NEW FIXED POINT THEOREMS IN OPERATOR VALUED EXTENDED HEXAGONAL b-METRIC SPACES

Kalpana Gopalan, Sumaiya Tasneem Zubair and Thabet Abdeljawad

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 47H10; Secondary 54H25.

Keywords and phrases: C^* -algebra, C^* -algebra-valued extended hexagonal b-metric spaces, Contractive mapping, Fixed point.

Abstract In the current work, we broaden the class of C^* -algebra-valued hexagonal b-metric spaces and C^* -algebra-valued extended b-metric spaces by defining the class of C^* -algebra-valued extended hexagonal b-metric spaces and demonstrate a fixed point theorem with distinct contractive condition. In addition, an application is presented in the later part to demonstrate the existence and uniqueness of a particular type of operator equation in order to elucidate our results.

1 Introduction

The concept of Banach contraction is a basic outcome of the metric fixed point theory. It is a quite important and efficient tool in theoretical and applied sciences for solving the problems of Existence and uniqueness. In 2017, the conception of extended b-metric spaces was initiated by Tayyab Kamran et al. [10] as an extension of b-metric spaces [4]. Thereafter, the authors in [8] proposed the idea of extended hexagonal b-metric spaces by replacing the triangle inequality with hexagonal inequality. Recently, Asim et al. [1] developed a concept of C^* -algebra-valued extended b-metric spaces and Kalpana et al. [9] established a common fixed point theorem in the setting of C^* -algebra-valued hexagonal b-metric spaces. For further investigations on the concept of C^* -algebra, the readers can view [2, 3, 5, 6, 7, 11, 12, 13].

Deeply influenced by the above facts, we reveal the conception of C^* -algebra-valued extended hexagonal b-metric spaces and illustrate a fixed point theorem with distictive contractive condition. Eventually, an application is provided to guarantee the existence and uniqueness for the specific type of operator equation under the framework of C^* -algebra-valued extended hexagonal b-metric spaces.

2 Preliminaries

The conceptualization of extended *b*-metric spaces was commenced by Kamran et al. [10] that described in the following:

```
Definition 2.1. Given a nonempty set X and E: X \times X \to [1, \infty), and \tilde{d}_E: X \times X \to [0, \infty). If for all \mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X
```

- (1) $\tilde{d}_E(\mathfrak{a},\mathfrak{b}) = 0 \iff \mathfrak{a} = \mathfrak{b};$
- (2) $\tilde{d}_E(\mathfrak{a},\mathfrak{b}) = \tilde{d}_E(\mathfrak{b},\mathfrak{a});$
- $(3) \ \tilde{d}_E(\mathfrak{a}, \mathfrak{b}) \leq E(\mathfrak{a}, \mathfrak{b}) [\tilde{d}_E(\mathfrak{a}, \mathfrak{c}) + \tilde{d}_E(\mathfrak{c}, \mathfrak{b})]$

then we say that the pair (X, \tilde{d}_E) is an extended b-metric space.

Very recently, Kalpana et al. [8] generalized the above definition to the case of extended hexagonal *b*-metric spaces.

```
Definition 2.2. Let X be a non-empty set and E: X \times X \to [1, \infty). A function \tilde{d}_H: X \times X \to [0, \infty) is called an extended hexagonal b-metric if it satisfies: (1) \tilde{d}_H(\mathfrak{a}, \mathfrak{b}) = 0 \Leftrightarrow \mathfrak{a} = \mathfrak{b} for all \mathfrak{a}, \mathfrak{b} \in X;
```

- (2) $\tilde{d}_H(\mathfrak{a},\mathfrak{b}) = \tilde{d}_H(\mathfrak{b},\mathfrak{a})$ for all $\mathfrak{a},\mathfrak{b} \in X$;
- (3) $\tilde{d}_H(\mathfrak{a},\mathfrak{b}) \leq E(\mathfrak{a},\mathfrak{b})[\tilde{d}_H(\mathfrak{a},\mathfrak{c}) + \tilde{d}_H(\mathfrak{c},\mathfrak{d}) + \tilde{d}_H(\mathfrak{e},\mathfrak{f}) + \tilde{d}_H(\mathfrak{f},\mathfrak{b})]$ for all $\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d},\mathfrak{e},\mathfrak{f} \in X$ and $\mathfrak{a} \neq \mathfrak{c}, \mathfrak{c} \neq \mathfrak{d}, \mathfrak{d} \neq \mathfrak{e}, \mathfrak{e} \neq \mathfrak{f}, \mathfrak{f} \neq \mathfrak{b};$

The pair (X, \tilde{d}_H) is called an extended hexagonal b-metric space.

We now discuss certain essential concepts and results in C^* -algebra.

Let \mathbb{A} signifies the unital C^* -algebra and set $\mathbb{A}_h = \{\mathfrak{f} \in \mathbb{A} : \mathfrak{f} = \mathfrak{f}^*\}$. An element $\mathfrak{f} \in \mathbb{A}$ is said to be positive, if $\mathfrak{f} \in \mathbb{A}_h$ and $\sigma(\mathfrak{f}) \subseteq [0, \infty)$, where θ is a zero element in \mathbb{A} and $\sigma(\mathfrak{f})$ is the spectrum of \mathfrak{f} , which is denoted by $\theta \leq \mathfrak{f}$. The partial ordering on \mathbb{A}_h given by $\mathfrak{f} \leq \mathfrak{g}$ if and only if $\theta \leq \mathfrak{g} - \mathfrak{f}$. The sets $\{\mathfrak{f} \in \mathbb{A} : \theta \leq \mathfrak{f}\}$ and $\{\mathfrak{f} \in \mathbb{A} : \mathfrak{fg} = \mathfrak{gf}, \forall g \in \mathbb{A}\}$ is represented as \mathbb{A}_+ and \mathbb{A}' as and $|\mathfrak{w}| = (\mathfrak{w}^*\mathfrak{w})^{\frac{1}{2}}$ respectively.

Very recently, Asim et al. [1] set up the idea of extended b-metric spaces to the C^* -algebra.

Definition 2.3. Let $X \neq \emptyset$ and $E: X \times X \to \mathbb{A}^I$. The mapping $\tilde{d}_E: X \times X \to \mathbb{A}$ is called a C^* -algebra-valued extended b-metric on X, if it satisfies the following (for all $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in X$):

- (1) $\theta \leq \tilde{d}_E(\mathfrak{a}, \mathfrak{b})$ for all $\mathfrak{a}, \mathfrak{b} \in X$ and $\tilde{d}_E(\mathfrak{a}, \mathfrak{b}) = \theta$ iff $\mathfrak{a} = \mathfrak{b}$;
- (2) $\tilde{d}_E(\mathfrak{a}, \mathfrak{b}) = \tilde{d}_E(\mathfrak{b}, \mathfrak{a})$ for all $\mathfrak{a}, \mathfrak{b} \in X$;
- (3) $\tilde{d}_E(\mathfrak{a},\mathfrak{b}) \leq E(\mathfrak{a},\mathfrak{b})[\tilde{d}_E(\mathfrak{a},\mathfrak{c}) + \tilde{d}_E(\mathfrak{c},\mathfrak{b})].$

The triplet $(X, \mathbb{A}, \tilde{d}_E)$ is called a C^* -algebra-valued extended b-metric space.

The definition of C^* -algebra-valued hexagonal b-metric spaces was defined in the following way by Kalpana et al. [9].

Definition 2.4. Let X be a nonempty set, and $A \in \mathbb{A}'$ such that $A \succeq I$. Suppose the mapping $\tilde{d}_H : X \times X \to \mathbb{A}$ satisfies:

- (1) $\theta \leq \tilde{d}_H(\mathfrak{a}, \mathfrak{b})$ for all $\mathfrak{a}, \mathfrak{b} \in X$ and $\tilde{d}_H(\mathfrak{a}, \mathfrak{b}) = \theta \Leftrightarrow \mathfrak{a} = \mathfrak{b}$;
- (2) $\tilde{d}_H(\mathfrak{a}, \mathfrak{b}) = \tilde{d}_H(\mathfrak{b}, \mathfrak{a})$ for all $\mathfrak{a}, \mathfrak{b} \in X$;
- (3) $\tilde{d}_H(\mathfrak{a},\mathfrak{b}) \preceq A[\tilde{d}_H(\mathfrak{a},\mathfrak{c}) + \tilde{d}_H(\mathfrak{c},\mathfrak{d}) + \tilde{d}_H(\mathfrak{e},\mathfrak{f}) + \tilde{d}_H(\mathfrak{f},\mathfrak{b})]$ for all $\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d},\mathfrak{e},\mathfrak{f} \in X$ and $\mathfrak{a} \neq \mathfrak{c}, \mathfrak{c} \neq \mathfrak{d}, \mathfrak{d} \neq \mathfrak{e}, \mathfrak{e} \neq \mathfrak{f}, \mathfrak{f} \neq \mathfrak{b};$

Then d is called a C^* -algebra-valued hexagonal b-metric on X and $(X, \mathbb{A}, \tilde{d}_H)$ is called a C^* -algebra-valued hexagonal b-metric space.

3 Main Results

Through this main section, we implement the idea of C^* -algebra valued extended hexagonal b-metric spaces as follows.

Hereafter \mathbb{A}'_I signify the set $\{a \in \mathbb{A} : ab = ba, \forall b \in \mathbb{A} \text{ and } a \succeq I\}$ respectively.

Definition 3.1. Let X be a nonempty set and $E: X \times X \to \mathbb{A}'_I$. Suppose the mapping $\tilde{d}_H: X \times X \to \mathbb{A}$ satisfies:

- (1) $\theta \leq \tilde{d}_H(\mathfrak{a}, \mathfrak{b})$ and $\tilde{d}_H(\mathfrak{a}, \mathfrak{b}) = \theta \Leftrightarrow \mathfrak{a} = \mathfrak{b}$ for all $\mathfrak{a}, \mathfrak{b} \in X$;
- (2) $\tilde{d}_H(\mathfrak{a},\mathfrak{b}) = \tilde{d}_H(\mathfrak{b},\mathfrak{a})$ for all $\mathfrak{a},\mathfrak{b} \in X$;
- (3) $\tilde{d}_H(\mathfrak{a},\mathfrak{b}) \leq E(\mathfrak{a},\mathfrak{b})[\tilde{d}_H(\mathfrak{a},\mathfrak{c}) + \tilde{d}_H(\mathfrak{c},\mathfrak{d}) + \tilde{d}_H(\mathfrak{d},\mathfrak{e}) + \tilde{d}_H(\mathfrak{e},\mathfrak{f}) + \tilde{d}_H(\mathfrak{f},\mathfrak{b})]$ for all $\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d},\mathfrak{e},\mathfrak{f} \in X$ and $\mathfrak{a} \neq \mathfrak{c}, \mathfrak{c} \neq \mathfrak{d}, \mathfrak{d} \neq \mathfrak{e}, \mathfrak{e} \neq \mathfrak{f}, \mathfrak{f} \neq \mathfrak{b};$

The triplet $(X, \mathbb{A}, \tilde{d}_H)$ is called an C^* -algebra-valued extended hexagonal b-metric space.

Example 3.2. Let $X = \{1, 2, 3, 4, 5, 6\}$ and $\mathbb{A} = \mathbb{R}^2$. If $\mathfrak{a}, \mathfrak{b} \in \mathbb{A}$ with $\mathfrak{a} = (\mathfrak{a}_1, \mathfrak{a}_2), \mathfrak{b} = (\mathfrak{b}_1, \mathfrak{b}_2)$, then the addition, multipilcation and scalar multipilcation can be defined as follows

$$\mathfrak{a} + \mathfrak{b} = (\mathfrak{a}_1 + \mathfrak{b}_1, \ \mathfrak{a}_2 + \mathfrak{b}_2), \ k\mathfrak{a} = (k\mathfrak{a}_1, k\mathfrak{a}_2), \ \mathfrak{ab} = (\mathfrak{a}_1\mathfrak{b}_1, \mathfrak{a}_2\mathfrak{b}_2).$$

Now, we define the metric $\tilde{d}_H: X \times X \to \mathbb{A}$ such that \tilde{d}_H is symmetric and the control function $E: X \times X \to \mathbb{A}'_I$ as

$$\begin{array}{l} \tilde{d}_{H}(\mathfrak{e},\mathfrak{f}) = (0,0), \forall \mathfrak{e} = \mathfrak{f}, \tilde{d}_{H}(1,2) = (700,700), \\ \tilde{d}_{H}(1,3) = \tilde{d}_{H}(1,4) = \tilde{d}_{H}(1,5) = \tilde{d}_{H}(2,3) = \tilde{d}_{H}(2,4) = \tilde{d}_{H}(2,5) = \tilde{d}_{H}(3,4) = \tilde{d}_{H}(3,5) = \\ \tilde{d}_{H}(4,5) = (50,50), \tilde{d}_{H}(\mathfrak{e},6) = (150,150), \forall \mathfrak{e} = 2,3,4,5 \text{ and the controlled function} \\ E(\mathfrak{e},\mathfrak{f}) = \mathfrak{e} + \mathfrak{f}, \forall \mathfrak{e}, \mathfrak{f} \in X. \end{array}$$

It is easy to verify that \tilde{d}_H is a C^* -algebra-valued extended hexagonal b-metric type space. Indeed, we have

$$\tilde{d}_H(1,2) = (700,700) \succ E(1,2)[\tilde{d}_H(1,3) + \tilde{d}_H(3,2)] = (300,300).$$

Therefore, \tilde{d}_H is not a C^* -algebra-valued extended b-metric space.

Definition 3.3. A sequence $\{\mathfrak{e}_n\}$ in a C^* -algebra-valued extended hexagonal b-metric space $(X, \mathbb{A}, \tilde{d}_H)$ is said to be:

- (i) convergent sequence if $\exists \mathfrak{e} \in X$ such that $\tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}) \to \theta$ $(n \to \infty)$ and we denote it by $\lim_{n \to \infty} \mathfrak{e}_n = \mathfrak{e}$.
- (ii) Cauchy sequence if $\tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_m) \to \theta \ (n,m \to \infty)$.

Definition 3.4. A C^* -algebra-valued extended hexagonal b-metric space $(X, \mathbb{A}, \tilde{d}_H)$ is said to be complete if every Cauchy sequence is convergent in X with respect to \mathbb{A} .

Theorem 3.5. Let $(X, \mathbb{A}, \tilde{d}_H)$ be a complete C^* -algebra-valued extended hexagonal b-metric space and suppose $T: X \to X$ that meets the following criteria:

$$\tilde{d}_H(T\mathfrak{e}, T\mathfrak{f}) \leq G^* E(\mathfrak{e}, \mathfrak{f}) \tilde{d}_H(\mathfrak{e}, \mathfrak{f}) G \text{ for all } \mathfrak{e}, \mathfrak{f} \in X$$
 (3.1)

where $G \in \mathbb{A}$ with ||G|| < 1. For $\mathfrak{e}_0 \in X$, choose $\mathfrak{e}_n = T^n \mathfrak{e}_0$. Assume that

$$\sup_{m\geq 1} \lim_{i\to\infty} \|E(\mathfrak{e}_i,\mathfrak{e}_{i+1})\| \|E(\mathfrak{e}_{i+1},\mathfrak{e}_m)\| < \frac{1}{\|G\|^8}$$
(3.2)

and

$$\sup_{m\geq 1} \lim_{i\to\infty} \|E(\mathfrak{e}_{i+j},\mathfrak{e}_{i+j+1})\| \|E(\mathfrak{e}_{i+1},\mathfrak{e}_m)\| < \frac{1}{\|G\|^8}, \text{ for } j=1,2,3. \tag{3.3}$$

Furthermore, presume that

$$\lim_{n,m\to\infty} \|E(\mathfrak{e}_n,\mathfrak{e}_m)\| < \frac{1}{\|G\|^2}, \ \textit{for each} \ \ \mathfrak{e}\in X. \tag{3.4}$$

Then, T has a unique fixed point in X.

Proof. Let $\mathfrak{e}_0 \in X$ and set $\mathfrak{e}_{n+1} = T\mathfrak{e}_n = \ldots = T^{n+1}\mathfrak{e}_0, n = 1, 2, \ldots$ The element $\tilde{d}_H(\mathfrak{e}_1, \mathfrak{e}_0)$ in \mathbb{A} is denoted by G_0 . Then

$$\tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+1}) = \tilde{d}_{H}(T\mathfrak{e}_{n-1},T\mathfrak{e}_{n})
\leq G^{*} E(\mathfrak{e}_{n-1},\mathfrak{e}_{n}) \, \tilde{d}_{H}(\mathfrak{e}_{n-1},\mathfrak{e}_{n}) G
\vdots
\leq (G^{*})^{n} \prod_{k=1}^{n} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{1}) G^{n}.$$
(3.5)

Similarly, we get

$$\tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+2}) \leq (G^{*})^{n} \prod_{k=1}^{n} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k+1}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{2}) G^{n},$$

$$\tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+3}) \leq (G^{*})^{n} \prod_{k=1}^{n} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k+2}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{3}) G^{n}$$

$$and \tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+4}) \leq (G^{*})^{n} \prod_{k=1}^{n} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k+3}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{4}) G^{n}.$$
(3.6)

Now, we demonstrate that $\{\mathfrak{e}_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence i.e., $\lim_{n\to\infty} \tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_{n+p}) = \theta$, for $p \in \mathbb{N}$. For p = 4m + 1, where $m \geq 1$, we consider

$$\begin{split} \tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+4m+1}) & \leq E(\mathfrak{e}_{n},\mathfrak{e}_{n+4m+1}) [\tilde{d}_{H}(\mathfrak{e}_{n},\mathfrak{e}_{n+1}) + \tilde{d}_{H}(\mathfrak{e}_{n+1},\mathfrak{e}_{n+2}) + \tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+3}) \\ & + \tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+4})] \\ & \vdots \\ E(\mathfrak{e}_{n},\mathfrak{e}_{n+4m+1}) E(\mathfrak{e}_{n+4},\mathfrak{e}_{n+4m+1}) \dots E(\mathfrak{e}_{n+4m-4},\mathfrak{e}_{n+4m+1}) \\ & [\tilde{d}_{H}(\mathfrak{e}_{n+4m-4},\mathfrak{e}_{n+4m-3}) + \tilde{d}_{H}(\mathfrak{e}_{n+4m-3},\mathfrak{e}_{n+4m-2}) + \tilde{d}_{H}(\mathfrak{e}_{n+4m-2},\mathfrak{e}_{n+4m-1}) \\ & + \tilde{d}_{H}(\mathfrak{e}_{n+4m-1},\mathfrak{e}_{n+4m}) + \tilde{d}_{H}(\mathfrak{e}_{n+4m-3},\mathfrak{e}_{n+4m-2}) + \tilde{d}_{H}(\mathfrak{e}_{n+4m-2},\mathfrak{e}_{n+4m-1}) \\ & = \sum_{i=\frac{n}{4}} \prod_{j=\frac{n}{4}}^{i} E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1}) \left[\tilde{d}_{H}(\mathfrak{e}_{d_{i}},\mathfrak{e}_{d_{i+1}}) + \tilde{d}_{H}(\mathfrak{e}_{d_{i+1}},\mathfrak{e}_{d_{i+2}}) + \tilde{d}_{H}(\mathfrak{e}_{d_{i+2}},\mathfrak{e}_{d_{i+3}}) \right] \\ & + \tilde{d}_{H}(\mathfrak{e}_{d_{i+3}},\mathfrak{e}_{d_{i+4}}) \right] + \prod_{j=\frac{n}{4}}^{n+4m-4} E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1}) \tilde{d}_{H}(\mathfrak{e}_{n+4m},\mathfrak{e}_{n+4m+1}) \\ & \leq \sum_{i=\frac{n}{4}} \prod_{j=\frac{n}{4}}^{i} E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1}) \left[(G^{*})^{4i} \prod_{k=1}^{4i} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{1}) \tilde{d}^{4i+1} \\ & + (G^{*})^{4i+1} \prod_{k=1}^{4i+1} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{1}) \tilde{G}^{4i+1} \\ & + (G^{*})^{4i+2} \prod_{k=1}^{4i+2} E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1}) (G^{*})^{n+4m} \prod_{k=1}^{n+4m} E(\mathfrak{e}_{k-1},\mathfrak{e}_{k}) \tilde{d}_{H}(\mathfrak{e}_{0},\mathfrak{e}_{1}) \tilde{G}^{n+4m} \\ & \vdots \\ & \leq \|G_{0}\| \sum_{i=\frac{n}{4}}^{n+4m+1} \|\prod_{j=1}^{4i+1} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i+2)} \\ & + \|E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1})\|\prod_{k=1}^{4i+2} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i+2)} \\ & + \|E(\mathfrak{e}_{d_{j}},\mathfrak{e}_{n+4m+1})\|\prod_{k=1}^{4i+2} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i+2)} \|I \\ & + \|G^{*}(\mathfrak{e}_{j},\mathfrak{e}_{n+4m+1})\|\prod_{k=1}^{4i+2} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i+2)} \|I \\$$

where I is the unit element in \mathbb{A} . Let

$$a_{i} = \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i)} \|G_{0}\|,$$
(3.7)

$$b_{i} = \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+1} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i+1)} \|G_{0}\|,$$
(3.8)

$$c_{i} = \prod_{j=\frac{n}{t}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+2} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i+2)} \|G_{0}\|, \tag{3.9}$$

and

$$d_{i} = \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+3} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i+3)} \|G_{0}\|.$$
 (3.10)

It is clear that $\sup_{m\geq 1}\lim_{i\to\infty}\left\|\frac{a_{i+1}}{a_i}\right\|=\|E(\mathfrak{e}_{4i+4},\mathfrak{e}_{n+4m+1})\|\|E(\mathfrak{e}_{4i+3},\mathfrak{e}_{4i+4})\|\|G\|^8<1$ by the hypotheses of the theorem. In a similar manner, we can demonstrate that

$$\sup_{m\geq 1}\lim_{i\to\infty}\left\|\frac{b_{i+1}}{b_i}\right\|<1,\ \sup_{m\geq 1}\lim_{i\to\infty}\left\|\frac{c_{i+1}}{c_i}\right\|<1\ \text{and}\ \sup_{m\geq 1}\lim_{i\to\infty}\left\|\frac{d_{i+1}}{d_i}\right\|<1.$$

Therefore,

$$\sum_{i=\frac{n}{4}}^{+\infty}\prod_{j=\frac{n}{4}}^{i}\|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\|\prod_{k=1}^{4i}\|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i)}\|G_{0}\|<+\infty,$$

$$\sum_{i=\frac{n}{4}}^{+\infty} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+1} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i+1)} \|G_{0}\| < +\infty,$$

$$\sum_{i=\frac{n}{4}}^{+\infty} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j}, \mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+2} \|E(\mathfrak{e}_{k-1}, \mathfrak{e}_{k})\| \|G\|^{2(4i+2)} \|G_{0}\| < +\infty$$

and

$$\sum_{i=\frac{n}{4}}^{+\infty} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+3} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\| \|G\|^{2(4i+3)} \|G_{0}\| < +\infty.$$

Consequently, we infer that

$$\left(\sum_{i=\frac{n}{4}}^{\frac{n+4m-4}{4}} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\| \|G\|^{2(4i)} \|G_{0}\| \right) I,$$

$$\left(\sum_{i=\frac{n}{4}}^{\frac{n+4m-4}{4}} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+1} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\| \|G\|^{2(4i+1)} \|G_{0}\| \right) I,$$

$$\left(\sum_{i=\frac{n}{4}}^{\frac{n+4m-4}{4}}\prod_{j=\frac{n}{4}}^{i}\|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\|\prod_{k=1}^{4i+2}\|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\|\|G\|^{2(4i+2)}\|G_{0}\|\right)I$$

and

$$\left(\sum_{i=\frac{n}{4}}^{\frac{n+4m-4}{4}} \prod_{j=\frac{n}{4}}^{i} \|E(\mathfrak{e}_{4j},\mathfrak{e}_{n+4m+1})\| \prod_{k=1}^{4i+3} \|E(\mathfrak{e}_{k-1},\mathfrak{e}_{k})\| \|G\|^{2(4i+3)} \|G_{0}\| \right) I$$

are Cauchy sequences in \mathbb{A} . Thereby, we obtain that $\tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_{n+4m+1}) \to \theta$ as $n \to \infty$. By following the above steps, we can easily deduce that

$$\lim_{n\to\infty} \tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_{n+4m+2}) = \lim_{n\to\infty} \tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_{n+4m+3}) = \lim_{n\to\infty} \tilde{d}_H(\mathfrak{e}_n,\mathfrak{e}_{n+4m+4}) = \theta. \tag{3.11}$$

Therefore the sequence $\{\mathfrak{e}_n\}$ is Cauchy. As (X, \tilde{d}_H) is complete, there exists $\mathfrak{e} \in X$ such that $\lim_{n \to \infty} \mathfrak{e}_n = \mathfrak{e}$. We will reveal that \mathfrak{e} is a fixed point of T. Consider

$$\begin{split} \tilde{d}_{H}(T\mathfrak{e},\mathfrak{e}) & \preceq E(T\mathfrak{e},\mathfrak{e})[\tilde{d}_{H}(T\mathfrak{e},\mathfrak{e}_{n+1}) + \tilde{d}_{H}(\mathfrak{e}_{n+1},\mathfrak{e}_{n+2}) + \tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+3}) \\ & + \tilde{d}_{H}(\mathfrak{e}_{n+3},\mathfrak{e}_{n+4}) + \tilde{d}_{H}(\mathfrak{e}_{n+4},\mathfrak{e})] \\ & = E(T\mathfrak{e},\mathfrak{e})[\tilde{d}_{H}(T\mathfrak{e},T\mathfrak{e}_{n}) + \tilde{d}_{H}(\mathfrak{e}_{n+1},\mathfrak{e}_{n+2}) + \tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+3}) \\ & + \tilde{d}_{H}(\mathfrak{e}_{n+3},\mathfrak{e}_{n+4}) + \tilde{d}_{H}(\mathfrak{e}_{n+4},\mathfrak{e})] \\ & \preceq E(T\mathfrak{e},\mathfrak{e})[G^{*}E(\mathfrak{e},\mathfrak{e}_{n})\tilde{d}_{H}(\mathfrak{e},\mathfrak{e}_{n})G + \tilde{d}_{H}(\mathfrak{e}_{n+1},\mathfrak{e}_{n+2}) + \tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+3}) \\ & + \tilde{d}_{H}(\mathfrak{e}_{n+3},\mathfrak{e}_{n+4}) + \tilde{d}_{H}(\mathfrak{e}_{n+4},\mathfrak{e})] \\ \Longleftrightarrow \|\tilde{d}_{H}(T\mathfrak{e},\mathfrak{e})\| \leq \|E(T\mathfrak{e},\mathfrak{e})\| [\|G^{2}\|\|E(\mathfrak{e},\mathfrak{e}_{n})\|\|\tilde{d}_{H}(\mathfrak{e},\mathfrak{e}_{n})\| + \|\tilde{d}_{H}(\mathfrak{e}_{n+1},\mathfrak{e}_{n+2})\| \\ & + \|\tilde{d}_{H}(\mathfrak{e}_{n+2},\mathfrak{e}_{n+3})\| + \|\tilde{d}_{H}(\mathfrak{e}_{n+3},\mathfrak{e}_{n+4})\| + \|\tilde{d}_{H}(\mathfrak{e}_{n+4},\mathfrak{e})\|] \end{split}$$

which yields $\|\tilde{d}_H(T\mathfrak{e},\mathfrak{e})\| \leq 0$ as $n \to \infty \iff \tilde{d}_H(T\mathfrak{e},\mathfrak{e}) \leq \theta$ as $n \to \infty$ i.e., \mathfrak{e} is a fixed point of T.

Unicity:

Let $\mathfrak{f}(\neq \mathfrak{e})$ be an another fixed point of T. As $\theta \leq \tilde{d}_H(\mathfrak{e},\mathfrak{f}) = \tilde{d}_H(T\mathfrak{e},T\mathfrak{f}) \leq G^*E(\mathfrak{e},\mathfrak{f})\tilde{d}_H(\mathfrak{e},\mathfrak{f})G$, we have

$$\begin{split} 0 &\leq \|\tilde{d}_H(\mathfrak{e},\mathfrak{f})\| = \|\tilde{d}_H(T\mathfrak{e},T\mathfrak{f})\| \\ &\leq \|G^*E(\mathfrak{e},\mathfrak{f})\tilde{d}_H(\mathfrak{e},\mathfrak{f})G\| \\ &\leq \|G^*G\|\|E(\mathfrak{e},\mathfrak{f})\|\tilde{d}_H(\mathfrak{e},\mathfrak{f})\| \\ &= \|G\|^2\|E(T^n\mathfrak{e},T^m\mathfrak{f})\|\tilde{d}_H(\mathfrak{e},\mathfrak{f})\|. \end{split}$$

Taking limit $n \to \infty$ in the equation mentioned above and employing (3.4), we get $\|\tilde{d}_H(\mathfrak{e},\mathfrak{f})\| < \|\tilde{d}_H(\mathfrak{e},\mathfrak{f})\|$, which is impossible. Henceforth the fixed point \mathfrak{e} is unique.

Example 3.6. Let X = [0, 8] and $\mathbb{A} = M_2(\mathbb{R})$. Define partial ordering on \mathbb{A} as

$$\begin{pmatrix} \mathfrak{e}_1 & \mathfrak{e}_2 \\ \mathfrak{e}_3 & \mathfrak{e}_4 \end{pmatrix} \succeq \begin{pmatrix} \mathfrak{f}_1 & \mathfrak{f}_2 \\ \mathfrak{f}_3 & \mathfrak{f}_4 \end{pmatrix}$$
$$\Leftrightarrow \mathfrak{e}_i \ge \mathfrak{f}_i \text{ for } i = 1, 2, 3, 4.$$

For any $G \in \mathbb{A}$, its norm can be defined as, $\|G\| = \max_{1 \leq i \leq 4} |a_i|$. Define $\tilde{d}_H : X \times X \to \mathbb{A}$ for all $\mathfrak{e}, \mathfrak{f} \in X$

$$ilde{d}_H(\mathfrak{e},\mathfrak{f}) = egin{pmatrix} (\mathfrak{e}-\mathfrak{f})^6 & 0 \ 0 & (\mathfrak{e}-\mathfrak{f})^6 \end{pmatrix}$$

with the controlled function

$$E(\mathfrak{e},\mathfrak{f}) = \begin{cases} \begin{pmatrix} 2 + |\mathfrak{e} - \mathfrak{f}|^5 & 0 \\ 0 & 2 + |\mathfrak{e} - \mathfrak{f}|^5 \end{pmatrix}, \text{if } \mathfrak{e} \neq \mathfrak{f} \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, & \text{if } \mathfrak{e} = \mathfrak{f} \end{cases}$$

It is easy to verify that $(X, \mathbb{A}, \tilde{d}_H)$ is a complete C^* -algebra-valued extended hexagonal b-metric space. Define $T: X \to X$ by $T\mathfrak{e} = \frac{\mathfrak{e}}{4}$. We have

$$\begin{split} \tilde{d}_H(T\mathfrak{e},T\mathfrak{f}) &= \begin{pmatrix} \left(\frac{\mathfrak{e}}{4} - \frac{\mathfrak{f}}{4}\right)^6 & 0 \\ 0 & \left(\frac{\mathfrak{e}}{4} - \frac{\mathfrak{f}}{4}\right)^6 \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{4096}(\mathfrak{e} - \mathfrak{f})^6 & 0 \\ 0 & \frac{1}{4096}(\mathfrak{e} - \mathfrak{f})^6 \end{pmatrix} \\ &\preceq \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \left[2 + |\mathfrak{e} - \mathfrak{f}|^5\right](\mathfrak{e} - \mathfrak{f})^6 & 0 \\ 0 & \left[2 + |\mathfrak{e} - \mathfrak{f}|^5\right](\mathfrak{e} - \mathfrak{f})^6 \end{pmatrix} \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \\ &= G^*E(\mathfrak{e},\mathfrak{f})\tilde{d}_H(\mathfrak{e},\mathfrak{f})G \end{split}$$

where $||G|| = \frac{1}{4} < 1$. Notice that for each $\mathfrak{e} \in X$, $T^n \mathfrak{e} = \frac{\mathfrak{e}}{4^n}$. Thus

$$\sup_{m>1}\lim_{i\to\infty}\|E(\mathfrak{e}_i,\mathfrak{e}_{i+1})\|\|E(\mathfrak{e}_{i+1},\mathfrak{e}_m)\|=\sup_{m>1}\Bigl[4+2\Bigl(\frac{\mathfrak{e}}{4^m}\Bigr)^5\Bigr]<4^8=\frac{1}{\|G\|^8}$$

and

$$\lim_{n\to\infty} ||E(\mathfrak{e}_n,\mathfrak{e}_m)|| = 2 < \infty.$$

As a result, all of the conditions of Theorem 3.5 are fulfilled. Accordingly T has a unique fixed point ($\mathfrak{e} = 0$).

Corollary 3.7. Let $(X, \mathbb{A}, \tilde{d}_H)$ be a complete C^* -algebra-valued hexagonal b-metric space and suppose $T: X \to X$ is a mapping satisfying the following condition:

$$\tilde{d}_H(T\mathfrak{e}, T\mathfrak{f}) \leq G^* F \bar{d}_H(\mathfrak{e}, \mathfrak{f}) G \text{ for all } \mathfrak{e}, \mathfrak{f} \in X$$
 (3.12)

where $G \in \mathbb{A}$, $F \in \mathbb{A}_I'$ with ||G|| < 1 and ||F|| > 1. Then, T has a unique fixed point in X. **Proof.** The proof follows from Theorem 3.5 by defining $E: X \times X \to \mathbb{A}_I'$ via $E(\mathfrak{e}, \mathfrak{f}) = F$.

4 Application

In this section, we show that a type of operator equation exists and is unique in the context of complete C^* -algebra-valued extended hexagonal b-metric spaces.

Example 4.1. Assume H is a Hilbert space, L(H) is the set of linear bounded operators on H. Let $F_1, F_2, \ldots F_n, \ldots \in L(H)$ that satisfy $\sum_{n=1}^{\infty} \|F_n\|^6 < 1$ and $R \in L(H)_+$. Then the operator equation

$$C - \sum_{n=1}^{\infty} F_n^* C F_n = R$$

has a unique solution in L(H).

Proof. Set $G = \left(\sum_{n=1}^{\infty} \|F_n\|\right)^6$, therefore it is obvious that $\|G\| < 1$ and G > 0. Now, select an operator $M \in L(H)$ that is positive. For $C, D \in L(H)$, set

$$\tilde{d}_H(C,D) = ||C-D||^6 M.$$

Thereby \tilde{d}_H is a C^* -algebra-valued extended hexagonal b-metric with a controlled function

$$E(C,D) = \begin{cases} I + \|C - D\|^5 M, & \text{if } C \neq D \\ I, & \text{if } C = D \end{cases}$$

As L(H) is a Banach space, $(L(H), \tilde{d}_H)$ is a complete C^* -algebra-valued extended hexagonal b-metric space. Consider the map $T: L(H) \to L(H)$ defined by

$$TC = \sum_{n=1}^{\infty} F_n^* C F_n + R.$$

Then

$$\tilde{d}_{H}(T(C), T(D)) = \|T(C) - T(D)\|^{6}M$$

$$= \left\|\sum_{n=1}^{\infty} F_{n}^{*}(C - D)F_{n}\right\|^{6}M$$

$$\leq \sum_{n=1}^{\infty} \|F_{n}\|^{12}\|C - D\|^{6}M$$

$$\prec \sum_{n=1}^{\infty} \|F_{n}\|^{12} \left[I + \|C - D\|^{5}M\right]\|C - D\|^{6}M$$

$$= G^{2}E(C, D)\tilde{d}_{H}(C, D)$$

$$= (GI)^{*}E(C, D)\tilde{d}_{H}(C, D)(GI).$$

Using Theorem 3.5, there exists a unique fixed point C in L(H).

Acknowledgements. The first and second authors would like to thank the Management of Sri Sivasubramaniya Nadar College of Engineering for their continuous support and encouragement to carry out this research work.

References

- [1] M. Asim, M. Imdad, C^* -algebra-valued extended b-metric spaces and fixed point results with an application, U.P.B.Sci.Bull., Series A, 82(1), 207–218 (2020).
- [2] C. Bai, Coupled fixed point theorems in C^* -algebra-valued b-metric spaces with application, *Fixed Point Theory Appl.* **2016**, 2016:70.
- [3] S. Batul, T. Kamran, C*-valued contractive type mappings, Fixed Point Theory Appl. 2015, 2015:142.
- [4] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46(2), 263–276 (1998).
- [5] M. Erden, C. Alaca, C*-algebra-valued S-metric spaces, Communications Series A1 67(2), 165–177 (2018).
- [6] Z. Kadelburg, S. Radenović, Fixed point results in C*-algebra-valued metric spaces are the direct consequences of their standard metric counterparts, *Fixed Point Theory Appl.* **2016**, 2016:53.
- [7] C. Kalaivani, G. Kalpana, Fixed point theorems in C^* -algebra-valued S-metric spaces with some applications, U.P.B. Sci. Bull., Series A. 80(3), 93–102 (2018).
- [8] G. Kalpana, Z. Sumaiya Tasneem, Some Fixed Point Results in Extended Hexagonal b-Metric Spaces Approach to the Existence of a Solution to Fredholm Integral Equations, J. Math. Anal. 11(2), 1–17 (2020).
- [9] G. Kalpana, Z. Sumaiya Tasneem, Common Fixed Point Theorems in C*-algebra-valued Hexagonal b-Metric spaces, AIP Conf. Proc. 2095, 030012-1-030012-5 (2019).
- [10] T. Kamran, M. Samreen, Q. UL Ain, A generalization of *b*-metric space and some fixed point theorems, *Mathematics* **2017**, 5, 19 (2017).
- [11] S. Radenović, P. Vetro, A. Nastasi, L. T. Quan, Coupled fixed point theorems in C*-algebra-valued b-metric spaces, ci. Publ. State Univ. Novi Pazar Ser. A. Appl. Math. Inform. Mech. 9, 81–90 (2017).
- [12] D. Shehwar, S. Batul, T. Kamran, A. Ghiura, Caristis fixed point theorem on C^* -algebra valued metric spaces, *J. Nonlinear Sci. Appl.* **9**, 584–588 (2016).
- [13] QL. Xin, LN. Jiang, ZH. Ma, Common fixed point theorems in C^* -algebra-valued metric spaces, *J. Non-linear Sci. Appl.* **9**, 4617–4627 (2016).

Author information

Kalpana Gopalan, Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai-603 110, India.

E-mail: kalpanag@ssn.edu.in

Sumaiya Tasneem Zubair, Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai-603 110, India.

E-mail: sumaiyatasneemz@ssn.edu.in

Thabet Abdeljawad, Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.

E-mail: tabdeljawad@psu.edu.sa

Received: March 6, 2021 Accepted: March 16, 2021