is a simple way to limit VGS to a reasonable level.

Table 9.2: These readily available SMT MOSFETs are good choices for new designs.

 Manufacturer  P/N  Polarity  Package  VDS(MAX)  ID(MAX) VGS(MAX)
    (Volts) (Amps) (Volts)

Fairchild  FDN5618P  P-  SOT-23  �60  �1.25  �20 
Semiconductor  Channel

Fairchild  FDN5630  N-  SOT-23     60  1.7  �20 
Semiconductor  Channel

Fairchild  NDS332P  P-  SOT-23  �20  �1.0    �8 
Semiconductor  Channel

Fairchild  NDS335N  N- SOT-23     20  1.7     20 
Semiconductor  Channel

Fairchild  NDT2955  P- SOT-223  �60  �2.5  �20 
Semiconductor  Channel

International  IRFL014  N- SOT-223     60  2.7  �20 
Rectifi er  Channel

International  IRF4905S  P- D2PAK  �55  �74.0  �20 
Rectifi er  Channel

International  IRF1010NS  N- D2PAK     55  75.0  �20 
Rectifi er  Channel
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Some caution is advised with this sort of hack. The Zetex FMMT491 indicates the emitter 
base junction will breakdown at 5 V with 100 uA. Through experimentation, one can see that 
with 2 mA, the FMMT491’s VEB is about 10 V. Hitting the FMMT491 with a can of freeze-
mist and a blast from a hot-air gun will show the FMMT491 will work pretty well over a 
broad range of temperatures.

As a “general rule,” engineers frown upon relying on a device’s undocumented characteristics. 
Engineers are also the ones responsible for making trade-offs. Sometimes the careful applica-
tion of common sense coupled with a little experimentation will yield an equitable trade-off 
that runs counter to the “general rules.” Sometimes engineering is as much art as science.

As with BJT circuits, IC manufactures offer devices that have multiple MOSFET drivers 
in a single package. One such family of devices is the Power Logic available from Texas 
Instruments and STMicroelectronics.

The Power Logic devices are available in common logic functions, such as latches (TPIC6259, 
STPIC6A259, and TPIC6B273) and shift registers (TPIC6595). The output stage is an open 
drain N-channel MOSFET. There are integrated fl y-back suppression diodes for driving induc-
tive loads.

Depending on the number of Power Logic channels sinking current in a device and the ambi-
ent temperature, each channel can continuously sink 150 mA to 500 mA. Some devices allow 
peak currents up to 1.5 amperes. The outputs are usually rated for 45 to 50 V.

Unlike the Darlington high-current drivers, the Power Logic devices will pull their outputs 
very close to ground. Additionally, FETs share current well. Multiple channels of Power Logic 
outputs can be paralleled to obtain higher current drive capacity than is available from only 
one channel.

Texas Instruments offers the devices in DIP packages. STMicroelectronics has datasheets for 
SMT versions of some devices.

With the advent of inexpensive, robust and beefy MOSFETs, a designer has options that 
didn’t exist with BJTs. In particular, higher load currents can be switched with lower drive 
currents.

9.3.3 Electromechanical Relays

When an application calls for a switch with low contact resistance, an electromechanical relay 
is sometimes the best choice. Like all electronic components, relays have evolved rapidly in 
the last few decades.

Relay manufacturers measure reliability in minimum expected operations. Today it’s common 
to see tens of millions of expected operations before contact failure.
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Relays are available in a SMT and PTH packages for circuits that must switch milliamps to a 
few amps. Milk carton-sized relays, called contactors, are also available for applications that 
need to switch hundreds of amps.

Small relays are often used to drive larger contactors. In these situations, the small relay is 
called a pilot relay. Since driving a contactor is simply a matter of driving a pilot relay, we’ll 
examine smaller relays in a bit more detail.

The Omron G6B series PTH relay is notable for having contacts rated at 5 amps up to 
250 VAC. The Omron contacts can switch a maximum 150-watt (1250 VA) resistive load. 
This is only impressive when one considers the device’s volume is only about 2.4 cubic 
centimeters.

SMT relays such as the TQ-SMD series from NAIS are also available. These small DPDT 
relays occupy less than a cubic centimeter. The contacts are rated to switch a 60-watt (or 62.5 
VA) resistive load with a maximum current of 2 amps.

Relays, like all switches, have a fi nite contact resistance. This is best measured under maxi-
mum current load.

The practical implication of contact resistance is heat. When the contacts carry current, the 
contact resistance causes Joule heating proportional to I2R.

The Omron G6B has a 30 milliohm contact resistance. The smaller TQ-SMD contacts have 
more than twice the contact resistance of the Omron (75 milliohm).

The Omron G6B relays achieve such outstanding contact ratings by having BIG contacts. 
Opening a G6B with a hacksaw will reveal the disproportionate large contacts for the volume 
of the relay. To get the relay to perform with large contacts and a relatively small coil, Omron 
has incorporated a “helper” magnet in the G6B series.

The helper magnet effectively polarizes the relay. When the coil is energized with the proper 
polarity, the helper magnet is attracted to the coil and the relay’s armature is actuated. When 
the coil is de-energized, the contacts move back into their original position. A reverse ener-
gized coil will actually repulse the armature and the contacts will not actuate.

Regardless whether the relay has a helper magnet or not, the driver circuit must be capable of 
handling the coil’s fl y-back voltage.

Placing a diode across the relay coil is the most common method of clamping the fl y-back 
voltage to a level that will be tolerated by transistor drivers. Packaged drivers, such as the 
ULN2803 and UDN2985, shown in Figure 9.10, contain a fl y-back suppression diode. 
Figure 9.12 shows an example of a discrete low-side BJT driver sinking current for a relay 
with an accompanying fl y-back suppression diode.
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Figure 9.12: Fly-back suppression diodes and snubbers are both 
tools to manage the energy stored in inductive elements.

Relays are often used to drive motors, contactors, solenoids and other magnetic devices. When 
driving inductive loads, a designer must take into account the energy that will be stored in the 
load’s magnetic fi eld. If the load is driven with a DC source, a fl y-back suppression diode can 
be used.

If AC is used to drive the load, a simple diode will not work. A simple RC network, called a 
snubber network, can be used quite effectively to dissipate stored energy. Figure 9.12 shows 
an example of a snubber network.

When the relay is opened, the snubber and load form a damped LCR circuit. Since both the 
inductor and capacitor are theoretically purely reactive devices, they will not dissipate any 
energy. The energy stored in the load will be dissipated as heat in the snubber’s resistor.

In practice, all parasitic resistances will dissipate energy as heat. The effective series resist-
ance of the capacitor will limit the (ripple) currents the capacitor can handle. The DC resist-
ance of the inductor will generate heating (copper losses) in the inductor, as will core heating 
(iron) loses.

The consequences for not using a mechanism, like a snubber, to burn off undesired energy can 
be as innocuous as a little arcing on the relay contacts or as serious as arcing that reaches back 
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into relay’s coil driver. Small relays can offer several thousand volts of isolation between the 
contacts and coil circuit. Inductive fl y-back can often exceed this level. In either case, unde-
sired radiated emissions from the arcing will occur.

Figure 9.12 shows a snubber placed across an inductive load. This arrangement can reduce 
noise signifi cantly. The snubber provides a conductive path for the current that the inductor’s 
stored energy will produce. Inductive fl y-back voltages will be signifi cantly reduced when the 
relay opens.

In practical systems, the length of wire between the switch and the inductive load is often 
suffi cient to produce a bit of back EMF across the relay. This will contribute to arcing in the 
switch contacts. Arcing generates unwanted EMI and if severe will cause deterioration of the 
relay contacts.

A common practice is to place the snubber directly across the switch contacts as shown in 
Figure 9.13. This minimizes arcing and the unwanted associated emissions. Another advan-
tage to this confi guration is that the relay is often located on a PCB. This means it is fairly 
easy to add a snubber as the resistor and capacitor are intended to be mounted on a PCB.

FLY-BACK
SUPPRESSION

DIODE

�5 V

CMOS
OUTPUT

TO WALL
OUTLET

STEP-DOWN
TRANSFORMER

110 VAC
60 Hz

24 VAC
60 Hz

24 VAC
Solenoid

47 OHM
1 WATT

100 NF
250 VOLT

SNUBBER
CIRCUIT
ON PCB

LONG WIRES
TO SOLENOID

Figure 9.13: In a pinch, a snubber can be placed across 
the relay contacts instead of the inductive load.
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A snubber confi guration as shown in Figure 9.12 is sometimes overly costly because the sole-
noid may not have any PCB to which to mount a snubber. This means either the device must 
be “fl y wired” and glued or a printed circuit board must be added. Either way, labor and mate-
rial costs increase.

As a practical matter, if the wire lengths between the switch and the inductive load are long, 
the area enclosed by the wire loop can become quite large. Depending on the frequencies 
involved, this can make for a pretty good radiator. In some cases, a snubber may need to be 
placed across both the switch and the load to bring emission levels down to an acceptable 
level.

The decision to place a snubber across the switch depends upon the geometry of the system, 
the currents being switched and the magnitude of the inductive load. One other factor is the 
construction of the switch.

Mechanical contacts arc. Semiconductor based switches do not. A snubber that is used to 
reduce arcing and the associated broadband radiated emissions may not be required if the 
mechanical relay is replaced with a solid-state relay.

On the other hand, if the size of the inductive load is unknown or the length of wire between 
the switch and the load is long, a snubber near the switch is good insurance against high fl y-
back voltages damaging the switch.

Whenever there is a snubber placed across a switch, leakage must be considered. The imped-
ance of the snubber’s capacitor is given by:
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In Figure 9.13, when the relay contacts are open, there is still a conductive path for the 60 Hz 
AC across the contacts. The impedance is:

 
Contact(OFF)IMPEDANCE ( )60 1

100 10 2 69
Hz �

�⋅ ⋅ ⋅ ⋅π 00
90 47 0 26 5 90∠ ° ∠ ° ≈ ∠ °� � �. kΩ

In the 24 VAC system of Figure 9.13, 26.5 k ohms allows about a milliamp of leakage current. 
This is not suffi cient to keep the solenoid energized.

In some cases, a snubber across a relay’s contacts can be problematic. If the relay is switching 
a high voltage, the snubber can allow enough leakage current to give an incautious human a 
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good jolt. Depending on the system this can be handled with safety interlocks and strict lockout/
tag-out procedures. In other systems, it may simply be unacceptable to allow any leakage current 
across the relay contacts. These are trade-offs the designer must make.

Another situation to look out for is when a snubber allows enough leakage current to keep the 
magnetic load actuated when it should be off. The case of a pilot relay driving a contactor is a 
classic case.

Contactors (and relays) have a pick-up current and a hold current. The pick-up current is the 
amount of current required to develop a suffi cient magnetic fi eld to actuate the contactor. The 
hold current is required to hold the contactor in an actuated position once the contactor has 
been actuated.

The pick-up current is generally much higher than the hold current. Some relay manufacturers 
specify a pick-up voltage and a hold voltage. By using the impedance of the relay or contac-
tor’s coil, one can calculate the currents in question.

The hold current will often be specifi ed as a maximum value. This means that even less cur-
rent will be required to hold the device in an actuated state than the specifi ed hold current.

An undesirable situation will occur if a pilot relay’s snubber allows a leakage current higher 
than the minimum hold current for the contactor. In essence, the pilot relay will turn on the 
contactor, but the leakage current will never allow the contactor to fully de-energize.

If the system designer is suffering particularly bad karma, the snubber’s leakage current will 
not be enough to keep most contactors energized. Symptoms of an inappropriately designed 
snubber may not show up until systems are deployed in the fi eld. Besides being somewhat 
embarrassing, this type of bug can be hard to fi nd and expensive to fi x.

Snubbers are invaluable tools for managing energy stored in inductive loads. The designer will 
have to trade off component values to achieve the responsiveness, costs, size and leakage cur-
rents required for each specifi c system.

For small inductive loads (fractional horse power loads), values for the capacitor are often 
found between 10 nF and 100 nF. It’s common to over specify the working voltage for the 
capacitor. In systems like those shown in Figure 9.13, high-voltage transients from the AC 
mains will be stepped down and coupled to the capacitor.

Another condition to be aware of is the failure of the galvanic isolation between the primary 
and secondary of the step-down transformer. If this occurs, the ideal situation would be for the 
fuse to open (see Figure 9.13). In another case, the solenoid may be damaged. If the snubber’s 
capacitor is over specifi ed, as is the case in Figure 9.13, under no circumstances should the 
controller board be damaged. Worse case, a technician may have to replace a fuse, the step-
down transformer, and the solenoid. None of this requires repairing a PCB.
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Resistor values tend to range from 10 ohms to 100 ohms. As a matter of good practice, the 
resistor should be specifi ed to be fl ameproof and, if size and cost permit, over specifi ed by a 
watt or two.

When making these trade-offs, the best advice is “test early and test often.” Better to spend a 
little more money early on in a design to fi nd out that a design trade-off will push emissions 
above allowable limits than to get a design set in concrete only to fi nd the same information 
out later. A good test lab will be willing to work with a designer throughout the design proc-
ess—not just at the end of a design.

Another useful tool is a circuit simulator, like SPICE. Simulators are notorious for being so 
strict and fi nicky that getting a simulation to complete is nearly impossible. Some other simu-
lators are so over-simplifi ed that getting data the designer can trust is diffi cult. Like all tech-
nologies, circuit simulators have improved over time.

Linear Technologies (www.linear.com) offers a free SPICE implementation called Switcher-
CAD III. This tool has an easy to use graphical front end, while allowing access to the SPICE 
netlist. SwitcherCAD III is a third-generation SPICE engine and is optimized for simulating 
switching power supplies. The tool works wonderfully for the general-purpose simulation.

On the CD-ROM packaged with this book, we have provided simulations for the circuits 
shown in Figures 9.12 and 9.13. A quick visit to www.linear.com will let the reader download 
and install the most current version of SwitcherCAD III.

9.3.4 Solid-State Relays

Solid-state relays (SSRs) are simply optoisolated silicon switches. These devices are available 
in a wide range of form factors and power ratings. Currently, the “contact” side of SSRs can 
be found with BJTs, SCRs, TRIACs, and MOSFETs. Some devices even contain circuitry 
to delay the “contact” from turning on until the AC voltage across the “contact” is at a zero 
crossing.

SSRs, when correctly sized, offer an advantage in mean time between failure (MTFB) over 
electromechanical devices. This comes from the fact that SSRs have no moving parts. SSRs, 
like all electrical components, have their own trade-offs.

SSRs are more expensive than electromechanical devices, and tend to dissipate more heat than 
their electromechanical counterparts. When specifying an SSR, the designer must pay careful 
attention to the device’s derating curve.

For example, the SSRs in the Crydom MCX family are sold as 5 amp relays. The derating 
curve shows that at ambient temperatures above 30ºC the device is to be derated by 120 mA/
ºC. This means if the SSR is intended to operate in a 60ºC ambient environment, the device is 
only capable of carrying about 3 amps.
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This heavy temperature derating can cause a designer to have to specify larger SSRs and 
thereby incur even more cost. Electromechanical relays also have temperature derating curves, 
but SSRs generally have the more onerous restriction.

In addition to MTBF, SSRs offer an advantage over electromechanical devices on the drive 
side. Driving an SSR is simply driving an LED. SSRs often have a fairly wide input range. 
The Crydom MCX series has input options spanning 3–15 VDC to 90–140 VAC (rms).

SSR input currents are usually a few milliamps to a few tens of milliamps. The MCX data-
sheet lists typical input currents from 5 mA to 15 mA depending on input confi guration.

An SSR’s driver circuit does not have to contend with inductive fl y-back. However, switch-
ing inductive loads is still something to which the system designer must pay careful attention. 
When switching DC into inductive loads, designers can use a fl y-back suppression diode to 
manage back-EMF. Circuits switching AC into inductive loads will benefi t from the same sim-
ple snubber circuit shown in Figures 9.12 and 9.13.

SSRs, when properly applied, have outstanding life expectancies. They may require substan-
tial heat sinking or air circulation. SSRs are usually more expensive than their electrome-
chanical cousins. SSRs are wonderful innovations, but they are not the best solution for every 
situation.

9.4 CPLDs and FPGAs

Complex programmable logic devices (CPLDs) and fi eld programmable gate arrays (FPGAs) 
have been a boon for system designers. The high gate density available allows complex func-
tions to be implemented in a confi gurable device. Programmable logic devices are available in 
ever-faster speed grades.

FPGAs are available as SRAM-based devices that must be programmed on boot. An 8-pin 
boot EEPROM is the usual method. There are some antifuse-based FPGAs that are the 
equivalent of OTP devices.

CPLDs are generally Flash-based devices. Once programmed, they retain their confi guration 
even during power-down.

These devices can be used to best effect by placing them in the path of high-speed data to do 
fi ltering or other high-speed manipulation. Figure 9.14 shows how FPGAs can be placed in a 
video path to do image fi ltering and other video-related tasks.

CPLDs and FPGAs are architecturally different creatures, but for our purposes the distinction is 
academic. Generally we can assume a CPLD will be smaller, cheaper, and faster than FPGAs.

Figure 9.14 shows a block diagram of a reasonably sophisticated single CCD camera. The 
system provides a processed analog output as well as a Web connection. The Web connection 
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in this system is primarily used to confi gure the image processing. The system also allows a 
frame to be captured from either the raw RGB image path or from the processed RGB image 
path. The captured image can be pulled into the Rabbit-based RCM3700 for analysis or sent 
over the Ethernet connection.

Color cameras that use a single CCD have a color fi lter (or mask) over the CCD that makes 
some pixels sensitive to red light, some to green, and some to blue. The most common of these 
masks is called a Bayer color fi lter. When reading a Bayer encoded image, a system must 
decode (or demultiplex) the image and form single digital pixels each with a red, green, and 
blue component by weighting several adjacent color selective pixels from the sensor. In 
Figure 9.14, the fi rst FPGA in the video path is dedicated to this function.

Once the raw video image has been converted to a digital steam of RGB information, the 
camera places a second FPGA in the signal path to apply additional processing to the image. 
This may include scaling the image, digitally zooming on a portion of the image, or doing 
color correction.

The RCM3700 can communicate with the image processing FPGA via the Rabbit’s Auxiliary 
I/O bus. This is an 8-bit bus and is comparatively slow. The Rabbit isn’t moving real time 
video data across the bus, just confi guration data for the FPGA.

Figure 9.14: A digital video camera is an application that benefi ts 
from the versatility and high speed of FPGAs.
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The look-up-table (LUT) connected to the second FPGA is a pretty common feature found 
in image processors. The RCM3700 can load the LUT through the image processing FPGA. 
Once the LUT is loaded, the FPGA can use the data in the LUT as part of the fi ltering 
algorithm.

Figure 9.14 shows a CPLD acting as a high-speed data acquisition controller and memory 
interface. The CPU can command the CPLD to start a high-speed capture of a single frame 
from either the raw or processed video streams. Once an image frame is collected in the frame 
buffer SRAM, the CPU uses the CPLD as glue logic to access the contents of the frame buffer.

The Rabbit 3000A has two new block move instructions (LSDDR and LSIDR) that allow 
the CPU to move data from repeated reads from a single IO port to multiple RAM locations. 
These block move instructions could be used to move a video image effi ciently from the frame 
buffer into the RCM3700’s internal SRAM.

If a system has need of a CPLD or FPGA, extra I/O pins can often be used to expand digital 
I/O lines. Since the expensive programmable logic already exists in the system, the extra I/O 
pins are essentially free.

For example, if the camera needed PTZ (pan/tilt/zoom) controls or a local man-machine inter-
face (MMI), extra pins from the CPLD or image processing FPGA can serve these functions.

9.5 Analog Interfacing: An Overview

So far, we have looked at expanding a controller’s capacity for turning devices on and off and 
sensing whether a device is on or off. Most of the world is analog. Temperature, color, strain, 
sound intensity, velocity, pressure, and innumerable other environmental quantities are analog. 
Our discussion will not be complete unless we look at pulling analog signals into a digital 
environment.

9.5.1 ADCs

An analog-to-digital converter (ADC) is a device that maps an analog signal, usually a volt-
age, to a digital code. These devices can be implemented in a variety of ways to optimize for 
certain characteristics. For example, delta-sigma (ΔΣ) converters are generally slow but have 
very high resolution and moderate cost. The ΔΣ converters are found in many biophysical 
sensing instruments.

Flash converters are the fastest converters available but are expensive and have relatively low 
resolutions (6 to 12 bits). These types of converters are found in video applications, communi-
cations systems, and digitizing oscilloscopes.

Successive approximation (SAR) converters use a binary search algorithm and a single com-
parator to accomplish a conversion. They strike a middle ground between ΔΣ converters and 
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Flash converters. SAR converters are available between 8 and 16 bits with reasonably high 
sample rates at moderate prices. SAR converters are the workhorses found in many 
embedded systems.

ADCs have nonidealities. Most ADC datasheets do a fairly good job of characterizing the 
device performance. Sometimes a datasheet may give “typical” performance parameters or 
only characteristics at 25ºC. In these situations, further testing and a few phone calls to the 
manufacturer will often yield a more concrete characterization.

An ADC is just one component in a chain of components that comprise a data acquisition 
channel (DAQ channel). Unless the ADC selected is a terrible device, the errors associated 
with the ADC will probably be swamped by errors associated with other components in the 
DAQ channel.

9.5.2 Project 1: Characterizing an Analog Channel

The ADC’s reference voltage (or current), signal conditioning op-amps, gain resistors, fi lter 
capacitors, noisy power supplies, parasitic noise coupling from poor PCB layout, and even 
raw sensor errors will introduce noise and errors into any DAQ channel. Characterizing an 
ADC is less important than characterizing an overall DAQ channel.

There are a few types of analysis that can be used to characterize a DAQ channel. These 
roughly divide into two groups. DC characterization is concerned with identifying offset 
errors, gain errors and noise when a DC signal is applied to the DAQ channel. AC charac-
terization is concerned with looking at these errors as various frequencies are applied to 
the DAQ.

There are many papers that discuss academically rigorous methods for characterizing DAQ 
channels. In some systems an exhaustive characterization may be justifi ed. However, most 
practicing engineers will get a long way with simple DC characterization. In this section we 
work through a DC noise analysis of one of the Rabbit Semiconductor’s RCM3400 DAQ 
channels.

Linux-based tools will be used to do the data collection and analysis. These tools are well 
developed and, best of all, are free. Linux is an ideal platform for laboratory PCs collecting, 
logging, and analyzing data.

Some level of noise is present in any analog circuit, dependent on the physical properties 
of the ICs, noise coupled in through the physical layout of the printed circuit board, ripple 
present on the DC power supplies, and so forth. By applying a known DC signal to our DAQ 
channel, we can sample our ADC readings and learn a great deal about the quality of the 
system.

For this section, we will use equipment set up as shown in Figure 9.15.
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Our analysis will yield a quantitative set of numbers characterizing the offset and noise per-
formance of the DAQ channel. From the acquired dataset, we will also generate a histogram as 
a qualitative aid for the engineer to see how the noise is distributed.

The characterization will proceed as follows:

1. The RCM3400 will acquire measurements of the precision reference.

2. The RCM3400 will transmit the sampled data to the Linux PC.

3. Linux-based software will analyze the data statistically and display it graphically.

The data collection phase will complete entirely before the sampled data is transmitted to the 
Linux PC. This reduces the chance that any activity on the serial ports will be coupled as noise 
into the ADC channels. Furthermore, sampling the ADC channel as quickly as possible mini-
mizes the likelihood of thermal drift and offset changes smearing the data in our histogram. 
We are trying to characterize the RCM3400’s best-case performance.

9.5.2.1 Sampling the Precision Reference with Dynamic C

We must decide how many ADC samples we need in order for our fi ndings to be statistically 
signifi cant. Arbitrarily, we pick 32,768 (32 K) samples. This number is not so large that it will 
take too long to acquire the data, and it doesn’t seem so small as to be insignifi cant. Picking a 
“statistically meaningful” sample size for a project like this is a bit of an art.

For our example, we are using a battery-powered, precision 16-bit voltage reference that 
produces 2.4995 � 0.0005 V with noise less than 1 part in 65,536 (16-bits). The RCM3400 
ADC will accept voltages up to 20 V, so we are well within the physical limits of the Rabbit’s 
hardware.

Let’s consider the storage required for our sampled data. The RCM3400 API includes a func-
tion named anaIn() that returns an int when it reads from the ADC. The ADC itself returns 

PC running
Windows

and
Dynamic C 

RCM3400 mounted on
the Rabbit supplied
development board

PC running
Linux

16-bit
precision
reference
(AD780)

Figure 9.15: A simple setup allows a quick characterization of the RCM3400’s analog channels.
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a value between 0 and 2047, and the driver expands that to include two special (negative) val-
ues indicating abnormal conditions. While the valid ADC values fi t into 11 bits, it is conven-
ient to treat them as 16-bit integers for our purpose. The RCM3400 has ample RAM available 
to store the extra information.

If we lacked suffi cient RAM, we could use another, more compact format to store our sam-
ples. With no loss in fi delity, we could pack eight 11-bit samples into 11 bytes, a savings of 
5 bytes over using 16-bit integers. Alternatively, if we could accept some loss in fi delity, we 
could store the difference between successive samples instead of the samples themselves. If 
we assume that successive samples are likely to be nearly equal, the difference between them 
should be close to zero. Storing an 8-bit difference between samples would require half of the 
storage space used to store 16-bit integers. A limitation of this approach is that if the sampled 
signal changes too much between successive samples, the difference will not fi t into 8 bits and 
thus we lose fi delity.

Although the RCM 3400 has suffi cient RAM available to store 32 K integers, declaring an 
array like this:

int storage[32768];

yields the compiler error message: “Array dimension is too large; the size of a dimension 
cannot exceed 32768.” Even if we decide that 32767 samples would be suffi cient, we can-
not proceed naively because (a) if the storage array is declared as a global variable, we get 
the compiler error “Out of variable data space.” and (b) if the storage array is declared as an 
“auto” variable and thus stored on the runtime stack, our program fails at runtime because 
we’ve corrupted the stack with our data array.

Fortunately, other methods to use memory on the Rabbit exist and are easy. Dynamic C allows 
us to allocate large memory blocks from extended memory at runtime using the xalloc() 
function call. Additionally, Dynamic C lets us read and write to integers stored in extended 
memory using the xgetint() and xsetint() functions. Now that we have considered 
the storage requirements, we can press ahead with understanding how to acquire the samples.

The RCM3400 library includes functions to confi gure the DAQ channel’s gain and read the 
ADC. Sample code included with Dynamic C shows how these functions are used. We started 
with the sample code’s function sample_ad() and then modifi ed it to suit our purposes.

The enclosed CD contains the complete program, NoiseCheck.c, that was used to sample the 
RCM3400’s ADC, store the samples, and report them via the serial port.

The code begins by defi ning several macros: GAINSET is used to confi gure the programmable 
ADC gain in the function sample_ad(); NUMSAMPLES is the number of ADC samples 
we will take; DINBUFSIZE and DOUTBUFSIZE confi gure the size of the receive and trans-
mit buffers used by the serial drivers.
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The function sample_ad() takes one parameter—an integer that represents which ADC 
channel we wish to sample from. The ADC has eight channels, numbered 0 through 7. 
The original sample_ad() function provided with Dynamic C had a second parameter—
the number of samples to take and returned the average of the samples. Using the average 
of a number of samples is a common data acquisition technique to help mitigate the impact 
noise on the DAQ channel. Since our goal is to determine the noise that might be present, 
we do not want to average ADC samples. Thus, we removed the second parameter for our 
program.

9.5.2.2 Transmitting the Sampled Data to the Linux PC

The collected samples will be transferred from the RCM3400 to the Linux PC via RS-232. 
The RCM3400 has several serial channels available, and most PCs are equipped with at least 
one RS-232 port.

Z-World provides a convenient library of functions in Dynamic C for handling the serial 
ports. The functions that we will use are serDopen(), serDwrFlush(), serDrd-
Flush(), serDclose(), serDputs(), and serDwrUsed(). The prefi x “serD” is 
used in the function names to indicate that the function affects serial channel D. Similar func-
tions exist for all serial channels A through F. The open and close functions are housekeeping 
functions to confi gure the serial port. wrFlush() and rdFlush() are used to ensure that 
the transmit and receive buffers are cleared before we use them. puts() is used to queue a 
string in the output buffer for asynchronous transmission. wrUsed() returns the number of 
bytes that are currently queued for transmission. Behind the scenes, the serial library handles 
the asynchronous transmission and reception of serial data by installing interrupt handlers to 
deal with the various buffers and UART registers involved. This library makes using Rabbit 
UARTs for RS-232 convenient.

Under Linux we have even fewer functions to worry about. Historically, UNIX and its 
descendents (like Linux) treat hardware devices as fi les. To refer to a hardware device, the pro-
grammer need only refer to a special fi le name that corresponds to that device, using the same 
software functions as one would for any other fi le (e.g., open(), close(), read(), 
and write()). Additionally, we can use the usual shell commands for fi le manipulation to 
send and receive data from the serial ports under Unix/Linux.

It’s quite convenient to write small programs that each solve a small piece of the complete a 
task. In this case, there will be one small program (GetData.sh on the enclosed CD) that reads 
data from the serial port and saves it to a data fi le. There will be a second program (Histogram.
pl on the enclosed CD) that reads the data fi le and produces a statistical analysis of the sample 
data and saves a histogram of the data to a second fi le. A third program (gnuplot) will read the 
histogram data to produce a graph of the data.
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We must choose a data format that both the RCM3400 and the Linux PC can support. Since 
there’s no need for high-speed data transfer, we will use ASCII text to send the sample data. 
Because the data analysis will happen on the Linux PC, we might want to send each sample as 
a hexadecimal number, in a format easily handled by the usual UNIX tools. This leads to the 
simple format below:

<start of data><carriage return / linefeed>
<sample 1 value><comma><carriage return / linefeed>
...
<sample 32768 value><comma><carriage return / linefeed>
<end of data><carriage return / linefeed>

Each �sample� will look like: 0xXXXX where X is a digit 0..9 or letter a..f and the start and 
end of data messages are ASCII text.

Strictly speaking, the <comma> characters in the message stream are redundant since each 
line will be ended by a carriage return and line feed. However, they could be useful if the data 
fi le ends up being imported into a spreadsheet program. The start and end of message strings 
would normally be well defi ned, except that the data extraction tools on UNIX are generally 
very forgiving about such things.

In NoiseCheck.c, we used the string “Start of data transfer” to indicate the start 
of the message and the string “End of data transfer” for the end of message. Both 
humans and Linux can easily parse the resulting data fi le.

9.5.2.3 Linux Data Capture Program Listing

The enclosed CD contains the fi le getdata.sh, also shown in Listing 9.1. This is the bash shell 
script that was used to record the received ADC sample data on the Linux PC.

Linux is generally confi gured with online manuals for their system programs. For more infor-
mation regarding the programs mentioned, please refer to the online “man” pages. For example, 
to get more information on stty at a Linux command prompt, just type man stty.

The script begins by defi ning two variables, COMPORT and FILEBASE, which hold the 
fi lename of the serial device and the base fi lename of the received data fi les, respectively. 
Next, the script uses the STTY program to set the receive and transmit baud rates for the serial 
device. The default settings for number of data bits, stop bits, and parity mode are acceptable 
and are not changed here.

Note: UNIX serial ports were historically used to connect the computer to teletypewrit-
ers, and STTY refl ects this heritage by having a plethora of options that would be used 
only for that purpose. In general, when you’re using the serial ports on a UNIX machine 
for data communication, these options should be disabled.
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The script continues by generating a unique fi lename where the received data will be stored. 
The DATE command is called to return the Julian date (the day of the year) followed by the 
time in 24-hour format. This data string is appended to the value of the FILEBASE variable 
to generate a fi lename.

Finally, a terse line explanation is given to the user and the heart of the script commences. The 
CAT program is used to concatenate the contents of a list of fi les and print the resulting data 
stream on the STDOUT device, which is by default the user’s console. We invoke CAT giving 
the name of the serial device as the fi le that we want to send to STDOUT. We then pipe (|) that 
data stream to the TEE command, which copies its input to a fi le as well to the STDOUT data 
stream. The result of this command is that the contents of the serial port are both copied to the 
fi le named by FILENAME as well as echoed to the screen for the user to watch. This program 
ends when the user presses Control-C.

If the user didn’t want to see the received serial data, the user could change the last line to read:

cat $COMPORT > $FILE

Also, if the user didn’t want to write to a new fi le each time this script was run but instead 
append new data to the end of the current fi le, the last line could be changed to:

cat $COMPORT | tee -a $FILEBASE

Both of the previous changes would be written as:

cat $COMPORT >> $FILEBASE

If the user didn’t want to have the current shell process to wait for a Control-C, the last com-
mand should be placed in the background via the & shell operator as follows:

cat $COMPORT >> $FILEBASE &

Note that even if the & is used to “background” the script, the script can continue to echo data 
to the console. This feature is not very useful, and probably demonstrates more fl exibility than 
ease of use on the part of Unix and derivative operating systems.

Since power outages are common, it’s reasonable to want to make a Linux PC begin log-
ging data upon boot without user intervention. Unix provides many ways for the user to have 
programs invoked automatically, some based on a schedule via the AT and CRON programs, 
some based on the current state of the operating system via the INIT program.

Note: The simplest of the mechanisms is a shell script that the system runs after all other 
boot-up functions have completed. This script is located in different places on different 
fl avors of UNIX, but on many systems the script is named /etc/rc.local. One need only 

Ch09-H8584.indd   426Ch09-H8584.indd   426 8/17/07   6:19:42 PM8/17/07   6:19:42 PM



 Interfacing to Sensors and Actuators   427

www.newnespress.com

#!/bin/sh 

# 

# acquire a batch of data from the serial port 

# 

# Kelly Hall, 2003

COMPORT=/dev/ttyS1 
FILEBASE=data.log

# set up the com port 
stty -F $COMPORT ispeed 19200 ospeed 19200

# get the time/date 
DATE=‘date +%j-%T‘ 
FILE=$FILEBASE”-“$DATE

# tell the user what’s happening 
echo “logging data from $COMPORT to $FILE” 
echo “press control-C to exit”

cat $COMPORT | tee $FILE

Listing 9.1: Bash shell script used to receive and record the sample data.

9.5.2.4 Analyzing the Data Graphically and Numerically

Once the ADC sample data has been transferred to the Linux PC, we want to analyze the data 
for trends. One form of qualitative graphical analysis is a histogram. This is a plot of each data 
value read versus the number of times that value occurred in the data set. Visual inspection 
of the histogram will quickly tell us if the noise “looks” right. For example, multiple humps, 
also called modes, are indicative of nonrandom (coupled) noise. If the histogram is a single 
bell-shaped curve, then we can look to a more quantitative analysis that assumes the noise is 
gaussian.
Other analyses we will perform include calculating the mean of the data set, the standard 
deviation of the data, and the calculated noise in the ADC channel represented as both volt-
ages and bits of error. This type of analysis is quantitative.

add the commands in Listing 9.1 to the end of the /etc/rc.local script, or the rc.local script 
could invoke a separate shell script that contains the commands from Listing 9.2. In this 
case, the user should defi nitely background the CAT command and not echo data to the 
STDOUT data stream.
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Since the RCM3400 ADC accepts input voltages in the maximum range of 0 V through 20 V 
and returns a code based on the input voltage that ranges from 0 to 2047 (11 bits), each ADC 
code represents approximately (20 V–0 V) / 2048 � 9.8 mV.

Additionally, the ADC has a gain control that rescales the input signal: with a Gain of 2, the 
input signal ranges from 0 V to 10 V, so each ADC code would represent 4.9 mV. Gains of 4, 5, 
8, 10, 16, and 20 are available, as well as a gain of 1, which corresponds to the 0 V–20 V range, 
discussed above. As the gain increases, the range of input voltage decreases accordingly.

Our experimental precision reference based on the AD780 generates a constant 2.500 V sig-
nal. We can use gains of 1, 2, 4, or 5 to measure the signal. If the gain was set any higher, the 
maximum input voltage would be lower than 2.500 V and thus our input signal would be out 
of range.

Once we know the gain setting of the ADC, we can convert between input voltages and ideal 
ADC codes by multiplying or dividing the size of each code by the appropriate amount. For 
example, with a gain of 1, a 3.3 V input should produce the ADC code of (3.3 V / 9.8 mV per 
code) � 337. Similarly, an ADC code of 1250 should correspond to an input voltage of 
(1250 * 9.8 mV per code) � 12.25 V.

The fi rst part of our data analysis will compute the average returned ADC code for the input 
voltage. This will likely differ somewhat from the expected ADC code that we can calculate 
above using the gain and resolution of the converter. The difference between the expected 
value and the mean is called an “offset.” We can express offset in ADC codes or in volts.

The standard deviation (σ) of the data is a measure of how spread out the data is from the 
mean. σ is conveniently mathematically equal to the RMS noise of the ADC channel. We can 
measure this noise in ADC codes, or in Volts. The base-2 logarithm of the standard deviation 
is the RMS noise in bits, and if we subtract that from the advertised resolution of the ADC we 
can obtain the effective resolution of the channel in bits.

The overall peak-to-peak noise in the sample set is taken to be �3 * σ (in ADC codes). Some 
texts take �3.3σ to be the peak-to-peak noise. We can convert this into bits of peak-to-peak 
noise via the base-2 logarithm of 3 * σ, and thus we compute the “noise-free resolution” of the 
ADC channel by subtracting the bits of noise from the advertised resolution of the ADC.

The quantitative characterization techniques presented here are useful in comparing one sys-
tem to another as long as the engineer consistently applies the same functions to data from dif-
ferent systems.

9.5.2.5 Linux Data Reduction Program Listing

Listing 9.2 shows the Perl script used to calculate the histogram of the ADC sample data, as well 
as the various statistical data we are looking for to characterize the noise on the ADC channel.
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Perl comes standard with most Linux distributions. It is also available for free download for 
both Linux and Windows® from www.ActiveState.com.

The script begins by loading the Perl Module ‘Statistics::Lite’. This module is 
available from the Comprehensive Perl Archive Network at www.cpan.org. This module pro-
vides simple access to standard deviation, mean, and variance functions over a data set.

The script continues by declaring a hash table to store a count of how many times we have seen 
each ADC code, and by declaring a list to hold the complete data set. Next, two constants are 
declared to hold the desired input voltage and the number of bits of resolution of the ADC.

Next, the script pulls the name of the data fi le and the maximum input range (in volts) from the 
command line. This allows us to reuse the script on different data fi les and with different gain 
settings.

Next, the script gets to work by resetting a counter of the number of data lines read, and pro-
ceeds to open the input fi le. The script loops through each line of the input fi le using the <> 
operator. For each line of input, we try to match the input line to a regular expression of the 
form:

$0xXXXX,^

where:

$ means the beginning of the line
0x are literal characters
X means a nonspace character (letter or digit)
, is a literal character
^ means the end of the line

The exact regular expression in the if statement is slightly different—it includes optional 
whitespace following the comma, and if successful, it saves off the four X characters into a 
special variable. If the if statement succeeds, then the matched part of the expression is used 
as the ADC code, and we save that into the variable $new_data. $new_data is a string 
that begins with “0x….” and while that’s a legal hash table key for Perl, it’s more convenient 
to convert that string to an integer before we use it as a key. We use the Perl function oct() 
to do this and save the integer into the variable named $num. Then $num is used as a key into 
the hash table, and we update the count stored at that location in the table. Then we insert the 
$new_data into our complete list of all data read stored in @data. Finally, we increment 
the number of lines read in the variable $count. When we’ve read all the data in the input 
fi le, the while loop terminates and we close the input fi le.

The script generates the histogram and writes it to a new fi le. The histogram is placed in a 
fi le with a name generated from the name of the fi le passed on the command line with 
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“-histogram” appended. We initialize a new variable that will hold the sum of all the data 
values we read. Then we loop through the hash table, in order of the keys. For each key, we print 
out the key itself, some whitespace, and the count from the hash table. We also update our run-
ning sum. When all the keys have been processed, we close the output fi le and print out the $sum 
we’ve calculated. It should be the same as the number of lines of input data we read above.

Next the script computes some statistics. The Statistics::Lite module generates all of 
the data that it can, and it saves its results in the hash named %results. The last thing the 
script does is print out the results.

#!/usr/bin/perl

# some handy stats functions
use Statistics::Lite qw(:all);

# we need a hash to store the codes we see
my %codes;
my @data;

# constants for this analysis
$inputvoltage = 2.500;
$ADCbits = 11;

# get the fi le name from the command line
$fname = $ARGV[0] or die “usage: $0 fname maxRange”;
$maxRange = $ARGV[1] or die “usage: $0 fname maxRange”;

open DATA, $fname or die “can’t open $fname”;
$count = 0;
while(<DATA>) {

 # we just want lines of the form $0xXXXX,^ 
 if( m/^(0x\w\w\w\w),\s*$/ ) { # if the regexp matches, save off
the data 
  $new_data = $1; # update the bin 
  $codes{$new_data} += 1; 
  $num = oct $new_data; # convert to an integer 
  push @data, $num; # add to our raw data array 
  $count++; # update our count

 }

}

close DATA;

# open the output fi le
$fname = $fname . “-histogram”;

Listing 9.2: Perl script used for data analysis.
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open OFILE, “>$fname” or die “can’t open output fi le $fname”;
$sum = 0;
foreach $code (sort keys %codes) {
 print OFILE oct($code) . “ ” . $codes{$code} . “\n”;
 $sum += $codes{$code}; 
}
close OFILE;

# now do the analysis
%results = statshash @data;

printf “\nAssuming an %3d bit converter with 0 to %3dV input range\
n”, $ADCbits, $maxRange;
printf “Assuming a %6.3f volt precision reference\n\n”, 
$inputvoltage;
$voltspercode = $maxRange / (1<<$ADCbits);
printf “1 Code = %7.3g Volts\n\n”, $voltspercode;

printf “Measured Mean (codes) = %9.4f\n”, $results{mean};
printf “Expected Mean (codes) = %9.4f\n”, ($inputvoltage /
$voltspercode);
$offset = $inputvoltage - $voltspercode * $results{mean};
printf “offset (volts) = %7.3f Volts\n\n”, $offset;

$noiseRMSvolts = $results{stddev}*$voltspercode;
$noiseRMScodes = $results{stddev};
printf “RMSnoise(ADC codes) = %7.3f\n”, $noiseRMScodes;
printf “RMSnoise(volts) = %8.4f\n\n”, $noiseRMSvolts;
printf “Noise(pk-to-pk)(ADC codes) = %7.3f\n”, 3.3*$noiseRMScodes;
printf “Noise(pk-to-pk)(volts) = %8.4f\n”, 3.3*$noiseRMSvolts;

Listing 9.2: Continued

9.5.2.6 Linux Histogram Visualization

Gnuplot was used to plot and save the histogram graphics. Gnuplot is highly adept at plotting 
data from fi les such as these. Invoke gnuplot as follows:

$ gnuplot

This will return a report similar to:

   G N U P L O T
   Version 3.7 patchlevel 3
   last modifi ed Thu Dec 12 13:00:00 GMT 2002
   System: Linux 2.4.20-20.9smp

   Copyright(C) 1986–1993, 1998–2002
   Thomas Williams, Colin Kelley and many others
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   Type `help` to access the on-line reference manual 
   The gnuplot FAQ is available from 
   http://www.gnuplot.info/gnuplot-faq.html

 Send comments and requests for help to <info-
 gnuplot@dartmouth.edu> 
  Send bugs, suggestions and mods to <bug-gnuplot@dartmouth.edu>

Terminal type set to ‘unknown’
gnuplot>

At the gnuplot> prompt, just type the command

Plot “HISTOGRAMFILE” with boxes

where HISTOGRAMFILE is the name of the fi le containing the histogram data. For 
example,

plot “data.log-352-15:44:06-histogram” with boxes

Gnuplot can generate encapsulated postscript fi les (EPS) suitable for importing into word 
processors:

gnuplot> set terminal postscript eps
gnuplot> set output “histogram.eps”
gnuplot> plot “data.log-352-15:44:06-histogram” with boxes
gnuplot> set output
gnuplot> exit

For more information on the versatile gnuplot program, refer to the gnuplot man page or the 
gnuplot homepage at www.gnuplot.org.

9.5.2.7 Sample ADC Noise Quantifi cation and Visualization

Here we put together the work in the preceding sections and characterize the fi rst DAQ chan-
nel on the RCM3400 development board.

Since our voltage reference was 2.5 V we had the option of using ADC gain settings of 1, 2, 4, 
and 5. We ran the analysis for all gain settings.

The histograms showed that the data reported from the ADC was tightly clumped around the 
mean value. In each histogram, only two or three bins had data in them. An ideal ADC in a 
noiseless system would only report data in one bin. In real life systems, a histogram with only 
two or three bins is excellent. Figure 9.16 shows a representative histogram from our experi-
ments. The reported ADC codes are on the horizontal axis. The number of occurrences is 
shown on the vertical axis.
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Figure 9.16: GAIN � 4, 0–5 V input range, 2.5 V stimulus.

An example of the textual output from our Perl script is shown here:

Assuming an 11 bit converter with 0 to 20V input range
Assuming a 2.500 volt precision reference

1 Code = 0.00977 Volts

Measured Mean (codes) = 251.9695
Expected Mean (codes) = 256.0000
offset (volts) = 0.039 Volts

RMSnoise(ADC codes) = 0.172
RMSnoise(volts) = 0.0017

Noise(pk-to-pk)(ADC codes) = 0.568
Noise(pk-to-pk)(volts) = 0.0055v

The results of our four experiments are summarized in Table 9.3.

If the RMS noise on a channel is greater than 1 bit, we can compute the effective resolution of 
the channel from:

RESOLUTIONEFFECTIVE � ADC bits � LOG2 (NoiseRMS in codes)

The RCM3400 has RMS noise levels so low as to render the computation of effective resolu-
tion meaningless. The logarithm becomes negative for RMS noise levels less than one code. 
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The conclusion we can draw from our experiments is that the effective resolution of the 
RCM3400 is a full 11 bits for gains of 1, 2, 4, and 5.

If the peak-to-peak noise on a channel is greater than 1 bit, we can compute the noise free 
resolution of the channel from:

RESOLUTIONNOISE FREE � ADC bits � LOG2 (NoisePK-PK in codes)

In our experiment, we see that the worst case peak to peak noise on the RCM3400 channel 1 
occurs with a gain of 5 and is 2.227 codes. From the equation above, we compute:

 
RESOLUTION LOGNOISE FREE Gain=5 211 2 227� � �( . ) 111 9 84� �

In(2.227)
In(2)

bits.

Our analysis of the RCM3400’s DAQ channel showed admirable performance. For this exam-
ple, we only examined one of the eight single-ended (or four differential) DAQ channels on 
the RCM3400. A careful engineer will characterize all DAQ channels used in a system.

The DC analysis techniques presented here will allow an engineer to get a good feel for how 
accurately the ADC is reporting sensor data under ideal conditions. This is the best performance 
that the engineer can expect from the system without calibration or averaging data samples.

9.6 Conclusion

Companies are rolling more and more features into silicon, making the system designer’s job 
easier. However, the designer must still exercise caution when devising an interface between 
real world sensors and a processor. Issues of ESD, bus loading and power consumption still 
exist and must be handled by the system engineer.

Table 9.3: The RCM3400 performed admirably over all the ranges measured.

 Gain of 1  Gain of 2 Gain of 4  Gain of 5 
 0–20 V Range 0–19 V Range 0–5 V Range 0–4 V Range

Volts per code  9.77 mV  4.88 mV  2.44 mV  1.95 mV 

Measured offset  39 mV  36 mV  34 mV  32 mV 

Measured RMS noise 0.172  0.409  0.403  0.675 
in codes

Measured RMS noise 1.7 mV  2.4 mV  1.0 mV  1.3 mV 
in volts

Measured pk-pk noise 0.568  1.617  1.329  2.227 
in codes

Measured pk-pk noise 5.5 mV  7.9 mV  3.2 mV  4.3 mV
in volts
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The Rabbit 3000 has simplifi ed the bus-loading issue by providing an auxiliary I/O bus allow-
ing peripheral devices to be added without unduly loading the high-speed memory bus. The 
core module designs address issues of memory interfacing, battery backup, system reset, 
power supervision, and, on some cores, analog interfacing.

Some core modules from Rabbit Semiconductor have provided low-noise DAQ channels. 
For example, the RCM3400 will drop right into many applications needing one to eight solid 
11-bit resolution DAQ channels.

Endnote

Tinder, Richard, Digital Engineering Design: A Modern Approach, Prentice Hall, 1991.
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Other Useful Hardware Design Tips 
and Techniques

Jack Ganssle
Ken Arnold

CHAPTER 10

10.1 Introduction

Embedded systems are a blend of hardware and software. Each must complement the other. 
Hardware people can make the fi rmware easier to implement. 

Many of the suggestions in this chapter will make a system easier to debug. Remember that a 
good design works; a great design is also one that’s easy to debug. 

10.2 Diagnostics 

In the nonembedded world, a favorite debugging trick is to seed print statements into the code. 
These tell the programmer whether the execution stream ever got to the point of the print. But 
fi rmware people rarely have this option. So, add a handful of unassigned parallel I/O bits. The 
fi rmware people desperately need these as a cheap way to instrument their code. Seeding I/O 
instructions into the code that drives these outputs is a simple and fast way to see what the 
program is doing. 

Developers can assert a bit when entering a routine or ISR, then drive it low when exiting. 
A scope or logic analyzer then immediately shows the code snippet’s execution time. 

Another trick is to cycle an output bit high when the system is busy and low when idle. Connect 
a voltmeter to the pin, one of the old-fashioned units with an analog needle. The meter will inte-
grate the binary pulse stream, so the displayed voltage will be proportional to system loading. 

If space and costs permit, include an entire 8-bit register connected to a row of 0.1 inch spaced 
vias or headers. Software state machines can output their current “state” to this port. A logic 
analyzer captures the data and shows all the sequencing, with nearly zero impact on the code’s 
execution time. 

At least one LED is needed to signal the developer—and perhaps even customers—that the sys-
tem is alive and working. It’s a confi dence indicator driven by a low-priority task or idle loop, 
which shows the system is alive and not stuck somewhere in an infi nite loop. A lot of embedded 
systems have no user interface; a blinking LED can be a simple “system OK” indication. 
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Highly integrated CPUs now offer a lot of on-chip peripherals, sometimes more than we need 
in a particular system. If there’s an extra UART, connect the pins to an RS-232 level shifting 
chip (e.g., MAX232A or similar). There’s no need to actually load the chip onto the board 
except for prototyping. The fi rmware developers may fi nd themselves in a corner where their 
tools just aren’t adequate and will then want to add a software monitor (see www.simtel.com) 
to the code. The RS-232 port makes this possible and easy. 

If PCB real estate is so limited that there’s no room for the level shifter, then at least bring Tx, 
Rx, and ground to accessible vias so it’s possible to suspend a MAX232 on green wires above 
the circuit board.

Note: Attention, developers: if you do use this port, don’t be in such a panic to imple-
ment the monitor that you implement the RS-232 drivers with polled I/O. Take the time 
to create decent interrupt-driven code. In my experience, polled I/O on a monitor leads 
to missed characters, an unreliable tool, and massive frustration.

Bring the reset line to a switch or jumper, so engineers can assert the signal independently of 
the normal power-up reset. Power-up problems can sometimes be isolated by connecting reset 
to a pulse generator, creating a repeatable scenario that’s easy to study with an oscilloscope. 

10.3 Connecting Tools

Orient the CPU chip so that it’s possible to connect an emulator, if you’re using one. Sometimes 
the target board is so buried inside of a cabinet that access is limited at best. Most emulator pods 
have form factors that favor a particular direction of insertion. 

Watch out for vertical clearance, too! A pod stacked atop a large SMT adaptor might need 4 to 
6 inches of space above the board. Be sure there’s nothing over the top of the board that will 
interfere with the pod. 

Don’t use a “clip-on” adaptor on a SMT package. They are simply not reliable (the one exception 
is PLCC packages, which have a large lead pitch). A butterfl y waving its wings in Brazil creates 
enough air movement to topple the thing over. Better, remove the CPU and install a soldered-
down adaptor. The PCB will be a prototype forever, but at least it will be a reliable prototype. 

Leave margin in the system’s timing. If every nanosecond is accounted for, no emulator will 
work reliably. An extra 5 nsec or so in the read and write cycle—and especially in wait state 
circuits—does not impact most designs. 

If your processor has a BDM or JTAG debug port, be sure to add the appropriate connector 
on the PCB. Even if you’re planning to use a full-blown emulator or some other develop-
ment tool, at least add PCB pads and wiring for the BDM connector. The connector’s cost 
approaches zero and may save a project suffering from tool woes.
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A logic analyzer is a fantastic debugging tool yet is always a source of tremendous frustration. 
By the time you’ve fi nished connecting 100 clip leads, the fi rst 50 have popped off. There’s 
a better solution: Surround your CPU with AMP’s Mictor connectors. These are high-den-
sity, controlled impedance parts that can propagate the system’s address, data, and control 
buses off-board. Both Tektronix and Agilent support the Mictor. Both companies sell cables 
that lead directly from the logic analyzer to a Mictor. No clip leads, no need to make custom 
cables, and a guaranteed reliable connection in just seconds. Remove the connectors from pro-
duction versions of the board or just leave the PCB pads without loading the parts. 

Some signals are especially prone to distortion when we connect tools. Address latch enable 
(ALE), also known as address strobe (AS) on Motorola parts, distinguishes address from data 
on multiplexed buses. The tiniest bit of noise induced from an emulator or even a probe on 
this signal will cause the system to crash. Ditto for any edge-triggered interrupt input (like 
NMI on many CPUs). Terminate these signals with a twin-resistor network. Though your 
design may be perfect without the terminations, connecting tools and probing signals may cor-
rupt the signals. 

Add test points! Unless its ground connection is very short, a scope cannot accurately display 
the high-speed signals endemic to our modern designs. In the good old days it was easy to solder 
a bit of wire to a logic device’s pins to create an instant ground connection. With SMT this is 
either diffi cult or impossible, so distribute plenty of accessible ground points around the board. 

Other signals we’ll probe a lot and that must be accessible include clock, read, write, and all 
interrupt inputs. Make sure these each have either test points or a via of suffi cient size that a 
developer can solder a wire (usually a resistor lead) to the signal. 

Do add a Vcc test point. Logic probes are old but still very useful tools. Most need a power 
connection. 

10.4 Other Thoughts

Make all output ports readable. This is especially true for control registers in ASICs because 
there’s no way to probe these. 

Be careful with bit ordering. If reading from an A/D, for instance, a bad design that fl ips bit 7
to input bit 0, 6 to 1, etc. is a nightmare. Sure, the fi rmware folks can write code to fi x the 
mixup, but most processors aren’t good at this. The code will be slow and ugly. 

Use many narrow I/O ports rather than a few wide ones. When a single port controls three 
LEDs, two interrupt masks, and a stepper motor, changing any output means managing every 
output. The code becomes a convoluted mess of ANDs/ORs. Any small hardware change 
requires a lot of software tuning. Wide ports do minimize part counts when implemented 
using discrete logic, but inside a PLD or FPGA there’s no cost advantage. 
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Avoid tying unused digital inputs directly to Vcc. In the olden days this practice was verboten, 
since 74LS inputs were more susceptible to transients than the Vcc pin. All unused inputs 
went to Vcc via resistor pull-ups. That’s no longer needed with logic devices, but it is still a 
good practice. It’s much easier to probe and change a node that’s not hardwired to power. 

However, if you must connect power directly to these unused inputs, be very careful with the 
PCB layout. Don’t run power through a pin; that is, don’t use the pin as a convenient way to 
get the supply to the other pins or to the other side of the board. It’s much better to carefully 
run all power and ground connections to input signals as tracks on the PCB’s outside layers, 
so they are visible when the IC is soldered in place. Then developers can easily cut the tracks 
with an X-Acto knife and make changes. 

Pull-up resistors bring their own challenges. Many debugging tools have their own pull-ups, 
which can bias nodes oddly. It’s best to use lower values rather than the high ones permitted 
by CMOS (say 10 k instead of 100 k). 

PCB silkscreens are oft-neglected debugging aids. Label switches and jumpers. Always 
denote pin 1 because there’s no standard pin 1 position in the SMT world. And add tick-marks 
every 5 or 10 pins around big SMT packages, and indicate whether pin numbers increase in a 
CW or CCW direction. Otherwise, fi nding pin 139 is a nightmare, especially for bifocal-wear-
ing developers suffering from caffeine-induced tremors. 

Key connectors so that there’s no guessing about which way the cable is supposed to go. 

Please add comments to your schematic diagrams! For all off-page routes, indicate the page 
the route goes to. Don’t hide the pin numbers associated with power and ground—explicitly 
label these. 

When the design is complete, check every input to every device and make absolutely sure that 
each is connected to something—even if it’s not used. I have seen hundreds of systems fail 
in the fi eld because an unused input drifted to an asserted state. You may expect the software 
folks to mask these off in the code, but that’s not always possible, and even when it is, it’s 
often forgotten. 

Try to avoid hardware state machines. They’re hard to debug and are often quite closely cou-
pled to the fi rmware, making that, too, debug-unfriendly. It’s easier to implement these com-
pletely in the code. Tools (e.g., VisualState from IAR) can automatically generate the state 
machine code. 

10.5 Construction Methods

Embedded controllers can be constructed using any one of several techniques, but the most 
common method is a printed circuit board (PCB). The PCB is constructed of insulating mate-
rial, such as epoxy impregnated glass cloth, laminated with a thin sheet of copper. Multiple 
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layers of copper and insulating material can be laminated into a multilayer PCB. By drilling 
and plating holes in the material, it is possible to interconnect the layers and provide mounting 
locations for through-hole components.

In designing the layout, or interconnecting pattern of the PCB, there are many confl icting 
requirements that must be addressed to make a reliable, cost-effective, and producible device. 
For low-speed circuits, the parasitic effects can be ignored and are often assumed to be ideal 
connections. Unfortunately, real circuits are not ideal, and the wires and insulating material 
have an effect on the circuit, especially for signals with fast signal rise/fall times. The traces, or 
wires, on the PCB have stray resistance, capacitance, and inductance. At high speeds, these stray 
effects delay and distort the signals. Special care must be taken when designing a PC board to 
avoid problems with transmission line effects, noise, and unwanted electromagnetic emissions.

10.5.1 Power and Ground Planes

When possible, it is a good idea to use two layers of a four-or-more-layer PCB dedicated to 
the Vcc and ground signals. These are referred to as power and ground planes. One advantage 
is that there is a benefi cial high-frequency parasitic power supply decoupling capacitance, 
which reduces the power supply noise to the ICs. Power planes also reduce the undesirable 
emission of electromagnetic radiation that can cause interference and reduce the circuit’s sus-
ceptibility to externally induced noise. The power planes tend to act as a shield to reduce the 
susceptibility to external noise and radiation of noise from the system.

10.5.2 Ground Problems

Although the concept of an ideal circuit ground may seem relatively simple, a great many 
system problems can be directly traced to ground problems in actual applications. At the least, 
this can cause undesirable noise or erroneous operation; at the worst, it can result in safety 
problems, including possibly even death by electrocution. Lest you dismiss the importance 
of this possibility too quickly, the author has narrowly missed electrocution while testing a 
device in which the grounding was improperly implemented!

These problems are most often caused by one of the following problems:

• Excessive inductance or resistance in the ground circuit, resulting in “ground loops”

• Lack of or insuffi cient isolation between the different grounds in a system: earth, 
safety, digital, and analog grounds

• Nonideal grounding paths, resulting in the currents fl owing in one circuit inducing a 
voltage in another circuit

The solutions to these problems vary, depending on the type of problem and the frequency 
range in which they occur. Usually they can be simplifi ed to reducing the currents fl owing 
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in common impedances of circuits that need to remain isolated using a single point ground 
and the prudent application of shields and insulation to prevent unwanted parasitic signal 
coupling.

10.6 Electromagnetic Compatibility

Electromagnetic compatibility (EMC) issues have become much more signifi cant now that 
there are a large number of electronic devices which unintentionally radiate electromagnetic 
energy in the same frequency ranges used for communication, navigation, and instrumenta-
tion. Regulatory agencies—such as the Federal Communications Commission (FCC) in the 
United States, the Department of Communications (DOC) in Canada, and similar organiza-
tions in Europe—have defi ned limits to the amount of energy such electronic devices are 
allowed to emit at various frequencies. Even more stringent requirements are placed on 
life-critical equipment, such as aircraft navigation and life support equipment, because of 
the sensitive nature of the applications. Among other things, these devices are required to 
provide a minimum level of immunity to externally induced noise (radiated and conducted 
susceptibility).

In solving an EMC problem, the fi rst step is to identify the source of the noise, the path to 
the problem area, and the destination at which the problem manifests itself. Once these three 
characteristics of an EMC problem are identifi ed, the engineer can evaluate the relative merits 
of eliminating the noise at its source, breaking the path using shielding and similar techniques, 
and reducing the sensitivity of the affected circuit. There are several useful resources, includ-
ing publications, seminars, test labs, and consultants who specialize in solving EMC prob-
lems. The best solution is usually to begin testing a new design at the earliest possible point 
in the prototype phase to determine the potential problem areas so that they can be addressed 
with the least cost and schedule impact.

10.7 Electrostatic Discharge Effects

Electrostatic discharge (ESD) is an important design consideration in embedded applications 
because of the potential for failure and erroneous operation in the presence of external electric 
fi elds. ESD voltages are commonly impressed on embedded interfaces—on the order of tens 
of thousands of volts—when someone walks across a fl oor in a low-humidity environment 
before touching an electronic device. One of the most common places where this becomes an 
issue is in the keyboard or user input device, which comes in direct contact with the outside 
world. This effect can cause immediate damage or upset or may cause latent failures that show 
up months after the ESD event. Designers most often use shielding and grounding techniques 
similar to those used for safety and emission-reduction techniques to minimize the effects of 
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ESD. The same resources that are available for EMC problems are also generally of use for 
ESD problems.

10.7.1 Fault Tolerance

Increasingly, fault tolerance has become a requirement in embedded systems as they fi nd their 
way into applications where failure is simply unacceptable. Many hardware and software solu-
tions have been developed to address this need.

To understand how to deal with these faults, we must fi rst identify and understand the types 
and nature of each type of fault. Every fault can be categorized as a “hard” or a “soft” fault. 
Hard faults cause an error that does not go away—for example, pushing reset or powering 
down does not result in recovery from the fault condition. Soft faults are due to transient 
events or, in some cases, program errors.

Self-test and diagnostic programs may be able to identify and diagnose the failure if it is not 
too severe. Depending on the type of fault that occurs and which device(s) are affected, it may 
be possible to design a system to detect the fault, possibly even isolating the location of the 
fault to some degree. In the event of a soft failure, it may be possible for the designer to make 
the system recover from the fault automatically.

A built-in self-test program can be written for an embedded processor that will be able to 
detect faults in the following types of devices:

• Processor (if the fault is not too severe)

• Memory

• RO M

• RAM

• E/EEPR OM

• Peripheral devices

Note that it is diffi cult, if not impossible, to detect faults in the control circuits or “glue logic” 
in a system. Other devices, such as memories, lend themselves to diagnostic methods.

The data contents of ROM devices can be tested for errors using one or more of the following 
techniques:

• P arity

• Checksum

• Cyclic redundancy check (CRC)
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RAM memories and the integrity of information stored in RAM by the processor can be tested 
for proper operation using one of the following techniques:

• Hardware error detection and correction

• Data/address pattern tests

• Data structure integrity by checking stack limits and address range validity

Additionally, the integrity of the program and proper execution sequence by the CPU can be 
checked using one or more of the following techniques:

• Hardware parity error detection

• Duplicate, redundant hardware and cross checking or voting

• “Watch dog” timer that operates the CPU chip’s reset line

• Diagnostics that run constantly, when the CPU has nothing else to do

10.8 Hardware Development Tools

There are two general classes of hardware development tools available to the embedded devel-
oper: passive analysis tools which allow looking at the operation of the system, and active tools 
which allow the designer to intrude on the operation of the system while it’s running (even 
making changes to the system’s confi guration and software while it is under test). The system 
under test is usually referred to as the “target” system, and the computer that is used to develop, 
edit, compile, assemble, and download the code to the target system is called the “host” system.

Passive tools include:

• Logic probes to look at static logic levels and detect pulses

• Oscilloscopes to look at signal waveforms

• Logic analyzers, with processor specifi c probes

• Software to assist hardware development, scope loops

Active tools include:

• In-circuit emulators (ICE) for HW/SW integration are plugged into the application 
circuit (the “target” system) in place of the CPU, allowing the designer to “see inside” 
the microcontroller, download, and execute programs selectively.

• ROM emulators (ROM ICE) allow the designer to reduce the time it takes to edit-com-
pile-load-debug programs by replacing the program EPROM with a RAM that can be 
loaded quickly and easily from the host computer.
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10.8.1 Instrumentation Issues

One of the most signifi cant, but often ignored, problems designers must address is the proper 
selection and use of test instrumentation. Improper selection and application of these tools 
are frequently the source of much wasted time and confusion for the designer. Two common 
usage problems relate to the use of oscilloscope and logic analyzer probes.

A typical scope or logic analyzer is supplied with probes that might not be expected to have an 
effect on the observed signal or distort the data gathered. With input impedances in the meg-
ohm range and parasitic capacitances of tens of picofarads, it might seem that the test equip-
ment would have little or no effect on the measurement, but this is defi nitely not the case.

There are two common causes for measurement problems: excessive ground lead inductance 
and excessive capacitive loading. These things cause at the least a potential for erroneous 
measurements or, at worst, they can cause the circuit under test to behave differently. Two 
things can be done to mitigate these problems:

1. Use the shortest possible test leads, especially for the ground connection on fast logic.

2. Use high-impedance probes, especially designed for high-speed applications, such as 
high-speed FET input scope probes.

Other instrumentation problems can be caused by misinterpretation of the sampling effects in 
digital scopes, the lack of glitch detection in logic analyzers, and other obscure but potentially 
painful “learning experiences.” These can only be avoided with a good understanding of the 
operation of the equipment in use and some practical experience.

10.9 Software Development Tools

Most of the software development tools available to the embedded system designer fall into 
one of three categories: language translators, debuggers, and utility programs that generally 
run on the host computer. Most of the available tools have been designed to run on the x86 
architecture PC, and many are available as freeware, shareware, or low-cost commercial prod-
ucts for the more common target processor architecture. Translators include:

• Assembler

• Compiler

• Link er

• Interpreter

Debuggers include:

• Softw are/fi rmware monitors
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• Processor In-Circuit Emulator (ICE)

• R OM ICE

Utilities include:

• PR OM Programming

• Performance measurement

• Execution frequency histograms

10.10 Other Specialized Design Considerations

There are several other characteristics that the embedded system designer should become at 
least somewhat familiar with. These include the thermal characteristics of a system and the 
concept of thermal resistance, power dissipation, and the effects on device temperature and 
reliability. Another issue of importance in portable, handheld, and remotely located systems is 
the application of battery power storage.

10.10.1 Thermal Analysis and Design

The temperature of a semiconductor device, such as a voltage regulator or even a CPU chip,
is a critical system operating parameter. The reliability of these devices is also closely 
related to temperature, so much so because the device’s reliability drops exponentially with 
increasing temperature. Fortunately, calculating the operating temperature of a device is not 
too diffi cult, since there is a simple electrical circuit analogy that is most often used to com-
pute temperature of a device. The temperature is analogous to voltage, the power dissipated 
is equivalent to current, and the thermal resistance is equivalent to electrical resistance. In 
other words:

Temperature rise (ºC) � power (watts) * thermal resistance (ºC/watt)

The thermal resistance of multiple mechanical components stacked one upon the other add, 
just as series resistors are equivalent to a single resistor equal to the sum of the individual 
values. 

For example: Given a 5 V linear voltage regulator with a 9 V input providing 1 ampere of load 
current, the regulator will dissipate:

 P � V * I � (9 � 5 volts) * 1 amp, or 4 watts, of power

If the regulator is specifi ed with a thermal resistance between the semiconductor junction and 
case of 1ºC/watt (signifi ed as Θjc), and the heat sink the regulator is mounted to has a thermal 
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resistance from the regulator mounting surface to still ambient air of 10ºC/watt (signifi ed as 
Θca), then the total thermal resistance between the semiconductor junction and ambient air is:

Θja � Θjc � Θca � 1 � 10 � 11ºC/watt

The temperature rise of the junction above that of the air surrounding the regulator will then 
be given by:

T � P * Θja � 4 watts * 11ºC/watt � 44ºC above ambient

If the regulator was specifi ed to operate at a maximum junction temperature of 85ºC, the 
device should not be operated in ambient air of temperature higher than 85 � 44 � 41ºC or 
the regulator will fail prematurely. If this is not acceptable, the designer must reduce the input 
voltage to reduce the power dissipated, reduce the thermal resistance by forced air fl ow, or 
change the design to another type (e.g., a switch mode regulator) so as to keep the regulator 
junction within operating constraints.

10.10.2 Battery-Powered System Design Considerations

The rapid increase in the use of portable, battery-operated electronic devices has spurred the 
development of new battery technologies for these applications. The older single-use and 
rechargeable battery chemistries have been supplanted by newer ones, providing improved 
power densities, operating life, and other enhancements. Unfortunately, these new energy stor-
age devices come with new and different characteristics and limitations.

Batteries are generally divided into two common groups: primary (one-time discharge and dis-
card) and secondary (rechargeable) batteries. Primary memories include the nonrechargeable 
alkaline and lithium cells sold commercially; secondary cells include the older lead-acid and 
nickel-cadmium (NiCd) chemistries as well as the newer nickel metal hydride (NiMH) and 
rechargeable alkaline and lithium ion chemistry products. There is also a wide range of spe-
cial-purpose batteries that are optimized for some specifi c characteristic, such as the zinc-air 
primary cell, which uses atmospheric air as an “electrode” to provide very high energy density 
at low operating current.

Primary batteries, such as alkalines and lithium coin cells, are relatively simple to use but are 
often limited to one to three years of operation. This is primarily due to the shelf-life limit 
imposed by internal leakage current that discharges the battery slowly over time, especially at 
high temperatures.

The secondary, rechargeable battery types each have slightly differing charge/discharge 
requirements and limitations that must be considered for effective application in a battery-
powered system. There are special algorithms to optimize the performance and service life 
of the batteries, and there are even chips designed specifi cally to manage the charge and dis-
charge of common secondary battery types.
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Many embedded devices must be designed to operate for long periods of time with very little 
power obtained from solar cells, batteries, and other limited power sources. As a result, there 
are CMOS processors and memories which have been designed with very low power con-
sumption operating modes, frequently referred to as “sleep,” “power down,” or “idle” modes, 
that consume current in the μA range.

10.11 Processor Performance Metrics

In an effort to compare different types of computers, manufacturers have come up with a host 
of metrics to quantify processor performance.

The successful application of these devices in an embedded system usually hinges on the fol-
lowing characteristics:

• IPS (instructions per second)

• OPS (operations per second)

• FLOPS (fl oating-point OPS)

• Benchmarks (standardized and proprietary “sample programs”) that are short samples 
indicative of processor performance in small application programs

10.11.1 IPS

The term IPS, or the more common forms, MIPS (millions of IPS) and BIPS (billions of IPS), 
is commonly thrown about but are essentially worthless marketing hype because they only 
describe the rate at which the fastest instruction executes on a machine. Often that instruction 
is the NOP instruction, so 500 MIPS may mean that the processor can do nothing 500 million 
times per second!

10.11.2 OPS

In response to the weakness in the IPS measurement, OPS (as well as MOPS and BOPS, 
which sound fun at least) are instruction execution times based on a mix of different instruc-
tions. The intent is to use a standard execution frequency weighted instruction mix that more 
accurately represents the “nominal” instruction execution time. FLOPS (megaFLOPS, giga-
FLOPS, etc.) are similar except that they weight fl oating-point instructions heavily to rep-
resent heavy computational applications, such as continuous simulations and fi nite element 
analysis. The problem with the OPS metric is that the resulting number is heavily depend-
ent on the instruction mix that is used to compute it, which may not accurately represent the 
intended application instruction execution frequency.
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10.11.3 Benchmarks

Benchmarks are short, self-contained programs that perform a critical part of an application—
such as a sorting algorithm—and are used to compare functionally equivalent code on differ-
ent machines. The programs are run for some number of iterations, and the time is measured 
and compared with that of other CPUs. The weakness here is that the benchmark is not only 
a measure of the processor but also of the programmer and the tools used to implement the 
program. As a result, the best benchmark is the one you write yourself, since it allows you to 
discover how effi ciently the code you write will execute on a given processor with the tools 
available. That’s as close to the real application performance as you’re likely to get, short of 
fully implementing the application on each processor under evaluation.
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Schematic Symbols
Tammy Noergaard

APPENDIX A

These symbols are a subset of industry-accepted schematic symbols representing electronic 
elements on schematic diagrams. Note that symbols for the same electronic device can 
differ internationally as well as depending on the standards being adhered to by a particular 
organization (NEMA, IEEE, JEDEC, ANSI, IEC, DoD, etc.). If there are any unfamiliar symbols 
within a schematic, it is always best to ask the engineer responsible for drafting the schematic.

AC Voltage Source    Voltage source that generates alternating 
current (AC). Because an AC voltage source 
can come from a variety of components 
(outlet, oscillator, signal generator, etc.), 
the type of AC source is typically stated 
somewhere on the schematic.

Antenna

Balanced 

General

Loop (Shielded)

Loop (Unshielded) 

Unbalanced

Attenuator

Fixed  Commonly used for a variety of purposes, 

  
including to extend the dynamic range of 

  certain devices (i.e., power meters, amplifi ers, 
  etc.), reduce signal levels, match circuits, and 
  balance out unequal signal levels in 
  transmission lines, just to name a few.

Variable

Battery/DC Cell   
Voltage source that creates voltage through a 
chemical reaction in a battery.

A transducer made up of conductive material 
(i.e., wires, metal rod, etc.) used to transmit 
and receive wireless signals (i.e., radio waves, 
IR, etc.).
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Buffer {Amplifi er}   An electrical device that is used to provide 
compatibility between two signals (i.e., 
interfacing the output of a CMOS to the 
input of a TTL).

Capacitors

Non-Polarized General 

Feedthrough

Non-Polarized/Bipolar Fixed

Polarized Fixed (Electrolytic)

Variable Single

Split-Stator

 Cathode

Cold

Directly Heated

Indirectly Heated

Cavity Resonator   A component that contains and maintains an 
oscillating electromagnetic fi eld.

Circuit Breaker  An electrical component that ensures that a 
(single pole)    current load doesn’t get too large by shutting 

down the circuit when its overheat sensor 
senses there is too much current.

Coaxial Cable   A type of cabling made up of two layers 
of physical wire, one center wire and one 
grounded wire shielding. Coaxial cables 
also include two layers of insulation, one 
between the wire shielding and center wire 

A passive electrical element that stores electric 
charge in a circuit.

The feedthrough capacitor is uniquely 
constructed to provide lower parallel 
inductance, better decoupling capability for  
all high di/dt environments, signifi cant 
noise reduction in digital circuits, EMI 
suppression, broadband I/O fi ltering, Vcc 
power line conditioning in comparison to 
other types of capacitors.

A non-polar/bipolar fi xed capacitor has no 
“implicit” polarity, thus can be connected in 
any way into a circuit.

 A fi xed polarized has an “explicit” polarity, 
thus there is only one way to connect it into a 
circuit.

 A variable capacitor has capacitance that can 
be varied on the fl y.

 The split-stator capacitor is a variable 
capacitor used to preserve balance in a 
circuit.

[1] The positively charged pole (terminal) of 
a voltage source. [2] The negatively charged 
electrode of a device (i.e., diode) that acts as 
an electron source.
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and one layer above the wire shielding. The 
shielding allows for a decrease in interference 
(electrical, RF, etc.).

Connector

Female  An electrical component that interconnects 

  different types of subsystems.

Male

Crystal   An electrical component that determines an 
oscillator’s frequency. A crystal is typically 
made up of two metal plates separated by 
quartz, with two terminals attached to each 
plate.  The quartz within a crystal vibrates 
when current is applied to the terminals, and 
it is this frequency that impacts the frequency 
at which the oscillator operates.

Delay Line   An electrical component that delays the 
transmission of a signal.

Diode

Diode

Light-Emitting Diode [LED]

Photodiode/Photosensitive

Zener

Flip-Flop

RS  
Flip-fl ops are sequential circuits that are 

  
called such because they function by 

  
alternating (fl ip-fl opping) between two 

JK  
output states (0 and 1) depending on the

  
input.

  The RS fl ip-fl op alternates between the two 
D  output lines (Q and Q NOT) depending on

  the R and S inputs.

C A

C A

C A

C A

S

R

Q

Q

J
C
K

Q

Q

D
C

Q

Q

Two-terminal semiconductor device that 
allows current fl ow in one direction and 
blocks current fl ow in the opposite 
direction.

Diode is typically cheaper and more 
common, made of silicon or germanium.

All diodes emit light. LEDs are made from 
special semiconductive material, which 
optimizes the light.

The photodiode optimizes the fact that 
diodes are light sensitive, i.e., solar cells that 
convert light into electrical energy.

The zener diode is designed with a specifi c 
reverse-breakdown voltage that causes a 
specifi c amount of resistance when blocking 
current fl ow.
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   The JK fl ip-fl op alternates between the two 
output lines (Q and Q NOT) depending on 
the J and K inputs as well as the clock 
signal (C).

   The D fl ip-fl op alternates between the two 
output lines (Q and Q NOT) depending on 
the D input as well as the clock signal (C).

Fuse   An electrical component that protects a 
circuit from too much current by breaking the 
circuit when a high enough current 
passes through it.

Gates

AND   

OR   

NOT/inverter   

NAND   

NOR   

XOR

   

Ground

Circuit
   

An arbitrary point for “0” potential voltage
 

that a circuit is connected to.Earth

Special

Inductor (Coil)

Air Core  An electrical component made up of coiled
  wire surrounding some type of core (air, iron,
Iron Core  etc.). When a current is applied to a
  conductor, energy is stored in the magnetic
  fi eld surrounding the coil, allowing for an
Tapped  energy storing and fi ltering effect.

Variable

Standard NEMA ANSI

A

A

OR

OR

OE+

A more complex type of electronic switching 
circuit designed to perform logical binary 
operations.

An AND gate’s output is 1 when both inputs 
are 1.

An OR gate’s output is 1 if either of the inputs 
is 1.

A NOT/inverter is an electrical device that 
inverts (i.e., a HIGH to a LOW or vice versa) a 
logical level input.

A NAND gate’s output is 0 when both inputs 
are 1.

A NOR gate’s output is 0 either of the inputs 
are 1.

A XOR gate’s output is 1 (or on, or high, etc.) 
if only one input (but not both) is 1.
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Integrated Circuit (IC)   An electrical device made up of several other
Generic   discrete electrical active elements, passive 

elements, and devices (transistors, resistors, 
etc.), all fabricated and interconnected on a 
continuous substrate (chip).

Jack

Coaxial
  

2 Conductor

3 Conductor

Phono

Lamp

Incandescent

Neon

Xenon Flash

Loudspeaker    A type of transducer that coverts 
variations of electrical current into 
sound waves.

Meter
   A measurement device that measures some 

from of electrical energy.

Ammeter
   An ammeter is a meter that measures in a 

current circuit.

  A galvanometer is a meter that 
Galvanometer   measures smaller amounts of current in a
  circuit.

  A voltmeter is a meter that measures
Voltmeter  voltage.

  A wattmeter is a meter that measures 
Wattmeter  power.

2
1

3

+ – + – + –M

A

G

V

W P

An electrical device designed to accept a plug

An electrical device that produces light.

An incandescent lamp produces light via 
heat.

A neon lamp produces light via neon gas.

Xenon fl ash lamps produces large fl ashes 
of  bright white light via some combination 
that includes high voltage, electrodes, 
and gas.
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Microphone

Condenser Microphone
  

 A type of transducer that converts sound 
waves into electrical current.

  
A condenser microphone uses changes in

Dynamic  
capacitance in proportion to changes in

Electret
  

sound waves to produce its conversions.

  
A dynamic microphone uses a coil that

 
  

vibrates to sound waves, and a magnetic fi eld 

ECM Microphone  
to generate a voltage that varies in

  
proportion to sound variations.

   
An electret microphone is dynamic and uses
a small transistor amplifi er.

Plug

2-Conductor
   

Electrical components used to connect 
one subsystem into the jack of another 
subsystem

.

3-Conductor

Phono/RCA

Rectifi er

Semiconductor
   

A four-layer PNPN (3 P-N junction) device 
that functions as a cross between a diode and 
transistor.Silicon-Controlled

(thyristor)

Tube-Type

Relay  An electromagnetic switch.

  A Double Pole Double Throw (DPDT) relay 
DPDT    contains two contacts that can be toggled 

both ways (on and off).

DPST  A Double Pole Single Throw (DPST) relay
  contains two contacts that can only be

SPDT
  switched on or off.

  A Single Pole Double Throw (SPDT) relay
  contains one contact that can be toggled 
SPST  both ways (on and off).

   A Single Pole Single Throw (SPST) relay 
contains one set of contacts and can only be 
switched one way (on or off).

A

G
C

A

G

C

P
N
P
N 
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Resistor  Used to limit current in a circuit.

   Fixed resistors have resistance value set at 
manufacturing.

Fixed   Variable resistors have a dial that allows a 
change in resistance values on the fl y.

  Potentiometer Variable-resistance control,
  similar to potentiometer but with three
Variable/Potentiometers  discrete areas of control. The part of the
  circuit connected off the arrow can be varied
  in resistance to the two circuit points 

Rheostat
  connected to the other two leads.

Photosensitive/
  Photosensitive resistors have resistance that 

Photoresistor 
   changes on the fl y depending on the amount 

of light photo resistor are exposed to.

Thermally Sensitive/  Thermistors have a resistance changes on the
Thermistor   fl y depending on the temperature the 

thermistor is exposed to (typically resistance 
decreases as temperature increases).

Switch   An electrical device is used to turn an 
electrical current fl ow on or off.

Single Pole Single Throw   SPST switch contains one set of contacts that 
can only be switched on or off (one way).

Single Pole Double  SPDT switch contains one contact that can
Throw  be toggled on and off (both ways).

Double Pole Single  DPST switch contains two contacts that can
Throw  only be switched one way (on or off).

Double Pole Double 
  DPDT contains two contacts that can be

Throw
  toggled on and off (both ways).

  A normally closed push-button switch is 
Normally Closed Push

   a switch in the form of a button that is 
Button

  normally closed.
Normally Open Push 

  A normally open push-button switch is aButton
  switch in the form of a button that is

  normally open.

Thermocouple   An electronic circuit that relays temperature 
differences via current fl owing through two 
wires joined at either end. Each wire is made 
of different materials, with one junction 
of the connected wires at the stable lower 
temperature while the other junction is 
connected at the temperature to measured.

USA
Japan

USA
Japan

Europe

Europe

Europe

T
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Transformer

Air Core   

A type of inductor that can increase or 
decrease the voltage of an AC signal.

Iron Core

Tapped Primary

Tapped Secondary

Transistor   Three-terminal semiconductor device that 
provides current amplifi cation as well as can 
acts as a switch.

Bipolar/BJT  A bipolar transistor is made of alternating
(Bipolar Junction  P type and N type semiconductive material
Transistor)  (meaning both positive and negative charges 
  used to conduct, hence the name “bipolar”).

Junction FET  A junction FET is also made up of both N
(Field Effect Transistor)  type and P type material, however unipolar, 
  involving only positive or negative charges to
MOSFET  conduct. Gate voltage applied across 
(Metal Oxide   P-N Junction.
Semiconductor FET)   A MOSFET is similar to Junction FET except 

gate voltage applied across insulator.

Photosensitive   A photosensitive transistor is a bipolar 
(phototransistor)  transistor designed to leverage a transistor’s
  sensitivity to light.

Wire

Wire   Wires are conductors that carry signals 
between the other components on a board.

Wires Crossing and 
  The wires crossing and connected symbol

Connected
  represents two connected wires.

   The wires crossing and unconnected symbol

Wires Crossing and
  represents two wires crossing on the board

Unconnected
  but not connected.

PNPNPN

N Channel P Channel

P Channel
Enhancement

N Channel
Depletion

N Channel
Enhancement

P Channel
Depletion

B C

E

C
B

E

D
G

S

D
G

S

B C

E

G
S

D

G
S

D

G
S

D

G
S

D
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Acronyms and Abbreviations
Tammy Noergaard

APPENDIX B

A
AC Alternating Current

ACK Acknowledge

A/D Analog-to-Digital

ADC Analog-to-Digital Converter

ALU Arithmetic Logic Unit

AM Amplitude Modulation

AMP Ampere

ANSI American National Standards Institute

AOT Ahead of  Time

API Application Programming Interface

ARIB-BML Association of Radio Industries and Business of Japan

AS Address Strobe

ASCII American Standard Code for Information Interchange

ASIC Application-Specifi c Integrated Circuit

ATM Asynchronous Transfer Mode, Automated Teller Machine

ATSC Advanced Television Standards Committee

ATVEF Advanced Television Enhancement Forum

B
BDM Background Debug Mode

BER Bit Error Rate

BIOS Basic Input/Output System

BML Broadcast Markup Language

BOM Bill of Materials

bps Bits per Second

BSP Board Support Package

BSS Block Started by Symbol, Block Storage Segment, Blank Storage Space, ...
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C
CAD Computer-Aided Design

CAN Controller Area Network

CAS Column Address Select

CASE Computer-Aided Software Engineering

CBIC Cell-Based IC or Cell-Based ASIC

CDC Connected Device Confi guration

CEA Consumer Electronics Association

CEN European Committee for Standardization

CISC Complex Instruction Set Computer

CLDC Connected Limited Device Confi guration

CMOS Complementary Metal Oxide Silicon

CPU Central Processing Unit

COFF Common Object File Format

CPLD Complex Programmable Logic Device

CRT Cathode Ray Tube

CTS Clear to Send

D
DAC Digital-to-Analog Converter

DAG Data Address Generator

DASE Digital TV Applications Software Environment

DAVIC Digital Audio Visual Council

dB Decibel

DC Direct Current

D-Cache Data Cache

DCE Data Communications Equipment

Demux Demultiplexor

DHCP Dynamic Host Confi guration Protocol

DIMM Dual Inline Memory Module

DIP Dual Inline Package

DMA Direct Memory Access

DNS Domain Name Server, Domain Name System, Domain Name Service

DPRAM Dual-Port RAM
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DRAM Dynamic Random Access Memory

DSL Digital Subscriber Line

DSP Digital Signal Processor

DTE Data Terminal Equipment

DTVIA Digital Television Industrial Alliance of China

DVB Digital Video Broadcasting

E
EDA Electronic Design Automation

EDF Earliest Deadline First

EDO RAM Extended Data Out Random Access Memory

EEMBC Embedded Microprocessor Benchmarking Consortium

EEPROM Electrically Erasable Programmable Read-Only Memory

EIA Electronic Industries Alliance

ELF Extensible Linker Format

EMI Electromagnetic Interference

EPROM Erasable Programmable Read-Only Memory

ESD Electrostatic Discharge

EU European Union

F
FAT File Allocation Table

FCFS First Come, First Served

FDA Food and Drug Administration (USA)

FDMA Frequency Division Multiple Access

FET Field Effect Transistor

FIFO First In, First Out

FFS Flash File System

FM Frequency Modulation

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

FSM Finite State Machine

FTP File Transfer Protocol
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G
GB Gigabyte

GBit Gigabit

GCC GNU C Compiler

GDB GNU Debugger

GHz Gigahertz

GND Ground

GPS Global Positioning System

GUI Graphical User Interface

H
HAVi Home Audio/Video Interoperability

HDL Hardware Description Language

HL7 Health Level Seven

HLDA Hold Acknowledge

HLL High-Level Language

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

Hz Hertz

I
IC Integrated Circuit

I2C Inter-Integrated Circuit Bus

I-Cache Instruction Cache

ICE In-Circuit Emulator

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IEC International Engineering Consortium

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

INT Interrupt

I/O Input/Output

IP Internet Protocol

IPC Interprocess Communication
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IR Infrared

IRQ Interrupt Request

ISA Instruction Set Architecture

ISA Bus Industry Standard Architecture Bus

ISO International Standards Organization

ISP In-System Programming

ISR Interrupt Service Routine

ISS Instruction Set Simulator

ITU International Telecommunication Union

J
JIT Just in Time

J2ME Java 2 MicroEdition

JTAG Joint Test Access Group

JVM Java Virtual Machine

K
kB Kilobyte

kbit Kilobit

kbps Kilo bits per second

kHz Kilohertz

KVM K Virtual Machine

L
LA Logic Analyzer

LAN Local Area Network

LCD Liquid Crystal Display

LED Light Emitting Diode

LIFO Last In, First Out

LSb Least Signifi cant Bit

LSB Least Signifi cant Byte

LSI Large-Scale Integration
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M
mΩ Milliohm

MΩ Megaohm

MAN Metropolitan Area Network

MCU Microcontroller

MHP Multimedia Home Platform

MIDP Mobile Information Device Profi le

MIPS Millions of Instructions Per Second, Microprocessor without Interlocked Pipeline Stages

MMU Memory Management Unit

MOSFET Metal Oxide Silicon Field Effect Transistor

MPSD Modular Port Scan Device

MPU Microprocessor

MSb Most Signifi cant Bit

MSB Most Signifi cant Byte

MSI Medium-Scale Integration

MTU Maximum Transfer Unit

MUTEX Mutual Exclusion

N
nSec Nanosecond

NAK Not Acknowledged

NAT Network Address Translation

NCCLS National Committee for Clinical Laboratory Standards

NFS Network File System

NIST National Institute of Standards and Technology

NMI Nonmaskable Interrupt

NTSC National Television Standards Committee

NVRAM Nonvolatile Random Access Memory

O
OCAP Open Cable Application Forum

OCD On-Chip Debugging

OEM Original Equipment Manufacturer

OO Object Oriented

OOP Object-Oriented Programming
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OS Operating System

OSGi Open Systems Gateway Initiative

OSI Open Systems Interconnection

OTP One-Time Programmable

P
PAL Programmable Array Logic, Phase Alternating Line

PAN Personal Area Network

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCP Priority Ceiling Protocol

PDA Personal Data Assistant

PDU Protocol Data Unit

PE Presentation Engine, Processing Element

PID Proportional Integral Derivative

PIO Parallel Input/Output

PIP Priority Inheritance Protocol, Picture-in-Picture

PLC Programmable Logic Controller, Program Location Counter

PLD Programmable Logic Device

PLL Phase Locked Loop

POSIX Portable Operating System Interface X

POTS Plain Old Telephone Service

PPC PowerPC

PPM Parts Per Million

PPP Point-to-Point Protocol

PROM Programmable Read-Only Memory

PSK Phase Shift Keying

PSTN Public Switched Telephone Network

PTE Process Table Entry

PWM Pulse Width Modulation

Q
QA Quality Assurance
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R
RAM Random Access Memory

RARP Reverse Address Resolution Protocol

RAS Row Address Select

RF Radio Frequency

RFC Request for Comments

RFI Radio Frequency Interference

RISC Reduced Instruction Set Computer

RMA Rate Monotonic Algorithm

RMS Root Mean Square

ROM Read-Only Memory

RPM Revolutions Per Minute

RPU Reconfi gurable Processing Unit

RTC Real-Time Clock

RTOS Real-Time Operating System

RTS Request to Send

RTSJ Real-Time Specifi cation for Java

R/W Read/Write

S
SBC Single-Board Computer 

SCC Serial Communications Controller

SECAM Système Électronique pour Couleur avec Mémoire

SEI Software Engineering Institute

SIMM Single Inline Memory Module

SIO Serial Input/Output

SLD Source-Level Debugger

SLIP Serial Line Internet Protocol

SMPTE Society of Motion Picture and Television Engineers

SMT Surface Mount

SNAP Scalable Node Address Protocol

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SOIC Small Outline Integrated Circuit

SPDT Single Pole Double Throw

SPI Serial Peripheral Interface
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SPST Single Pole Single Throw

SRAM Static Random Access Memory

SSB Single Sideband Modulation

SSI Small-Scale Integration

T
TC Technical Committee

TCB Task Control Block

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

TFTP Trivial File Transfer Protocol

TLB Translation Lookaside Buffer

TTL Transistor-Transistor Logic

U
UART Universal Asynchronous Receiver/Transmitter

UDM Universal Design Methodology

UDP User Datagram Protocol

ULSI Ultra Large-Scale Integration

UML Universal Modeling Language

UPS Uninterruptible Power Supply

USA United States of America

USART Universal Synchronous-Asynchronous Receiver-Transmitter

USB Universal Serial Bus

UTP Untwisted Pair

V
VHDL Very High-Speed Integrated Circuit Hardware Design Language

VLIW Very Long Instruction Word

VLSI Very Large-Scale Integration

VME VersaModule Eurocard

VoIP Voice-Over-Internet Protocol

VPN Virtual Private Network
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W
WAN Wide Area Network

WAT Way Ahead of  Time

WDT Watchdog Timer

WLAN Wireless Local Area Network

WML Wireless Markup Language

WOM Write-Only Memoryv

X
XCVR Transceiver

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language
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PC Board Design Issues
Walt Kester

APPENDIX C

C.1 Introduction

Printed circuit boards (PCBs) are by far the most common method of assembling modern elec-
tronic circuits. Composed of a sandwich of insulating layer (or layers) and one or more cop-
per conductor patterns, they can introduce various forms of errors into a circuit, particularly 
if the circuit is operating at either high precision or high speed. PCBs, then, act as “unseen” 
components wherever they are used in precision circuit designs. Since designers don’t always 
consider the PCB electrical characteristics as additional components of their circuit, overall 
performance can easily end up worse than predicted. This general topic, manifested in many 
forms, is the focus of this appendix.

PCB effects that are harmful to precision circuit performance include leakage resistances; 
spurious voltage drops in trace foils, vias, and ground planes; the infl uence of stray capaci-
tance, dielectric absorption (DA), and the related “hook.” In addition, the tendency of PCBs to 
absorb atmospheric moisture, hygroscopicity, means that changes in humidity often cause the 
contributions of some parasitic effects to vary from day to day.

In general, PCB effects can be divided into two broad categories: those that most noticeably 
affect the static or dc operation of the circuit and those that most noticeably affect dynamic or 
AC circuit operation.

Another very broad area of PCB design is the topic of grounding. Grounding is a problem 
area in itself for all analog designs, and it can be said that implementing a PCB-based circuit 
doesn’t change that fact. Fortunately, certain principles of quality grounding, namely the use 
of ground planes, are intrinsic to the PCB environment. This factor is one of the more signifi -
cant advantages to PCB-based analog designs, and an appreciable amount of this appendix is 
focused on this issue.

Some other aspects of grounding that must be managed include the control of spurious ground 
and signal return voltages that can degrade performance. These voltages can be due to external 
signal coupling, common currents, or simply excessive IR drops in ground conductors. Proper 
conductor routing and sizing as well as differential signal handling and ground isolation tech-
niques enable control of such parasitic voltages.

www.newnespress.com
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One fi nal area of grounding to be discussed is grounding appropriate for a mixed-signal, ana-
log/digital environment. This topic is the subject of many application calls, and it is certainly 
true that interfacing with ADCs (or DACs) is a major part of the system design, and thus it 
shouldn’t be overlooked. Indeed, the single issue of quality grounding can drive the entire lay-
out philosophy of a high-performance mixed-signal PCB design—as well it should.

C.2 Resistance of Conductors

Every engineer is familiar with resistors, although perhaps fewer are aware of their idiosyn-
crasies. But too few engineers consider that all the wires and PCB traces with which their 
systems and circuits are assembled are also resistors. In higher-precision systems, even these 
trace resistances and simple wire interconnections can have degrading effects. Copper is not a 
superconductor—and too many engineers appear to think it is!

Figure C.1 illustrates a method of calculating the sheet resistance R of a copper square, given 
the length Z, the width X, and the thickness Y.

ρZ 
R = 

XY
ρ = RESISTIVITY

R

X

Z

Y

SHEET RESISTANCE CALCULATION FOR
1 OZ. COPPER CONDUCTOR:

ρ = 1.724 X 10–6 � cm, Y = 0.0036 cm 

R = 0.48 m �
X

Z
= NUMBER OF SQUARES 

X

R = SHEET RESISTANCE OF 1 SQUARE (Z = X ) 
= 0.48 m �/SQUARE

Z

Figure C.1: Calculation of sheet resistance and linear resistance for 
standard copper PCB conductors.

At 25ºC the resistivity of pure copper is 1.724 � 10–6 Ω cm. The thickness of standard 1-ounce 
PCB copper foil is 0.036 mm (0.0014
). Using the relations shown, the resistance of such a 
standard copper element is therefore 0.48 Ω/square. One can readily calculate the resistance 
of a linear trace by effectively “stacking” a series of such squares end to end, to make up the 
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line’s length. The line length is Z and the width is X, so the line resistance R is simply a prod-
uct of Z/X and the resistance of a single square, as noted in the fi gure.

For a given copper weight and trace width, a resistance/length calculation can be made. For 
example, the 0.25 mm (10 mil) wide traces frequently used in PCB designs equates to a resist-
ance/length of about 19 mΩ/cm (48 mΩ/inch), which is quite large. Moreover, the temperature 
coeffi cient of resistance for copper is about 0.4%/ºC around room temperature. This is a factor 
that shouldn’t be ignored, in particular within low-impedance precision circuits, where the TC 
can shift the net impedance over temperature.

As shown in Figure C.2, PCB trace resistance can be a serious error when conditions aren’t 
favorable. Consider a 16-bit ADC with a 5 kΩ input resistance, driven through 5 cm of 
0.25 mm wide 1 oz PCB track between it and its signal source. The track resistance of nearly 
0.1 Ω forms a divider with the 5 kΩ load, creating an error. The resulting voltage drop is a gain 
error of 0.1/5000 (�0.0019%), well over 1 LSB (0.0015% for 16 bits).

So, when dealing with precision circuits, the point is made that even simple design items such 
as PCB trace resistance cannot be dealt with casually. There are various solutions to address 
this issue, such as wider traces (which may take up excessive space), the use of heavier copper 
(which may be too expensive), or simply choosing a high-impedance converter. But the most 
important thing is to think it all through, avoiding any tendency to overlook items that appear 
innocuous on the surface.

SIGNAL
SOURCE

0.25 mm (10 mils) wide,
1 oz. copper PCB trace

5 cm

Assume ground path
resistance negligible

16-BIT ADC,
RIN = 5 kΩ 

Figure C.2: Ohm’s Law predicts �1 LSB of error due to drop in PCB conductor.

C.3 Voltage Drop in Signal Leads—“Kelvin” Feedback

The gain error resulting from resistive voltage drop in PCB signal leads is important only 
with high precision and/or at high resolutions (the Figure C.2 example) or where large signal 
currents fl ow. Where load impedance is constant and resistive, adjusting overall system gain 
can compensate for the error. In other circumstances, it may often be removed by the use of 
“Kelvin” or “voltage sensing” feedback, as shown in Figure C.3.
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In this modifi cation to the case of Figure C.2, a long resistive PCB trace is still used to drive 
the input of a high-resolution ADC, with low input impedance. In this case, however, the volt-
age drop in the signal lead does not give rise to an error, because feedback is taken directly 
from the input pin of the ADC and returned to the driving source. This scheme allows full 
accuracy to be achieved in the signal presented to the ADC, despite any voltage drop across 
the signal trace.

The use of separate force (F) and sense (S) connections at the load removes any errors result-
ing from voltage drops in the force lead, but of course may only be used in systems where 
there is negative feedback. It is also impossible to use such an arrangement to drive two or 
more loads with equal accuracy, since feedback may only be taken from one point. Also, in 
this much-simplifi ed system, errors in the common lead source/load path are ignored, the 
assumption being that ground path voltages are negligible. In many systems this may not nec-
essarily be the case, and additional steps may be needed, as noted below.

C.4 Signal Return Currents

Kirchoff’s Law tells us that at any point in a circuit the algebraic sum of the currents is zero. 
This tells us that all currents fl ow in circles and, particularly, that the return current must 
always be considered in analyzing a circuit, as is illustrated in Figure C.4 (see References 
7 and 8).

In dealing with grounding issues, common human tendencies provide some insight into the 
way the correct thinking about the circuit can be helpful in analysis. Most engineers readily 
consider the ground return current, I, when they are considering a fully differential circuit.

However, in considering the more usual circuit case, where a single-ended signal is referred to 
“ground,” it is common to assume that all the points on the circuit diagram where ground sym-
bols are found are at the same potential. Unfortunately, this happy circumstance “just 
ain’t necessarily so.”

SIGNAL
SOURCE

Assume ground path
resistance negligible

FEEDBACK “SENSE” LEAD

HIGH RESISTANCE
SIGNAL LEAD

F

S

ADC with
low RIN

Figure C.3: Use of a sense connection moves accuracy to the load point.
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This overly optimistic approach is illustrated in Figure C.5, where, if it really should exist, 
“infi nite ground conductivity” would lead to zero ground voltage difference between source 
ground G1 and load ground G2. Unfortunately this approach isn’t a wise practice, and when 
we’re dealing with high precision circuits, it can lead to disasters.

I

I
GROUND RETURN CURRENT 

SIGNAL
SOURCE

RL I

G1 G2

LOAD

AT ANY POINT IN A CIRCUIT
THE ALGEBRAIC SUM OF THE CURRENTS IS ZERO

OR
WHAT GOES OUT MUST COME BACK

WHICH LEADS TO THE CONCLUSION THAT
ALL VOLTAGES ARE DIFFERENTIAL

(EVEN IF THEY’RE GROUNDED)

Figure C.4: Kirchoff’s Law helps in analyzing voltage drops around a 
complete source/load coupled circuit.

SIGNAL

INFINITE GROUND
CONDUCTIVITY

  ZERO VOLTAGE
DIFFERENTIAL

BETWEEN G1 and G2

SIGNAL
SOURCE

ADC

G1 G2

Figure C.5: Unlike this optimistic diagram, it is unrealistic to assume infi nite 
conductivity between source/load grounds in a real-world system.

A more realistic approach to ground conductor integrity includes analysis of the impedance(s) 
involved and careful attention to minimizing spurious noise voltages. A more realistic model 
of a ground system is shown in Figure C.6. The signal return current fl ows in the complex 
impedance existing between ground points G1 and G2 as shown, giving rise to a voltage drop 
ΔV in this path. But it is important to note that additional external currents, such as IEXT, 
may also fl ow in this same path. It is critical to understand that such currents may generate 
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uncorrelated noise voltages between G1 and G2 (dependent upon the current magnitude and 
relative ground impedance).

Some portion of these undesired voltages may end up being seen at the signal’s load end, and 
they can have the potential to corrupt the signal being transmitted.

C.5 Grounding in Mixed Analog/Digital Systems

Today’s signal processing systems generally require mixed-signal devices such as analog-to-
digital converters (ADCs) and digital-to-analog converters (DACs) as well as fast digital signal 
processors (DSPs). Requirements for processing analog signals having wide dynamic ranges 
increases the importance of high-performance ADCs and DACs. Maintaining wide dynamic 
range with low noise in hostile digital environments is dependent upon using good high-speed 
circuit design techniques, including proper signal routing, decoupling, and grounding.

In the past, “high-precision, low-speed” circuits have generally been viewed differently than 
so-called “high-speed” circuits. With respect to ADCs and DACs, the sampling (or update) 
frequency has generally been used as the distinguishing speed criteria. However, the follow-
ing two examples show that in practice, most of today’s signal processing ICs are really “high 
speed” and must therefore be treated as such in order to maintain high performance. This is 
certainly true of DSPs as well as ADCs and DACs.

All sampling ADCs (ADCs with an internal sample-and-hold circuit) suitable for signal 
processing applications operate with relatively high-speed clocks with fast rise and fall 
times (generally a few nanoseconds) and must be treated as high-speed devices, even though 
throughput rates may appear low. For example, a medium-speed 12-bit successive approxima-
tion (SAR) ADC may operate on a 10 MHz internal clock, although the sampling rate is only 
500 kSPS.

SIGNAL

SIGNAL
SOURCE

LOAD

∆V = VOLTAGE DIFFERENTIAL
DUE TO SIGNAL CURRENT AND/OR
EXTERNAL CURRENT FLOWING IN

GROUND IMPEDANCE

G1 G2

ISIG

IEXT

Figure C.6: A more realistic source-to-load grounding system view includes consideration 
of the impedance between G1 and G2, plus the effect of any nonsignal-related currents.
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Sigma-delta (Σ-Δ) ADCs also require high-speed clocks because of their high oversampling 
ratios. Even high-resolution, so-called “low-frequency” Σ-Δ industrial measurement ADCs 
(having throughputs of 10 Hz to 7.5 kHz) operate on 5 MHz or higher clocks and offer resolu-
tion to 24 bits (for example, the Analog Devices AD77xx series).

To further complicate the issue, mixed-signal ICs have both analog and digital ports, and 
because of this, much confusion has resulted with respect to proper grounding techniques. 
In addition, some mixed-signal ICs have relatively low digital currents, whereas others have 
high digital currents. In many cases, these two types must be treated differently with respect to 
optimum grounding.

Digital and analog design engineers tend to view mixed-signal devices from different perspec-
tives, and the purpose of this section is to develop a general grounding philosophy that will 
work for most mixed signal devices, without having to know the specifi c details of their inter-
nal circuits.

C.6 Ground and Power Planes

The importance of maintaining a low-impedance, large-area ground plane is critical to all 
analog circuits today. The ground plane not only acts as a low-impedance return path for 
decoupling high-frequency currents (caused by fast digital logic) but also minimizes EMI/RFI 
emissions. Because of the shielding action of the ground plane, the circuit’s susceptibility to 
external EMI/RFI is also reduced.

Ground planes also allow the transmission of high-speed digital or analog signals using 
transmission line techniques (microstrip or stripline) where controlled impedances are 
required.

The use of “buss wire” is totally unacceptable as a “ground” because of its impedance at the 
equivalent frequency of most logic transitions. For instance, #22 gauge wire has about 20 nH/
inch inductance. A transient current having a slew rate of 10 mA/ns created by a logic signal 
would develop an unwanted voltage drop of 200 mV at this frequency fl owing through 1 inch 
of this wire:

 
Δ

Δ
Δ

v L nH mA
ns

mV.� � � �
i

t
20 10 200  (C.1)

For a signal having a 2 V peak-to-peak range, this translates into an error of about 200 mV, or 
10% (approximate 3.5-bit accuracy). Even in all-digital circuits, this error would result in con-
siderable degradation of logic noise margins.

Figure C.7 shows an illustration of a situation where the digital return current modulates the 
analog return current (top fi gure). The ground return wire inductance and resistance are shared 
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between the analog and digital circuits, and this is what causes the interaction and resulting 
error. A possible solution is to make the digital return current path fl ow directly to the GND 
REF, as shown in the bottom fi gure. This is the fundamental concept of a “star,” or single-
point ground system. Implementing the true single-point ground in a system which contains 
multiple high-frequency return paths is diffi cult because the physical length of the individual 
return current wires will introduce parasitic resistance and inductance, which can make obtain-
ing a low-impedance, high-frequency ground diffi cult. In practice, the current returns must 
consist of large area ground planes for low impedance to high-frequency currents. Without a 
low-impedance ground plane, it is therefore almost impossible to avoid these shared imped-
ances, especially at high frequencies.

All integrated circuit ground pins should be soldered directly to the low-impedance ground 
plane to minimize series inductance and resistance. The use of traditional IC sockets is not 
recommended with high-speed devices. The extra inductance and capacitance of even “low-
profi le” sockets may corrupt the device performance by introducing unwanted shared paths. If 
sockets must be used with DIP packages, as in prototyping, individual “pin sockets” or “cage 
jacks” may be acceptable. Both capped and uncapped versions of these pin sockets are avail-
able (AMP part numbers 5-330808-3 and 5-330808-6). They have spring-loaded gold contacts 
that make good electrical and mechanical connection to the IC pins. Multiple insertions, how-
ever, may degrade their performance.

ANALOG
CIRCUITS

DIGITAL
CIRCUITS

ANALOG
CIRCUITS

DIGITAL
CIRCUITS

VD

VD

VA

VA

+ +

+ +

ID

IA

IDIA + ID

VIN

VIN

ID

IA

ID

IA

GND
REF

GND
REF

INCORRECT

CORRECT

Figure C.7: Digital currents fl owing in analog return path create error voltages
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Power supply pins should be decoupled directly to the ground plane using low-inductance 
ceramic surface-mount capacitors. If through-hole mounted ceramic capacitors must be used, 
their leads should be less than 1 mm. The ceramic capacitors should be located as close as pos-
sible to the IC power pins. Ferrite beads may be also required for additional decoupling.

C.7 Double-Sided versus Multilayer Printed Circuit Boards

Each PCB in the system should have at least one complete layer dedicated to the ground 
plane. Ideally, a double-sided board should have one side completely dedicated to ground and 
the other side for interconnections. In practice this is not possible, since some of the ground 
plane will certainly have to be removed to allow for signal and power crossovers, vias, and 
through-holes. Nevertheless, as much area as possible should be preserved, and at least 75% 
should remain. After completing an initial layout, the ground layer should be checked care-
fully to make sure there are no isolated ground “islands,” because IC ground pins located in 
a ground “island” have no current return path to the ground plane. Also, the ground plane 
should be checked for “skinny” connections between adjacent large areas which may signifi -
cantly reduce the effectiveness of the ground plane. Needless to say, autorouting board layout 
techniques will generally lead to a layout disaster on a mixed-signal board, so manual inter-
vention is highly recommended.

Systems that are densely packed with surface-mount ICs will have a large number of intercon-
nections; therefore multilayer boards are mandatory. This allows at least one complete layer 
to be dedicated to ground. A simple four-layer board would have internal ground and power 
plane layers, with the outer two layers used for interconnections between the surface mount 
components. Placing the power and ground planes adjacent to each other provides additional 
interplane capacitance which helps high-frequency decoupling of the power supply. In most 
systems, four layers are not enough, and additional layers are required for routing signals as 
well as power. Figure C.8 summarizes the key issues relating to ground planes.

• Use Large Area Ground (and Power) Planes for Low Impedance
Current Return Paths (Must Use at Least a Double-Sided Board)

• Double-Sided Boards:
−  Avoid High-Density Interconnection Crossovers and Vias
    Which Reduce Ground Plane Area
−  Keep >75% BoardArea on One Side for Ground Plane 

• Multilayer Boards: Mandatory for Dense Systems 
−  Dedicate at Least One Layer for the Ground Plane
−  Dedicate at Least One Layer for the Power Plane

• Use at Least 30% to 40% of PCB Connector Pins for Ground 

• Continue the Ground Plane on the Backplane Motherboard to
Power Supply Return

Figure C.8: Ground planes are mandatory!
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C.8 Multicard Mixed-Signal Systems

The best way of minimizing ground impedance in a multicard system is to use a 
“motherboard” PCB as a backplane for interconnections between cards, thus providing a 
continuous ground plane to the backplane. The PCB connector should have at least 30–40% 
of its pins devoted to ground, and these pins should be connected to the ground plane on 
the backplane mother card. To complete the overall system grounding scheme there are 
two possibilities:

1. The backplane ground plane can be connected to chassis ground at numerous points, 
thereby diffusing the various ground current return paths. This is commonly referred 
to as a “multipoint” grounding system and is shown in Figure C.9.

2. The ground plane can be connected to a single system “star ground” point (generally 
at the power supply).

POWER
SUPPLIES

GROUND PLANE

VA

VA VD

GROUND PLANE BACKPLANE

PCB

GROUND PLANE

VA VDPCB

CHASSIS
GROUND

VD

Figure C.9: Multipoint ground concept.

The fi rst approach is most often used in all-digital systems but can be used in mixed-signal 
systems, provided that the ground currents due to digital circuits are suffi ciently low and dif-
fused over a large area. The low ground impedance is maintained all the way through the PC 
boards, the backplane, and ultimately the chassis. However, it is critical that good electrical 
contact be made where the grounds are connected to the sheet-metal chassis. This requires 
self-tapping sheet-metal screws or “biting” washers. Special care must be taken where ano-
dized aluminum is used for the chassis material, since its surface acts as an insulator.
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The second approach (“star ground”) is often used in high-speed, mixed-signal systems having 
separate analog and digital ground systems and warrants further discussion.

C.9 Separating Analog and Digital Grounds

In mixed-signal systems with large amounts of digital circuitry, it is highly desirable to physi-
cally separate sensitive analog components from noisy digital components. It may also be 
benefi cial to use separate ground planes for the analog and the digital circuitry. These planes 
should not overlap in order to minimize capacitive coupling between the two. The separate 
analog and digital ground planes are continued on the backplane using either motherboard 
ground planes or “ground screens,” which are made up of a series of wired interconnections 
between the connector ground pins.

The arrangement shown in Figure C.10 illustrates that the two planes are kept separate all the 
way back to a common system “star” ground, generally located at the power supplies. The 
connections between the ground planes, the power supplies, and the “star” should be made 
up of multiple bus bars or wide copper braids for minimum resistance and inductance. The 
back-to-back Schottky diodes on each PCB are inserted to prevent accidental DC voltage 
from developing between the two ground systems when cards are plugged and unplugged. 
This voltage should be kept less than 300 mV to prevent damage to ICs that have connections 
to both the analog and digital ground planes. Schottky diodes are preferable because of their 
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DIGITAL
GROUND
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DIGITAL GROUND PLANE

BACKPLANE

PCB PCB

SYSTEM
STAR
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Figure C.10: Separating analog and digital ground planes.
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low capacitance and low forward voltage drop. The low capacitance prevents AC coupling 
between the analog and digital ground planes. Schottky diodes begin to conduct at about 
300 mV, and several parallel diodes in parallel may be required if high currents are expected. 
In some cases, ferrite beads can be used instead of Schottky diodes, but they introduce DC 
ground loops, which can be troublesome in precision systems.

It is mandatory that the impedance of the ground planes be kept as low as possible, all the way 
back to the system star ground. DC or AC voltages of more than 300 mV between the two 
ground planes not only can damage ICs, but they can cause false triggering of logic gates and 
possible latchup.

C.10 Grounding and Decoupling Mixed-Signal ICs with 
Low Digital Currents

Sensitive analog components such as amplifi ers and voltage references are always referenced 
and de-coupled to the analog ground plane. The ADCs and DACs (and other mixed-signal ICs) 
with low digital currents should generally be treated as analog components and also grounded 
and decoupled to the analog ground plane. At fi rst glance, this advice might seem somewhat 
contradictory, since a converter has an analog and digital interface and usually has pins 
designated as analog ground (AGND) and digital ground (DGND). The diagram shown in 
Figure C.11 will help explain this seeming dilemma.

ANALOG
CIRCUITS

DIGITAL
CIRCUITS
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GATE OR
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DATA
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DATA
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LP LP
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TEXT
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Figure C.11: Proper grounding of mixed-signal ICs with low internal digital currents.
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Inside an IC that has both analog and digital circuits, such as an ADC or a DAC, the grounds 
are usually kept separate to avoid coupling digital signals into the analog circuits. Figure C.11
shows a simple model of a converter. There is nothing the IC designer can do about the wire-
bond inductance and resistance associated with connecting the bond pads on the chip to the 
package pins except to realize it’s there. The rapidly changing digital currents produce a volt-
age at point B which will inevitably couple into point A of the analog circuits through the 
stray capacitance, CSTRAY. In addition, there is approximately 0.2 pF unavoidable stray capaci-
tance between every pin of the IC package. It’s the IC designer’s job to make the chip work 
in spite of this. However, to prevent further coupling, the AGND and DGND pins should be 
joined together externally to the analog ground plane with minimum lead lengths. Any extra 
impedance in the DGND connection will cause more digital noise to be developed at point B; 
it will, in turn, couple more digital noise into the analog circuit through the stray capacitance. 
Note that connecting DGND to the digital ground plane applies VNOISE across the AGND and 
DGND pins and invites disaster.

The name “DGND” on an IC tells us that this pin connects to the digital ground of the IC. 
This does not imply that this pin must be connected to the digital ground of the system.

It is true that this arrangement may inject a small amount of digital noise onto the analog 
ground plane. These currents should be quite small and can be minimized by ensuring that the 
converter output does not drive a large fanout (they normally can’t, by design). Minimizing the 
fanout on the converter’s digital port will also keep the converter logic transitions relatively 
free from ringing and minimize digital switching currents, thereby reducing any potential cou-
pling into the analog port of the converter. The logic supply pin (VD) can be further isolated 
from the analog supply by the insertion of a small lossy ferrite bead, as shown in Figure C.11. 
The internal transient digital currents of the converter will fl ow in the small loop from VD 
through the decoupling capacitor and to DGND (this path is shown with a heavy line on the 
diagram). The transient digital currents will therefore not appear on the external analog ground 
plane, but are confi ned to the loop. The VD pin decoupling capacitor should be mounted as 
close to the converter as possible to minimize parasitic inductance. These decoupling capaci-
tors should be low inductance ceramic types, typically between 0.01 μF and 0.1 μF.

C.11 Treat the ADC Digital Outputs with Care

It is always a good idea (as shown in Figure C.11) to place a buffer register adjacent to the 
converter to isolate the converter’s digital lines from noise on the data bus. The register also 
serves to minimize loading on the digital outputs of the converter and acts as a Faraday shield 
between the digital outputs and the data bus. Even though many converters have three-state 
outputs/inputs, this isolation register still represents good design practice. In some cases it 
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may be desirable to add an additional buffer register on the analog ground plane next to the 
converter output to provide greater isolation.

The series resistors (labeled R in Figure C.11) between the ADC output and the buffer regis-
ter input help to minimize the digital transient currents which may affect converter perform-
ance. The resistors isolate the digital output drivers from the capacitance of the buffer register 
inputs. In addition, the RC network formed by the series resistor and the buffer register input 
capacitance acts as a low-pass fi lter to slow down the fast edges.

A typical CMOS gate combined with PCB trace and a through-hole will create a load of 
approximately 10 pF. A logic output slew rate of 1 V/ns will produce 10 mA of dynamic cur-
rent if there is no isolation resistor:

 
Δ

Δ
Δ

I
v

t
� � � �C pF v

ns
mA.10 1 10  (C.2)

A 500 Ω series resistors will minimize this output current and result in a rise and fall time of 
approximately 11ns when driving the 10 pF input capacitance of the register:

 t R Cr � � � � � � � � �2 2 2 2 2 2 500 10 11. . .τ Ω pF ns.  (C.3)

TTL registers should be avoided because they can appreciably add to the dynamic switching 
currents due to their higher input capacitance.

The buffer register and other digital circuits should be grounded and decoupled to the digital 
ground plane of the PC board. Notice that any noise between the analog and digital ground 
plane reduces the noise margin at the converter digital interface. Since digital noise immunity 
is on the order of hundreds or thousands of millivolts, this is unlikely to matter. The analog 
ground plane will generally not be very noisy, but if the noise on the digital ground plane (rel-
ative to the analog ground plane) exceeds a few hundred millivolts, steps should be taken to 
reduce the digital ground plane impedance, thereby maintaining the digital noise margins at an 
acceptable level. Under no circumstances should the voltage between the two ground planes 
exceed 300 mV, or the ICs may be damaged.

Separate power supplies for analog and digital circuits are also highly desirable, even if the 
voltages are the same. The analog supply should be used to power the converter. If the con-
verter has a pin designated as a digital supply pin (VD), it should either be powered from a 
separate analog supply or fi ltered as shown in the diagram. All converter power pins should be 
decoupled to the analog ground plane, and all logic circuit power pins should be decoupled to 
the digital ground plane, as shown in Figure C.12.

In some cases it might not be possible to connect VD to the analog supply. Some of the newer, 
high-speed ICs may have their analog circuits powered by 5 V, but the digital interface is 
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powered by 3 V to interface to 3 V logic. In this case, the 3 V pin of the IC should be 
decoupled directly to the analog ground plane. It is also advisable to connect a ferrite bead 
in series with the power trace that connects the pin to the 3 V digital logic supply.

The sampling clock generation circuitry should be treated like analog circuitry and also be 
grounded and heavily decoupled to the analog ground plane. Phase noise on the sampling 
clock produces degradation in system SNR, as will be discussed shortly.

C.12 Sampling Clock Considerations

In a high-performance sampled data system, a low phase-noise crystal oscillator should be 
used to generate the ADC (or DAC) sampling clock because sampling clock jitter modulates 
the analog input/output signal and raises the noise and distortion fl oor. The sampling clock 
generator should be isolated from noisy digital circuits and grounded and decoupled to the 
analog ground plane, as is true for the op amp and the ADC.

The effect of sampling clock jitter on ADC signal-to-noise ratio (SNR) is given approximately 
by the equation:

 
SNR � 20 1

210log
π ftj

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (C.4)

where SNR is the SNR of a perfect ADC of infi nite resolution where the only source of noise 
is that caused by the rms sampling clock jitter, tj. Note that f in the equation is the analog input 
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Figure C.12: Grounding and decoupling points.
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frequency. Just working through a simple example, if tj � 50 ps rms, f � 100 kHz, then SNR 
� 90 dB, equivalent to about 15-bit dynamic range.

It should be noted that tj in the above example is the root-sum-square (rss) value of the exter-
nal clock jitter and the internal ADC clock jitter (called aperture jitter). However, in most 
high-performance ADCs, the internal aperture jitter is negligible compared to the jitter on the 
sampling clock.

Since degradation in SNR is primarily due to external clock jitter, steps must be taken to 
ensure that the sampling clock is as noise-free as possible and has the lowest possible phase 
jitter. This requires that a crystal oscillator be used. There are several manufacturers of small 
crystal oscillators with low jitter (less than 5 ps rms) CMOS compatible outputs. (For exam-
ple, MF Electronics, 10 Commerce Dr., New Rochelle, NY 10801, Tel. 914-576-6570, and 
Wenzel Associates, Inc., 2215 Kramer Lane, Austin, Texas 78758, Tel. 512- 835-2038.)

Ideally, the sampling clock crystal oscillator should be referenced to the analog ground plane 
in a split-ground system. However, this is not always possible because of system constraints. 
In many cases, the sampling clock must be derived from a higher-frequency multipurpose 
system clock which is generated on the digital ground plane. It must then pass from its origin 
on the digital ground plane to the ADC on the analog ground plane. Ground noise between the 
two planes adds directly to the clock signal and will produce excess jitter. The jitter can cause 
degradation in the signal-to-noise ratio and also produce unwanted harmonics.

This can be somewhat remedied by transmitting the sampling clock signal as a differential 
signal using either a small RF transformer as shown in Figure C.13 or a high-speed differential
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tj = Sampling Clock Jitter 
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Figure C.13: Sampling clock distribution from digital to analog ground planes.
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driver and receiver IC. If an active differential driver and receiver are used, they should be 
ECL to minimize phase jitter. In a single 5 V supply system, ECL logic can be connected 
between ground and 5 V (PECL), and the outputs AC coupled into the ADC sampling clock 
input. In either case, the original master system clock must be generated from a low-phase 
noise crystal oscillator, and not the clock output of a DSP, microprocessor, or microcontroller.

C.13 The Origins of the Confusion About Mixed-Signal Grounding: 
Applying Single-Card Grounding Concepts to Multicard Systems

Most ADC, DAC, and other mixed-signal device data sheets discuss grounding relative to a 
single PCB, usually the manufacturer’s own evaluation board. This has been a source of con-
fusion in trying to apply these principles to multicard or multi-ADC/DAC systems. The rec-
ommendation is usually to split the PCB ground plane into an analog plane and a digital plane. 
It is then further recommended that the AGND and DGND pins of a converter be tied together 
and that the analog ground plane and digital ground planes be connected at that same point as 
shown in Figure C.14. This essentially creates the system “star” ground at the mixed-signal 
device.

All noisy digital currents fl ow through the digital power supply to the digital ground plane and 
back to the digital supply; they are isolated from the sensitive analog portion of the board. The 
system star ground occurs where the analog and digital ground planes are joined together at 
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Figure C.14: Grounding mixed-signal ICs: single PC board (typical evaluation/test board).
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the mixed-signal device. This approach will generally work in a simple system with a single 
PCB and single ADC/DAC, but it is not optimum for multicard mixed-signal systems. In sys-
tems having several ADCs or DACs on different PCBs (or on the same PCB, for that matter), 
the analog and digital ground planes become connected at several points, creating the pos-
sibility of ground loops and making a single-point “star” ground system impossible. For these 
reasons, this grounding approach is not recommended for multicard systems, and the approach 
previously discussed should be used for mixed-signal ICs with low digital currents.

C.14 Summary: Grounding Mixed-Signal Devices with 
Low Digital Currents in a Multicard System

Figure C.15 summarizes the approach previously described for grounding a mixed-signal 
device which has low digital currents. The analog ground plane is not corrupted because the 
small digital transient currents fl ow in the small loop between VD, the decoupling capacitor, 
and DGND (shown as a heavy line). The mixed-signal device is for all intents and purposes 
treated as an analog component. The noise VN between the ground planes reduces the noise 
margin at the digital interface but is generally not harmful if kept less than 300 mV by using a 
low-impedance digital ground plane all the way back to the system star ground.
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Figure C.15: Grounding mixed-signal ICs with low internal digital currents: multiple PC boards.
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However, mixed-signal devices such as sigma-delta ADCs, codecs, and DSPs with on-chip 
analog functions are becoming more and more digitally intensive. Along with the additional 
digital circuitry come larger digital currents and noise. For example, a sigma-delta ADC or 
DAC contains a complex digital fi lter which adds considerably to the digital current in the 
device. The method previously discussed depends on the decoupling capacitor between VD 
and DGND to keep the digital transient currents isolated in a small loop. However, if the dig-
ital currents are signifi cant enough and have components at DC or low frequencies, the decou-
pling capacitor may have to be so large that it is impractical. Any digital current that fl ows 
outside the loop between VD and DGND must fl ow through the analog ground plane. This may 
degrade performance, especially in high-resolution systems.

It is diffi cult to predict what level of digital current fl owing into the analog ground plane 
will become unacceptable in a system. All we can do at this point is to suggest an alternative 
grounding method which may yield better performance.

C.15 Summary: Grounding Mixed-Signal Devices with High 
Digital Currents in a Multicard System

An alternative grounding method for a mixed-signal device with high levels of digital currents 
is shown in Figure C.16. The AGND of the mixed-signal device is connected to the analog 
ground plane, and the DGND of the device is connected to the digital ground plane. The dig-
ital currents are isolated from the analog ground plane, but the noise between the two ground 
planes is applied directly between the AGND and DGND pins of the device. For this method 
to be successful, the analog and digital circuits within the mixed signal device must be well 
isolated. The noise between AGND and DGND pins must not be large enough to reduce inter-
nal noise margins or cause corruption of the internal analog circuits.

Figure C.16 shows optional Schottky diodes (back-to-back) or a ferrite bead connecting the 
analog and digital ground planes. The Schottky diodes prevent large DC voltages or low-fre-
quency voltage spikes from developing across the two planes. These voltages can potentially 
damage the mixed-signal IC if they exceed 300 mV because they appear directly between the 
AGND and DGND pins. As an alternative to the back-to-back Schottky diodes, a ferrite bead 
provides a DC connection between the two planes but isolates them at frequencies above a 
few MHz where the ferrite bead becomes resistive. This protects the IC from DC voltages 
between AGND and DGND, but the DC connection provided by the ferrite bead can introduce 
unwanted DC ground loops and might not be suitable for high-resolution systems.

C.16 Grounding DSPs with Internal Phase-Locked Loops

As if dealing with mixed-signal ICs with AGND and DGNDs wasn’t enough, DSPs such as 
the ADSP21160 SHARC with internal phase-locked-loops (PLLs) raise issues with respect 
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to proper grounding. The ADSP-21160 PLL allows the internal core clock (determines the 
instruction cycle time) to operate at a user-selectable ratio of 2, 3, or 4 times the external clock 
frequency, CLKIN. The CLKIN rate is the rate at which the synchronous external ports oper-
ate. Although this allows using a lower-frequency external clock, care must be taken with the 
power and ground connections to the internal PLL, as shown in Figure C.17.

To prevent internal coupling between digital currents and the PLL, the power and ground con-
nections to the PLL are brought out separately on pins labeled AVDD and AGND, respectively. 
The AVDD 2.5 V supply should be derived from the VDD INT 2.5 V supply using the fi lter net-
work as shown. This ensures a relatively noise-free supply for the internal PLL. The AGND 
pin of the PLL should be connected to the digital ground plane of the PC board using a short 
trace. The decoupling capacitors should be routed between the AVDD pin and AGND pin using 
short traces.

C.17 Grounding Summary

No single grounding method will guarantee optimum performance 100% of the time. This sec-
tion has presented a number of possible options, depending upon the characteristics of the par-
ticular mixed-signal devices in question. It is helpful, however, to provide for as many options 
as possible when laying out the initial PC board.
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Figure C.16: Grounding alternative for mixed-signal ICs with 
high digital currents: multiple PC boards.
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It is mandatory that at least one layer of the PC board be dedicated to ground plane. The initial 
board layout should provide for nonoverlapping analog and digital ground planes, but pads 
and vias should be provided at several locations for the installation of back-to-back Schottky 
diodes or ferrite beads, if required. Pads and vias should also be provided so that the analog 
and digital ground planes can be connected together with jumpers if required.

The AGND pins of mixed-signal devices should in general always be connected to the analog 
ground plane. An exception to this are DSPs such as the ADSP-21160 SHARC, which have 
internal phase-locked-loops (PLLs). The ground pin for the PLL is labeled AGND, but should 
be directly connected to the digital ground plane for the DSP. See Figure C.18 for a general 
summary of grounding philosophy.

C.16 Some General PC Board Layout Guidelines for 
Mixed-Signal Systems

It is evident that noise can be minimized by paying attention to the system layout and prevent-
ing different signals from interfering with each other. High-level analog signals should be 
separated from low-level analog signals, and both should be kept away from digital signals. 
We have seen elsewhere that in waveform sampling and reconstruction systems the sampling 
clock (which is a digital signal) is as vulnerable to noise as any analog signal but is as liable to 
cause noise as any digital signal and so must be kept isolated from both analog and digital sys-
tems. If clock driver packages are used in clock distribution, only one frequency clock should 
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Figure C.17: Grounding DSPs with internal phase-locked loops (PLLs).
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be passed through a single package. Sharing drivers between clocks of different frequencies in 
the same package will produce excess jitter and crosstalk and degrade performance.

The ground plane can act as a shield where sensitive signals cross. Figure C.19 shows a good 
layout for a data acquisition board where all sensitive areas are isolated from each other and 

• There is no single grounding method which is guaranteed to work
100% of the time

• Different methods may or may not give the same levels of
performance

• At least one layer on each PC board MUST be dedicated to ground
plane

• Do initial layout with split analog and digital ground planes 

• Provide pads and vias on each PC board for back-to-back
Schottky diodes and optional ferrite beads to connect the two
planes

• Provide “jumpers” so that DGND pins of mixed-signal devices can
be connected to AGND pins (analog ground plane) or to digital
ground plane. (AGND of PLLs in DSPs should be connected to
digital ground plane)

• Provide pads and vias for ‘‘jumpers’’ so that analog and digital
ground planes can be joined together at several points on each
PC board

• Follow recommendations on mixed signal device data sheet

Figure C.18: Grounding philosophy summary.
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Figure C.19: Analog and digital circuits should be partitioned on PCB layout.

APP-C-H8584.indd   490APP-C-H8584.indd   490 8/17/07   6:21:14 PM8/17/07   6:21:14 PM



 PC Board Design Issues   491

www.newnespress.com

signal paths are kept as short as possible. While real life is rarely as tidy as this, the principle 
remains a valid one.

There are a number of important points to be considered when making signal and power con-
nections. First, a connector is one of the few places in the system where all signal conductors 
must run in parallel; it is therefore imperative to separate them with ground pins (creating a 
Faraday shield) to reduce coupling between them.

Multiple ground pins are important for another reason: They keep down the ground 
impedance at the junction between the board and the backplane. The contact resistance of a 
single pin of a PCB connector is quite low (on the order of 10 mΩ) when the board is 
new; as the board gets older, the contact resistance is likely to rise and the board’s perform-
ance may be compromised. It is therefore well worthwhile to allocate extra PCB connector 
pins so that there are many ground connections (perhaps 30–40% of all the 
pins on the PCB connector should be ground pins). For similar reasons there should be 
several pins for each power connection, although there is no need to have as many as there 
are ground pins.

Analog Devices and other manufacturers of high-performance, mixed-signal ICs offer evalu-
ation boards to assist customers in their initial evaluations and layout. ADC evaluation boards 
generally contain an on-board low-jitter sampling clock oscillator, output registers, and appro-
priate power and signal connectors. They also may have additional support circuitry such as 
the ADC input buffer amplifi er and external reference.

The layout of the evaluation board is optimized in terms of grounding, decoupling, and signal 
routing and can be used as a model when laying out the ADC PC board in the system. The 
actual evaluation board layout is usually available from the ADC manufacturer in the form of 
computer CAD fi les (Gerber fi les). In many cases, the layout of the various layers appears on 
the data sheet for the device.

C.19 Skin Effect

At high frequencies, also consider skin effect, where inductive effects cause currents to fl ow 
only in the outer surface of conductors. Note that this is in contrast to the earlier discussions 
on DC resistance of conductors.

The skin effect has the consequence of increasing the resistance of a conductor at high fre-
quencies. Note also that this effect is separate from the increase in impedance due to the 
effects of the self-inductance of conductors as frequency is increased.

Skin effect is quite a complex phenomenon, and detailed calculations are beyond the scope of 
this discussion. However, a good approximation for copper is that the skin depth in centim-
eters is 6 61. / f  ( f in Hz).
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A summary of the skin effect within a typical PCB conductor foil is shown in Figure C.20. 
Note that this copper conductor cross-sectional view assumes looking into the side of the con-
ducting trace.

• HF Current flows only
in thin surface layers 

TOP

COPPER CONDUCTOR 

BOTTOM
• Skin Depth: 6.61/√ f cm, f in Hz 

• Skin Resistance: 2.6 × 10−7√ f  ohms per square, f in Hz 

• Since skin currents flow in both sides of a PC track, the
value of skin resistance in PCBs must take account of this 

Figure C.20: Skin depth in a PC conductor.

Assuming that skin effects become important when the skin depth is less than 50% of the 
thickness of the conductor, this tells us that for a typical PC foil, we must be concerned about 
skin effects at frequencies above approximately 12 MHz.

Where skin effect is important, the resistance for copper is 2 6 10 7. � � f  ohms per square 
( f in Hz). This formula is invalid if the skin thickness is greater than the conductor thickness 
(i.e., at DC or low frequencies).

Figure C.21 illustrates a case of a PCB conductor with current fl ow, as separated from the 
ground plane underneath.
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(DIELECTRIC)

MICROSTRIP
CONDUCTOR
(CURRENT FLOW NORMAL
TO DIAGRAM)

HF CURRENT FLOWS IN ONE 
SIDE OF THE CONDUCTOR ONLY 

REGION OF RETURN 
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Figure C.21: Skin effect with PC conductor and ground plane.
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In this diagram, note the (dotted) regions of high-frequency current fl ow, as reduced by the 
skin effect. When calculating skin effect in PCBs, it is important to remember that current 
generally fl ows in both sides of the PC foil (this is not necessarily the case in microstrip lines; 
see below), so the resistance per square of PC foil may be half the above value.

C.20 Transmission Lines

We earlier considered the benefi ts of outward and return signal paths being close together so 
that inductance is minimized. As shown previously in Figure C.22, when a high-frequency 
signal fl ows in a PC track running over a ground plane, the arrangement functions as a micro-
strip transmission line, and the majority of the return current fl ows in the ground plane under-
neath the line.

Figure C.22 shows the general parameters for a microstrip transmission line, given the con-
ductor width w, dielectric thickness h, and the dielectric constant Er.

DIELECTRIC

GROUND PLANE

CONDUCTOR

w
h

Figure C.22: A PCB microstrip transmission line is an 
example of a controlled impedance conductor pair.

The characteristic impedance of such a microstrip line will depend on the width of the track 
and the thickness and dielectric constant of the PCB material. Designs of microstrip lines are 
covered in more detail later in this chapter.

For most DC and lower-frequency applications, the characteristic impedance of PCB traces 
will be relatively unimportant. Even at frequencies where a track over a ground plane behaves 
as a transmission line, it is not necessary to worry about its characteristic impedance or proper 
termination if the free space wavelengths of the frequencies of interest are greater than 10 
times the length of the line.

However, at VHF and higher frequencies, it is possible to use PCB tracks as microstrip lines 
within properly terminated transmission systems. Typically the microstrip will be designed 
to match standard coaxial cable impedances, such as 50 Ω, 75 Ω or 100 Ω, simplifying 
interfacing.
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Note that if losses in such systems are to be minimized, the PCB material must be chosen for 
low high-frequency losses. This usually means the use of Tefl on or some other comparably 
low-loss PCB material. Often, though, the losses in short lines on cheap glass-fi ber board are 
small enough to be quite acceptable.

C.21 Be Careful with Ground Plane Breaks

Wherever there is a break in the ground plane beneath a conductor, the ground plane return cur-
rent must by necessity fl ow around the break. As a result, both the inductance and the vulnera-
bility of the circuit to external fi elds are increased. This situation is diagrammed in Figure C.23, 
where conductors A and B must cross one another.

SIGNAL CURRENT B

•

•

SIGNAL
CURRENT A 

THIS VIEW FROM PCB
CONDUCTOR (TRACK) SIDE 

BREAK IN GROUND PLANE

CROSSOVER “B” ON 
GROUND PLANE
SIDE

RETURN CURRENT A DIVERTS 
AROUND GROUND PLANE BREAK,
RAISING INDUCTANCE

NOTE: RETURN CURRENTS
A & B MAY INTERACT

RETURN CURRENT B 
DIVERTS AROUND
GROUND PLANE
BREAK, RAISING
INDUCTANCE

Figure C.23: A ground plane break raises circuit inductance and 
increases vulnerability to external fi elds.

Where such a break is made to allow a cross-over of two perpendicular conductors, it would 
be far better if the second signal were carried across both the fi rst and the ground plane by 
means of a piece of wire or a resistor. The ground plane then acts as a shield between the two 
signal conductors, and the two ground return currents, fl owing in opposite sides of the ground 
plane as a result of skin effects, do not interact.

With a multilayer board, both the crossover and the continuous ground plane can be accom-
modated without the need for a wire link. Multilayer PCBs are expensive and harder to 
troubleshoot than more simple double-sided boards, but do offer even better shielding and 
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signal routing. The principles involved remain unchanged but the range of layout options is 
increased.

The use of double-sided or multilayer PCBs with at least one continuous ground plane is 
undoubtedly one of the most successful design approaches for high-performance, mixed-sig-
nal circuitry. Often the impedance of such a ground plane is suffi ciently low to permit the use 
of a single ground plane for both analog and digital parts of the system. However, whether or 
not this is possible does depend on the resolution and bandwidth required and the amount of 
digital noise present in the system.

C.22 Ground Isolation Techniques

Although the use of ground planes does lower impedance and helps greatly in lowering 
ground noise, there may still be situations where a prohibitive level of noise exists. In such 
cases, the use of ground error minimization and isolation techniques can be helpful.

Another illustration of a common ground impedance coupling problem is shown in Figure C.24. 
In this circuit a precision gain-of-100 preamp amplifi es a low-level signal VIN, using an 

G2

RGROUND
0.0 1Ω 

U1
AD8551

R1
99 kΩ 

R2
1 kΩ 

G1

ISUPPLY
700 µA

+5 V

VIN
5 mV FS

VOUT

∆V ≅ 7 µV

Figure C.24: Unless care is taken, even small common ground 
currents can degrade precision amplifi er accuracy.

AD8551 chopper-stabilized amplifi er for best DC accuracy. At the load end, the signal VOUT 
is measured with respect to G2, the local ground. Because of the small 700 μA ISUPPLY of the 
AD8551 fl owing between G1 and G2, there is a 7 μV ground error—about seven times the 
typical input offset expected from the op amp.

This error can be avoided by routing the negative supply pin current of the op amp back to star 
ground G2 as opposed to ground G1 by using a separate trace. This step eliminates the G1-G2 
path power supply current and so minimizes the ground leg voltage error. Note that there will 
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be little error developed in the “hot” VOUT lead so long as the current drain at the load end 
is small.

In some cases, there may be simply unavoidable ground voltage differences between a source 
signal and the load point where it is to be measured. Within the context of this “same-board” 
discussion, this might require rejecting ground error voltages of several tens of mV. Or, should 
the source signal originate from an “off-board” source, the magnitude of the common-mode 
voltages to be rejected can easily rise into a several volt range (or even tens of volts).

Fortunately, full signal transmission accuracy can still be accomplished in the face of such 
high-noise voltages by employing a principle discussed earlier. This is the use of a differen-
tial input, ground isolation amplifi er. The ground isolation amplifi er minimizes the effect of 
ground error voltages between stages by processing the signal in differential fashion, thereby 
rejecting common-mode voltages by a substantial margin (typically 60 dB or more). Note, 
however, that this approach is only effective for very low-frequency signals.

Two ground isolation amplifi er solutions are shown in Figure C.25. This diagram can alter-
nately employ either the AD629 to handle CM voltages up to �270 V or the AMP03, which is 
suitable for CM voltages up to �20 V.

R5
21.1 kΩ

(AD629 only)

VOUT

∆V
GROUND

G1
INPUT

COMMON

R2
380 kΩ/25 kΩ 

VIN

R1
380 kΩ/25 kΩ 

R3
380 kΩ/25 kΩ 

R4
20 kΩ/25 kΩ 

AD629/AMP03
DIFFERENCE
AMPLIFIERS

G2

 CMV(V) CMR(dB)
AD629
AMP03

± 270
 ± 20

 88 
100

G2
OUTPUT
COMMON

NOISE

Figure C.25: A differential input ground isolating amplifi er allows high transmission accuracy 
by rejecting ground noise voltage between source (G1) and measurement (G2) grounds.
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In the circuit, input voltage VIN is referred to G1 but must be measured with respect to G2. With 
the use of a high CMR unity-gain difference amplifi er, the noise voltage ΔV existing between 
these two grounds is easily rejected. The AD629 offers a typical CMR of 88 dB, while the 
AMP03 typically achieves 100 dB. In the AD629, the high CMV rating is done by a combina-
tion of high CM attenuation, followed by differential gain, realizing a net differential gain of 
unity. The AD629 uses the fi rst listed value resistors noted in the fi gure for R1–R5. The AMP03 
operates as a precision four-resistor differential amplifi er using the 25 kΩ value R1–R4 resistors 
noted. Both devices are complete, one package solutions to the ground-isolation amplifi er.

This scheme allows relative freedom from tightly controlling ground drop voltages or run-
ning additional and/or larger PCB traces to minimize such error voltages. Note that it can be 
implemented with either the fi xed gain difference amplifi ers shown or with a standard in amp 
IC, confi gured for unity gain. The AD623, for example, also allows single-supply use. In any 
case, signal polarity is also controllable by simple reversal of the difference amplifi er inputs.

In general terms, transmitting a signal from one point on a PCB to another for measurement or 
further processing can be optimized by two key interrelated techniques. These are the use of 
high impedance, differential signal handling techniques. The high impedance loading of an in 
amp minimizes voltage drops, and differential sensing of the remote voltage minimizes sensi-
tivity to ground noise.

When the further signal processing is A/D conversion, these transmission criteria can be 
implemented without adding a differential ground isolation amplifi er stage. Simply select an 
ADC that operates differentially. The high input impedance of the ADC minimizes load sensi-
tivity to the PCB wiring resistance. In addition, the differential input feature allows the output 
of the source to be sensed directly at the source output terminals (even if single-ended). The 
CMR of the ADC then eliminates sensitivity to noise voltages between the ADC and source 
grounds.

An illustration of this concept using an ADC with high-impedance differential inputs is shown 
in Figure C.26. Note that the general concept can be extended to virtually any signal source, 
driving any load. All loads, even single-ended ones, become differential input by adding an 
appropriate differential input stage.

The differential input can be provided by either a fully developed high Z in amp or, in many 
cases, it can be a simple subtractor stage op amp, such as Figure C.25.

C.23 Static PCB Effects

Leakage resistance is the dominant static circuit board effect. Contamination of the PCB 
surface by fl ux residues, deposited salts, and other debris can create leakage paths between 
circuit nodes. Even on well-cleaned boards, it is not unusual to fi nd 10 nA or more of leakage 
to nearby nodes from 15 V supply rails. Nanoamperes of leakage current into the wrong nodes 
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often cause volts of error at a circuit’s output; for example, 10 nA into a 10 MΩ resistance 
causes a 0.1 V error. Unfortunately, the standard op amp pinout places the �VS supply pin 
next to the � input, which is often hoped to be at high impedance. To help identify nodes sen-
sitive to the effects of leakage currents, ask the simple question: If a spurious current of a few 
nanoamperes or more were injected into this node, would it matter?

If the circuit is already built, it is possible to localize moisture sensitivity to a suspect node 
with a classic test. While observing circuit operation, blow on potential trouble spots through 
a simple soda straw. The straw focuses the breath’s moisture, which, with the board’s salt 
content in susceptible portions of the design, disrupts circuit operation upon contact. There 
are several means of eliminating simple surface leakage problems. Thorough washing of cir-
cuit boards to remove residues helps considerably. A simple procedure includes vigorously 
brushing the boards with isopropyl alcohol, followed by thorough washing with deionized 
water and an 85ºC bakeout for a few hours. Be careful when selecting board-washing solvents, 
though. When cleaned with certain solvents, some water-soluble fl uxes create salt deposits, 
exacerbating the leakage problem.

Unfortunately, if a circuit displays sensitivity to leakage, even the most rigorous cleaning 
can offer only a temporary solution. Problems soon return upon handling or exposure to foul 
atmospheres and high humidity. Some additional means must be sought to stabilize circuit 
behavior, such as conformal surface coating.

Fortunately, there is an answer to this problem, namely guarding, which offers a fairly 
reliable and permanent solution to the problem of surface leakage. Well-designed guards can 
eliminate leakage problems, even for circuits exposed to harsh industrial environments. Two 
schematics illustrate the basic guarding principle, as applied to typical inverting and nonin-
verting op amp circuits.

Figure C.27 illustrates an inverting mode guard application. In this case, the op amp reference 
input is grounded, so the guard is a grounded ring surrounding all leads to the inverting input, 
as noted by the dotted line.

HIGH-Z
DIFFERENTIAL

INPUT ADC

SIGNAL
SOURCE

GROUND PATH ERRORS
NOT CRITICAL 

VOUT

Figure C.26: A high-impedance differential input ADC also allows 
high transmission accuracy between source and load.
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Basic guarding principles are simple: Completely surround sensitive nodes with conductors 
that can readily sink stray currents, and maintain the guard conductors at the exact potential 
of the sensitive node (as otherwise the guard will serve as a leakage source rather than a leak-
age sink). For example, to keep leakage into a node below 1 pA (assuming 1000 MΩ leakage 
resistance) the guard and guarded node must be within 1 mV. Generally, the low offset of a 
modern op amp is suffi cient to meet this criterion.

There are important caveats to be noted with implementing a true high-quality guard. For tra-
ditional through-hole PCB connections, to be most effective the guard pattern should appear 
on both sides of the circuit board. It should also be connected along its length by several vias. 
Finally, when either justifi ed or required by the system design parameters, do make an effort 
to include guards in the PCB design process from the outset—there is little likelihood that a 
proper guard can be added as an afterthought.

Figure C.28 illustrates the case for a noninverting guard. In this instance the op amp reference 
input is directly driven by the source, which complicates matters considerably. Again, the 
guard ring completely surrounds all of the input nodal connections. In this instance however, 
the guard is driven from the low impedance feedback divider connected to the inverting input.

Usually the guard-to-divider junction will be a direct connection, but in some cases a unity 
gain buffer might be used at X to drive a cable shield or to maintain the lowest possible 
impedance at the guard ring.

In lieu of the buffer, another useful step is to use an additional, directly grounded screen ring, 
Y, which surrounds the inner guard and the feedback nodes as shown. This step costs nothing 

INVERTING MODE GUARD:

RING SURROUNDS ALL LEAD
ENDS AT THE “HOT NODE”

AND NOTHING ELSE 

Figure C.27: Inverting mode guard encloses all op amp inverting 
input connections within a grounded guard ring.
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except some added layout time and will greatly help buffer leakage effects into the higher-
impedance inner guard ring.

Of course what hasn’t been addressed to this point is just how the op amp itself is connected 
into these guarded islands without compromising performance. The traditional method using 
a TO-99 metal can package device was to employ double-sided PCB guard rings, with both op 
amp inputs terminated within the guarded ring.

Many high-impedance sensors use the above described method. The next section illustrates 
how more modern IC packages can be mounted to PCB patterns and take advantage of guard-
ing and low leakage operation.

C.24 Sample MINIDIP and SOIC Op Amp PCB Guard Layouts

Modern assembly practices have favored smaller plastic packages such as 8-pin MINIDIP and 
SOIC types. Some suggested partial layouts for guard circuits using these packages is shown 
in the next two fi gures. While guard traces may also be possible with even more tiny op amp 
footprints, such as SOT-23, SC70, etc., the required trace separations become even more con-
fi ning, challenging the layout designer as well as the manufacturing processes.

For the ADI “N” style MINIDIP package, Figure C.29 illustrates how guarding can be accom-
plished for inverting (left) and noninverting (right) operating modes. This setup would also be 
applicable to other op amp devices where relatively high voltages occur at pin 1 or 4. Using 

NONINVERTING MODE GUARD:

RING SURROUNDS ALL “HOT NODE”
LEAD ENDS − INCLUDING INPUT

TERMINAL ON THE PCB

LOW VALUE GAIN
RESISTORS

R
L

USE SHIELDING (Y)OR
UNITY-GAIN BUFFER

 (X) IF GUARD HAS LONG
LEAD

Y

Y

Y X

Y

Figure C.28: Noninverting mode guard encloses all op amp noninverting 
input connections within a low impedance, driven guard ring.
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a standard 8-pin DIP outline for a single op amp, it can be noted that this package’s 0.1” pin 
spacing allows a PC trace (here, the guard trace) to pass between adjacent pins. This is the key 
to implementing effective DIP package guarding, as it can adequately prevent a leakage path 
from the �VS supply at pin 4 or from similar high potentials at pin 1.

For the left-side inverting mode, note that the grounded guard traces connected to pin 3 sur-
round the op amp inverting input (pin 2), and run parallel to the input trace. This guard would 
be continued out to and around the source and feedback connections of Figure C.27 (or other 
similar circuit), including an input pad in the case of a cable. In the right-side noninvert-
ing mode, the guard voltage is the feedback divider voltage to pin 2. This corresponds to the 
inverting input node of the amplifi er, from Figure C.28.

Note that in both of the cases of Figure C.29, the guard physical connections shown are only 
partial—an actual layout would include all sensitive nodes within the circuit. In both the 
inverting and the noninverting modes using the MINIDIP or other through-hole style package, 
the PCB guard traces should be located on both sides of the board, with top and bottom traces 
connected with several vias.

Things become slightly more complicated when using guarding techniques with the SOIC sur-
face-mount (“R”) package, as the 0.05” pin spacing doesn’t easily allow routing of PCB traces 
between the pins. But there is still an effective guarding answer, at least for the inverting case. 
Figure C.30 shows guards for the ADI “R” style SOIC package.

Note that for many single op amp devices in this SOIC “R” package, pins 1, 5, and 8 are “No 
Connect” pins. For such instances, this means that these locations can be employed in the lay-
out to route guard traces.

In the case of the inverting mode (left), the guarding is still completely effective, with the 
dummy pin 1 and pin 3 serving as the grounded guard trace. This is a fully effective guard 
without compromise. Also, with SOIC op amps, much of the circuitry around the device will 
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NONINVERTING MODE
GUARD PATTERN
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GUARD INPUT
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GUARD
INPUT

Figure C.29: PCB guard patterns for inverting and noninverting 
mode op amps using 8-pin MINIDIP (N) package.
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not use through-hole components. So, the guard ring may only be necessary on the op amp 
PCB side.

In the case of the follower stage (right), the guard trace must be routed around the negative 
supply at pin 4, and thus pin 4 to pin 3 leakage isn’t fully guarded. For this reason, a precision 
high-impedance follower stage using an SOIC package op amp isn’t generally recommended, 
as guarding isn’t as effective for dual supply connected devices.

However, an exception to this caveat does apply to the use of a single-supply op amp as a non-
inverting stage. For example, if the AD8551 is used, pin 4 becomes ground, and some degree 
of intrinsic guarding is then established by default.

C.25 Dynamic PCB Effects

Although static PCB effects can come and go with changes in humidity or board contamina-
tion, problems that most noticeably affect the dynamic performance of a circuit usually 
remain relatively constant. Short of a new design, washing or any other simple fi xes can’t fi x 
them. As such, they can permanently and adversely affect a design’s specifi cations and per-
formance. The problems of stray capacitance, linked to lead and component placement, are 
reasonably well known to most circuit designers. Since lead placement can be permanently 
dealt with by correct layout, any remaining diffi culty is solved by training assembly personnel 
to orient components or bend leads optimally.

Dielectric absorption (DA), on the other hand, represents a more troublesome and still poorly 
understood circuit-board phenomenon. Like DA in discrete capacitors, DA in a printed-circuit 
board can be modeled by a series resistor and capacitor connecting two closely spaced 
nodes. Its effect is inverse with spacing and linear with length.

–VS

1

2

3

4 5

6

7

8GUARD

INPUT

GUARD

GUARD

INPUT

GUARD4 5

6

7

8

–VS

NOTE: PINS 1, 5, and 8 ARE OPEN ON MANY “R” PACKAGED DEVICES 

1

2

3

INVERTING MODE
GUARD PATTERN

NONINVERTING MODE
GUARD PATTERN

Figure C.30: PCB guard patterns for inverting and noninverting 
mode op amps using 8-pin SOIC (R) package.
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As shown in Figure C.31, the RC model for this effective capacitance ranges from 0.1 pF to 2.0 
pF, with the resistance ranging from 50 MΩ to 500 MΩ. Values of 0.5 pF and 100 MΩ are most 
common. Consequently, circuit-board DA interacts most strongly with high-impedance circuits.

RLEAKAGE

CSTRAY

50−500 MΩ 

0.1−2.0 pF

0.05" (1.3 mm)

Figure C.31: DA plagues dynamic response of PCB-based circuits.

PCB DA most noticeably infl uences dynamic circuit response, for example, settling time. 
Unlike circuit leakage, the effects aren’t usually linked to humidity or other environmen-
tal conditions, but rather, are a function of the board’s dielectric properties. The chemistry 
involved in producing plated-through holes seems to exacerbate the problem. If circuits don’t 
meet expected transient response specs, consider PCB DA as a possible cause. Fortunately, 
there are solutions. As in the case of capacitor DA, external components can be used to com-
pensate for the effect. More importantly, surface guards that totally isolate sensitive nodes 
from parasitic coupling often eliminate the problem. (Note that these guards should be dupli-
cated on both sides of the board, in cases of through-hole components.) As noted previously, 
low-loss PCB dielectrics are also available at higher costs.

PCB “hook,” similar if not identical to DA, is characterized by variation in effective circuit-
board capacitance with frequency (see Reference 1). In general, it affects high-impedance 
circuit transient response where board capacitance is an appreciable portion of the total in the 
circuit. Circuits operating at frequencies below 10 kHz are the most susceptible. As in circuit-
board DA, the board’s chemical makeup very much infl uences its effects.

C.26 Stray Capacitance

When two conductors aren’t short-circuited together or totally screened from each other by a 
conducting (Faraday) screen, there is a capacitance between them. So, on any PCB, there will 
be a large number of capacitors associated with any circuit (which may or may not be con-
sidered in models of the circuit). Where high-frequency performance matters (and even DC 
and VLF circuits may use devices with high Ft and therefore be vulnerable to high-frequency 
instability), it is very important to consider the effects of this stray capacitance.
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Any basic textbook will provide formulas for the capacitance of parallel wires and other geo-
metric confi gurations (see References 9 and 10). The example we need consider in this discus-
sion is the parallel plate capacitor, often formed by conductors on opposite sides of a PCB. 
The basic diagram describing this capacitance is shown in Figure C.32.

dA

0.00885 Er AC = pF
d

A = plate area in mm2

d = plate separation in mm 

Er = dielectric constant relative to air

• Most common PCB type uses 1.5 mm
glass-fiber epoxy material with Er = 4.7

• Capacity of PC track over ground plane
is roughly 2.8 pF/cm2

Figure C.32: Capacitance of two parallel plates.

Neglecting edge effects, the capacitance of two parallel plates of area A mm2 and separation d 
mm in a medium of dielectric constant Er relative to air is 0.00885 Er A/d pF.

From this formula, we can calculate that for general-purpose PCB material (Er � 4.7, 
d � 1.5 mm), the capacitance between conductors on opposite sides of the board is just 
under 3 pF/cm.2 In general, such capacitance will be parasitic, and circuits must be designed 
so that it does not affect their performance.

While it is possible to use PCB capacitance in place of small discrete capacitors, the dielectric 
properties of common PCB substrate materials cause such capacitors to behave poorly. They 
have a rather high temperature coeffi cient and poor Q at high frequencies, which makes them 
unsuitable for many applications. Boards made with lower loss dielectrics such as Tefl on are 
expensive exceptions to this rule.

C.27 Capacitive Noise and Faraday Shields

There is a capacitance between any two conductors separated by a dielectric (air or vacuum 
are dielectrics). If there is a change of voltage on one, there will be a movement of charge on 
the other. A basic model for this is shown in Figure C.33.

It is evident that the noise voltage VCOUPLED appearing across Z1 may be reduced by several 
means, all of which reduce noise current in Z1. They are reduction of the signal voltage VN, 
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C

VN

Z1 = CIRCUIT IMPEDANCE
Z2 = 1/jωC

I N

Z1 VCOUPLED

Z1

Z1 � Z2
VCOUPLED = VN

Figure C.33: Capacitive coupling equivalent circuit model.

reduction of the frequency involved, reduction of the capacitance, or reduction of Z1 itself. 
Unfortunately, however, often none of these circuit parameters can be freely changed, and an 
alternate method is needed to minimize the interference. The best solution toward reducing the 
noise coupling effect of C is to insert a grounded conductor, also known as a Faraday shield, 
between the noise source and the affected circuit. This has the desirable effect of reducing Z1 
noise current, thus reducing VCOUPLED.

A Faraday shield model is shown by Figure C.34. In the left picture, the function of the shield 
is noted by the way it effectively divides the coupling capacitance, C. In the right picture, the 
net effect on the coupled voltage across Z1 is shown. Although the noise current IN still fl ows 
in the shield, most of it is now diverted away from Z1. As a result, the coupled noise voltage 
VCOUPLED across Z1 is reduced.

C

IN
IN Z1VN

Z1 V VN

CAPACITIVE
SHIELD

COUPLED VCOUPLED

Figure C.34: An operational model of a Faraday shield.

A Faraday shield is easily implemented and almost always successful. Thus capacitively cou-
pled noise is rarely an intractable problem. However, to be fully effective, a Faraday shield 
must completely block the electric fi eld between the noise source and the shielded circuit. It 
must also be connected so that the displacement current returns to its source, without fl owing 
in any part of the circuit where it can introduce conducted noise.
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C.28 The Floating Shield Problem

It is quite important to note here that a conductor that is intended to function as a Faraday 
shield must never be left fl oating, because this almost always increases capacity and exacer-
bates the noise problem.

An example of this “fl oating shield” problem is seen in side-brazed ceramic IC packages. 
These DIP packages have a small square conducting Kovar lid soldered onto a metallized rim 
on the ceramic package top. Package manufacturers offer only two options: the metallized rim 
may be connected to one of the corner pins of the package, or it may be left unconnected.

Most logic circuits have a ground pin at one of the package corners, and therefore the lid is 
grounded. Alas, many analog circuits don’t have a ground pin at a package corner, and the 
lid is left fl oating—acting as an antenna for noise. Such circuits turn out to be far more 
vulnerable to electric fi eld noise than the same chip in a plastic DIP package, where the chip 
is completely unshielded.

Whenever practical, it is good practice for the user to ground the lid of any side-brazed 
ceramic IC where the lid is not grounded by the manufacturer, thus implementing an effec-
tive Faraday shield. This can be done with a wire soldered to the lid (this will not damage the 
device, as the chip is thermally and electrically isolated from the lid). If soldering to the lid is 
unacceptable, a grounded phosphor-bronze clip or conductive paint from the lid to the ground 
pin may be used to make the ground connection,.

A safety note is appropriate at this point. Never attempt to ground such a lid without fi rst veri-
fying that it is unconnected. Occasionally device types are found with the lid connected to a 
power supply rather than to ground.

A case where a Faraday shield is impractical is between IC chip bondwires. This can have 
important consequences, as the stray capacitance between chip bondwires and associated lead-
frames is typically �0.2 pF, with observed values generally between 0.05 pF and 0.6 pF.

C.29 Buffering ADCs Against Logic Noise

If we have a high-resolution data converter (ADC or DAC) connected to a high-speed data 
bus that carries logic noise with a 2 V/ns–5 V/ns edge rate, this noise is easily connected to the 
converter analog port via stray capacitance across the device. Whenever the data bus is active, 
intolerable amounts of noise are capacitively coupled into the analog port, thus seriously 
degrading performance.

This particular effect is illustrated by the diagram of Figure C.35, where multiple package 
capacitors couple noisy edge signals from the data bus into the analog input of an ADC.

Present technology offers no cure for this problem, within the affected IC device itself. The 
problem also limits performance possible from other broadband monolithic mixed signal ICs 

APP-C-H8584.indd   506APP-C-H8584.indd   506 8/17/07   6:21:22 PM8/17/07   6:21:22 PM



 PC Board Design Issues   507

www.newnespress.com

NOISY
DATA
BUS

ADC
IC

ANALOG INPUT
PORT(S)

Figure C.35: A high-speed ADC IC sitting on a fast data bus couples 
digital noise into the analog port, thus limiting performance.

with single-chip analog and digital circuits. Fortunately, this coupled noise problem can sim-
ply be avoided by not connecting the data bus directly to the converter.

Instead, use a CMOS latched buffer as a converter-to-bus interface, as shown by Figure C.36. 
Now the CMOS buffer IC acts as a Faraday shield and dramatically reduces noise coupling 
from the digital bus. This solution costs money, occupies board area, reduces reliability (very 

ANALOG
INPUT
PORT(S)

ADC IC

NOISY
DATA BUS

CMOS BUFFER/LATCH

N N

• THE OUTPUT BUFFER/LATCH ACTS AS A FARADAY
SHIELD BETWEEN “N” LINES OF A FAST, NOISY DATA
BUS AND A HIGH PERFORMANCE ADC

• THIS MEASURE ADDS COST, BOARD AREA, POWER
CONSUMPTION, RELIABILITY REDUCTION, DESIGN
COMPLEXITY AND, MOST IMPORTANTLY,
IMPROVED PERFORMANCE

Figure C.36: A high-speed ADC IC using a CMOS buffer/latch at the 
output shows enhanced immunity of digital data bus noise.
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slightly), consumes power, and it complicates the design—but it does improve the signal-to-
noise ratio of the converter. The designer must decide whether it is worthwhile for individual 
cases, but in general it is highly recommended.

Bus switches can also be utilized to isolate data lines from buses. 
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4K�8 SRAM logic circuit, 104
8�8 MOSFET Bipolar memory 

cells, 101
8�8 reading ROM circuit, 102
8�8 ROM logic circuit, 100
8-bit MOD-256 asynchronous 

counter, 94
8-bit MOD-256 synchronous 

counter, 96
8 bit register, 401, 437

with 8 D fl ip-fl ops, 91
10Base-T cable, 157
16K�8 DRAM circuit, 106
16K�8 SRAM logic circuit, 105
802.11 hardware confi guration

with PCI card, 152
with SoC, 152
Standards, 148–150

A
AC catheterization, 421
AC circuits, 21–28

Active devices, 28–32
Capacitors, 23–27
Inductors, 27–28

AC fan-out, 246–247
Acceptance fi lters, 386–387
Acknowledge bit (ACK), 347, 348, 

362, 364, 385
Active components, 8
Active devices, 28–32
Active hardware development tools, 

444
Adastra Neptune x86 board, 161
ADC clock jitter see Aperture jitter
Address latch enable (ALE), 439
Address strobe see Address latch 

enable
ADDRX bits, 351–352
Agilent, 439

Altera’s Nios® device, 281
Alternate current, 21–28
AMD/National Semiconductor x86 

reference board, 7, 59
Ampere, 12
Ampro MIPS reference board, 8, 60
Ampro PowerPC reference board, 

8, 61
Ampro’s Encore 400 board, 63
Analog and digital signals, 10–11

Noise in, 11
Separation, 479

Analog interface, 420–434
ADCs, 420–421

noise quantifi cation and 
visualization, 432–434

Analog channel, 421–422
Graphical and numerical data, 

analyzing, 427–431
Linux data capture program, 

425–427
Linux histogram visualization, 

431–432
Linux PC, sample data 

transmission, 424–425
Precision reference sampling, 

with dynamic C, 422–424
Analog oscilloscope, 285
Analog return current, 475–476
Analog-to-digital converter (ADC), 

420–421, 474, 480, 
481–482

Digital outputs, 481–483
and Logic noise, buffering, 

506–508
Noise quantifi cation and 

visualization, 432–434
Analog TV board, 174

with Controller ISA 
implementation, 72

AND gate, 48, 49, 95
Aperture jitter, 484
Arbitration, 169, 344, 351, 381

and Clock synchronization, 347
I2C, 350–351
PCI, 177

Architectures, 64, 72
Arithmetic logic unit (ALU), 

85–89
ARM architecture, 280–281
Assembler transmit, 330–331
Asymmetrical delay, 241
Asynchronous bus, 171, 204
Asynchronous counter, 93

8-bit MOD-256, 94
Asynchronous logic, 240
Asynchronous memory, 203
Asynchronous memory controller 

(AMC), 204, 205
Asynchronous transfer, 119, 124, 

141–143
ATA (AT Attachment), 209–210, 

212
ATAPI (ATA Packet Interface), 

210, 213
Attachment Unit Interface (AUI), 

157–158
Autobuffer mode, 229
AVR, 348–350, 354

Easy Ethernet, 375
I2C master-receiver mode code, 

358–359
Master I2C code, 352–358, 368

AVR-to-PIC communications ball, 
365

AVR-to-PIC grand I2C ball, 362

B
Backplane bus, 168
Bash shell script, 427
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BASIC
C code, 341
PicBasic Pro code, 336
RS-232 instruction, 339
Writing code in, 338
Writing RS-232 Microcontroller 

routines in, 333–339
Battery-powered system, 447
Baud rate, 120, 143310, 328
Bayer color fi lter, 419
Benchmarks, 133, 448, 449
Billions of IPS (BIPS), 448
Binary Coded Decimal (BCD), 44, 

46–47, 310
Binary logic, 43

Cheat sheet, 46
Bipolar junction transistor (BJT), 

405
Bipolar memory cells, 101
Bit rate, 120, 142–143

I2C SLOW
Bit S, 362
BJT-based drivers, 405–409
Blackfi n cache organization, 189
Block diagrams, 1

of Memory array, 70
Net�ARM Ethernet, 160
Serial components, 145
von-Neumann-based I/O, 137

Blocked transferring scheme, 173
Board buses, 166

Arbitration and timing, 168
Integration, with other board 

components, 179–180
Performance, 180–181

Board I/O, 137
Component interfacing, 161–164
Parallel I/O, 153–161
Performance, 165–166
Serial I/O, 140–152

Buffer Full (BF) bit, 362, 363
Burst transfer scheme see Blocked 

transferring scheme
Bus arbitration, 168, 169, 385–386
Bus arbitration and timing, 168

I2C (Inter IC) bus, 174–175
Peripheral component 

interconnect (PCI) bus, 
175–178

Bus contention, 243
Bus handshake, 171

Bus performance, 180–181
Byte ordering, 70, 167

C
Cache, 108–110, 187, 188, 

191–193
Architecture, 190
Array, with tags, 194
Concept, 189
Contingent information, 191–193
Data storage in, 110
Defi nition, 188
Direct-mapped cache, 190
Fully associative cache, 190
in Harvard models, 109
in Memory hierarchy, 108
N-way set-associative cache, 191
in von Neumann model, 109
Write-back data cache, 193–195
Write-through data cache, 

193–195
Cache hit, 109, 192
Cache miss, 109, 191, 192
Capacitive load, 246, 263
Capacitive noise, 504–505
Capacitive reactance, 23, 24
Capacitors, 23–27, 246, 247

Ceramic capacitor, 477
Decoupling capacitor, 481, 488
Discrete capacitor, 502
DRAM, 104, 105, 106
Parasitic capacitor, energy 

storage in, 390
Snubber’s capacitor, impedance, 

415
Carriage return/linefeed (CRLF), 

340, 341
Carrier Sense Multiple Access/

Collision Detection (CSMA/
CD), 381

Carrier sense system, 381
Cascaded adders, 88
Central Processing Unit (CPU), 5, 

82–99, 109, 420
Arithmetic logic unit, 85–89
Components, 82
Control unit, 97–98
Counters, 93–97
Execution time, 131, 132
Fetch, decode, and execution 

cycle of, 83

Flags, 92–93
Internal buses, 84
On-chip memory, 99
MPC860 Processor, 83
Registers, 89–92
Requirements, 129–130
and System (master) clock, 

98–99
x86, 278

Central-serialized arbitration, 170
Charge, 12
Cheat sheet, 45, 46

Binary and hex, 46
Chip Select (CS) signal, 378
Circuits, 18–20, 40, 267, 498

8�8 reading ROM circuit, 102
AC circuits, 21–28
Analog circuit, 26, 27, 421
ANOE gate circuit, 30
Clear to Send Circuit, 306
Data Career Detect Circuit, 307
Data Set Ready Circuit, 307
Data Terminal Ready Circuit, 

307
Datacomm circuits, 28
DC circuit, 12–21, 390
Debugging, 285–286
Digital circuit, 12, 53, 482, 490
Diode OR circuit, 32
Electrical path, 5
Full address gate-level circuit, 87
Gate-level circuit, 91
High-speed circuit, 474
I/O port circuit, 116
Logic circuit, 34, 43, 85, 86, 100, 

104, 105, 506
Low-speed circuit, 441, 474
Multifunction ALU gate-level 

circuit, 89
Protective Ground Circuit, 306
RC circuit, 25
Received Data Circuit, 306
Requested to Send Circuit, 306
Ring Indicator Circuit, 308
Signal Common Circuit, 307
SR fl ip-fl op gate-level circuit, 93
Transmitted Data Circuit, 306

CISC vs. RISC, 75
Clear to Send Circuit (CTS), 302, 

306
CLKIN, 488
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Clock, 53–54
Frequency, 244
Signal, 98–99, 171, 244

Clock period, 131, 272
Clock stretching, 350, 359, 365
Clock synchronization, 347–351
Code snippet
CodeDesigner Lite, 334, 336
Coding system, 43–46

BCD, 46–47
Collision, 381
Column Address Strobe (CAS), 

106, 200
Combinatorial logic, 240

AND gate, 48, 49
Circuits, 50–53
NAND gate, 48–49
NOR gate, 49–50
NOT gate, 47–48
OR gate, 49
Tristate devices, 53
XOR gate, 50

Communication interface, 114, 
127–128, 138, 164

Communication port, 114, 138, 163
Complementary logic MOS 

(CMOS), 255
TTL compatible signal 

interfacing, 258, 259
Complex I/O subsystem, 115, 139
Complex instruction set computing 

(CISC) model, 74
ISA implementation, 75
vs. RISC model, 75

Complex programmable logic 
devices (CPLDs), 418–420

Conductor resistance, 470–471
Consultative committee on 

international telegraphy and 
telephony (CCITT), 303

Control unit (CU), 82, 97–98
PowerPC Core and, 97

Controller Area Network (CAN)
Architecture, 380–382
Bus arbitration, 385–386
Data formats, 382–385
Message fi ltering, 386–387

Controller ISA model, 72
Coordinated protection, 393
Copper PCB conductors, 470–471
Current, 12–13

Custom Computer Services C 
Compiler, 319, 323, 324, 
325, 329, 339, 340, 352, 
354, 372

Custom peripherals building, with 
FPGAs, 281–282

Cycle-stealing DMA, 214
Cycle time see Clock period
Cycles per instruction (CPI), 131
Cyclic redundancy code, 385
Cyclical redundancy checking, 212
Cylinder, head, and sector (CHS) 

method, 212

D
D fl ip-fl op, 54–55
Daisy-chain arbitration see 

Central-serialized arbitration
Darlington, 407–409, 411
Data acquisition channel (DAQ 

channel), 421
Data Carrier Detect Circuit CF, 307
Data Circuit-terminating Equipment 

see Data Terminal 
Equipment

Data Communications Equipment 
(DCE) device, 302, 303, 304

Data Length Code (DLC), 384
Data packet, RS-232, 311–312
Data Set Ready (DSR), 302, 307
Data Terminal Equipment (DTE), 

144, 145, 302, 303, 304
Data Terminal Ready (DTR), 302, 

307
Datapath ISA model, 72
DB9 connector, 145, 146
DB25 connector, 145, 146
DC characterization, 421
DC circuits, 12–21

Circuits, 18–20
Current, 12–13
Power, 20–21
Resistors, 14–17
Voltage, 12–14

DDR2 SDRAM, 203
DEBUG functions, 335–336
Debuggers, 445–446
Debugging tricks, 437–438
DEBUGIN functions, 335, 336
De-rating delay, for excess CL, 266
Descriptor Array mode, 231

Descriptor-based DMA, 231
Descriptor List method, 231
Development hardware, selection, 

282–285
Dielectric absorption (DA), 

502–503
Digital inputs

Expansion, 398–402
Protection, 392–398

Digital interfacing, 389–404
3.3V and 5V devices, mixing, 

389–392
Expanding digital inputs, 

398–402
Expanding digital outputs, 

402–404
Protecting digital inputs, 

392–398
Digital oscilloscopes, 286
Digital outputs, 402–404

Analog-to-digital converter, 
482–483

Expansion, 402–404
Digital return current, 475–476
Digital signal processor (DSP), 72, 

474
with Internal phase-locked loops, 

487–488, 489
Digital system, 10, 474–475
Digital-to-analog converters 

(DACs), 474–475, 480
Diode, 31–32

Schottky diode, 257
Zener diode, 34, 394, 410
Direct current, 12

Direct memory access (DMA), 164, 
214

Classifi cations, 228
Cycle-stealing DMA, 214
Descriptor management, 231–234
Direct-mapped cache, 190
Descriptor-based DMA, 231
DMA controller, 215–218

Programming, 218
External DMA, 235–236
Register-based DMA, 228–231
System performance tuning, 234
Transfer confi guration, 228

“Dirty” RS-232 circuitry, 318
Discrete cosine transform (DCT) 

engine, 281
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Distributed arbitration scheme, 170, 
171

Double buffering, 230, 360
Double data rate (DDR) SDRAM/

DDR1, 202–203
Double-sided vs. multilayer PCB, 

477
Dynamic central parallel arbitration, 

169–170
PCI bus, 177

Dynamic RAM (DRAM), 103, 104, 
106, 107

(capacitor-based) memory cell, 
105

E
Easy Ethernet AVR, 353, 375, 376
Easy Ethernet CS8900A, 343, 363, 

375–376
eCos, 292

Operating system, 292, 298–299
EEPROM (electrically erasable 

programmable ROM), 
102–103, 206–207

Effective series inductance (ESL), 
398

Effective series resistance (ESR), 
398, 413

Electromagnetic compatibility 
(EMC) issues, 442

Electromechanical relays, 411–417, 
418

Electromotive force (EMF), 12
Electronic Industries Association-

232 (EIA-232), 144, 303
Electronics, 12

AC circuits, 21–28
Active devices, 28–32
DC circuits, 12–21

Electrostatic discharge (ESD), 442
Fault tolerance, 443–444
Protection, 396–397, 398, 399

Embedded board, 5
Hardware components, 5–6
I/O device interfacing with, 162
Port and device controllers, 

115, 139
and von Neumann model, 5–9

Embedded controller, of hardware 
design, 440–442

Ground problems, 441–442

Power and ground planes, 441
Embedded operating system, 287, 

289–295
Embedded processors, 183, 443

Internal processor design, 78–131
ISA architecture model, 65–78
Memory spaces, 183–187
Performance, 131–133

Emitter-coupled logic (ECL), 259
EPROM (erasable programmable 

ROM), 101, 206
Error frames, 382, 385
ESD guns, 398
Ethernet cables, 156–157
Ethernet interface, 158, 160
Ethernet port, 158
Ethernet system model

Adastra Neptune x86 board, 161
Motorola/Freescale FADS board, 

158–160
Net Silicon ARM7 (6127001) 

development board, 
160–161

Excalibur™ device, 281
Exclusive-OR see XOR
Expandable bus, 168, 173
External DMA, 235
External memory, 195

Asynchronous memory, 
203–206

Nonvolatile memories, 206–207
Synchronous memory, 195–203

F
Fall time, of signal, 241
Fan-out, 244

CMOS drives LSTTL, 249–252
Ground bounce, 253–255
Transmission line-effect, 

251–253
Wiring capacitance calculation, 

247–249
Faraday shields, 504–505, 506
Fault tolerance, in hardware 

designing, 443–444
Ferroelectric RAM (FRAM), 214
Field effect transistor (FET), 31, 

257
Field-programmable gate arrays 

(FPGA), 418–420
Custom peripherals, 281–282

Finite state machine with datapath 
(FSMD) model, 73

First in fi rst out (FIFO), 169–170
Flags, 92–93, 353
Flash converters, 420, 421
Flip-fl op, 54, 270

Gate-level circuit, 91
Metastability, 242, 243
Timing specs, 271
Worst-case timing analysis, 

270–272
Floating-point OPS (FLOPS), 448
Floating shield problem, 506
Fly-back suppression diode, 413
Frame buffers, 106
Frames, 119, 141–142, 382

Remote transfer, 385
Free software, consequences, 

295–300
Full adder gate-level circuit, 87
Full adder logic equation, 87
Full adder logic symbol, 87
Full adder truth table, 87
Full duplex transmission scheme, 

118, 119, 141
Fully associative cache, 190
Functional timing, 270, 271

G
Gas discharge tubes (GDTs), 392
Gate-level circuit

of Flip-fl op, 93
Multifunction ALU, 89
SR fl ip-fl op, 93

Gate timing specs, 271
General Public License (GPL), 

296–298
General-purpose register, 90
Geode, 132, 279
Geometric engine, 154
Getc function, 332, 333, 341
Gigabit Media Independent 

Interface (GMII), 160
Glow voltage see Holdover
GNU, 288

Free software, consequence, 
295–300

Gnuplot, 431, 432
GPIO, 328
Graphical design engines, 153
Ground and power planes, 475
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Ground bounce, 253–255
Ground isolation techniques, 

495–497
Ground plane breaks, carefulness 

with, 494–495
Ground problems, 441–442
Grounding and decoupling, 483

Mixed signal ICs, with low 
digital currents, 479–480

Guarding, 498, 499

H
Half-adder logic circuits, 86
Half-adder logic symbol, 86
Half-duplex transmission scheme, 

118, 141
Hard Disk storage

AT Attachment (ATA), 209
ATA Packet Interface (ATAPI), 

209
CHS method, 212
Integrated Drive Electronics 

(IDE), 209
Logical block addressing (LBA) 

mode, 212
Hard Drive Interfaces, 212

Microdrive, 213
SATA (Serial ATA), 212
SCSI, 213
USB/Firewire, 214

Hard Hat Linux, 290
Hardcopy graphics, 154
Hardware, 1–5

components, 5–6
Hardware design, tips and 

techniques
Battery-powered system, 447
Connecting tools, 438–439
Construction methods, 440–442
Debugging tricks, 437–438
Electromagnetic compatibility 

issues, 442
Electrostatic discharge effects, 

442–444
Hardware development tools, 

444–445
Opinions, 439–440
Processor performance metrics, 

448–449
Software development tools, 

445–446

Thermal analysis, 446–447
Hardware development tools, 444

Instrumentation issues, 445
Hardware design language (HDL), 

281
 Hardware drawings, 1–2

Block diagrams, 1
Logic diagrams/prints, 2
Schematics, 1–2
Timing diagrams, 2
Wiring diagrams, 2

Harvard architecture model, 78, 
183

vs. Von Neumann 80
Heavy operating systems, 292
Hex, 43, 44

Cheat sheet, 45
High-current outputs, 404–418

BJT-based drivers, 405–409
Electromechanical relays, 

411–417
MOSFETs, 409–411
Solid-state relays, 417–418

High-speed signal transition, 215
Hold time, 242
Holdover, 392
Homegrown code, 330
“Host” system, 444
HyperTerminal software, 319, 320

I
I/O bus, 114, 138, 168
I/O components interfacing, 161
I/O controller, 114

and master CPU interface, 164
Requirements, 129–130

I/O device interfacing, with 
embedded board, 162–164

I/O hardware, 138
I/O performance, 165–166
I/O port sample circuit, 116
I/O subsystem, 114, 115, 116, 139, 

140, 162
I2C bus, 174, 175, 176, 342, 

344–347
ACKS and NAKS, 347
Addressing, 351–352
Arbitration and clock 

synchronization, 347–351
AVR master-receiver mode, 

358–359

AVR registers, 352–358
AVR-to-PIC communications 

ball, 365–378
Communication options, 

378–387
Complete transfer session, 

176
Construction, 344–347
Firmwares, 352
on MPC860, 179–180
PIC slave-transmitter mode, 

359–365
Reasons for using, 343–344
and RS-232, comparison, 342
with SL clock, 172
START condition, 345
STOP condition, 345
Wired-AND function, 345

IC packages, 58
IDE (Integrated Drive Electronics), 

209
Identifi er Extension (IDE) fl ag, 

384
Idle mode, 448
Idle RS-232 signal, 311
IEEE 802.11 wireless LAN

Networking and communication, 
148–153

In-circuit emulators (ICE), 444
Inductive load, 413–418
Inductors, 27–28
Instruction set architecture (ISA), 

65
Integrated circuit (IC), 58–61
Integrated processor, 64
Intel x86, 288
Interface hardware, of RS-232, 

314–319
Interfacing communication port, 

163
Internal phase-locked loops,

487–488, 489
Internal processor design

Central processing unit, 82–99
On-chip memory, 99–113
Processor buses, 130–131
Processor input/output (I/O), 

113–130
Interrupt driven I/O, 164
Interrupt request (IRQ) value, 168
Ions, 12
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ISA architecture model
Addressing modes, 71
Application-specifi c, 72–74
General-purpose, 74–75
Instruction-level parallelism, 

76–77
Interrupts and exception 

handling, 72
Operands, 68–69
Operation

formats, 67
types, 65–66

Storage, 69–71

J
Java virtual machine (JVM) model, 

74
JK fl ip-fl op, 55–56, 94
JTAG pod, 288–289

K
Karnaugh map, 389
“Kelvin” feedback

Voltage drop, in signal lead, 471
Kirchoff’s law, 472, 473

L
L1 data memory, 184, 187
L1 instruction memory, 184, 186
L1 memory architecture, 184
Least recently used (LRU), 193
Least signifi cant bit (LSB), 351
Lesser GPL (LGPL), 297–298
Level-1 cache see Cache
Library GPL see Lesser GPL
Light emitting diode (LED), 437
Linux, 290–291

Data capture program, 425–427
Data reduction program, 

428–431
Histogram visualization, 

431–432
Linux kernel, 296, 297, 298
Linux PC, Data transmission, 

424–425
Load analysis, 264–265
Load-store architecture, 71
Loading analysis, 244, 246–247

Ground bounce, 253–255
Transmission line-effect, 

251–253

Wiring capacitance calculation, 
247–249

Logic analyzer, 439, 445
Logic circuit

Coding system, 43–47
Combinatorial logic, 47–53
Integrated circuit, 58–61
Sequential logic, 53–57

Logic diagrams/prints, 2
Logic family IC, 255–261
Logic high current sign, 246
Logic low current sign, 245
Logic noise, 506
Logic probes, 439
Logic threshold voltage, 255
Logic Wrap-up, 57
Logical block addressing (LBA), 

212
Look-up-table (LUT), 420
LOOPBACK, 155
LP SDRAM see Mobile SDRAM
LSTTL, 249–251

and CMOS processor, 268
Gate DC parameters, 268
Worst-case timing analysis, 

270–272

M
Macraigor JTAG wiggler, 289
Magnetoresistive RAM (MRAM), 

214
Main memory see RAM
Master CPU, 129

I/O controller interfacing and, 
164

Master processor communication, 
with I/O, 165, 168

Master Synchronous Serial Port 
(MSSP), 360

Maxim, 308–309
MAX232CPE, 314, 318

Maximum load capacitance, 247
Media Access Control Component 

(MAC), 158
Media Independent Internet (MII), 

160
Medium Attachment Unit (MAU), 

157, 158, 159
Medium Dependent Interface 

(MDI), 157, 158
Memory, 5, 69–70

Memory array, 70
Memory cell, 101
Memory controller (MEMC), 106, 

110
Memory hierarchy, 99

Level 1 cache in, 108
Memory management units 

(MMUs), 110, 111
Memory map, 112
Memory organization, 112–113
Memory space, 183–187

L1 data memory, 187
L1 instruction memory, 186

Memory systems, 183
Cache, 187–195
Direct memory access (DMA), 

214
External memory, 195
Memory spaces, 183–187

Message fi ltering, 386–387
Metal oxide semiconductor 

fi eld effect transistors 
(MOSFETs), 31, 409–418

Metal oxide varistor (MOV), 393, 
394, 395

Microchip 16-bit Peripheral 
Library, 379

Microcontroller and designs 
selection, 273

Custom peripheral building, with 
FPGAs, 281–282

Development hardware selection, 
282–285

Development toolchains, 
286–289

Free embedded operating 
systems, 289–295

Free software, consequences, 
295–300

Laboratory equipment, 285–286
Right core selection, 276–281

Microprocessor, 64
Mictor connectors, 439
Millions of instruction per second 

(MIPS), 133, 279, 448
MINIDIP, 500–502
MIPS32/MIPS I, 67
Mitsubishi analog TV reference 

board, 9, 61
Mixed analog/digital system 

grounding, 474
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Mixed-signal devices, 485
with High digital currents, in 

multicard system, 487
with Low digital currents, in 

multicard system, 486–487
Origins of confusion, 485
PCB layout guidelines, 489–491

Mixed-signal ICs, with low digital 
currents

Grounding and decoupling, 
480–481

Mobile SDRAM, 201–202
MOD-256 counter

Flip-fl op CLK timing waveform, 
94, 95, 96

Modem control signals, 302
Modes, 427
Monta Vista, 290
Motorola/Freescale MPC823 FADS 

board
Ethernet system model, 158–160
RS-232 model, 146–147

MPC823, 66, 67, 158, 159
MPC860, 79, 128

CPU, powerPC core, 83
Harvard architecture, 80
I2C on, 179
Interfaced to Ethernet controller, 

128
Memory management and, 111
Processor buses, 130
Reference platform and I/O, 117
Registers, within memory map, 

112
SCC, in UART mode, 122
SMC, in UART mode, 124

interfaced to RS-232, 128
SPI, 125

interfaced to ROM, 129
MPLAB IDE, 336
MROM (mask ROM), 101
MSI (medium-scale integration), 58
Multicard mixed-signal systems, 

478–479, 485
Multifunction ALU, 89
Multilayer PCB, 477, 494
Multipoint grounding system, 478

N
N-bit register, with Flag and 

fl ip-fl op, 93

N-channel metal oxide 
semiconductor (NMOS), 
255, 257

N-way set-associative cache, 191
NAND fl ash memory, 207–209
NAND gate, 48–49
Negative acknowledge (NAK), 347, 

348
Net silicon ARM7 (6127001) 

development board, 160
Net silicon ARM7 reference board, 

7, 60
Net�ARM Ethernet, 160–161
NET�ARM50 embedded board 

155–156
NetBSD, 291
Networking and communications

Ethernet system, 156–158
IEEE 802.11 Wireless LAN 

standards, 148–152
RS-232, 144–146

Noise margin, 254
Nonexpandable bus, 168

I2C bus, 174–175
Nonvolatile memories, 99, 206

Emerging technologies, 214
IDE, ATA, and ATAPI, 

209–212
Microdrive, 212
NAND fl ash memories, 

207–209
NOR fl ash memories, 207–209
SATA, 212
SCSI, 212
USB/fi rewire, 214

NOR fl ash memory, 207–208
NOR gate, 47–48, 49–50
Novell®, 288
Null modem serial cables, 145
Number system, 43

O
Off-board I/O devices, 162
Off-chip memory, 185
Offset, 428
Ohm’s Law, 14, 18, 20, 397, 471
Omron G6B, 412
On-chip memory, 99–113

Cache, 108–110
Management, 110–111
Memory organization, 112–113

Random access memory, 
103–108

Read-only memory, 99–103
Open collector outputs, 256
Open source license, 296, 

298–299
OpenWatcom, 288
Operands, 68–69
Operation, 65–67
Operations per second (OPS), 

448
Optical isolation, 260
OR gate, 49
OSCCAL value, 335
Oscilloscope, 35
OSI model

Ethernet, 156
IEEE 802.11 standard, 151
RS-232, 144

Output Enable (OE), 53

P
Packets, 141–142
PalmOS® devices, 277, 293
Parallel circuits, 19
Parallel I/O, 127, 140

Net�ARM50 embedded board, 
155

Networking and communication, 
Ethernet, 156–158

Output and graphics I/O, 
153–156

vs. Serial I/Q, 118–121
Parallel interface, 127, 153
Parallel output and graphics I/O, 

153–156
Parity bit, 311
Passive hardware development tool, 

444
PC board (PCB) design issues, 

469
ADC digital outputs, 481–483
ADCs and logic noise, buffering, 

506–508
Analog and digital grounds 

separation, 479–480
Capacitive noise, 504–505
Clock consideration sampling, 

483–485
Double layer versus multilayer 

PCBs, 477
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PC board (PCB) design issues 
(Continued)

DSPs, with internal phase-locked 
loops, 487–488

Dynamic effects, 502–503
Faraday shields, 504–505
Floating shield problem, 506
Ground and power planes, 

475–477
Ground isolation techniques, 

495–497
Ground plane breaks, 494–495
Grounding summary, 488–489
“Kelvin” feedback, 471–472
MINIDIP and SOIC Op Amp 

guard layouts, 500–502
Mixed analog/digital systems, 

grounding in, 474–475
Mixed-signal devices

with High digital currents, in 
multicard system, 487

with Low digital currents, 
in multicard system, 
486–487

Mixed-signal grounding, origin 
of confusion, 485–486

Mixed signal ICs, with low 
digital currents

grounding and decoupling, 
480–481

Mixed-signal system guidelines, 
489–491

Multicard mixed-signal systems, 
478–479

Resistance of conductors, 
470–471

Signal return currents, 472–474
Skin effect, 491–493
Static effects, 497–500
Stray capacitance, 503–504
Transmission lines, 493–494

PCB effects, 497–500, 502–503
PCB “hook”, 503
PCMCIA socket, 282
PDIR, 155
Peripheral component interconnect 

(PCI), 175–178
Perl Module, 429
Perl script, for data analysis, 430
Permittivity, 247
Personal computer, 313–314

Physical Coding Sub layer (PCS), 
159, 160

Physical Layer Device (PHY), 159
Physical Layer Signaling (PLS), 

158
Physical Medium Attachment 

(PMA), 157
Physical Medium Dependent 

(PMD), 159, 160
PIC I2C slave-transmitter mode 

code, 359–365
PIC12F675, 310–311, 323, 324
PIC18F452, 342
PicBasic Pro compiler, 334, 337, 

339–340
Pick-up current, 416
PICkit™ 1 FLASH Starter Kit, 310, 

314, 316–318, 319
Pilot relay, 412
Pin-through-hole (PTH) device, 

394, 412
Power, 20–21

and ground planes, 441
Power supply, 10, 32

Controls, 35–38
Oscilloscope, 35
Probes, 38–41

PowerPC core, 88, 91
and ALU, 90
and buses, 84
and CU, 97
MPC860 CPU, 83
and register usage, 92

Print f function, 329, 341
Printed circuit board (PCB), 5, 

378, 399
Construction, 440–441
Power and ground planes, 441
Silkscreens, 440

Probes, 38–41
Processor buses, 130–131
Processor input/output, 113

Master processor, with I/O 
controller, 127–130

Parallel I/O, 127
Processor serial I/O, 121–127
Serial vs. parallel I/O, data 

management, 118–121
Processor performance metrics

in Hardware designing, 448–449
Processor serial I/O, 121–127

Serial peripheral interface (SPI), 
125–127

Universal asynchronous receiver-
transmitter, 121–125

Processors, 63
PROM (programmable ROM), 101
Propagation delay, 241
Protective ground circuit, AA, 306
Pulse width, 244

R
RAM (random access memory), 

103–108
Raster and display engine, 154
RC circuit, 25–26
Reactance, 23
READ (receive) transaction, 171

PCI, 178
Ready-made operating system, 294
Real circuits, 19
Real hardware development, 

294–295
Receive code, of RS-232, 331–333
Received data circuit (RD), 306
RedBoot, 292
RedHat

eCos operating system, 292, 
298–299

Reduced instruction set computing 
(RISC) model, 74–75

Register-based DMA, 228
Register-memory architecture, 71
Register set, 70–71
Relays, 413
Remote transfer frames, 382, 385
Remote Transmission Request 

(RTR) fl ag, 384
Rendering engine, 154
Request to send (RTS) signal, 302, 

306
Resistors, 14–17
Ring Indicator Circuit (RI), 308
Ripple-carry adder, 87
Ripple counter, 56
Rise time, 241
RJ45 connector, 147
ROM (read-only memory), 99–103

MPC860 SPI interface, 129
ROM emulators (ROM ICE), 444
ROW address strobe (RAS), 106
RS-232, 301
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Basic hardware, 310–313
BASIC instruction, 339–341
BASIC writing, microcontroller 

routine in, 333–339
Code receiving, 331–333
Communication options, 378
Firmware writing, 319–326
History, 303–305
and I2C bus, comparison, 342
Implementation, with 

microcontroller, 310
Interface, 145
Interface hardware, 314–319
MPC860 SMC interface, 128
Networking and communications, 

144–146
Operating procedure, 305–308
Specifi cations list, 304
transmit code bit, 326–331
Transceiver building, 313–314
Voltage conversion 

considerations, 308–309
RTLinux, 290
RX_program_1, 333

S
SA-1100 instruction, 68
Safe operating area (SOA), 394
Sampling clock, 483
SATA (Serial ATA), 212
SBC (Single-board computer), 

279
Schematic symbols, 451–458
Schematics, 1, 3–5
Schottky diodes, 479–480, 487
Schottky logic, 257
Scope see Oscilloscope
SCSI bus, 173
SDMA, 124, 127
Sensor and actuator interface

Analog interface, 421–434
CPLDs, 418–420
Digital interfacing, 389–404
FPGAs, 418–420
High-current outputs, 404–418

Sequencer unit, 97–98
Sequential circuits, 53–57

Logic wrap-up, 57
Sequential logic, 240
Serial clock line (SCL), 174, 175, 

179, 342

Serial Clock (SCK) signal, 378, 379
Serial communication controller 

(SCC)
Pinouts, 123
in Receive mode, 122
in Transmit mode, 123

Serial Data In (SDI), 378, 379
Serial Data Line (SDA), 174, 175, 

179
Serial Data Out (SDO), 378, 379
Serial I/O, 140

Ethernet, 156–158
IEEE 802.11 wireless LAN, 

148–152
Motorola/Freescale FADS board, 

146
RS-232, 144–146

Serial interfaces, 121, 140
Serial management controller 

(SMC), 124
Serial peripheral interface (SPI), 

125–127, 143, 378–380
Serial port, 144, 145, 334
Series circuits, 18–19
Set-reset (SR) fl op, 54
Setup time, 242
Shell script, 426
Signal common circuit, 307
Signal return currents, 472–475
Signal-to-noise ratio (SNR), 

483–484
Simple I/O subsystem, 116
Simple operand types, 68
Simple transistor drivers, 405, 406
Simplex transmission scheme, 118
Simplifi ed UART

for RS-232 device, 56–57
Single-bit addition circuits, 51
Single instruction, multiple data 

(SIMD) model, 76
Sinking driver see Simple transistor 

drivers
Sipex, 308–309
Six-transistor SRAM cell, 103
Skin effect, 491–493
Slave device, 168

of I2C bus, 344
Slave select (SS) signal, 378
SMC pins, 125
Snubber network, 413, 416
Softcopy graphics, 154

Software development tools, 
445–446

SOIC, 500–502
Solid-state relays (SSR), 260, 

417–418
Source memory, 190, 193, 194
Spark gas suppressors see Gas 

discharge tubes
Special-purpose register, 90
Specialized design considerations

Battery-powered system, 
447–448

Thermal analysis, 446–447
SPI pins, 126
SR fl ip-fl op

Gate-level circuit, 93
SRAM, 204
SSI (small-scale integration), 58
SSPBUF, 359, 362, 363, 364–365
SSPCON, 359
SSPSTAT, 359, 362
Star ground, 478, 479, 485
Start bit, 142, 311, 335
Static RAM (SRAM), 103, 106, 

107, 204
STOP bit, 142, 335
Stop mode, 230
Storage register, 89–90
Stray capacitance, 503–504
STROBE, 155
Substitute Remote Request (SRR) 

fl ag, 384
Successive approximation (SAR) 

converters, 420
Superconductors, 14
SuperH, 279
Superscalar machine model, 76
Surface mount technology (SMT)

GDT, 393
MOSFETs, 411
Relay, 412

SurgX® technology, 395
SwitcherCAD III, 417
Sybase®, 288
Synchronous bus, 171
Synchronous Dynamic Random 

Access Memory (SDRAM), 
185, 196, 201

Commands, 197, 199
Pin description, 197
Refreshment, 201
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Synchronous logic, 240
Synchronous memory, 195

CAS latency, 200
DDR SDRAM/DDR1, 202–203
DDR2 SDRAM, 203
Mobile SDRAM, 201–202
SDRAM, 196–199

refreshing, 201
Synchronous serial interface, 143, 

378
Synchronous transfer, 119, 120, 

141, 143
Synchronous transmission, 120
System bus, 167, 168
System performance tuning, 234

T
Tantalum, 24
“Target” system, 444
Tektronix, 40, 439
Tera Term Pro, 321, 322
Thermal analysis, 446–447
Three-stage pipeline, 82
Timing analysis, in embedded 

system
Fan-out and loading analysis, 

244
Logic families and interfacing, 

255–261
Noise margin on design, 261–270
Timing notation, 239–244
Worst-case timing analysis, 

270–272
Timing diagrams, 2
Timing notation, 239

Clock frequency, 244
Propagation delays, 241
Pulse width, 244
Rise and fall times, 241
Setup and hold time, 241–243
Tri-state bus interfacing, 243

Toolchain development, 286–289
Totem pole outputs, 256
Traister and Lisk method, 5
Transceiver, 157–158
Transferring mode schemes, 

173–174

Transient voltage suppressor (TVS), 
394, 395

Transistor–transistor logic (TTL), 
309

and CMOS, 256–257
Gate DC parameters, 268
Interfacing with CMOS, 258–259
Logic voltages and noise margin, 

255
TTL-to-CMOS interface, 268
Totem pole and open collector 

outputs, 256
Transmission-line effects, 

251–253
Transmission lines, 493
Transmission medium, 114, 138
Transmitted data circuit, 306
Transorb, 395
Triode, 28
Tristate bus interfacing, 243
Tristate devices, 53
Truth table, 47

Single-bit addition circuits, 51
TWEN bit, 352, 355, 357
TWI Enable Acknowledge (TWEA) 

bit, 359
TWINT bit, 355, 357
Two-Wire Interface (TWI), 352
Two-Wire Interface Bit Rate 

Register (TWBR), 352
Two-Wire Interface Control 

Register (TWCR), 352, 353
Two-Wire Interface Data Register 

(TWDR), 352
Two-Wire Interface Status Register 

(TWSR), 352, 360

U
UcLinux, 291
ULSI (ultra large-scale integration), 

58
Ultra DMA, 212
Universal asynchronous 

receiver-transmitter 
(UART), 143

UNIX, 424
Serial port, 425

USART, 369–372
Transmit and receive line, 342

USB/Firewire, 214
Utility programs, 445, 446

V
Very long instruction word 

computing (VLIW) model, 
77–78

VLSI (very large-scale integration), 
58

Voltage, 12–14
Voltage conversions, of RS-232, 

308–309
Voltage drop, in PCB signal leads, 

471–472
Von Neumann model, 79, 81–82, 

137
and Embedded board, 5–9
vs. Harvard architectures, 80
Level-1 cache in, 109
and Processor pins, 82

W
Watchdog timer, 324
Watcom C��, 288
Window of uncertainty, 242
Wireless transmission medium, 162
Wiring capacitance, calculation, 

247–249
Wiring diagrams, 2
Worst case design, 239, 244

Timing analysis, 270–272
WRITE (transmit) transaction, 171

PCI, 178
Write-Back data cache, 193, 194
Write-through data cache, 193–194

X
x86, 277, 278, 279

Ethernet, 161
Von Neumann architecture, 81

XOR, 50

Z
Zener diode, 34, 394, 410

Index-H8584.indd   520Index-H8584.indd   520 8/17/07   10:28:38 AM8/17/07   10:28:38 AM


	Cover Page
	Newnes Know It All Series
	Title: Embedded Hardware
	ISBN 0750685840
	Contents (with page links)
	About the Authors
	1 Embedded Hardware Basics
	1.1 Lesson One on Hardware: Reading Schematics
	1.2 The Embedded Board and the von Neumann Model
	1.3 Powering the Hardware
	1.4 Basic Electronics
	1.5 Putting It Together: A Power Supply
	Endnotes

	2 Logic Circuits
	2.1 Coding
	2.2 Combinatorial Logic
	2.3 Sequential Logic
	2.4 Putting It All Together: The Integrated Circuit
	Endnotes

	3 Embedded Processors
	3.1 Introduction
	3.2 ISA Architecture Models
	3.3 Internal Processor Design
	3.4 Processor Performance
	Endnotes

	4 Embedded Board Buses and I/O
	4.1 Board I/O
	4.2 Managing Data: Serial vs. Parallel I/O
	4.3 Interfacing the I/O Components
	4.4 I/O and Performance
	4.5 Board Buses
	4.6 Bus Arbitration and Timing
	4.7 Integrating the Bus with Other Board Components
	4.8 Bus Performance

	5 Memory Systems
	5.1 Introduction
	5.2 Memory Spaces
	5.3 Cache Overview
	5.4 External Memory
	5.5 Direct Memory Access
	Endnotes

	6 Analysis in Embedded Systems
	6.1 Introduction
	6.2 Timing Diagram Notation Conventions
	6.3 Fan-Out and Loading Analysis: DC and AC
	6.4 Logic Family IC Characteristics and Interfacing
	6.5 Design Example: Noise Margin Analysis Spreadsheet
	6.6 Worst-Case Timing Analysis Example
	Endnotes

	7 Choosing a Microcontroller and Other Design Decisions
	7.1 Introduction
	7.2 Choosing the Right Core
	7.3 Building Custom Peripherals with FPGAs
	7.4 Whose Development Hardware to Use—Chicken or Egg?
	7.5 Recommended Laboratory Equipment
	7.6 Development Toolchains
	7.7 Free Embedded Operating Systems
	7.8 GNU and You: How Using “Free” Software Affects Your Product

	8 The Essence of Microcontroller Networking: RS-232
	8.1 Introduction
	8.2 Some History
	8.3 RS-232 Standard Operating Procedure
	8.4 RS-232 Voltage Conversion Considerations
	8.5 Implementing RS-232 with a Microcontroller
	8.6 Writing RS-232 Microcontroller Routines in BASIC
	8.7 Building Some RS-232 Communications Hardware
	8.8 I2C: The Other Serial Protocol
	8.9 Communication Options
	Endnote

	9 Interfacing to Sensors and Actuators
	9.1 Introduction
	9.2 Digital Interfacing
	9.3 High-Current Outputs
	9.4 CPLDs and FPGAs
	9.5 Analog Interfacing: An Overview
	9.6 Conclusion
	Endnote

	10 Other Useful Hardware Design Tips and Techniques
	10.1 Introduction
	10.2 Diagnostics
	10.3 Connecting Tools
	10.4 Other Thoughts
	10.5 Construction Methods
	10.6 Electromagnetic Compatibility
	10.7 Electrostatic Discharge Effects
	10.8 Hardware Development Tools
	10.9 Software Development Tools
	10.10 Other Specialized Design Considerations
	10.11 Processor Performance Metrics

	Appendix A: Schematic Symbols
	Appendix B: Acronyms and Abbreviations
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Appendix C: PC Board Design Issues
	C.1 Introduction
	C.2 Resistance of Conductors
	C.3 Voltage Drop in Signal Leads—“Kelvin” Feedback
	C.4 Signal Return Currents
	C.5 Grounding in Mixed Analog/Digital Systems
	C.6 Ground and Power Planes
	C.7 Double-Sided versus Multilayer Printed Circuit Boards
	C.8 Multicard Mixed-Signal Systems
	C.9 Separating Analog and Digital Grounds
	C.10 Grounding and Decoupling Mixed-Signal ICs with Low Digital Currents
	C.11 Treat the ADC Digital Outputs with Care
	C.12 Sampling Clock Considerations
	C.13 The Origins of the Confusion About Mixed-Signal Grounding: Applying Single-Card Grounding Concepts to Multicard Systems
	C.14 Summary: Grounding Mixed-Signal Devices with Low Digital Currents in a Multicard System
	C.15 Summary: Grounding Mixed-Signal Devices with High Digital Currents in a Multicard System
	C.16 Grounding DSPs with Internal Phase-Locked Loops
	C.17 Grounding Summary
	C.16 Some General PC Board Layout Guidelines for Mixed-Signal Systems
	C.19 Skin Effect
	C.20 Transmission Lines
	C.21 Be Careful with Ground Plane Breaks
	C.22 Ground Isolation Techniques
	C.23 Static PCB Effects
	C.24 Sample MINIDIP and SOIC Op Amp PCB Guard Layouts
	C.25 Dynamic PCB Effects
	C.26 Stray Capacitance
	C.27 Capacitive Noise and Faraday Shields
	C.28 The Floating Shield Problem
	C.29 Buffering ADCs Against Logic Noise
	Endnotes
	Acknowledgments

	Index (with page links)

