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Ventilator-associated pneumonia (VAP) is the most frequently acquired infection
among patients that receive mechanical ventilation in the intensive-care unit
(ICU). The mortality rate for VAP lies in the 20-to-50% range and could be even
higher in some ICUs. A standard operation procedure to VAP treatment includes
a sequence of chest radiography, sputum gram stain, sputum culture, and
empiric therapy, initially with antibiotics covering broad pathogens. However,
collection of the gram stain and culture of lower respiratory tract specimen is
usually not time-efficient (up to 5 days), delaying the initiation of therapy and
unacceptable for critically ill patients. A rapid and accurate diagnosis for VAP is
therefore crucial, but still unavailable. It is known that microorganisms generate
complex metabolites during infection. Fast detection is feasible by examining
metabolic wastes in proximal end of the expiratory device, demanding a 
miniaturized, battery-powered, gas-sensing device. In this work, a fully 
integrated low-power nose-on-a-chip with a robust learning kernel is developed
for such a vital clinical need.

Figure 24.5.1 shows the target application scenario and a top-level system view
of the nose-on-a-chip. With a 3D structure, the chip integrates 8 sensors on top
and processing circuits at the bottom, completely in a standard CMOS process.
The signal-processing circuits include an 8-channel adaptive sensor interface, a
SAR analog-to-digital converter (ADC), a RISC processor core with an 8K×32b
cache memory, and a dedicated continuous restricted Boltzmann machine
(CRBM) kernel for data clustering. With the scalability to form a larger array of
chips, massive sensor information can be processed efficiently in parallel to
enhance sensing performance for a diversity of applications.

Figure 24.5.2 describes the principle of the nose-on-a-chip and the 
nanocomposite sensing materials. Distinct sensing materials deposited on the
interdigitated electrodes (IDE) form an array of sensors. The collective response
from the sensor array constructs unique gas fingerprints. Polymer-carbon 
composites are used for sensing materials. The carbon-based materials can be:
carbon black, carbon nanotube, and mesoporous carbon, where mesoporous
carbon has demonstrated superior sensitivity and reversibility. Mesoporous 
carbon is fabricated from platelet-shaped mesoporous SBA-15 silica and 
polymers are grown onto the carbon, as shown in the SEM images. 

The sensing material is deposited on the IDE, as shown in Figure 24.5.3. The
passivation layer is removed with the 400×400μm2 opening windows. An 8-
channel adaptive interface reads out the sensor signals. The interface circuit
works as a negative-feedback loop to tune out long time constant signals such
as temperature, humidity, and background odors. This sensor interface 
consumes 215μW. A 0.5V 10b SAR ADC with a charge-average switching (CAS)
technique [1] is adopted. The CAS DAC generates top-plate voltage shift by
charge averaging instead of conventional charging and discharging operation; it
effectively reduces the switching energy to 88.6 CVref

2 (48% power saving) and
minimizes the disturbance and noise of the reference supply voltage. Without the
need of an extra voltage reference and common-mode shift issue during 
conversion, the CAS technique is robust and suitable for integration into a low-
voltage SoC. This SAR ADC consumes 1.15μW. 

Figure 24.5.4 shows the architecture, learning process flow, and functionality of
the CRBM kernel [2]. The CRBM is a probabilistic neural network by injecting
Gaussian noise to robustly generalize the variability of data of the same type. By
adapting the connection weights {wij} and the sigmoid gain {aj}, the CRBM learns
to regenerate training examples as the states of visible neurons. The CRBM 
kernel is trained to model three types of sensory data for 10,000 epochs. The

similarity between the reconstruction and the training data indicates the data are
properly modeled. Moreover, the learning trajectories of all {aj} and {wij} reach
equilibrium after 5,000 training epochs. The hidden neurons of the trained CRBM
respond differently to sensory data. This helps to cluster the sensory data and to
reduce the data dimensions for reliable classification. 

Figure 24.5.5 shows the flow of data recognition and the processing unit for gas
identification based on a scalar 32b reduced instruction set computing (RISC)
core. Before the data enter the recognition model, the RISC core checks whether
the response data are saturated, and then performs normalization against 
variation in gas concentration. Then, features are selected based on an objective
function to train a K-Nearest Neighboring (KNN) classifier. A sequential 
backward selection (SBS) scheme is adopted here. The SBS has a computation
complexity of O(N2), lower than O(2N) from exhaustive search. Because SBS
extracts informative features, the accuracy on pneumonia detection increases
from 74.3 to 85.6% and the accuracy on pneumonia bacteria identification
increases from 76.4 to 91.8%.

L7T SRAM cells [3] are employed to achieve a low VDDmin. The L7T cells, 
however, suffer from limited read-bitline (RBL) voltage swing due to BL 
clamping current from unselected read-ports (RPs) of the accessed column. To
increase the read margin, the gate-bias of 1T-RP is increased by boosting the
cell-VDD (CVDD) in a read cycle through parasitic capacitors (PC) between
metal-lines (BOOST-CVDD) on top of L7T cells. This parasitic boost-CVDD (PBV)
scheme consumes only 1% area overhead. Measured read-waveform of PBV-
L7T-SRAM probed through SRAM-Flash interface (SFIF) is shown. At SRAM-
VDD=0.5V, this 256-rows 256Kb SRAM achieves 20.8ns read access time,
including the path-delay due to SFIF, level-shifter, and IO-pads. 

The functionality of the chip was verified in clinical trials. 74 samples infected
with pneumonia (35 Klebsiella, 39 Pseudomonas aeruginosa) were categorized
as experimental group and 43 samples as control group. Figure 24.5.6 shows
the classification results performed in two steps: 1) recognizing whether the
patient was infected, and 2) if infected, identifying which microorganism was the
source. Although the raw data from these two groups overlap, the CRBM
improves the accuracy from 89.74 to 95.73% by reducing Clustering Fisher
Index (CFI) from 17.89 to 10.30. For the infected patients, the accuracy is
improved from 91.89 to 100% by reducing CFI from 11.72 to 0.73. The chip
occupies 10.49mm2 in 90nm CMOS and dissipates 1.27mW. It achieves the
highest level of integration and highest computation capability with the lowest
power dissipation among state-of-the-art designs (see comparison table in Fig.
24.5.6). This chip fully integrates on-chip sensors, adaptive sensor interface,
10b SAR ADC, 32b RISC with a low-voltage L7T 8K×32b SRAM, along with a
robust CRBM kernel, and scalability for higher-dimensional signal processing.
This work provides a promising solution for a long-time unresolved issue — a
rapid diagnostic strategy to VAP. Figure 24.5.7 shows the chip micrograph and
summary.
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Figure 24.5.1: Target application scenario and top-level system view of the
nose-on-a-chip.

Figure 24.5.2: Principle of the nose-on-a-chip and nanocomposite sensing
materials.

Figure 24.5.3: Adaptive sensor interface, on-chip sensor, and SAR ADC.

Figure 24.5.5: Flow of data recognition, RISC core architecture, and low-
voltage SRAM. Figure 24.5.6: Clinical results, chip comparison, and prototype system.

Figure 24.5.4: Architecture, learning process flow, and functionality of the
CRBM kernel.
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Figure 24.5.7: Chip micrograph and summary.


