Palestine Journal of Mathematics

Vol. 11(3)(2022) , 48-56 © Palestine Polytechnic University-PPU 2022

NEW FIXED POINT THEOREMS IN OPERATOR VALUED
EXTENDED HEXAGONAL )-METRIC SPACES

Kalpana Gopalan, Sumaiya Tasneem Zubair and Thabet Abdeljawad

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 47H10; Secondary 54H25.

Keywords and phrases: C*-algebra, C'*-algebra-valued extended hexagonal b-metric spaces, Contractive mapping,
Fixed point.

Abstract In the current work, we broaden the class of C*-algebra-valued hexagonal b-metric
spaces and C*-algebra-valued extended b-metric spaces by defining the class of C'*-algebra-
valued extended hexagonal b-metric spaces and demonstrate a fixed point theorem with distinct
contractive condition. In addition, an application is presented in the later part to demonstrate
the existence and uniqueness of a particular type of operator equation in order to elucidate our
results.

1 Introduction

The concept of Banach contraction is a basic outcome of the metric fixed point theory. It is a
quite important and efficient tool in theoretical and applied sciences for solving the problems
of Existence and uniqueness. In 2017, the conception of extended b-metric spaces was initiated
by Tayyab Kamran et al. [10] as an extension of b-metric spaces [4]. Thereafter, the authors in
[8] proposed the idea of extended hexagonal b-metric spaces by replacing the triangle inequality
with hexagonal inequality. Recently, Asim et al. [1] developed a concept of C*-algebra-valued
extended b-metric spaces and Kalpana et al. [9] established a common fixed point theorem in
the setting of C*-algebra-valued hexagonal b-metric spaces. For further investigations on the
concept of C*-algebra, the readers can view [2, 3,5, 6,7, 11, 12, 13].

Deeply influenced by the above facts, we reveal the conception of C*-algebra-valued ex-
tended hexagonal b-metric spaces and illustrate a fixed point theorem with distictive contractive
condition. Eventually, an application is provided to guarantee the existence and uniqueness
for the specific type of operator equation under the framework of C*-algebra-valued extended
hexagonal b-metric spaces.

2 Preliminaries

The conceptualization of extended b-metric spaces was commenced by Kamran et al. [10] that
described in the following:

Definition 2.1. Given a nonempty set X and £ : X x X — [1,00), and dg : X x X — [0,00).
Ifforalla,b,c € X

(1)dg(a,b) =0 <= a=b;

(2) dp(a,b) = dg(b,a); 3

(3) dp(a,b) < E(a,b)[dr(a,c) + dg(c,b)]

then we say that the pair (X, dz) is an extended b-metric space.

Very recently, Kalpana et al. [8] generalized the above definition to the case of extended
hexagonal b-metric spaces.

Definition 2.2. Let X be a non-empty setand E : X x X — [1,00). A function dpy : X x X —
[0, 00) is called an extended hexagonal b-metric if it satisfies:
(1)dg(a,b) =0 a="bforalla,be X;
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(2) dg(a,b) = dg(b,a) forall a,b € X;
(3) dg(a,b) < E(a,b)[dy(a, c)+dH(c 0)+dH(D ¢)+du(e,f)+du(f,b)] foralla,b,c,0,¢,f €
Xandaz#c, ¢#0,0F¢, e#f, f#b;

The pair (X, dy;) is called an extended hexagonal b-metric space.

We now discuss certain essential concepts and results in C'*-algebra.

Let A signifies the unital C*-algebra and set A, = {f € A : f = {*}. An element f € A is
said to be positive, if f € Ay, and o(f) C [0, oo), where 6 is a zero element in A and o (f) is the
spectrum of f, which is denoted by # < f. The partial ordering on A;, given by § =< g if and only
if0 <g—7f Thesets {f € A:60 <f}and {f € A :fg = gf, Vg € A} is represented as A, and
A as and || = (10*1v)? respectively.

Very recently, Asim et al. [1] set up the idea of extended b-metric spaces to the C*-algebra.

Definition 2.3. Let X # () and F : X x X — A’. The mapping dg : X x X — A is called a
C*-algebra-valued extended b-metric on X, if it satisfies the following (for all a, b, ¢ € X):

(1) < dg(a,b) forall a,b € X and dg(a,b) = 0 iff a = b;

(2) dg(a,b) = dg(b,a) forall a,b € X;

(3) dg(a,b) = E(a,b)[dg(a,c) +dp(c,b)].

The triplet (X, A, dg) is called a C*-algebra-valued extended b-metric space.

The definition of C*-algebra-valued hexagonal b-metric spaces was defined in the following
way by Kalpana et al. [9].

Definition 2.4. Let X be a nonempty set, and A € A’ such that A = I. Suppose the mapping
dy : X x X — A satisfies:

(1)0 < dp(a,b) forall a,b € X and dp(a,b) = 6 < a = b;

(2) du(a,b) = dp(b,a) forall a,b € X;

(3) du(a,b) < Aldy(a,¢)+dy(c,0)+du(0,¢)+dp(e,f)+du(f,b)] foralla, b,¢,0,¢,f € X
anda#c, c#D0,0#¢e, e #Ff, f#b;
Then d is called a C*-algebra-valued hexagonal b-metric on X and (X, A, dp) is called a C*-
algebra-valued hexagonal b-metric space.

3 Main Results

Through this main section, we implement the idea of C*-algebra valued extended hexagonal b-
metric spaces as follows.
Hereafter A’ signify the set {a € A : ab = ba, Vb € A and a > I} respectively.

Definition 3.1. Let X be a nonempty set and F : X x X — A’. Suppose the mapping dy :
X x X — A satisfies:

(1)0 < dp(a,b) and dy(a,b) =6 < a=bforalla,b e X;

(2) dri(a,b) = dp (b, a) forall a,b € X;

(3)dr(a,b) < E(a,b)[dg(a, c)+dH(c 0)+du(0,¢)+dg(e,f)+du(f,b)] foralla, b, c,0,¢,f €
Xanda#c, c#0,0#¢, e#f, f#b;

The triplet (X, A, dy;) is called an C*-algebra-valued extended hexagonal b-metric space.

Example 3.2.Let X = {1,2,3,4,5,6} and A = R%. If a,b € A witha = (a,m), b =
(b1, by), then the addition, multipilcation and scalar multipilcation can be defined as follows

a+b=(a; + by, ap +by), ka = (ka, kaz), ab = (a;b, azbz).

Now, we define the metric dy : X x X — A such that dg is symmetric and the control function
E:XxX — A} as

dp(e,f) = (0,0),Ve = §,dp(1,2) = (700,700),

T Tal1d) — o (1.3) — g (23) = T (24) — i (2.5) — da(3,8) = T (3.5) —
di(4,5) = (50,50),dy ( 6) = (150,150), Ve = 2,3, 4,5 and the controlled function

E(e,f) =e¢e+f,Ve,fe X
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It is easy to verify that dy; is a C*-algebra-valued extended hexagonal b-metric type space. Indeed, we
have

du(1,2) = (700,700) = E(1,2)[dx(1,3) +du(3,2)] = (300, 300).
Therefore, dg; is not a C*-algebra-valued extended b-metric space.

Definition 3.3. A sequence {e,} in a C*-algebra-valued extended hexagonal b-metric space
(X, A, dp) is said to be: N
(¢) convergent sequence if 3¢ € X such that dy(e,,¢) — 6 (n — oo) and we denote it by

lim ¢, =e.
n— o0

(ii) Cauchy sequence if dy;(¢p, ¢,,) — 6 (n,m — 00).

Definition 3.4. A C*-algebra-valued extended hexagonal b-metric space (X, A, dy;) is said to be
complete if every Cauchy sequence is convergent in X with respect to A.

Theorem 3.5. Let (X, A,dy) be a complete C*-algebra-valued extended hexagonal b-metric
space and suppose T : X — X that meets the following criteria:

du(Te, Tf) = G* E(e,)du(e,f) G forall e,f € X (3.1

where G € A with |G|| < 1. For ¢y € X, choose ¢, = T"¢y. Assume that

ZUZPI zllglo 1B (eis i) 1B (eirts em)| < G (3.2)
and
. 1 )
sup 4111’1’1 ||E(e7;+j,ei+j+]>H”E(ei+],em>H < IR for ] = 1,2,3. (33)
m>117° HGH
Furthermore, presume that
. 1
7”1%1300 |E(en, em)] < e foreach ¢ € X. 3.4)

Then, T has a unique fixed point in X. 3
Proof. Let ¢g € X and set ¢, 1 = Te,, = ... =T" leg,n = 1,2,.... The element dg ey, ¢) in
A is denoted by Gy. Then

CZH(e’rm en-‘rl) - CZH(Ten—l P Ten)

j G* E(en—la en) CZH<en—la en)G

3.5
< (G")" ﬁE(ek_l,ek)JH(eo,e])G".
k=1
Similarly, we get
dp(en, eni2) < (G*)" ﬁE(ekq,ekﬂ)JH(eo,ez)Gn,
k=1
dp(en, ens3) < (G*)" ﬁE(ekq,emz)CiH(eo,es)Gn (3.6)

ke
Il

1

and dy(en,ena) = (G)" || E(er_1, exs3)du (o, eq)G™.

=

ke
Il
—_
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Now, we demonstrate that {¢,, },cn is a Cauchy sequence i.e., lim JH(en, enip) =0, forp e N.
n— oo
Forp =4m + 1, where m > 1, we consider

JH(eny en+4m+1) j E(ena en+4m+l)[JH(en7 en+1) + d~H(en+17 e'rH—Z) + d~H(en+27 en+3)

+ JH(en+3a en+4)]

E(eny Cnt+dm+1 )E(en+4; en+4m+1) v E(en+4m—4a en+4m+])
[JH(en+4m—4a Cntam—3) + JH(en+4m—3a Cntam—2) + JH(en+4m—2a Cntdm—1)

+ JH(en+4m717 en+4m) + JH(en+4m7 en+4m+l)]

n+dm—4

— 1

= Z H E(e4), ntdmt1) {dH(%, eair1) + du(Cair1, eaiv2) + dp(€sit2, €4543)
i~ =%

n+dm—4
T

+ dp(e4irs, €4¢+4)} + E(e4j, entam+1)du (ntdm, eniam+1)

n+d4m—4 . .
T i 44

E(€4j,2n+4m+1)[(G*)4i HE(ek—l;ek)jH(eo,el)G4i
k=1

PN

=3 J

=3

4i+1
+ (G*)M—H H E(ek,l, ek)dNH(eo, el)G4i+1
k=1
) 4742 -
+ (G*)4z+2 H E(ek—la ek)JH(QO, el)G4z+2
k=1
4i+3

+ (G A3 H E(ek,l,ek)(ZH(eg,el)G‘””}
k=1

ntdm—4
3 n+4m

+ E(eaj, enram1)(GF)" " H E(er—1,ex)dp (e, ¢1) G
k=1

IS

n+4m—4 . .
7 7 44

= | Goll 1B (eas, ensame) Il T Een—r, en) 1G>

i= j= k=1

S

&3
-

4i+1

+ | ECeazs ensame )|l T 1ECenrs e HIGIPHHD
k=1
4i42

+ B (eajs ensame)|| [T I1E(er—1, ex) 1G]+
k=1
4543

+ B (eajs ensame)|| [T I1ECermr, en) [IGIPH) | 1
k=1

ntdm—4
7 n+4m

+ [|Goll H | E(eaj, entam+1)l H | E(ex_1, ex) ||| G241

n

j=2 k=1
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where I is the unit element in A. Let

44

H | E(eaz, entams1)]] H IE(ex—1, ) IIGIP4) Goll, (3.7
43+1

b= ] 15 ¢4, enramr) | [ I1E (-1, eo) [IGIP4 D Goll, (3.8)
J=% k=1
4342

= H 1B (4, ensams)|| [T 1B (en—1, er) [IGIP4 2 Goll, (3.9
] 4 k=1

and

4i+3

di = H 1B (eass enrame) || T 1B er—1, ex) IGIPH )| Gol - (3.10)
=% k=1

Qi+l

It is clear that sup lim

- = [|E(eaivar enrami1) |1 E(eairs, eaira) |IGI® < 1 by the hy-
m>lZ o0

a;

potheses of the theorem. In a similar manner, we can demonstrate that

bit1 dit1

sup lim <1, sup lim < 1and sup lim < 1.

m>11700 i m>1 400 Cz’ m>1 40 i
Therefore,
+oo i 4i
ST 1By enami) I T IEer—1, eGP Goll < 4o,
i=nj=n k=1
+oo i 4i+1
ST IE sz, envame) | [T IE(en—1, ex) [IIGIP* V| Gol| < +o0,
=2 j=n k=1
400 1 4442
>, H 1B (eaj, ensamst) | [ I1Eerot, er)HIGIP442Goll < +oo
i= 7] T k=1
and
1 4443
Z H 1B (eajs enram )|l [T IE(en—1, ex) HIGIP4 | Goll < 4.
=7 j= k=1

Consequently, we infer that

'n+47‘n 4

( Z H 1 E(eaj, ensamr1 IIHHE ex—1, ex)|[[| G4 IIGoH)
i=7

n+dm—4

— 1 44+1

( > 1B (eass encamsn) Il [T 1B Cer—1, e) [I1GIP4D] IGo||>I,
i=n j=n k=1

n+4;n—4 i 442

( > 1E (eass encams) Il [T I1E e, ex) (1G]] Go||>f
i=% =% k=l

and
n+4m—4

) 4i+3
( IE(ea, enrame)| TT 1B (er—r, ex) |G+ IGo||>I

Jj= k=1

-

ISH

=

=3
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are Cauchy sequences in A. Thereby, we obtain that d~H(e", Cntdm+1) — 0 asn — oo. By
following the above steps, we can easily deduce that

im dp(en, enyami2) = lim dp(en, eniamia) = im dy(en, eniamia) =60.  (3.11)
n—o00 n—00 n—00

Therefore the sequence {e¢,} is Cauchy. As (X,dg) is complete, there exists ¢ € X such that

lim e, = e. We will reveal that ¢ is a fixed point of T. Consider
n—oo

di(Te,e) =< E(Te,e)[dr(Te, eni1) +du(enit, enia) +di(enia, enys)
+ dp (en+3, enva) + dp (enta, ¢)]
= E(Te,e)[du(Te,Te,) + dp(eni1, eni2) + du(enia, ent3)
+ JH(ems, Cnta) + JH(2n+4, e)]
< E(Te,e)[G*E(e, en)JH(e, ¢,)G + JH(enH, eni2) + JH(en+2, Cni3)
+ JH(%H, enta) + JH(%H, e)]
= ||du(Te,e)| < [|E(Te, )| [IGP[IE(e, en) Il drr (e, en)l| + I drr(ens1, ensa)
+ 1 da (ens2s enss) || + [ldrr (ens, ensa) | + | drr (ensas €]
which yields ||dg (Te,¢)|| < 0asn — oo <= dy(Te,¢) < 0 asn — oo i.e., ¢ is a fixed point of
gﬁicity:

Let {(# ¢) be an another fixed point of T. As 0 = dy (e,f) = du(Te, Tf) < G*E(¢,f)du (e, )G,
we have

0 < lldu (e, f)ll = lldr (Te, )|
<G E(e, f)du (e, )G
<G GII1ECe, flllldn e, Pl
= |GIPI1ET™ e, Tl | dr (e, )]

Taking limit n — oo in the equation mentioned above and employing (3.4), we get
llde (e, )| < ||du (e, )|, which is impossible. Henceforth the fixed point ¢ is unique.

Example 3.6. Let X = [0, 8] and A = M, (R). Define partial ordering on A as

e e - fi fa
e3 ey fa fa
Se > fi fori=1,2,3,4.

For any G € A, its norm can be defined as, |G| = [max, |a;|. Define dgy : X x X — A for all
e,fe X o

with the controlled function
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It is easy to verify that (X, A, dy) is a complete C*-algebra-valued extended hexagonal b-metric
space. Define T': X — X by T'e = 7. We have

0) 2+ le— 1] (e )¢ 0 (

0 2+ le =] (e = °

O sl
Bl— O
~

= G"E(e,f)dn (e, f)G

where [|G|| = 1 < 1. Notice that for each ¢ € X, T"¢ = . Thus

e\ 1
im (| E(es, e )1 E(Cint, em)|| = [4+2(—H 48 =
:1uzplil || (et 2+1)H” (e +1, € L)H fnuzpl 4qm < ||GH8

and
nh_)ngo I1E(en, em)| =2 < occ.

As a result, all of the conditions of Theorem 3.5 are fulfilled. Accordingly 7" has a unique fixed
point (¢ = 0).

Corollary 3.7. Let (X, A, dy) be a complete C*-algebra-valued hexagonal b-metric space and
suppose T : X — X is a mapping satisfying the following condition:

dp(Te,T§) = G* Fdy(e,f) G forall ¢,f € X (3.12)
where G € A, F € A} with |G|| < 1 and |F|| > 1. Then, T has a unique fixed point in X.
Proof. The proof follows from Theorem 3.5 by defining E : X x X — A, via E(e,f) = F.
4 Application

In this section, we show that a type of operator equation exists and is unique in the context of
complete C*-algebra-valued extended hexagonal b-metric spaces.

Example 4.1. Assume H is a Hilbert space, L(H) is the set of linear bounded operators on H.
Let F\, P,... F,,... € L(H) that satisfy >~ ||F,,||® < 1 and R € L(H). Then the operator
equation

has a unique solution in L(H).
Proof. Set G = (;il HFnH)6, therefore it is obvious that ||G|| < 1 and G > 0. Now, select an
operator M € L(H) that is positive. For C, D € L(H), set
du(C,D) = ||C — D|°M.
Thereby dj is a C*-algebra-valued extended hexagonal b-metric with a controlled function

I+||C = D|PM,if C # D

B(C, D) = {I ifC=D
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As L(H) is a Banach space, (L(H),dy) is a complete C*-algebra-valued extended hexagonal
b-metric space. Consider the map 7' : L(H) — L(H) defined by

TC = i F'CF, +R.
n=1

Then

dp(T(C),T(D)) = ||IT(C) - T(D)|°M

6
M

= Hi F*(C — D)F,
n=1

0o
<> IEN"ZIC - D|°M

n=1

<D IF)2[1+ € - DIFM]|lC — DI M
n=1
= G?E(C,D)dy(C, D)
= (GI)*E(C,D)dy(C,D)(GI).
Using Theorem 3.5, there exists a unique fixed point C'in L(H).
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