
Paper 28.1 INTERNATIONAL TEST CONFERENCE

1-4244-4203-0/08/$20.00 ©2008 IEEE

1

On Accelerating Path Delay Fault Simulation of Long Test Sequences

I-De Huang1*, Yi-Shing Chang1, Suriyaprakash Natarajan1, Ramesh Sharma1, and Sandeep K. Gupta2

Intel Corp., USA1

{i-de.huang, yi-shing.chang,

suriyaprakash.natarajan,

ramesh.sharma}@intel.com

Electrical Engineering – Systems2

University of Southern California,

Los Angeles, CA, USA

sandeep@poisson.usc.edu

Abstract

In this paper, we propose an approach to accelerate

path delay fault simulation of long test sequences. Several

key ideas, namely judicious selection of path delay faults

to be simulated, extraction of a compact set of necessary

conditions to detect selected faults at primary inputs, and

an on-demand selective simulation of input vectors based

on their satisfaction of these necessary conditions, are

proposed. We demonstrate the benefits of our methodology

via experiments on benchmark circuits, with one large test

case (S9234) showing a 114X speed-up over a traditional

approach.

1. Introduction

Delay testing is necessary to ensure that each fabricated

chip that is shipped to a customer operates correctly at the

rated clock frequency. During silicon debug, the goal of

delay testing is to identify and rectify design-related timing

failures that prevent many fabricated chips from operating

at rated frequency. During high-volume manufacturing

(HVM), delay testing ensures that each chip is classified

based on the clock frequency at which it works correctly

(commonly called speed binning) or rejected. Speed

binning is integral to commercial success of most high vol-

ume microprocessor designs.

Speed paths, i.e., circuit paths that limit a chip’s clock

frequency, are behind most timing-related failures. Since

these paths are deemed timing critical, it is assumed that

appropriate excitation of each such path by test vectors will

expose the worse-case circuit delay. Hence, practical delay

testing can be viewed in terms of two tasks, namely (i)

identification of a set of paths for delay testing, and (ii) de-

velopment of test vectors that excite these paths.

Path identification is often carried out in an ad hoc

manner after first-silicon is obtained for a chip design.

Increasingly, this process is being accelerated by identify-

ing paths a priori, i.e., before first-silicon. This is achieved

by using static timing analysis (STA) to identify paths that

can have delays above a predetermined threshold. The ob-

jective is to identify a minimum set of paths that are guar-

anteed to include all speed paths.

The second task, namely generation of delay test vec-

tors for paths identified in the above step, must be carried

out in a manner that minimizes test application cost while

maximizing test quality. While the majority of chips use

scan-based methods for delay testing, for most high vol-

ume microprocessor designs, tradition and customer re-

quirements necessitate the use of a set of vectors in an ex-

isting test suite, usually a large set of long functional test

sequences accumulated over generations of a processor’s

design. To minimize delay test application cost, targeted

delay test generation must be undertaken only for the paths

that are not tested by the existing functional tests.

One way to identify speed paths that are covered/not-

covered by the functional test suite, is to perform path de-

lay fault simulation. However, these designs are extremely

large and the numbers of selected paths can be large –

even when only the paths within a small window of the

rated cycle time are selected for simulation. Also,

functional test sequences typically contain astronomical

numbers (billions) of vectors. These make simulation

times impractically high and no existing approach can be

used for path delay fault simulation of functional se-

quences. This paper addresses this problem and proposes

techniques that can significantly accelerate path delay fault

simulation for long test sequences -- functional as well as

random.

Testing for path delay faults has been dealt with exten-

sively in the literature [1][2]. Various types of tests have

been defined for a path delay fault [1]-[5]. Path delay fault

simulation has been investigated extensively in terms of

enumerative techniques [5][7][9][11][13] and non-

enumerative techniques [6][8][10][12][14] to accelerate

computation of path delay fault coverage. Paths that are

false, i.e., those that do not affect the timing of a circuit

* The work was performed when the author was with USC. The work

was supported in part by a grant from Intel Corporation.

Paper 28.1 INTERNATIONAL TEST CONFERENCE 2

and hence need not be simulated thereby improving overall

simulation performance, have been investigated in [15]-

[19]. The method proposed in this paper is orthogonal to

techniques proposed earlier and can be applied in conjunc-

tion with most of those techniques.

The rest of paper is organized as follows. We first

provide an overview of functional simulation in Section 2.

In Section 3, necessary definitions are introduced and

certain characteristics of functional vector fault simulation

are identified. In Section 4, the proposed techniques for

accelerating fault simulation are presented. Section 5

demonstrates the benefits of our approach with results on

benchmark circuits, and Section 6 concludes the paper.

2. Focus of paper

Path delay fault simulation of a large circuit, such as a

processor, with long sequences of functional vectors has

certain unique characteristics and sub-tasks. The circuit

targeted is a large sequential circuit with a large number of

combinational blocks, and the test sequences are applied at

the primary inputs of this large sequential circuit and re-

sponses are observed at it primary outputs. The path delay

faults that are targeted by our approach are within the

combinational regions of such a circuit, and can be several

sequential stages away from the primary inputs and pri-

mary outputs. Let us now consider path delay fault simu-

lation for a delay fault in path Pi in a combinational block

Bj. Fault simulation of a single vector vk in the functional

sequence entails three main subtasks.

1. Fault-free simulation: Simulation of vector vk to de-

termine the values it implies at the flip-flops at the in-

puts of block Bj. This entails fault-free simulation for

every logic block between the primary inputs and the

inputs of block Bj.

2. Path delay fault simulation for the delay fault on

path Pi within block Bj. This task is identical to path

delay fault simulation for a combinational logic block

or a full-scan circuit.

3. Propagation of fault effect captured at the flip-flops

at the outputs of block Bj to some primary outputs of

the circuit under simulation.

Since the first task entails simulation of a fault-free ver-

sion of the circuit, we assume that a high-level simulation

methodology is used. We ignore the computational effort

required for such simulation, since such a simulator can use

abstract behavioral descriptions for many logic blocks and

can be orders of magnitude faster than gate-level logic

simulation. The third task entails the propagation of fault

effects that take the form of erroneous logic values cap-

tured at flip-flops at one or more outputs of block Bj. Such

fault effects can be propagated in a manner that is identical

to that for stuck-at fault simulation. Hence, the complexity

of this step can be reduced to the same level as that for

stuck-at fault simulation. Also, recent research [20] has

suggested that obtaining a reasonable estimate of path de-

lay fault coverage and untestability may be possible

through logic simulation alone, by counting the number of

times a path is excited, thus avoiding altogether the over-

head of the third sub-task. Development of efficient algo-

rithms, accurate and approximate, for this sub-task is a

subject of our ongoing research.

Having set aside the first and the last of the above three

sub-tasks, in this paper we concentrate on the second sub-

task, namely path delay fault simulation for a combina-

tional logic block. Hence, the objective of this paper is to

accelerate such path delay fault simulation for a combina-

tional logic block by an order of magnitude (or more)

compared to classical approaches. The results of our re-

search in this paper (on the second sub-task) have a direct

and significant impact on our overall goal of accelerating

path delay fault simulation of large sequential circuits for

long functional test sequences. Since this sub-task involves

analysis of only the combinational logic to which the path

that is being tested belongs, we demonstrate the merits of

our approach on combinational versions of ISCAS89

benchmark circuits in Section 5. Our approach can also be

directly applied for path delay fault simulation with built-

in self-test and scan-based approaches.

3. Intuition behind our approach

Figure 1 shows a typical coverage graph obtained as a

result of path delay simulation of long functional se-

quences. This fault coverage graph is similar in shape to

that of stuck-at faults with an initial sharp ramp and an en-

suing relatively flat region. However, the initial ramp for

path fault coverage curve would be significantly less steep

than that for stuck-at, and the eventual coverage attained

would also be much smaller that that for stuck-at faults.

The complexity for simulating Nv fully-specified vectors

for Nf faults is proportional to the shaded region, and is

reduced significantly mainly due to fault dropping. As we

can observe from the figure, we may view the coverage

curve as three phases, P1, P2, and P3.

Figure 1. The complexity of fault simulation for functional

vectors.

In phase P1, the curve has a steep slope as each vector

applied can easily detect many faults for the first time. As

many faults are detected by previous vectors, each vector

Number of vectors

N
u
m

b
e
r

o
f

fa
u
lt

s
d
e
te

c
te

d

Nv

Nf

0

0

P3P2P1

P
3

Paper 28.1 INTERNATIONAL TEST CONFERENCE 3

in phase P2 detects fewer faults for the first time. Then our

hierarchical approach (described ahead) can be invoked. In

this phase, simulation is performed for appropriate faults in

appropriate parts of the circuit, only for vectors that satisfy

certain necessary conditions. After the fault simulation, if

the current vector detects a fault, the fault is dropped from

the fault list.

By the time the simulation enters phase P3, only the

hardest-to-detect faults or untestable faults remain in the

fault list, and the slope of curve becomes extremely low.

The overall complexity of fault simulation for long test se-

quences is dominated by P3, especially if many faults are

untestable, because many vectors in this phase do not con-

tribute to coverage. (Please note that Nv is not shown to

scale in the figure.)

Typically, only path delay faults (PDF’s) with high

nominal delays are targeted for path delay fault testing.

Since such paths are typically long (in terms of the sum of

the numbers of inputs of their on-path gates), a test for

such a path delay fault must satisfy many necessary

conditions at primary inputs as well as many internal lines.

Consequently, as shown in [21][22], many such path delay

faults are untestable. Hence, simulation need be performed

for a relatively small number of paths. Furthermore, in

many circuits these path delay faults are confined to a

fraction of the circuit gates and lines.

The above observations provide the rationale behind

the approach presented in this paper.

4. Key ideas

In this section, we present our key ideas, namely prun-

ing of an initial set of path delay faults to obtain a reduced

set of faults, selective circuit simulation, and selective

vector simulation. These are followed by a description of

our proposed multi-phase approach for fault simulation.

4.1. Definitions

We start by defining some necessary terms.

Logic value system: Throughout this paper we deal

with sequences of two vectors, even though for simplicity

we often refer to them as vectors or tests. In this paper, we

use eight basic logic values, {CF, CR, S0, S1, T0, T1, 00,

11}, where CF stands for clean falling (no hazard), S0

stands for static 0 (no hazard), T0 stands for transition to

value 0 (dynamic hazards possible), and 00 stands for haz-

ardous 0 (static hazards possible). CR, S1, T1, and 11 are

defined in a similar manner. We denote logic values at a

line by using a subset of the basic value set.

A logic value Vi is a fully-specified value if Vi only

contains exactly one of the eight basic logic values. Vi is a

partially-specified value if it contains more than one but

less than eight basic logic values. Vi is a fully-unspecified

value (or a don’t care value) if it contains all eight basic

logic values. For two logic values Vi and Vj, we say Vi is

covered by Vj, i.e., Vi ⊆ Vj, if Vj contains every basic

logic value in Vi.

PV: A vector at primary inputs of a circuit, where the

values at some of the inputs can be fully or partially speci-

fied. PVi = {Vi,1, Vi,2, …, Vi,n}, where n is the total number

of primary inputs.

For two vectors PVi = {Vi,1, Vi,2, …, Vi,n} and PVj =

{Vj,1, Vj,2, …, Vj,n}, we say PVi is covered by PVj, i.e., PVi

⊆ PVj, if Vi,k ⊆ Vj,k for all k = 1, 2, …, n.

FV: A vector at primary inputs of a circuit that is fully

specified. FVi = {Vi,1, Vi,2, …, Vi,n}, where Vi,k is a fully-

specified value for k = 1, 2, …, n. Input vectors applied at

inputs of a chip under test are of this type.

Logical path (LP): A logical path (LP) is a sequence

of lines along a physical circuit path L1 (a primary input),

L2, …, and Ln (a primary output) and a set of signal transi-

tions Tr1, Tr2, …, and Trn, where Tr ∈ {R, F}, such that

Tri represents the signal transition at Li and F and R denote

falling and rising transitions, respectively. Lines L1, L2, …,

and Ln are called on-path lines. Gates along LP are on-

path gates. If a line directly connects to an on-path gate

but is not an on-path line, it is called a side-input of path

LP.

4.2. Selection of path delay faults

This paper discusses techniques to accelerate fault

simulation that are built on the path-oriented framework in

[21][22], which is threshold-driven and has low complex-

ity. A timing threshold (TT) value, say TTout, is specified

at the outputs and all paths that potentially have delays

greater than TTout are identified. The value of TTout is (Cy-

cle time - ∆), where ∆ is a parameter selected by the circuit

designer and is typically 10-20% of the cycle time. Then

enhanced functional sensitization conditions proposed in

[21] are applied at the side-inputs to identify and eliminate

from consideration a large subset of the path delay faults

that cannot cause any timing failures under the assumption

that the accumulated values of additional delays along

every circuit path is upper bounded by a specified limit, ∆.

This process eliminates untestable path delay faults

(PDF’s) and provides a near minimum set of target path

delay faults.

A vector that satisfies necessary logic conditions

(which implicitly capture some necessary timing condi-

tions) to excite a delay value larger than TTout is identified

at primary inputs for each target path using the integrated

logic-and-timing implication proposed in [22]. (In this pa-

per, we call this vector PV which was described above.) In

addition, partially-specified values may also be associated

with some internal circuit lines. The identified PV (and

additional conditions, if any) can help reduce the complex-

ity of fault simulation.

Paper 28.1 INTERNATIONAL TEST CONFERENCE 4

4.3. Selective circuit simulation

In many circuits, target path delay faults are confined to

a fraction of the circuit. This fraction of the circuit is iden-

tified by marking the fan-in cone of each target PDF. Fault

simulation is then limited to the circuit gates and lines in

the marked region.

4.4. Selective vector simulation

As described above, for each PDF of interest a PV is

obtained. This PV represents (a subset of) the necessary

conditions that must be satisfied by any vector that detects

the PDF.

Consider an FVi to be simulated. We first compare FVi

with the PV to check whether the PV covers FVi. If FVi is

not covered by the PV, FVi cannot detect the target PDF

because it does not satisfy all necessary conditions for its

detection. Hence, fault simulation need not be performed

for FVi if it is not covered by PV of any PDF of our inter-

ests. On the other hand, if FVi satisfies the conditions at

inputs, additional logic values can be checked at internal

lines as logic simulation proceeds. This simulation is

stopped whenever the pre-computed necessary logic values

cannot be satisfied at any line.

We refer to this process of performing simulation only

for vectors that satisfy some conditions as selective vector

simulation.

4.4.1 Merging of necessary conditions

Since a PV is identified for each PDF, a list of PVs is

maintained. If every PV for each PDF is recorded sepa-

rately in the list, a large number of comparisons are re-

quired for each input vector. On the other hand, if all PVs

can be merged into a small set of PVs, the resulting vector

space is significantly expanded. The number of compari-

sons is reduced when we combine PVs, but the number of

vectors for which fault simulation is performed may be in-

creased significantly. Hence, next we present a heuristic

approach to merge PVs without expanding the vector

space, while attempting to reduce the number of compari-

sons.

First, we identify and discard redundant PVs. PVi is re-

dundant if a PVj can be found such that PVi ⊆ PVj. PVi

is discarded as illustrated in Figure 2(a).

After redundant PVs are eliminated, we start the proc-

ess of merge. PVk is merged with PVj if there exists only

one input m such that Vk,m ≠ Vj,m. This merge process is it-

eratively performed until no two PVs can be merged.

Figure 2 illustrates the merge process.

Please note that the analysis to identify and merge PVs

solely depends on the number of target faults. More impor-

tantly, this is a one-pass analysis that is performed prior to

simulation of vectors and its complexity is independent of

Nv, the number of vectors to be simulated.

Figure 2. An example to illustrate (a) redundant PV identifi-

cation, and (b) the merge process.

4.4.2 Input prioritization algorithm

Each PV (after merging) is associated with a set of

PDFs. A set of such PVs represents necessary conditions

for all target PDFs. Prior to performing fault simulation

with an input vector, our approach is to compare the input

vector with each PV, and only if the input vector is cov-

ered by a PV, performing fault simulation for the vector

for the PDFs corresponding to that PV. We now discuss a

heuristic for efficient comparison of an input vector with

the PVs to quickly identify non-satisfaction of PVs by the

input vector. This aids in quickly deciding if fault simula-

tion can be avoided for a vector.

For each FV, there is a set of inputs corresponding to

the support set (i.e., inputs in the fan-in cone) of the out-

puts of the target PDFs represented by that PV. The union

of these sets of circuit inputs over all the PVs is defined as

the set Ssup. The inputs in Ssup are the only inputs relevant

for value comparison during fault simulation with each

vector to be simulated. Even among these inputs, only

those inputs that do not have don’t care value (XX) in at

least one PV are relevant for value comparison with each

input vector. Let this be defined as the set S’
sup. The objec-

tive is to prioritize the inputs in S’
sup for value comparison.

We compute a metric for this prioritization based on a heu-

ristic. The idea is to first compare the value at an input

whose likelihood to be satisfied by an input vector is low

across most PVs.

Note that each PV has a value at each circuit input in

the set S’
sup which can be only one of {CR, CF, S0, S1},

since every vector applied to a line must be fully-specified

and the values at inputs can have no static or dynamic haz-

ards (as these are typically driven by flip-flops). We as-

sume that input vectors are random and that an input vec-

tor can provide any one of these four values at a circuit in-

put with equal probability. In a PV, if a certain input has a

don’t care value (i.e., the entire set {CR, CF, S0, S1}),

then any input vector will satisfy the PV requirement for

that input, and the failure probability for that input is 0. On

the other hand, if a certain input of a PV has value {CR,

S0, S1}, then the probability that an input vector provides

a value that is not in this set is ¼ -- which is termed the

failure probability. Using this method, a metric for each

input in the set S’
sup is computed as the average of the fail-

PVj PVk

CR

{CF, S0}

{CR, S1}

CR

= S1

{CF, S0}

{CR, S1}

CR

(a) (b)

CR

{CF, S0}

{CR, S1}

CR

PVi PVj

CR

S0

{CR, S1}

CR

{CR, S1}

{CF, S0}

{CR, S1}

CR

Paper 28.1 INTERNATIONAL TEST CONFERENCE 5

ure probabilities of that input over all PVs. Inputs in S’
sup

are ranked in decreasing order based on this metric. During

fault simulation the inputs are chosen in this order for

comparison with input vector values. If no PV is identified

to satisfy the necessary values at any input, no fault simula-

tion is carried out for this vector.

Figure 3 describes the pseudo code of the proposed

value comparison procedure at inputs before performing

fault simulation. For each vector FVi to be simulated, each

input is compared in our prioritized order with each PV.

All PVs that cannot satisfy the necessary conditions at that

input are removed. If no PV remains, FVi is discarded

without performing fault simulation. Otherwise, fault simu-

lation is performed only for the faults associated with re-

maining PVs.

Figure 3. The pseudo code of the proposed input comparison

procedure for fault simulation.

Since each functional vector is compared at inputs to

determine if fault simulation is required, a link list is used

to maintain the data structure of PVs and its corresponding

PDF’s as illustrated in . If a simulated vector FVi can only

satisfy the conditions for PV2, the fault simulation is per-

formed only for PDF4.

Figure 4. Data structure for maintaining the relationship be-

tween PVs and PDF’s.

5. Experimental results

We evaluate our path delay fault simulation methodol-
ogy, which we call the PFS strategy, via experiments on
combinational parts of ISCAS89 benchmark circuits. We
compare our results with an approach without our effi-
ciency improvement techniques, which we call the GFS
strategy. An Intel Core 2 Duo 2.13 GHz machine is used
for these experiments. All gates in the benchmark circuits
are assumed to use minimum-size transistors.

 The maximum circuit delay (using nominal delay val-
ues for gates) as computed via static timing analysis is de-
scribed as Tc. We select two sets of paths for each circuit:
corresponding to a TTout value of 0.9Tc and a TTout value
of 0.8Tc, targeting delay defects whose cumulative value
along each path in these sets being upper-bounded by
0.1Tc and 0.2Tc, respectively. The results are shown below
for each set of paths for each step of our approach.

5.1. Untestable path elimination

Path pruning techniques were used to reduce the num-

ber of paths for both the GFS and PFS strategies.

In the GFS strategy (base-line), untestable paths are

identified and removed from the path fault list using clas-

sical functional sensitization conditions. The reduction

achieved in this manner is presented as R’ in Table 1.

Table 1. Path reduction with classical functional sensitization

conditions in GFS.

0.9Tc 0.8Tc ISCAS

89 circuits
Before After R’ Before After R’

S298 9 9 1.0 50 44 0.88

S444 51 42 0.82 104 88 0.85

S713 7354 412 0.06 12,852 996 0.08

S953 21 21 1.0 80 80 1.0

S1196 151 148 0.98 558 427 0.77

S1494 22 22 1.0 51 51 1.0

S5378 2,983 2,546 0.85 7,568 6,258 0.83

S9234 17,280 8,032 0.46 85,588 26,972 0.32

In the PFS strategy, the original path list for a given

TTout is processed with enhanced functional sensitization

conditions [21] and integrated logic-timing implications

[22] to eliminate paths that need not be tested. The results

of path reduction with this approach are presented in Table

2. The fraction of paths that remain after untestability

analysis, given by R1, is shown in Table 2.

For example, for circuit S298, for TTout = 0.9Tc, the

initial number of paths is 9 (Column 2), and untestability

analysis reduces the potential testable paths to 3 (Column

3), signifying a reduction to 33% (fraction of 0.33 shown

in Column 4). For circuit S713, there are no paths with de-

lay longer than TTout for TTout = 0.9Tc, and only 2% of the

paths are testable for TTout = 0.8Tc. For another large cir-

cuit, S9234, untestability reduces the paths to about 4%

PVi

PV1

PV2

PVk

PDF1

PDF2

PDF3

PDF4

PDFNf-1

PDFNf

for every fully-specified vector FVi to be simulated{

 for every ordered primary input PIj {

 for every PVk {

 // Vk,j is the logic value at PIj for PVk

 if(FVi,j ⊆ Vk,j) {

 if(PIj is the last) {

 if(internal lines satisfy conditions)

 perform fault simulation();

 next FV; }

 else next PI; }

 else {

 remove PVm that has Vm,j ⊆ Vk,j;

 if(no PV remains) next FV; } } } }

Paper 28.1 INTERNATIONAL TEST CONFERENCE 6

(3%) of the original number of paths for TTout = 0.9Tc

(0.8Tc).

Table 2. Untestable path elimination in PFS.

0.9Tc 0.8Tc ISCAS

89 circuits
Before After R1 Before After R1

S298 9 3 0.33 50 6 0.12

S444 51 31 0.61 104 56 0.54

S713 7354 0 0.00 12,852 228 0.02

S953 21 14 0.67 80 49 0.61

S1196 151 3 0.02 558 21 0.04

S1494 22 3 0.14 51 23 0.45

S5378 2,983 686 0.23 7,568 3,033 0.40

S9234 17,280 646 0.04 85,588 2,690 0.03

It can be observed that by comparing corresponding

columns for R’ in Table 1 with those for R1 in Table 2, the

path reduction achieved with the PFS strategy is signifi-

cantly higher.

5.2. Circuit reduction

Simulation and coverage analysis need to be carried out

only at those circuit lines that are located in the fan-in cone

of the target PDF (see Section 4.3). The circuit reduction

ratio, R2, gives the number of the circuit lines in the fan-in

cone of the target path delay faults, expressed as a fraction

of the total number of circuit lines. Table 3 summarizes the

fraction of circuit lines that need to be simulated for differ-

ent TTout values using our approach. The higher the TTout

value, the smaller is the fraction of the circuit lines where

simulation and analysis must be performed. For example,

for circuit S298, the total number of circuit lines is 345

(Column 2), and for TTout = 0.9Tc, simulation is applied to

a sub-circuit with only 96 circuit lines (Column 3), i.e.,

only to 28% (Column 4) of the lines in the original circuit.

Table 3. Reduction due to selective circuit simulation.

of circuit lines simulated (#) and R2

0.9Tc 0.8Tc

ISCAS

89 circuit

Total # of

circuit

lines

R2 # R2

S298 345 96 0.28 96 0.28

S444 471 119 0.25 119 0.25

S713 824 - - 399 0.48

S953 1,084 537 0.50 720 0.66

S1196 1,417 595 0.42 739 0.52

S1494 2,052 467 0.23 1,333 0.65

S5378 5,700 2,586 0.45 4,077 0.72

S9234 10,620 2,918 0.27 2,918 0.27

5.3. PV compaction

We discuss the reduction achieved by identifying and

eliminating redundant PVs for the path delay faults. Table

4 gives the results of this reduction after we perform re-

dundant PV identification and PV merge process for dif-

ferent values of TTout. For a circuit that has a small number

of PDF’s, the reduction is not significant. For example, in

Table 4, for S298, for TTout = 0.9Tc, 3 PVs (Column 2)

only decrease to 2 (Column 3). However, for a larger cir-

cuit, S9234, the number of PVs is significantly reduced for

both path sets (corresponding to TTout = 0.8 and 0.9Tc).

Table 4. Redundant PV identification and merge process.

of PVs before and after the redundancy

identification and merge process

0.9Tc 0.8Tc

ISCAS

89 circuit

Before After Before After

S298 3 2 6 4

S444 31 7 56 12

S713 0 0 228 8

S953 14 7 49 15

S1196 3 2 21 13

S1494 3 3 23 17

S5378 686 335 3,033 923

S9234 646 32 2,690 32

The number of inputs in the sets of Ssup and S’
sup (refer

to Section 4.4.2) are given in Table 5.

Table 5. The sizes of Ssup and S

’
sup.

Size of Ssup and S
’
sup

0.9Tc 0.8Tc

ISCAS

89 circuit

Total # of

primary

inputs
Ssup S’sup Ssup S’sup

S298 17 9 7 9 7

S444 24 14 9 14 9

S713 54 0 0 27 23

S953 45 20 15 20 16

S1196 32 23 13 24 13

S1494 14 14 10 14 14

S5378 214 138 93 171 113

S9234 247 97 29 97 27

5.4. Run time reduction

In order to demonstrate the benefits of using proposed

techniques for fault simulation, performance of a baseline

timing-aware path delay fault simulator (GFS) is compared

with the performance of an optimized timing-aware path

delay fault simulator (PFS) that incorporates our above ef-

ficiency improvement techniques. The frameworks for

these two simulation strategies are illustrated in Figure 5.

Identical sequences of random vectors are used for these

simulations.

In the GFS strategy, for all paths remaining after re-

moving untestable paths using classical functional sensiti-

zation conditions (refer to Table 1), all vectors are simu-

lated with each remaining path delay fault using the tim-

ing-aware fault simulation, which comprises of timing

Paper 28.1 INTERNATIONAL TEST CONFERENCE 7

simulation followed by a check of logic and timing condi-

tions to infer detection of each fault (i.e., if each node

along a path is sensitized to the preceding on-path node). A

fault is dropped from the fault list when it is detected.

In the PFS strategy, the paths remaining after removing

untestable paths using enhanced functional sensitization

conditions [21] (refer to Table 2) are processed to obtain

an initial set of PVs. The path fault list is maintained for

later use for fault dropping during timing-aware delay fault

simulation. The redundant PV identification and PV merge

process are performed to obtain the final set of PVs. These

PVs are stored in PV data structure where each PV is asso-

ciated with its corresponding fault(s) as illustrated in .

Figure 5. The frameworks of a general PDF simulator and

our proposed PDF simulator.

Subsequently, each input vector (FV) is compared with

generated necessary conditions for paths (PVs) to verify

satisfaction. If the vector satisfies the conditions denoted

by any PV, timing-aware fault simulation is performed for

the corresponding faults. If not, the vector is bypassed for

fault simulation. Please note that only the proposed PFS

strategy works with a smaller path list due to the applica-

tion of false path identification using enhanced functional

sensitization conditions.

We now compare the overall performance of the GFS

and the PFS strategies. Before that, we provide the break-

up of the run-time for different steps in the PFS strategy.

The PFS approach has four distinct steps compared to

GFS .

1. TIS: Time for identifying and eliminating untesta-

ble paths using enhanced functional sensitization condi-

tions and for identifying a PV for each remaining target

PDF.

2. Tme: Time for identifying redundant PVs and

merging PVs.

3. Tco: Time for comparing values at inputs for all

simulated vectors. Note that this parameter depends on the

number of vectors that are simulated.

4. TFS: Time for performing fault simulation.

The run time for the GFS approach is just the corre-

sponding fault simulation time (as the run-time for identi-

fying and eliminating untestable paths with classical func-

tional sensitization conditions is negligible).

Table 6 shows the individual run-times of the different

steps for 10K and 1M (1 million) vectors in PFS. The run

times for Tme are negligible compared to those of the rest

and hence are not reported. As can be seen from Table 6,

the run times are dominated by TIS and TFS for almost all

circuits except S5378, even though Tco is performed for

each vector. In fact, TIS the dominant contributor to the

run-time when the number of vectors simulated is small.

However, as we will see shortly in the comparison with

GFS, the increase in TIS for PFS is offset by a more sig-

nificant reduction in TFS (which scales with number of vec-

tors) thereby reducing the overall run-time when compared

to the performance of GFS.

For S9234 with TTout = 0.8Tc, PFS takes only 124 sec-

onds to perform fault simulation for 1M vectors as shown

in Table 6 (while GFS takes 32,478 seconds). The signifi-

cant run time reduction comes from (1) the path reduction

is 0.03 for PFS compared to 0.32 for GFS (please refer to

Table 1 and Table 2), and (2) timing-aware delay fault

simulation is performed for only 3,368 out of 1M vectors

for PFS.

Table 6. Run-times for different steps of PFS for 10K and 1M

vectors.

Run-times for PFS steps (seconds)

0.9Tc 0.8Tc

ISCAS

89 cir-

cuit
TIS Tco TFS TIS Tco TFS

 both 10K 1M 10K 1M both 10K 1M 10K 1M

S298 0.02 0.02 0.16 0.17 16.3 0.02 0.00 0.19 0.24 20.7

S444 0.11 0.01 0.5 0.2 23.5 0.19 0.00 0.87 0.58 58.9

S713 - - - - - 0.85 0.00 0.25 0.08 10.2

S953 0.09 0.02 0.23 0.19 14.1 0.30 0.00 0.55 0.2 23.6

S1196 0.03 0.00 0.14 0.16 7.63 0.19 0.00 0.71 0.08 9.95

S1494 0.05 0.00 0.12 0.56 56.2 0.37 0.02 1.24 2.95 306

S5378 19.4 2.46 223 90.3 9,186 87.4 11.4 1,030 139 11,888

S9234 43.6 0.03 1.42 0.59 53.2 158 0.03 2.9 1.17 124

* The run times for Tme are negligible compared to those of the rest and

hence are not reported.

The only exception is S5378, for which the reduction

in the number of paths achieved through timing based false

Path fault list

(paths with delay > TTout)

False path identi-

fication

PV identification

& merging;

comparison of

PVs with

N vectors

N vectors

Proposed simulator

(PFS)

False path identifica-

tion using enhanced

conditions

M vectors

 M<<N

Timing-aware

fault simulation

Timing-aware

fault simulation

Satisfied

General simulator

(GFS)

Paper 28.1 INTERNATIONAL TEST CONFERENCE 8

path identification is not as significant as for other circuits

(please refer to Table 1 and Table 2). In addition, from Ta-

ble 4, we note that after merge the number of PVs remains

significantly high due to unmergeable PVs for individual

paths, and almost all of vectors are simulated. (For TTout =

0.8Tc, timing-aware fault simulation is performed for

999,879 out of 1M vectors.) These account for the signifi-

cant fault simulation time (TFS columns in Table 6) com-

pared to other circuits.

We now explore how this speed-up in performance of

PFS scales with the length of test sequence. For this ex-

periment, we simulated random vector sequences of in-

creasing lengths -- 5K, 10K, 20K, and 1M vectors. The

factor of speed-up of PFS over GFS is given for the differ-

ent sequence lengths in Table 7.

Table 7. Cumulative run-time speed-up with PFS over GFS

for different number of vectors.

Speedup (X) using PFS for different number of vec-

tors

0.9Tc 0.8Tc

ISCAS

89 circuit

5K 10K 20K 1M 5K 10K 20K 1M

S298 26.2 32.4 36.7 41.6 22.7 26.2 29.7 32.6

S444 20.7 31.8 38.1 39.2 9.8 12.5 15.6 15.9

S713 - - - - 15.9 31.9 59.3 288

S953 37.2 54.7 72.3 113 21.1 32.8 44.5 67

S1196 120 157 201 383 60.2 100 103 278

S1494 66.6 76.1 78.9 82.2 12.3 14 14.5 15

S5378 0.89 1.04 1.15 1.23 0.41 0.57 0.71 0.93

S9234 2.99 5.93 11.8 278 1.07 2.13 4.22 114

As expected, since TIS is a constant cost, TFS dominates

the total cost for long sequences. In such a situation, PFS

outperforms GFS significantly as is illustrated by the re-

sults in Table 7. For example, for circuit S9234, the speed-

up ratio increases by a factor of 93 (from 2.99 to 278) for

an increase in test length by a ratio of 200 (i.e., from 5K

vectors to 1M vectors) for TTout = 0.9Tc. For all circuits,

there is an increase in the speed-up factor though some are

modest. Even for S5378 for TTout = 0.9Tc, whose speed-up

is fractional (meaning GFS performs better) for 5K vec-

tors, PFS is catching up with GFS on performance and

eventually exceeds GFS performance after simulating 10K

vectors. However, for TTout = 0.8Tc, GFS performs better

than PFS even for 1M vectors due to the reasons earlier

described.

6. Conclusion

In this paper, we propose an efficient approach for path

delay fault simulation of long test sequences. Key compo-

nents of our approach are a new technique for selection of

path delay faults, and completely new notions of selective

circuit simulation and selective vector simulation.

We first identify path delay faults for a specified TTout

value and eliminate untestable paths from that set. Second,

the fraction of the circuit lines where simulation is required

is identified. Third, necessary conditions for exciting the

paths are obtained and then compacted at primary inputs

and some internal lines. Finally, input vectors from long

test sequences are compared against these compacted nec-

essary conditions, and fault simulation is performed only

for input vectors that satisfy necessary conditions.

Experiment results demonstrate that the performance of

our approach accelerates path delay fault simulation by

large factors. Results also show that the performance

benefits of our approach are amplified for longer test se-

quences.

Reference

[1] G. L. Smith, “Model for delay faults based upon paths”,

Proc. Int’l Test Conference, Nov. 1985, pp: 342-349.

[2] C. J. Lin and S. M. Reddy, “On delay fault testing in logic

circuits”, IEEE Trans. on CAD, Vol. 6, No. 5, Sept. 1987, pp:

694-703.

[3] K.-T. Cheng and H. C. Chen, “Classification and identifica-

tion of non-robust untestable path delay faults”, IEEE Trans. on

CAD of IC and Systems, Vol. 15, No. 8, Aug. 1996, pp: 845-

853.

[4] M. H. Schulz, K. Fuchs and F. Fink, “Advanced automatic

test pattern generation techniques for path delay faults”, Proc.

19th Int’l Symp. on Fault Tolerant Comp., June 1989, pp: 44-51.

[5] F. Fink, K. Fuchs and M. H. Schulz, “Robust and nonrobust

path delay fault simulation by parallel processing of patterns”,

IEEE Transactions on Computers, Vol. 41, No. 12, Dec. 1992,

pp: 1527 - 1536 .

[6] K. Heragu, V. D. Agrawal and M. L. Bushnell, J. H. Patel,

“Improving a nonenumerative method to estimate path delay

fault coverage”, IEEE Trans. on CAD of IC and Systems, Vol.

16, No. 7, July 1997 pp: 759 – 762.

[7] T. J. Chakraborty, V. D. Agrawal and M. L. Bushnell, “Path

delay fault simulation of sequential circuits”, IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, Vol. 8, No.

2, April 2000, pp: 223 – 228.

[8] D. Kagaris and S. Tragoudas, “On the nonenumerative path

delay fault simulation problem”, IEEE Trans. on CAD of IC and

Systems, Vol. 21, No. 9, Sept. 2002, pp: 1095 – 1101.

[9] S. Bose, P. Agrawal and V. D. Agrawal, “Path delay fault

simulation of sequential circuits”, IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, Vol. 1, No. 4, Dec. 1993, pp:

453 – 461.

[10] I. Pomeranz and S. M. Reddy, “On the number of tests to

detect all path delay faults in combinational logic circuits”, IEEE

Trans. on Computers, Vol. 45, No. 1, Jan. 1996, pp: 50 – 62.

[11] Kee Sup Kim, R. Jayabharathi and C. Carstens,

“SpeedGrade: an RTL path delay fault simulator”, Proc. 10th

Asian Test Symposium, 2001. Nov. 2001, pp: 239 – 243.

[12] I. Pomeranz and S. M. Reddy, “An efficient nonenumera-

tive method to estimate the path delay fault coverage in combina-

tional circuits”, IEEE Trans. on CAD of IC and Systems, Vol.

13, No. 2, Feb. 1994, pp: 240 – 250.

[13] T. J. Chakraborty, V. D. Agrawal and M. L. Bushnell, “Path

delay fault simulation algorithms for sequential circuits”, Proc.

1st Asian Test Symposium, Nov. 1992, pp: 52 – 56.

[14] S. Padmanaban, M. K. Michael and S. Tragoudas, “Exact

path delay fault coverage with fundamental ZBDD operations”,

Paper 28.1 INTERNATIONAL TEST CONFERENCE 9

IEEE Trans. on CAD of IC and Systems, Vol. 22, No 3, March

2003, pp: 305 – 316.

[15] P. Kalla and M. Ciesielski, “Testability of sequential circuits

with multi-cycle false paths”, Proc. 15th IEEE VLSI Test Sympo-

sium, May 1997, pp: 322-328.

[16] Z. Hasan and M. J. Ciesielski, “Elimination of multi-cycle

false paths by state encoding”, Proc. European Design and Test

Conference, Mar. 1995 pp: 155 – 159.

[17] P. Ashar, S. Dey and S. Malik, “Exploiting multi-cycle false

paths in the performance optimization of sequential circuits”,

Proc. IEEE/ACM International Conference on Computer-Aided

Design, Nov. 1992, pp: 510 – 517.

[18] W.-C. Lai, A. Krstic and K.-T. Cheng, “Functionally test-

able path delay faults on a microprocessor”, Proc. IEEE Design

& Test of Computers, Vol.17, No. 4, Oct.-Dec. 2000 pp: 6 – 14.

[19] S. Kundu, C. Tirumurti, R. Jayabharathi and P. Parvathala,

“A Path Delay Fault Simulation System,” Proc. 7th IEEE Euro-

pean Test Workshop, May 2002.

[20] S. Natarajan, S. Patil and S. Chakravarty, “Path Delay Fault

Simulation of Large Industrial Designs,” Proc. IEEE VLSI Test

Symposium, 2006.

[21] I. D. Huang and S. K. Gupta, “Selection of Paths for Delay

Testing”, Proc. Asia Test Symp., 2005, pp: 208 - 215.

[22] I. D. Huang and S. K. Gupta, “On Generating Vectors That

Invoke High Circuit Delays – Delay Testing and Dynamic Tim-

ing Analysis”, Proc. Asia Test Symp., 2007, pp: 479 - 486.

