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Abstract

Various kinds of image-guided techniques have been successfully applied in the last years for the treatment of tumours, 
as alternative to surgical resection. High intensity focused ultrasound (HIFU) is a novel, totally non-invasive, image-
guided technique that allows for achieving tissue destruction with the application of focused ultrasound at high inten-
sity. This technique has been successfully applied for the treatment of a large variety of diseases, including oncological 
and non-oncological diseases. One of the most fascinating aspects of image-guided ablations, and particularly of HIFU, 
is the reported possibility of determining a sort of stimulation of the immune system, with an unexpected “systemic” 
response to treatments designed to be “local”. In the present article the mechanisms of action of HIFU are described, 
and the main clinical applications of this technique are reported, with a particular focus on the immune-stimulation 
process that might originate from tumour ablations.
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Introduction
Image-guided ablations are nowadays applied for the treat-
ment of a large variety of malignant and benign disease, 
being often included in international guidelines as an 
effective alternative to standard surgical treatments.1–3 The 
advantages of percutaneous ablation vs surgery include 
reduction in hospitalization length and patient’s morbidity 
and allows to treat patients not eligible for surgery. Also, 
thanks to the improvement of image guidance techniques, 
image-guided ablations are nowadays indispensable in clin-
ical practice, and interventional oncology is widely recog-
nized as the fourth pillar of oncology.4,5

Some different techniques have been applied in the last 
years for percutaneous treatment of tumours located in 
different body regions. Radiofrequency ablation has been 
the first technique widely accepted for the treatment of 
hepatic and renal tumours, while other techniques, such 
as cryoablation, laser ablation and microwave ablation 
are gaining increasing interest in different scenarios due 

to their peculiar characteristics.6–8 Among the different 
options for image-guided tumour ablation, high intensity 
focused ultrasound (HIFU) achieved a particular interest 
in the last years, being the only totally non-invasive tech-
nique, as with HIFU not even a  small incision for device 
insertion is needed, and actually is used in several clinical 
application including treatment of benign and malignant 
tumours3,9–11 functional neurosurgery for back pain,12 for 
essential tremor13 or Parkinson’s disease.14

Biological properties of ultrasound were first discovered 
in 1927 and studied (explored) in subsequent years.15 For 
a long time, however, these effects have not been used in 
clinical applications: indeed the first clinical use in litera-
ture was published in 1994 for prostate cancer,16 followed 
by larger series in recent years in which the utility of HIFU 
in various disease has been reported.17–21

One of the most fascinating aspects of image-guided ablations 
that has been recently investigated is their ability to achieve 
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a sort of stimulation of the immune system, with an unexpected 
“systemic” produced by a “local” approach.22–24 Sparse evidence of 
an immunomodulated effect has been reported, and a better identi-
fication of the mechanism underlying the systemic effect generated 
by a local ablative treatment represents one of the most intriguing 
challenges for investigators at the present time.

In the present article the mechanisms of action of HIFU are 
described, and the main clinical applications of this technique are 
reported, with a particular focus on the evidence regarding the 
immune response to local ablative treatments, and in particular 
HIFU.

Physical basis of tissue destruction by HIFU
HIFU is based on the possibility to deliver high intensity energy 
into a very small focal spot inside the body, by precisely focusing 
an ultrasound beam on a specific target (often deeply located 
in the body). High-intensity ultrasound (in general greater 
than 5 W  cm–2) can produce coagulation necrosis in biolog-
ical tissue and this is the phenomenon mainly exploited in 
HIFU ablation technique. In contrast, low-intensity ultrasound  
(0.125–3 W cm–2) leads to non-destructive heating and can be 
used for other clinical applications (e.g. treatment of back pain).25

The biological effects of HIFU can be explained considering two 
principal mechanisms: thermal damage and mechanical damage.

The thermal effect of HIFU can be explained by absorption of the 
acoustic energy and its conversion to heat at the targeted point. 
The heat increases the temperature rapidly to 60°C or higher, 
producing local coagulative necrosis.26 Similar to other thermal 
ablations, increase in temperature above 60°C causes protein 
denaturation and coagulation necrosis. As thermal effects of 
ultrasound absorption are linearly proportional to the sonic 
intensity, they can be predictable.27

Even though thermal damage is the most considered effect of 
HIFU, non-thermal mechanical destruction might have an even 
more relevant role in HIFU ablation, particularly regarding the 
immunomodulated effect.28 Mechanical ablation  rather than 
thermal ablation seems to provide less damage to the surrounding 
tissue, as the mechanical effect is not impacted by heat perfusion 
via blood flow, and the treated area is more precisely demarcated 
as it coincides with the ultrasound focal region.29 One of the 
most important differences in mechanical ablation as opposed to 
thermal ablation is the absence of protein coagulation necrosis.

Tissue exposure to repeated short duration pulses with low duty 
cycles of HIFU let to achieve mechanical disruption and to frac-
tionate tissue in a controlled manner.30

The main mechanisms associated with mechanical tissue destruc-
tion in HIFU ablation are represented by acoustic cavitation.

Acoustic cavitation
Acoustic cavitation is based on the interaction between ultrasound 
waves and bubbles of gas. In HIFU ablation, sinusoidal frequencies 
in the range of 0.5–5 MHz with high acoustic intensity are generally 

used. In the tissue, at high acoustic pressure level, the peak positive 
(compression) part of the sinusoidal wave travels faster than the 
peak negative (rarefraction) part of the wave due to the non-linear 
ultrasound wave propagation, which creates a shockwave as the 
ultrasound wave penetrates the tissue. Cavitation occurs as the 
result of this non-linear effect for which microbubbles (that are 
different from the boiling bubbles formed in thermal effects) can 
be formed if the negative pressure is sufficiently intense. Briefly, 
cavitation phenomenon occurs when ultrasound wave intensity 
exceeds a specific threshold, as the negative pressure is sufficiently 
high to overcome the surface tension of the gas nuclei available in 
the tissue. These bubbles are subjected to non-linear oscillations 
caused by the ultrasound with consequent asymmetrical collapse 
and disintegration associated with cell death and tissue damage. To 
obtain cavitation in biological tissues the presence of gaseous nuclei, 
which is typical of mammalian tissues31 is needed. Two main types 
of acoustic cavitation can be described: stable cavitation and iner-
tial cavitation. Stable cavitation develops when a bubble oscillates 
repeatedly in an ultrasonic field, intercepting and radiating energy 
to the surrounding tissues. This causes microstreaming of fluid 
around the bubble and destruction of surrounding tissues. When 
the ultrasound pressure is high, the radius of the bubbles expands 
significantly larger than twice of the initial radius followed by ener-
getic collapse, causing localized high acoustic pressure of several 
thousand atmospheres.32

In literature cavitation has been sometimes related to vascular 
damage and disruption, which can cause local and potentially 
systemic effect in tumour treatment, even if the main mech-
anisms underlying the interaction of these agents with HIFU 
remain unknown.33,34

Some studies showed that when acoustic cavitation is combined 
with radiation or chemotherapy, enhanced therapeutic effects are 
observed.35

For example, when treating in vivo 45 cases of bladder cancer in 
mice, Tran et al36 showed additive antitumour and antivascular 
effects when ultrasound microbubbles were combined with radi-
ation, thus opening up a wide spectrum of possibilities for future 
treatment of human cancer.

Moreover, cavitation mechanism can indirectly cause the forma-
tion of a lithotripsy shockwaves that seems to present broad 
potential for non-thermal biologic effect in treating tumour, 
even if limited experiences reports that lithotripsy associated 
with cavitation phaenomenon may increase the development of 
distance metastasis.37,38

Histotripsy
Another important effect that might be achieved with HIFU is 
the so-called “histotripsy”: mechanical fractionation and emul-
sification of tissue into liquid-appearing acellular homogeneate 
produced by high pressure ultrasound pulses. There are two 
types of histotripsy: cavitation cloud histotripsy  and boiling 
histotripsy. In CH, microsecond-length (<20 μs) ultrasound 
pulses at very high pressure (>15 MPa) and low duty cycle (<5%) 
are used to generate a dense cloud of cavitation microbubbles.39 

http://birpublications.org/bjr


3 of 9 birpublications.org/bjr Br J Radiol;91:20170641

BJRReview article: Focused ultrasound: enhancing immunotherapy for cancer

The pulsing method in CH is different than in acoustic cavita-
tion method commonly reported, where the acoustic pressures 
are about two times lower and the pulses are about 1000 times 
longer. In CH, the energetic expansion and collapse of the cavita-
tion bubbles formed by microsecond pulses produce high strain 
and stress to fractionate the target tissue into liquid appearing 
acellular debris.40, 41 In BH, millisecond-long (1–20 ms) bursts 
of high amplitude HIFU shock waves (p +> 60 MPa) are used 
to cause boiling at the focal spot42 to form large boiling bubbles 
(up to millimetre).43 The millimetre-sized boiling or vapour 
bubbles fractionate the target tissue into liquid-appearing acel-
lular fragments.42, 43 The physical mechanism of fragmentation 
is due to the rapid heating within milliseconds produced by the 
high amplitude shock fronts formed via the non-linear propaga-
tion effects and its further interaction with previously formed gas 
bubbles that cause mechanical fractionation of tissue.

Furthermore, cavitation bubbles in CH and boiling bubbles in BH 
are hyperechogenic, and tissue fractionation and emulsification 
are hypoechonic, so the histotripsy treatment process and result 
can be easily monitored in real time using ultrasound imaging. 
The damage induced is purely mechanical and contained no 
visible signs of thermal denaturation.

Emulsified lesions with no evident thermal damage can be 
induced using different parameters of the pulsing scheme and 
the lesion created by CH and BH is very homogeneous, with no 
visible cellular components.44–47 Thus histotripsy is more predict-
able and repeatable over the conventional thermal method.

In the in vivo large animal model, CH has been used to create 
lesions in the liver kidney,48 prostate49, 50 and heart.51, 52 Lesions 
were generated with very sharp margins (<1 mm), and the large 
vessels in the treated region were structurally intact while the 
surrounding tissue was completely fractionated and liquefied 
into acellular homogenate.The liquefied tissue homogenate is 
completely absorbed within 1 month, resulting in tissue volume 
reduction similar to surgery and with minimal fibrous tissue 
remaining.The number and range of animal studies by BH is less 
but indicated the similar results.46

Clinical applications of HIFU
HIFU has been used in the treatment of a large variety of diseases. 
The two actual most represented applications are the treatment 
of uterine fibroids and the palliative treatment of unresectable 
pancreatic cancer.

HIFU is nowadays widely used in the treatment of uterine 
fibroids, and may result in reduction of pain and pressure, 
frequent urination and/or constipation, and excessive menstrual 
bleeding with less complications in comparison with surgery.53, 54 
In a study by Dobrotwir et al54 the treatment of 100 females with 
HIFU was safe and effective with no significant complications 
reported during the treatments or during the course of the 
follow-up period. HIFU has also shown promising results in 
the treatment of adenomyosis with hypothermic destruction 
of “islands” of aberrant endometrium after precise targeting of 
adenomyotic tissue.55

Complications related to the HIFU treatment for fibroid are 
limited and rarely severe, and include haematuria for bladder 
heating, skin burnt or pain after the procedure.56

In the treatment of advanced stage pancreatic cancer, HIFU 
showed promising results in pain relief and in increasing median 
survival.57–60 Li et al59 performed a study on 120 patients with 
pancreatic cancer refractory to gemcitabine. Among these patients 
61 were treated with combination of HIFU and S-1, and 59 with 
only S-1. Authors found a significantly longer median overall 
survival (10.3 vs 6.6 months, p < 001) and median progres-
sion free survival (5.1 vs 2.3 months) in the group of patients 
treated with HIFU in combination with S-1. Also, pain remis-
sion rate was significantly higher in patients treated with HIFU 
(57 vs 20%, p < 001) than in patients treated with S-1 alone.  
Li et al61 performed in 2016 a systematic review of the literature 
on HIFU treatment of pancreatic cancer. Even though affected 
by a low quality of the included studies, in this systematic review 
clinical benefit rate of HIFU plus radiation and chemotherapy 
was significantly higher than in patients treated with radia-
tion therapy (p < 0.05), or various regimen of chemotherapy  
(p < 0.05) alone.

HIFU is currently used in the liver for the treatment of both 
unresectable advanced HCC (Hepatocellular  Carcinoma)  and 
liver metastases with good results and tolerance even in patients 
with advanced Child-Pugh stage and cirrhosis.62 Cheung et al62 
analysed a group of 100 cirrhotic patients treated with HIFU 
ablation, including also Child-Pugh C patients, trying to identify 
predictive factors for HIFU intolerance. Authors found 13% of 
complications, mainly represented by skin burn of various grade. 
Age was the only predictive factor for complications at univariate 
analysis. They concluded that HIFU might represent a well-tol-
erated new alternative treatment even for Child-Pugh B or C 
patients. Moreover, HIFU has been found to be both safe and 
effective also in treating tumours adjacent to major vessels. One 
case of a patient with colorectal liver metastasis close to the infe-
rior vena cava treated with HIFU is shown in Figure 1. However, 
application of HIFU to the liver might be difficult due to obsta-
cles to ultrasound-directed therapy, such as ribs, interposed lung 
parenchyma and respiratory motion of the liver itself.63 Some 
rare complications are reported in literature such as rib fractures, 
pneumothorax, pleural effusion, biliary obstruction and fistula 
formation.64 Some recent studies demonstrate the possibility to 
use HIFU with transarterial chemoembolization in the treatment 
of HCC with very promising results.65

Utility of HIFU in treating breast cancer has been proved in a 
few studies, in particular for early stage disease. HIFU could 
be particularly useful in treating females who do not desire 
surgery or who are not surgical candidates.3, 66, 67 The work 
proposed by Merckel et al67 reported successful MR-HIFU abla-
tion with a dedicated breast system with histopathologically 
proven complete tumour necrosis. In a recent systematic review 
and meta-analysis on minimally invasive treatments of breast 
tumours, HIFU was reported to have 96% (90–98%) technical 
success and 49% (26–74%) pooled technique efficacy.
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Figure 1. Case of a patient with colorectal liver metastases 
in a difficult location close to the inferior vena cava succes-
fully treated with HIFU. (a) A contrast-enhanced CT showing 
a lesion (arrow) located very close to the inferior vena cava. 
(b) Treatment with HIFU and fusion of real-time ultrasound 
images. (c) Treatment with HIFU and fusion of real-time CT 
images. (d) A  contrast-enhanced CT showing large area of 
ablation without residual vital tissue 3 months after the treat-
ment. HIFU, high intensity focused ultrasound.

Also prostate diseases can be treated with HIFU: initially treat-
ment was proposed only for benign prostate hyperplasia, while 
today increasing attention is focused on the treatment of prostate 
cancer.68, 69 Some author reported that low-risk patients (pros-
tate-specific antigen level low than 10 ng ml−1; clinical stage 
cT1 or cT2a; and absence of Gleason pattern 4 or 5 tumour on 
biopsy) could be better managed with conservative therapy such 
as HIFU in order to avoid the complications of surgery (incon-
tinence, impotence, anorectal dysfunction) with very satisfac-
tory results.70, 71 Blana et al72 reported the results of long-term 
follow-up in 163 patients who underwent HIFU treatment 
for prostate cancer. Within the 4.8 ± 1.2 years of follow-up, 
no patients died of prostate cancer, 86.4% had a PSA nadir of  
<1 ng ml−1 and 92.7% was found to have negative post-treatment 
biopsy. The most common complications, associated with HIFU 
ablation of prostate cancer are represented by urinary tract infec-
tions, fistula, and urinary incontinence.73

Of great interest is the application of HIFU for the treatment of intra-
cranial tumours: ultrasound beams generated by multiple trans-
ducers, although attenuated, can be in fact directed trans-cranially 
under MR guidance. Through phase corrections simulated relying 
on pre-acquired CT the beam’s paths are corrected and the focus 
aimed at the tumour.74 While there are some pre-clinical studies 
in this regard75 there are only very few reports on the use of HIFU 
for brain tumour ablation in human so far: the first attempt was 
reported by Ram et al in 2006 using direct HIFU through a crani-
otomy 7 days prior to treatment in patients with recurrent glioblas-
toma, resulting in histological evidence of thermocoagulation.76 In 
another study published in 2010 by McDannold et al the authors 
managed for the first time to perform trans-cranial MR-guided 
HIFU. The aim was ablation of intracranialglioblastomas otherwise 
not suitable for resection in three patients. Although the authors 

did not achieve a complete thermal coagulation they demonstrated 
for the first time the feasibility of this technique.77 Promising results 
are also foreseen in the field of blood–brain barrier opening, in 
order to allow the delivery of therapeutic agents. Many pre-clin-
ical studies demonstrated that the blood–brain barrier can be 
safely and temporarily opened using HIFU combined with micro-
bubbles, therefore using a low energy, targeted and non-invasive 
method.78, 79

Whatever the organ treated, an important effect of HIFU is 
represented by an improvement in cancer-related pain. This is 
of crucial importance, e.g. in patient with pancreatic adenocar-
cinoma, in which cancer-related pain is often very difficult to be 
controlled even with strong painkillers and morphine. This effect 
is probably due to the mechanical effect of HIFU, which seems 
to induce neuromodulation and pain relief through a revers-
ible block of nerve activity maybe for the destruction of some 
locally active nociceptive nerve fibres in adjunct to a reduction 
of inflammatory tumour environment.17, 80

Immunomodulation effect of thermal therapies and 
HIFU
In the last few years it has been shown that activation of immune 
system through, e.g. adoptive T cell transfer or vaccination can play 
a role in the treatment of cancer patients.81 Some cases of systemic 
response to local ablative therapies have been reported, and the 
immunostimulating effect of ablative techniques is actually one of 
the most interesting fields of investigation for researchers.22–24

In 2003 Sánchez-Ortiz et al82 reported the resolution of lung 
metastasis after ablative treatment of primary renal tumour; 
similar case of pulmonary and adrenal metastases resolution 
after ablation of renal cancer was subsequently reported by Kim 
et al83 Some authors, investigating the role of immunostimu-
lation of radiofrequency ablation on lung tumours, performed 
ablation of four lung cancer followed by surgical resection, and 
documented a local and systemic immune response subsequent 
to RFA (Radiofrequency Ablation). In this study RFA leads to an 
activated and highly T-cell-stimulatory phenotype of dendritic 
cells, which was considered to promote long-term immunity 
against lung cancer.84 These preliminary experiences and case 
reports opened the way for more specific investigations on the 
systemic effects of local therapies.85

Of particular relevance appear to be the immune-response to 
HIFU treatment. Particularly, the phenomenon of cavitation, 
not providing thermal destruction and denaturation of the 
proteins, seems to be a very promising mechanism of immuno-
stimulation.86 Immunitary response phaenomenon related with 
HIFU technique, could be explained considering this theory: 
cancer debris remain in situ after HIFU treatment and could be 
seen as antigens for the immune system. This can act as a sort 
of in situ vaccine able to stimulate systemic immune responses, 
involving T cells and cytokines, also elsewhere in the body.87 
Tumour antigens present in the depot of damaged or death cells 
can be captured by phagocytic cells that subsequently migrate 
toward tumour-draining lymph nodes. Antigens could also 
passively enter the circulation or lymphatics and be transported 

http://birpublications.org/bjr


5 of 9 birpublications.org/bjr Br J Radiol;91:20170641

BJRReview article: Focused ultrasound: enhancing immunotherapy for cancer

Figure 2. Case of a patient with a pancreatic adenocarcinoma treated with HIFU ablation with abscopal response of distant lymph-
node metastases. (a) A contrast-enhanced CT showing a 7 cm mass at the level of pancreatic body (arrow). The lesion was consid-
ered to be not suitable for surgical resection and was fast growing under chemotherapy. (b) The same CT scan demonstrated the 
presence of lymph-node metastases in the paraortic space (arrow). The patient underwent treatment with USg (Ultrasound guid-
ed)-HIFU for pain palliation. (c) A contrast-enhanced CT scan performed 1 year after the procedure demonstrated large avascular 
area in correspondence of the treated tumour (arrow). (d) The same CT scan demonstrated the complete disappearance of the 
pathological lymph nodes (arrow). HIFU, High intensity focused ultrasound.
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