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Abstract 

One promising solution to address physician data entry needs is through the development of so-called “digital 

scribes,” or tools which aim to automate clinical documentation via automatic speech recognition (ASR) of patient-

clinician conversations. Evaluation of specialized ASR models in this domain, useful for understanding feasibility and 

development opportunities, has been difficult because most models have been under development. Following the 

commercial release of such models, we report an independent evaluation of four models, two general-purpose, and 

two for medical conversation with a corpus of 36 primary care conversations. We identify word error rates (WER) of 

8.8%-10.5% and word-level diarization error rates (WDER) ranging from 1.8%-13.9%, which are generally lower 

than previous reports. The findings indicate that, while there is room for improvement, the performance of these 

specialized models, at least under ideal recording conditions, may be amenable to the development of downstream 

applications which rely on ASR of patient-clinician conversations. 

 

Introduction 

Reliance on clinicians as a key data entry source remains a fundamental healthcare informatics challenge1. In addition 

to capturing data necessary for the direct provision of care, clinician users are often obligated to capture data on behalf 

of a wide variety of secondary users, such as public health researchers or quality improvement specialists2,3. 

Complicating these circumstances are reports of poor EHR usability and the need to fulfill myriad billing and 

administrative documentation requirements3,4. Pressures from these sources contribute to a high degree of 

documentation burden faced by currently practicing clinicians.  

One promising solution to address this problem is through the development of so-called “digital scribes.” These tools 

seek to automate, at least in part, the process of clinical documentation through the use of automatic speech recognition 

(ASR) and natural language processing (NLP) technologies to capture patient-clinician conversations in the 

examination room5. If successful, these tools may shift existing documentation burden away from clinicians, allowing 

them to better focus on patient care-related activities.  

Interest in digital scribes has resulted in efforts from academic as well as industry groups. Prototype systems6,7, 

empirical studies and commentaries related to the concept8–10, and development of NLP techniques11,12 have been 

published by academic researchers. Companies such as Microsoft13, Google14–16, and Amazon17, among others18,19 

have also begun to publish work relevant to digital scribe development. Further, perhaps in recognition of the value 

of working with natural language in the clinical setting, Microsoft recently acquired Nuance Communications20, a 

vendor for clinical dictation software. These efforts indicate significant investment into the development of tools and 

techniques which can be used to create a digital scribe. 

Despite these efforts, the digital scribe concept and its associated technologies are still considered nascent and rapidly 

evolving21. Two currently outstanding issues important to the development of these systems are: (1) the performance 

of speech recognition and (2) speaker recognition technologies, which are likely necessary for machine understanding 

of natural language in patient-clinician conversations21,22. Here, speech recognition performance references the 

accuracy and usefulness of words transcribed from conversation, while speaker recognition performance focuses on 

differentiating between speakers (also known as speaker diarization) and understanding which speaker is a clinician 

or patient (role attribution). While there are a few works that have published performance metrics for both speech 

recognition15 and speaker recognition19,23, most models have been under development and have not been made readily 

available for independent evaluation by researchers. As a result, it has been difficult to independently ascertain 

performance of current state-of-the-art technologies in this domain. 

Following exploratory work in conversational speech recognition for medical conversations6, a 2018 evaluation by 

Kodish-Wachs investigated the feasibility of commercialized general-purpose ASR models for the transcription of 

simulated patient-clinician conversations24. They concluded that, given modest performance figures of 35% to 65% 
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word error rate (WER), improvements to ASR approaches are needed before further use in the clinical setting. Since 

the publication of this study, however, advancements to medical conversation ASR and patient/clinician speaker 

recognition have been published13,19,21,23,25,26. Companies, such as Google and Amazon, have since released ASR 

solutions which have been marketed as capable of transcribing patient-clinician conversations and conducting speaker 

diarization27,28, the latter of which references the task of differentiating speakers in audio. An updated understanding 

of the general performance of these tools, as well as a confirmation of whether these specialized models improve ASR 

performance and speaker recognition, may help guide clinician and developer thinking about how these technologies 

could be deployed or improved to better support clinician users or improve data quality. 

In this study, we report an independent evaluation of four commercially available solutions for ASR: two marketed 

for patient-clinician conversations, and two marketed for general multi-speaker audio. We do this by obtaining a 

performance snapshot with a corpus of simulated patient-clinician conversations and then identify potential 

performance and design implications relevant to the capture and processing of patient-clinician conversations. 

Learning Objective 

Learn about the current performance of state-of-the-art automatic speech recognition systems which focus on 

capturing patient-clinician conversations and the understand how their performance may impact the development of 

speech-based clinical documentation tools. 

Methods 

Generation of reference audio and transcripts 

We conducted our evaluation on 36 professionally transcribed audio recordings of conversations between patients 

and primary care clinicians. Patients were aged 50-80 and were visiting a primary care physician in a 26-clinic 

ambulatory healthcare system in the Midwest United States. The data was created as part of the Mental Health 

Discussions Study by Tai-Seale et al.29, and has been used in prior work such as analyzing the delivery of 

preventative services30–39 as well as for creating topic detection40 and emotion detection41 models using patient-

clinician conversations. For this study, the subsampled conversations were manually de-identified per HIPAA safe 

harbor standards. 

To reduce the impact of recording-related factors (e.g., poor microphone quality, high background noise), and 

speaker-related factors (e.g., non-native English speakers), we re-enacted audio recordings in a quiet interview 

studio. Two native English speakers, one male and one female, read de-identified transcripts into a high-quality 

desktop microphone. Speakers completed the reenactment while within three feet of a Blue Yeti microphone 

(Logitech, Lausanne, Switzerland). Recordings were captured at 44100hz, in single channel audio, and were 

encoded in a lossless format. Recordings ranged from 12 to 55 minutes in length. 

To assess performance on conversation which may be relevant for clinical documentation, BDT, a medical student, 

scanned transcripts for utterances potentially useful for generating documentation related to topics within a primary 

care physician task list42. Relevant utterances, which included information such as question answer pairs, notes on 

lab values, physical examination findings as well as information for care coordination were highlighted and were 

used to segment data for evaluation. Examples of utterances marked as relevant included statements such as, “Yes, 

my father had heart disease,” and “I exercise twice a week.” 

ASR Engine selection and ASR data generation 

For this study, we selected four ASR engines based on their accessibility and prior performance as measured by 

word error rate (WER) with a subsample of the dataset in early 2022. For models tailored to medical conversation, 

we selected Google Speech-to-Text “medical_conversation” (Google, Mountain View, USA) and Amazon 

Transcribe Medical “Primary care” & “Conversation” (Amazon, Seattle, USA). To contrast with general-purpose 

models suitable for general audio and multiple speakers, we also evaluated Google Speech-to-Text “Video” and 

Amazon Transcribe “General.” Hereafter, we refer to these systems as Google Medical Conversation ASR, Amazon 

Medical Conversation ASR, Google General ASR, and Amazon General ASR, respectively. We excluded the 

available Google Speech-to-Text “Default” transcription model due lower performance relative to Google General 

ASR. We also attempted to obtain access to Nuance Dragon Medical SpeechKit (Nuance Communications, 

Burlington, MA) and Deepscribe.ai (Deepscribe, San Francisco, CA) by contacting the respective institutions for 

research purposes. However, despite requests, we were unable to obtain their software for evaluation. 

1073



 

 

To generate the ASR data, the de-identified audio recordings were uploaded to cloud storage and transcribed in 

March 2022. All transcription requests were standardized to include specification of the transcription to use an 

English language model, to perform speaker recognition with two speakers, and to provide an output with proper 

casing and punctuation.  

Performance evaluation 

We conducted our evaluation in two phases: (1) assessment of general ASR performance and (2) assessment of ASR 

performance on potentially meaningful information expressed in patient-clinician conversations. In the first phase, 

we assessed the general overlap of words between reference and ASR transcripts by WER. Because the selected 

ASR engines also had a speaker diarization feature, which attempts to separate speakers based on recorded vocal 

qualities, we also chose to assess performance on the task of recognizing different speakers within each 

conversation. We evaluated these systems using word-level diarization error rate (WDER), a metric which has been 

used previously by Shafey et al. for use in evaluating joint ASR and speaker diarization systems23. WDER 

characterizes the overlap of relative speaker labels between reference transcripts and ASR transcripts. As speaker 

labels for Amazon Medical Conversation ASR, Google General ASR, and Amazon General ASR were provided as 

“0” or “1,” we assigned speaker labels in a way that assumed the best potential performance in this aspect for each 

system (i.e., minimizing incorrect role attribution). To do this, we mapped the provided speaker labels on a per-

conversation and per-engine basis to either “Doctor” or “Patient” in a way that minimized diarization errors. For 

Google Medical Conversation ASR, which provided embedded speaker labels of “spkr:patient” or “spkr:provider” 

with each utterance, we also evaluated the system using the embedded speaker labels. 

In the second phase of our evaluation, we assessed the transcription performance of potentially meaningful 

information present in patient-clinician conversations. First, we stratified errors based on human annotated 

documentation relevance generated from the procedure noted above. Second, we compared the capture of medical 

concepts as labeled by an automated annotator43 using Logical Observation Identifiers Names and Codes (LOINC) 

and SNOMED CT ontologies. Here, we report results as precision, recall, and F1 scores relative to reference 

transcripts. Third, we report common words in reference transcripts affected by deletion and substitution errors. For 

all analyses, we confirmed the veracity of the results with a manual review of a subset of errors within reference 

transcripts. 

 

Results 

Automated transcription performance as measured by WER across evaluated models differed by less than 2%, 

ranging from 8.8% by Google General ASR to 10.5% by Amazon Medical Conversation ASR (Table 1). When 

WER was broken down into constituent substitution, deletion, and insertion rates, substitution errors were the most 

common type of error across all models. General purpose models achieved slightly smaller substitution error rates 

relative to their medical conversation counterparts. The inverse was true for deletion errors, where general purpose 

models obtained slightly higher error rates.  

 

Engine Type 
WER 

(%) 

Substitution 

Rate (%) 

Deletion 

Rate (%) 

Insertion 

Rate (%) 

WDER 

(%) 

Total Words as 

Transcribed 

Amazon General ASR 9.4 4.3 3.6 1.4 1.8 134,649 

Amazon Medical 

Conversation ASR 
10.5 6.5 2.4 1.6 5.1 134,910 

Google General ASR 8.8 5.2 2.5 1.1 6.3 134,240 

Google Medical 

Conversation ASR 
9.1 5.7 1.0 2.4 13.9* 135,909 

 Table 1. Word error rate (WER), WER Components, and word diarization error rate (WDER) for four automatic 

speech recognition (ASR) engines with speaker diarization on patient-clinician conversations. *With embedded 

“patient” and “doctor” speaker labels. 
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Performance of speaker labels at the word level ranged from 1.8% by Amazon General ASR to 13.9% by Google 

Medical Conversation ASR (Table 1). Evaluated general-purpose models achieved a lower WDER than their 

specialized counterparts. Amazon General ASR achieved the lowest WDER of the four models. Google Medical 

Conversation ASR, despite providing patient/clinician speaker labels embedded in its output, generated the highest 

WDER of 13.9%, well above its corresponding general-purpose model of 6.3%. Ignoring embedded role labels and 

applying role labels which would maximize diarization performance, Google Medical Conversation ASR achieved 

14.0% WDER. 

The next stage of our analysis focused on transcription performance of potentially important information categories. 

When error rates were segmented by speakers, the clinician speaker, in general, had a slightly higher WER relative 

to the patient speaker across all models (Table 2). WDER typically differed between speakers by less than 1%, 

except for Amazon Medical Conversation ASR, which had a 2.8% increase in clinician WDER. When focused on 

utterances potentially relevant for clinical documentation, WER differed by 1% or less across all models. WDER, on 

the other hand, appeared to be lower across all models for phrases relevant to documentation and ranged from a 1% 

difference with Amazon General ASR and a 4.5% difference with Google Medical Conversation ASR. 

 

Engine Type Category Segment 
WER 

(%) 

WDER 

(%) 

Total Words as 

Transcribed 

Amazon General 

ASR 

Speaker 
Patient 8.0 1.8 61,803 

Clinician 10.6 1.9 72,846 

Documentation 

relevance 

Yes 10.2 1.0 28,440 

No 9.2 2.1 106,209 

Amazon Medical 

Conversation ASR 

Speaker 
Patient 8.7 3.6 61,930 

Clinician 12.1 6.4 72980 

Documentation 

relevance 

Yes 11.1 2.6 28,372 

No 10.4 5.7 106,538 

Google General ASR 
Speaker 

Patient 7.3 6.4 61,653 
Clinician 10.1 6.2 72,587 

Documentation 

relevance 
Yes 9.2 4.4 28,208 
No 8.7 6.8 106,032 

Google Medical 

Conversation ASR 

Speaker 
Patient 7.9 13.4 62,300 

Clinician 10.1 14.6 73,609 

Documentation 

relevance 

Yes 9.3 10.5 28,492 

No 9.1 15.0 107,417 

Table 2. Performance of four ASR engines with speaker diarization on patient-clinician conversations, stratified by 

additional categories. WER: Word error rate, WDER: Word diarization error rate. 

 

To supplement the prior analysis, we also assessed the transcription fidelity in terms of medically pertinent concepts 

as labeled by an automatic annotator. From this assessment, all evaluated models achieved low recall while retaining 

high precision (Table 3). In other words, many of the medically pertinent concepts in the reference were not 

correctly transcribed by ASR; but when concepts were captured, the concepts tended to be captured correctly. 

Qualitatively, concepts that were commonly not annotated relative to reference included answers to physician 

questions, such as “Don’t Know,” “Can’t Do,” or “I don’t know,” as well as concepts that were transcribed in a way 

that was not detected by the annotator (e.g., “blood pressure” in the reference → “bp” after ASR was not 

recognized). 

 

Engine Type Recall Precision F1 Score 

Amazon General ASR 0.49 0.96 0.65 

Amazon Medical Conversation ASR 0.48 0.95 0.64 

Google General ASR 0.49 0.96 0.65 
Google Medical Conversation ASR 0.49 0.95 0.64 
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Table 3. Performance of four ASR engines by recall, precision, and F1 score of medically pertinent concepts 

relative to a standardized reference.  

 

Perhaps not surprisingly, words frequently affected by deletion and substitution errors appeared to be common 

words which are often useful for interpretation of phrases in conversation, rather than specific medical terminology 

(which may be more common in clinician dictations). We identified 10 of the most common words affected by 

deletion and substitution errors for each engine, excluding substitution errors that were a result of different spelling 

standards across engine types (e.g., “mhm” in Amazon Medical Conversation ASR vs. “um-hum” in Google 

Medical Conversation ASR or “blood pressure” in Amazon General ASR vs. “bp” in Amazon Medical Conversation 

ASR) (Table 4). From this procedure, we identified that common words such as “I,” “you,” “yeah,” or “okay,” were 

often deleted or substituted across all engine types. 

Common Deletion Errors 

Amazon General 

ASR 

Amazon Medical 

Conversation ASR 

Google General 

ASR 

Google Medical 

Conversation ASR 

Word Count Word Count Word Count Word Count 

okay 492 i 151 i 159 i 60 

yeah 411 and 109 a 88 a 42 

i 166 a 95 you 66 you 36 

no 154 you 75 the 59 and 35 

you 133 the 62 and 52 the 33 

a 92 it 62 it 51 that 26 

it 66 that 40 yeah 32 in 16 

know 65 okay 36 okay 25 yeah 15 

yes 63 yeah 36 that 20 okay 14 

the 55 of 28 in 20 of 14 

 

Common Substitution Errors  

Amazon General ASR 
Amazon Medical 

Conversation ASR 
Google General ASR 

Google Medical Conversation 

ASR 

Word Count 
Common 

substitutions 
Word Count 

Common 
substitutions 

Word Count 
Common 

substitutions 
Word Count 

Common 
substitutions 

too 69 to, two and 185 on, in too 119 to, two a 107 uh, the 

okay 67 all, right i 128 they, you no 93 know, yeah and 82 in, uh 

yeah 61 all, so a 116 the, uh i 74 it, a i 79 they, uh 

you 56 you're, you've no 77 know, now and 69 in, right that 67 the, uh 

i 55 they, it too 76 to, two in 59 and, an is 54 it's, here's 

no 47 know, all is 73 it's, here's is 58 it's, here's the 52 a, uh 

a 46 the, an are 70 you're, they're it 54 it's, a doctor 51 doctor's, doctors 

and 45 in, an the 67 that, a you 54 he, me you 48 you're, you'd 

the 39 a, this you 66 you're, he a 52 the, an it 47 it's, you 

are 36 you're, we're it 64 a, it's that 48 the, but in 42 and, it 

Table 4. Top 10 common words affected by deletion and substitution errors following ASR across four engines, 

excluding words with different spelling standards across engines. Substitution errors panel showcases two most 

common substitutions. 
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Discussion  

This study compared the performance of four contemporary ASR transcription models, two for general-purpose use, 

and two for medical conversations, on a corpus of simulated patient-physician conversations. From the evaluation, 

WER across models were similar and ranged from 8.8% and 10.5%. We also report WDER range from 1.8% to 

13.9%. In our error analysis, phrases which were marked as potentially relevant for documentation were transcribed 

by ASR with similar fidelity as non-relevant phrases. Words in the conversations most frequently affected by ASR 

errors appeared to be useful for the interpretation of statements, rather than medical terminology. These findings 

suggest that, despite progress in the performance of ASR technology for the transcription of patient-clinician 

conversations, which may enable new opportunities for applications, there is room for additional improvement. The 

nature and degree of improvement that is needed is likely contingent on the performance needs of technologies 

which will process the automatically generated transcripts. 

We report that performance as measured by WER and WDER has improved over prior evaluations. First our 

obtained WER was lower than the 35% WER figure previously reported by Kodish-Wachs24 and the 34% WER 

achieved by Schloss and Konam with Google ASR Video19. Our results also indicate improvement over the 18% 

WER reported by Chiu et al. in the development of Google’s medical conversation ASR model15. Similarly, WDER 

achieved by all engines were below 14%, which was lower than Shafey et al.'s WDER of 15.8% using a baseline 

system and a corpus of patient-clinician conversations23. Because this study’s evaluation dataset was generated 

under ideal recording conditions, we believe that our reported figures likely represent an upper bound in potential 

performance. More realistic clinic conditions with noise, non-native speakers, and lower-quality recording devices 

would likely increase ASR error rates. 

Interestingly, Google Medical Conversation ASR, which provided embedded speaker labels as part of its output, 

obtained the highest WDER of all evaluated engines. This result was particularly striking when compared the 2.2% 

reported by Shafey et al. of Google for their joint ASR and speaker diarization model23. Upon scanning of errors in 

speaker tags, we observed that such tags were incorrectly flipped for large portions of the conversation, which was 

comparable to an observed issue that Shafey et al. reported in their study. This finding suggests that, if the evaluated 

model and the model referenced by Shafey et al. are similar, the observed issue may not have been resolved.  

From our analysis of medical concepts and words frequently affected by ASR errors, we identified an area that may 

require additional improvement: the handling of pronouns and agreement tokens. These words, if modified, have the 

potential to drastically alter the meaning of utterances in conversation, yet were commonly affected by deletion and 

substitution errors. We believe that this could potentially affect the ability of automated approaches for natural 

language understanding of statements from patient-clinician conversation. Indeed, at least one study has attempted 

to address a consequence of this issue: in their symptom recognition model, Rajkomar et al. also focused on 

identifying whether a patient experienced a symptom given a conversation, as compared to labeling symptoms 

alone14. Future evaluation work could more closely attempt to understand how errors on words such as pronouns and 

agreement tokens may affect the accuracy of information extracted from patient-clinician conversation.  

Despite being advertised as tuned for the capture of medical conversation, the medical conversation models 

achieved similar performance to general-purpose models in terms of capturing relevant phrases for documentation, 

capturing medical concepts, and generating common substitution and deletion errors. We speculate that these results 

were achieved due the fact that the primary care conversations used for evaluation largely contained general 

conversational English language instead of dense medical jargon (e.g., as in a dictated clinical note). Phrases which 

were deemed relevant for documentation were often stated in plain language (e.g., “I exercise twice a week.”). The 

non-specialized language would likely be similarly captured across both general and specialized models. We believe 

that corpora with conversations that include dense and complex medical terminology (e.g., readings of medical 

reports) may yield different results. One future direction for evaluating performance between these general purpose 

and specialized models can focus on the capture of specific elements of information in conversation outside of 

medical terminology that are pertinent to clinical documentation needs. 

It is currently unclear whether the reported performance figures suggest that existing ASR and speaker diarization 

technologies are now ready for digital scribing systems. The error rates of medical conversation ASR are now 

comparable to human error rates on non-medical standardized conversation corpora, such as 5.9% WER for 

Switchboard and 11.3% WER for CallHome44. While specific conclusions cannot be drawn from this comparison 

because of differences in content and intended use of the conversation data, the general similarity in WER suggests 

that the performance of the evaluated models may now be amenable to new opportunities for useful applications 

which process patient-clinician conversations captured by ASR. Despite this possibility, the technical approaches to 
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modeling scribing-related tasks are still nascent in maturity and greatly vary in task scope and data used to generate 

results11,12,21. As a result, the fidelity of ASR, particularly as measured by the general performance metrics used in 

this study, may not map to overall system performance in a straightforward manner. This is further complicated by 

the potentially impactful effects of poorly performing ASR for digital scribing systems: any mis-captured 

information may result in a reduction in time and effort savings for the clinician user or may even introduce new 

sources of medical error. Additional development and standardization in ASR, speaker recognition, and NLP 

technologies for digital scribing systems as well as approaches to evaluate those technologies in appropriate contexts 

will be needed in order to answer whether ASR and speaker diarization technologies for patient-clinician 

conversations has the appropriate fidelity for real-world clinic use. 

There are several limitations to this study. First, the original conversational transcripts were collected from a study 

which focused on conversations with patients that had the possibility of discussing mental health concerns. This may 

reduce generalizability. Upon manual review, however, we found that the majority of the subsampled conversations 

did not discuss mental health as a chief complaint. Second, the original transcripts were collected from a single 

healthcare system in a primary care setting. Conversations between providers at a different health system or different 

specialty may drastically differ in content and length. Third, while both medical conversation models are from 

vendors with an established publication record in state-of-the-art ASR, it is possible that there are other systems still 

in development, were not considered, or were not accessible to the researchers, which may have better performance 

with the evaluation data. Fourth, as stated above, the evaluation data were created under different conditions relative 

to real-world clinical conditions (i.e., native-English speakers, good-quality recording equipment, quiet recording 

settings). While this step was taken to limit audio quality and speaker characteristics as a bottleneck to potential 

performance, the results likely limit generalizability to real-world settings. 

Conclusion 

In this study, we assessed the current feasibility of ASR of patient-clinician conversations for digital scribe systems 

by evaluating the performance of specialized commercial speech recognition systems on ASR and speaker 

diarization. We report that, while there is room for improvement, error rates, at least in ideal conditions, have 

improved relative to prior evaluations, potentially creating opportunities for the development of downstream 

applications which rely on ASR of patient-clinician conversations.  
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