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Abstract 

Pneumonia is the most frequent cause of infectious disease-related deaths in children worldwide. Clinical decision 
support (CDS) applications can guide appropriate treatment, but the system must first recognize the appropriate 
diagnosis. To enable CDS for pediatric pneumonia, we developed an algorithm integrating natural language 
processing (NLP) and random forest classifiers to identify potential pediatric pneumonia from radiology reports. We 
deployed the algorithm in the EHR of a large children’s hospital using real-time NLP. We describe the development 
and deployment of the algorithm, and evaluate our approach using 9-months of data gathered while the system was 
in use. Our model, trained on individual radiology reports, had an AUC of 0.954. The intervention, evaluated on 
patient encounters that could include multiple radiology reports, achieved a sensitivity, specificity, and positive 
predictive value of 0.899, 0.949, and 0.781, respectively.  

Introduction 

Integration of natural language processing (NLP) and machine learning to guide real-time decision support could 
allow for streamlined clinical care but is overall lacking in clinical practice, particularly in the case of pediatric 
pneumonia.1 Recently, a clinical trial at our institution employed a clinical decision support (CDS) strategy to promote 
appropriate antibiotic prescribing for children with pneumonia presenting to the Emergency Department at Monroe 
Carell Jr. Children’s Hospital at Vanderbilt.2,3 This CDS was triggered when pneumonia was added to a pediatric 
patient’s problem list in the EHR. To facilitate study enrollment, it was necessary to help providers recognize potential 
pneumonia as soon as possible, and prompt them to add the diagnosis to the problem list. To that end, we developed 
a novel method for identifying chest x-ray (CXR) radiology reports that support a diagnosis of pediatric pneumonia. 
This paper describes the development of this method, which uses NLP on radiology reports combined with a random 
forest classifier, and an evaluation based on 9-months of data gathered while the system was in use. 

Background 

Pneumonia is an acute respiratory infection affecting the alveoli and distal bronchioles. It is the most frequent cause 
of infectious disease-related deaths in children worldwide, accounting for 15% of deaths in those less than 5 years of 
age in 2017.4,5 In a cross-sectional study of U.S. acute care hospitals, pneumonia was the most frequent and expensive 
reason for pediatric hospitalizations.6 Community-acquired pneumonia (CAP), defined as pneumonia acquired outside 
a hospital setting, accounts for approximately two million outpatient visits and 124,000 pediatric hospitalizations 
annually.5 Causative organisms include mainly viruses and bacteria.7 Complications include parapneumonic effusion, 
empyema, necrotizing pneumonia, pulmonary abscess, acute respiratory failure and sepsis. Signs and symptoms of 
pneumonia include fever, hypoxemia, tachypnea, cough, chest pain, dyspnea and grunting; physical examination 
findings include rales, wheezing, and dullness to auscultation. Many of these signs and symptoms are nonspecific and 
may result from atelectasis, acute asthma exacerbations, bronchiolitis, congestive heart failure, and other etiologies.  

Chest radiography is the most frequently ordered diagnostic test for suspected pneumonia.8 Yet, as with signs, 
symptoms, and physical exam findings, CXR findings among children with pneumonia may be nonspecific and 
experts often disagree on the interpretation.9,10 A systematic review of children with radiographic evidence of 
pneumonia found that most signs and symptoms have limited predictive value, and there is considerable overlap of 
these findings in pneumonia caused by different etiologies.11 As there is no criterion standard for CXR diagnosis of 
pediatric pneumonia, and CXR cannot distinguish between viral and bacterial infections, diagnosis and treatment 
decisions must be made in the context of clinical, laboratory, and radiologic findings.6 Notwithstanding the limitations 
of CXR, there is a spectrum of radiological appearances consistent with the clinical and pathological diagnosis of 
pneumonia and findings may expedite appropriate clinical management and improve outcomes.8 As a result, CXR has 
become the gold standard for confirmation of a clinical diagnosis of pneumonia.   
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A number of previous studies have attempted to recognize pneumonia from CXR reports and other clinical data, with 
significant early research being performed at the University of Utah and LDS Hospital in Salt Lake City.12–18  In 1994, 
Haug, et al., developed an early “natural language understanding” system to parse full text CXR reports to identify 
important findings and map them to a controlled medical vocabulary, but the system proved difficult to maintain at 
the time.12 In 1999, Chapman & Haug found that computerized techniques can perform as well as a physician, 
concluding that machine learning can be used to identify CXR reports that support a pneumonia diagnosis.13 Also in 
1999, Aronsky & Haug developed a Bayesian Network to identify adult pneumonia in the emergency department 
(ED).14 The inputs for the Bayesian Network included a number of demographic and clinical variables, triage 
information, breath sounds, and lab values, as well as coded data recorded by the ED physician after viewing the 
completed CXR report; codes indicated the specific presence of pneumonia and/or effusion. They recognized, 
however, that CDS systems that rely on additional and time-consuming manual data entry result in a "behavioral 
bottleneck" that prevents such systems from becoming part of clinical routine.14 Their system achieved an AUC of 
0.930 and, at a fixed sensitivity of 0.95, specificity and PPV of 0.685 and 0.073, respectively; when the sensitivity 
was fixed at 0.90, specificity and PPV were 0.790 and 0.102, respectively.15  

In 2000, Fiszman, et al., compared SymText, an early NLP system, and keyword searches of CXR reports, combined 
with expert-crafted rules, against physicians; they found these approaches compared favorably with physicians, 
achieving sensitivity, specificity, and PPV of 0.95, 0.85, and 0.78, respectively.16 However, their analysis was 
performed only on a small, manually-curated gold-standard set of 292 reports enriched to include additional examples 
of bacterial CAP, and results were admittedly unlikely to generalize to reports representing actual disease prevalence. 
In 2001, Aronsky, et al., combined their Bayesian Network with SymText-identified keywords to recognize 
pneumonia from adult patients in the ED.17 However, they found that the physician-coded data on pneumonia and 
effusions, important for their Bayesian Network, was often missing; NLP seemed to compensate for this missing data, 
and resulted in improved performance over previous efforts. Lagor, et al., compared the Bayesian Network approach 
with Artificial Neural Networks, trained on over 32,000 patients, and found similar results.18 Their best-performing 
algorithm achieved a specificity of 0.940 and PPV of 0.186 at a fixed 0.95 sensitivity, but both methods included 25 
manually-curated variables, including, breath sounds, chief complaints, and a number of other clinical characteristics. 

Other research has focused on different populations, clinical documents, and techniques. Liu, et al., studied the use of 
NLP on intensive care unit (ICU) reports and reported success in identifying pneumonia in critically ill patients.19 In 
2008, Elkin, et al., used NLP on CXR reports to obtain SNOMED-CT codes. After applying expert crafted rules, they 
concluded that SNOMED-CT-based rules and codes were accurate enough to detect pneumonia from CXR reports.20 
Asatryan, et al. again focused on using NLP to identify keywords and found that “pneumonia” was most predictive, 
as might have been suspected.21 However, simple keywords can be misleading, as CXR reports often include a 
significant amount of “hedging,” revealing uncertainty about the diagnosis.22  

Most of these previous efforts were focused on adult patient populations, but the presentation of pneumonia in children 
can differ.8 Presentation of pneumonia can also differ based upon the pathogen and type of pneumonia.23 In 2005, 
Mendonça, et al., utilized NLP on CXR reports to recognize hospital-acquired pneumonia in neonates, achieving a 
sensitivity of 0.71 and specificity of 0.99, but a PPV of only 0.075.24 In 2017, Meystre, et al, used these approaches 
to diagnose bacterial pneumonia in a pediatric patients.25 They used NLP to extract specific findings from CXR reports 
for input to a Support Vector Machine (SVM). They achieved sensitivity, specificity, and PPV of 0.71, 0.96, and 0.86, 
respectively, often performing better than domain experts. The system was developed using a manually-curated gold 
standard of 282 reports to extract information from a larger collection of CXR reports, but was not real-time. 

Summary 

This paper describes the development and evaluation of a method that utilizes NLP and random forests to identify 
pediatric pneumonia from radiology reports. Unlike the majority of previous work, it does not incorporate clinical 
variables imported from other parts of the EHR or manual input by physicians. Manually curated clinical data, 
especially pneumonia-specific variables used in previous work, can improve prediction, but are often delayed or absent 
due to the aforementioned behavioral bottleneck.14 This intervention, supporting rapid initial recognition of possible 
pneumonia in a general pediatric population, was implemented in a large children’s hospital using real-time NLP. We 
analyzed performance based on 9-months of real clinical data gathered while the system was in use.  

Methods 

To identify radiology reports that support diagnosis of pediatric pneumonia, we utilized a random forest classifier 
using NLP-extracted features as input. A random forest is a machine-learning classifier based on an ensemble of 
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decision trees.26 It is trained using a corpus of cases and controls. We developed our training corpus by first identifying 
approximately 10,000 historical pediatric admissions at our institution. Cases were a subpopulation of a larger cohort 
of the Etiology of Pneumonia in the Community (EPIC) study, who were enrolled at Monroe Carell Jr. Children’s 
Hospital at Vanderbilt.2,7 Patients were enrolled in the study if they were under 18 years of age, hospitalized with signs 
or symptoms of acute infection and acute respiratory illness, and had clinical and radiographic evidence of pneumonia. 
Children with recent hospitalization, severe immunosuppression, cystic fibrosis, tracheostomy, or clear alternative 
diagnosis were excluded. Controls were identified based upon availability of CXR and the absence of pneumonia-
related diagnostic codes.  The initial training corpus consisted of approximately 10% cases and 90% controls. 

For each of the 10,000 admissions, we queried an EHR data repository to extract the earliest radiology report available 
within 24 hours of admission, either before or after. Not all patients in the cohort had radiology reports in their record 
within the specified window. Additionally, a number of these patients had CXR performed at outside institutions and, 
if the associated reports was in our EHR, it was saved as a scanned image or PDF and was not used in the study. This 
resulted in 5053 CXR reports (4314 controls and 739 cases). While all reports had a separate Impressions section, the 
rest of the report was either in a single, unlabeled section, or separated into individual sections such as, Indication, 
Findings, History, and Comparisons; in all cases, the complete report was utilized. 

After removing any XML markup from the report text, we processed the resulting plain text files using MetaMapLite.27 
MetaMap is an NLP tool that identifies Unified Medical Language System (UMLS) concepts mentioned in clinical 
text; it incorporates the NegEx algorithm to identify whether mentioned concepts are negated (i.e., “opacity in right 
lung” vs “no opacities”).28,29 MetaMapLite provides similar functionality with reduced overhead and greater speed.27 
For negation detection, it can use either NegEx or the more robust ConText30 algorithm; we opted to use NegEx 
because it is slightly faster. We also restricted concepts to the SNOMED-CT vocabulary (validated for pneumonia by 
Elkin, et al.20) and represented using UMLS Concept Unique Identifiers (CUIs) from the UMLS 2017AA release.  

We processed the MetaMapLite output to extract mentioned concepts and converted each report into a set of CUIs 
with their negation status (i.e., “affirmed_C0032285”, “negated_C0034063”). We then identified the most frequent 
CUI/negation-status pairs (those occurring at least five times) from among the entire training corpus. Using the 
resultant list of 1021 frequent concepts, each report in the training corpus was transformed into a binary vector 
representing the presence or absence of these affirmed/negated CUIs. These vectors were then used as input for a 
random forest classifier using R (version 3.5.0) and the R package randomForest.31,32 We constructed our classifiers 
using 700 decision tress and the package default values for other parameters (mtry, nodesize, maxnodes, etc.). Due to 
computational limitations, we did not perform a thorough grid search to optimize hyperparameters; experimenting 
with additional trees and different values of mtry did not improve performance.  

To validate our training data, we built an initial random forest model using all available cases and controls. That 
process identified a number of low-scoring cases, which the model classified as likely having no pneumonia, and 
high-scoring controls, which the model classified as supporting pneumonia diagnosis. Physicians reviewed these 
approximately 200 radiology reports and, as expected, many had been misclassified originally. Flagged reports were 
then reclassified (cases to controls, and vice versa) resulting in 823 cases and 4230 controls.  

After this data validation step, we then rebuilt our random forest model using 10-fold cross validation, training and 
testing each iteration of the model on approximately 4500 and 500 reports, respectively. We also constructed a model 
using the entire training corpus (with no test set). We report the area under the receiver operating characteristic curve 
(AUC) on each test set, as well as the AUC calculated on the out-of-bag sample (OOB AUC) for the training sets. The 
OOB AUC provides an estimate of the model’s performance based on unused portions of the training data. We then 
reviewed the expected performance of the model at various thresholds and, based on desired precision and recall for 
the aforementioned clinical trial, determined the specific decision threshold to be used.  

Implementation 

After appropriate testing and validation, the NLP process and random forest model were deployed as part of the CDS 
infrastructure and integrated with our Epic® EHR. The decision support infrastructure at our institution utilizes an 
Enterprise Service Bus (ESB) that serves as an integration platform for all inbound and outbound data flow associated 
with clinical systems. Via specific adaptors, the ESB integrates CDS services with clinical systems for real-time data 
processing; clinical events represented by discrete data flowing through the ESB initiate surveillance and update CDS 
service inputs/outputs in real-time. In this case, when a patient was admitted to the Pediatric ED, the system began 
listening for CXR orders for the next 24-hours. As soon as they were available on the ESB, the system then processed 
and scored any corresponding radiology reports. If any report scored above the decision threshold (i.e., potential 
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pneumonia), the system posted a smart data element using Epic’s APIs to flag the patient. The presence of the smart 
data element triggered an interruptive Best Practice Advisory (BPA) alert informing the providers that, based upon 
the CXR report, the patient was suspected of having pneumonia. The BPA displayed the radiology report impression 
section and allowed the provider to (1) add CAP to the problem list, (2) report that the patient did not have pneumonia, 
or (3) simply acknowledge or defer the alert. Providers could also enter optional comments. If the provider added CAP 
to the problem list, this would fire a second BPA describing the clinical trial, including any exclusion criteria (age less 
than six months, age greater than 18 years, cystic fibrosis, immunosuppression, or hospitalized within the last seven 
days). This workflow allowed the provider to either enroll the patient, which would trigger a CAP Antibiotic Adviser, 
or decline and note whether their exclusion from the trial was contraindicated or due to other clinical judgement. If 
provider did not add CAP to the problem list, declined to enroll in the trial, or reported no pneumonia, no further alerts 
were generated. Due to the minimal-risk nature of the clinical trial, enrollment decisions were made by the provider. 

Evaluation Methods 

When a CXR is ordered, the order frequently includes multiple images, or views, and each image has its own 
associated report. Sometimes the reports in the set are identical; other times they are different and pneumonia is only 
recognizable in some views/reports. If any of the individual reports were flagged by the NLP algorithm, it triggered 
the BPA. In other words, the algorithm is based upon sets of reports from the same session or encounter, rather than 
individual CXR reports, and we evaluated it accordingly. We considered an encounter as positive for potential 
pneumonia if any report from the encounter was flagged as potential pneumonia. Correspondingly, we considered the 
encounter negative for potential pneumonia when no reports from the encounter were flagged by the algorithm. We 
evaluated the performance of the algorithm using 9-months of data collected from January 1 to October 1, 2019.  

The algorithm classified all encounters with CXR as either “radiology reports support a diagnosis of pneumonia,” 
denoted as NLP-positive (NLP+) or “radiology reports do not support a diagnosis of pneumonia,” denoted as NLP-
negative (NLP-). It is important to note that pneumonia is not solely a radiological diagnosis. We were not evaluating 
the sufficiency of CXR reports to diagnose pneumonia, but rather whether the algorithm was able to identify those 
radiology reports that do support a diagnosis of possible pneumonia. Further, while the trial is focused solely on 
identifying CAP, the algorithm was designed to identify CXR reports that support any possible pneumonia diagnosis, 
and we evaluated it accordingly. Reviewing all CXR reports in the study was not feasible due to the large number of 
reports. To identify which reports required manual review to resolve true and false positives and negatives, we 
considered provider responses to the BPA, patient problem lists, and encounter diagnoses. In cases with conflicting 
information (e.g., problem lists or encounter diagnosis indicated pneumonia but the algorithm did not, and vice versa), 
physician reviewers read radiology reports to identify whether any report in a given encounter “supported a diagnosis 
of possible pneumonia.”  

Among NLP+ encounters, the provider either (1) added CAP to the problem list from the BPA or (2) did not add the 
problem using the BPA. Among the latter group, there were a minority of instances where the provider never received 
the BPA because the patient had been discharged from the ED or admitted to another service. To resolve true and false 
positives, we manually reviewed these and all other CXR reports from NLP+ encounters where the provider did not 
add the problem using the BPA (including encounters where patients met exclusion criteria for the clinical trial). We 
reviewed reports from encounters where the provider did add CAP only if that problem was subsequently deleted from 
the problem list. To resolve true and false negatives, we reviewed reports from NLP- encounters when there was any 
evidence of any pneumonia in the patient’s problem list or encounter diagnoses. We did not review NLP- encounters 
if there was no evidence of a pneumonia diagnosis. 

We report sensitivity, specificity, and PPV of the algorithm, among other measures, and compare to the performance 
of previous work and the estimated model performance from training data. We also review the most important features 
of our random forest model as determined by the mean decrease in Gini coefficient.32,33 Finally, we review provider 
comments from the BPA and highlight report characteristics that may have resulted in misclassification.  

Results 

Model Development and Determining a Decision Threshold 

The performance of the random forest models on both the training set (OOB AUC) and test sets (AUC) is shown in 
Table 1. The average AUC across all training sets from the cross-validation was 0.953; the average AUC across the 
test sets was 0.952. The OOB AUC on the model utilizing all training data was 0.954, revealing that the OOB AUC 
was similar to using set-aside test sets. This model trained on all available reports was the one we implemented in the 
EHR. Figure 1 shows the ROC curve of the implemented model.  
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Table 1. Out-of-bag (OOB) AUC on training sets and 
AUC on test sets. 
 

Partition Train (OOB AUC) Test (AUC) 
1 0.955 0.932 
2 0.952 0.961 
3 0.954 0.933 
4 0.951 0.966 
5 0.951 0.974 
6 0.955 0.941 
7 0.951 0.963 
8 0.953 0.961 
9 0.953 0.951 

10 0.956 0.940 
Average 0.953 0.952 
All Data 0.954  

 

 

Table 2 illustrates model performance on the training data using various decision thresholds. Measures include 
sensitivity, specificity, PPV, false positive rate, balanced accuracy ( (sensitivity + specificity)/2 ), and f-measure. After 
reviewing the performance on test sets at various thresholds, the clinical team selected a decision threshold of 0.27. It 
was selected primarily for high sensitivity (88%), acceptable PPV (63%), and a 10% false positive rate.  

Table 2. Expected performance of the model at various thresholds; we selected 0.27 as the decision threshold. 
 

Decision Threshold 0.10 0.20  0.27* 0.30 0.40 0.50 0.60 0.70 0.80 0.90 
Sensitivity 0.954 0.913 0.881 0.860 0.774 0.655 0.482 0.306 0.126 0.002 
Specificity 0.729 0.851 0.899 0.911 0.948 0.977 0.992 0.999 1.000 1.000 
PPV 0.406 0.544 0.629 0.653 0.742 0.849 0.925 0.977 0.990 1.000 
False Positive Rate 0.271 0.149 0.101 0.089 0.052 0.023 0.008 0.001 0.000 0.000 
Balanced accuracy 0.841 0.882 0.890 0.886 0.861 0.816 0.737 0.652 0.563 0.501 

F-measure (F1) 0.570 0.681 0.734 0.743 0.757 0.739 0.634 0.466 0.224 0.005 
 

To assess the face validity of the random forest model, we reviewed the most important features as determined by 
mean decrease in Gini. The most important feature was an affirmative mention of pneumonia (C0032285). Other top 
features included multiple CUIs for opacity (C1265876, C0029053, C0449584) and consolidation (C0521530, 
C0702116), specific pneumonia concepts (e.g., left/right lower/upper/middle lobe pneumonia, atypical pneumonia), 
and CUIs for infiltrate, atelectasis, and pneumothorax. Anatomical locations alone (left/right lower/upper/middle lobe 
of lung) and qualifiers such as patchy, normal, interstitial, focal, and multifocal were also present among the most 
important features, as well as several symptom concepts (fever, cough). While negated features (including pneumonia) 
were present among the most important features, non-negated concepts tended to be ranked higher. 

Implementation and Evaluation 

During the 9-month study period, the system processed approximately 8600 radiology reports from 3012 distinct 
patient encounters. The system flagged patients as having suspected pneumonia in 579 encounters; for the remaining 
2433 encounters, no radiology reports scored above the decision threshold. Of the 579 NLP+ results, providers added 
CAP to the patient’s problem using the BPA 344 times (68.3%). In 5.3% of encounters, radiology reports included 
both NLP+ and NLP- reports, and were therefore classified as positive encounters. 

For NLP+ encounters where providers added CAP to the problem list through the BPA, the pneumonia problem was 
deleted soon afterwards in 12 cases (3.5%). Reviewers determined that in 8 of those cases, reports did in fact support 
a diagnosis of possible pneumonia. In two of those instances, the problem was replaced by other non-CAP pneumonia 

Figure 1. ROC curve for random forest model. 
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problems (pneumonia and influenza and aspiration pneumonia); two others were deleted because there were duplicate 
CAP entries in the problem list.  

For the remaining 235 NLP+ encounters where the provider did not add CAP using the BPA, reviewers found that 
48% (112 encounters) had reports that supported a diagnosis of possible pneumonia, and were therefore true positives, 
and 52% (123 encounters) did not, and were therefore false positives. Among those NLP+ encounters where any 
pneumonia was included in the problem list or encounter diagnoses, 95% had supporting radiology reports.  

Among encounters where the problem was not added, the BPA was triggered 432 times: in 49% of cases, the alert 
was deferred until further information could be gathered; in 31% of cases, the provider indicated the patient did not 
have pneumonia; in 13% of cases, the provider responded they were not the attending physician; for the remainder of 
cases, the alert was acknowledged or overridden without a provided reason. When providers responded that the patient 
did not have pneumonia, few added specific comments. In two cases, the providers commented that CXR findings 
likely represented atelectasis or there was no consolidation on x-ray. In four cases, the providers stated that patients 
did not have CAP, but other pneumonias (hospital acquired, bronchopneumonia, aspiration pneumonia, or viral 
pneumonia). In three cases, providers indicated there were no clinical signs of pneumonia, and in two more cases, 
indicated the patient had sickle cell disease or acute chest syndrome. Among all NLP+ encounters when enrollment 
in the trial was contraindicated, providers still used the BPA to add CAP to the problem list 48 times (86%). Only one 
provider who added CAP to the problem list through the BPA noted that the it was a clinical, rather than radiological, 
diagnosis. 

For the NLP- encounters, there was evidence of potential pneumonia in the form of problem list entries or encounter 
diagnoses in only 141/2433 encounters (5.8%). Physicians reviewed all CXR reports from those encounters to identify 
any false negatives. They found 51 false negatives (36%) where the CXR report did support a diagnosis of possible 
pneumonia and 90 true negatives (64%) where reports did not support the diagnosis. 

Table 3 illustrates the true and false positives and negatives determined by review. Table 4 shows the algorithm’s 
performance during the 9-month study period. Sensitivity, specificity, and PPV were 90%, 95%, and 78%, 
respectively, compared to 88%, 90%, and 63% on the training set. 

Table 3. Confusion matrix illustrating actual algorithm 
performance. Class refers to encounters with CXR 
reports that support a pneumonia diagnosis. 

 Actual Class 
Yes No  Sum 

Predicted 
Class 

NLP+ 452 127 579 
NLP- 51 2382 2433 
Sum 503 2509   

Table 4. Algorithm performance identifying CXR 
reports that support pneumonia diagnosis. 

Sensitivity 0.899 
Specificity 0.949 
PPV 0.781 
False Positive Rate 0.051 
Balanced Accuracy 0.924 
F-Measure (F1) 0.835 

Manual Review of Radiology Reports 

To identify false positives alerts, reviewers read all NLP+ radiology reports where CAP was not added to the problem 
list through the BPA. Among the 127 false positive encounters, only 21 had some form of pneumonia added to the 
problem list; in the majority of other cases, patients were diagnosed with other respiratory conditions (atelectasis, 
pleural effusion, bronchiolitis, bronchitis, etc.). In approximately 10% of false positive encounters, patients appeared 
to have findings of cystic fibrosis, sickle cell anemia, or acute chest syndrome. Reviewers noted that some reports 
only mentioned pneumonia in an Indication section that listed suspected pneumonia as the reason for the CXR order. 
Many false positive reports mentioned recent pneumonia, a history of pneumonia, or resolved/resolving pneumonia 
(e.g., “interval resolution of the right apical opacity”). Reports frequently mentioned findings which could represent 
pneumonia, but the Impression sections further specified higher likelihood of other diagnoses, such as atelectasis, 
bronchitis, bronchiolitis, and peripheral or reactive airway disease. Reviewers noted difficulty with words and phrases 
denoting uncertainty (e.g., "infection not excluded," "underlying pneumonia difficult to definitively exclude", 
"pneumonia is considered much less likely", and "opacities favored to represent atelectasis over pneumonia") when 
other diagnoses were more supported. Finally, reviewers noted that pneumonia was frequently mentioned in specific 
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terms (e.g., "right lower lobe pneumonia," "right middle lobe pneumonia," "viral pneumonia," "atypical pneumonia," 
"multifocal pneumonia," bibasilar pneumonia, etc.). 

To identify false negatives, reviewers read all CXR reports from NLP- encounters where there was evidence of 
pneumonia in patients’ problem lists or encounter diagnoses, and found 51 reports that supported a possible pneumonia 
diagnosis. Reviewers noted several common terms from these reports that did not seem to have the desired impact on 
classification: empyema, airspace opacity, opacification, multifocal, infection/infected, consolidation/consolidative, 
and air bronchograms. For many false negatives, reviewers noted that pneumonia was mentioned in the impression 
section, but not the findings section. Additionally, a number of false negatives were in patients with scoliosis, possibly 
contributing to poor-quality imaging and insufficient information in the report.  

Discussion 

Using approximately 5000 historical CXR reports from our institution, we developed an algorithm using NLP and a 
random forest classifier to identify radiology reports that support a diagnosis of pediatric pneumonia. Our classifier 
had an AUC of 0.954. Based upon 9-months of real clinical data, the sensitivity, specificity, and PPV or our algorithm 
was 0.899, 0.949, and 0.781, respectively. Developing and analyzing the algorithm in context of a clinical trial was 
both convenient and beneficial. Domain experts leading and participating in the trial gathered and reviewed initial 
training data and assisted in reviewing preliminary and final results. Importantly, this work demonstrates that real-
time NLP can effectively be integrated into real-world clinical care to improve problem list completeness and delivery 
of CDS. 

The algorithm performed favorably compared to prior work using CXR and other clinical data to recognize adult 
pneumonia. Our results were significantly better than the sensitivity, specificity, and PPV reported by Aronsky & 
Haug’s Bayesian network approach (0.900, 0.790, 0.102), Aronsky, et al., and their Bayesian Network with NLP (of 
0.940 and PPV of 0.186 at a fixed 0.95), and the artificial neural networks used by Lagor, et al. (0.950, 0.940, 
0.186).14,15,17,18 All these methods included a number of manually-curated variables, and the low PPV would likely 
have caused feasibility issues for CDS. The performance of the Fiszman, et al. approach, combining NLP with expert 
crafted rules, was more comparable to our method (0.95, 0.85, and 0.78), but was analyzed on only a small, enriched 
set of CXR reports, and was admittedly unlikely to generalize to the larger patient population.16 

We identified few similar studies that focused on pediatric populations. The most comparable study (Meystre, et al.), 
which used SVMs and NLP to diagnose bacterial pneumonia in a general pediatric population, achieved sensitivity, 
specificity, and PPV of 0.71, 0.96, and 0.86, respectively.25 Our algorithm achieved slightly lower specificity and 
PPV, but significantly higher sensitivity (0.899). The fact that our algorithm identifies any type of pediatric 
pneumonia, rather than strictly bacterial pneumonia, may contribute to performance differences. It is also important 
to note that their study utilized a small, manually-curated gold standard (a time-intensive process), whereas ours used 
a sample of convenience from a previous study, partially validated using the initial random forest model. Additionally, 
their algorithm was applied to a database of historical reports, whereas our algorithm was implemented in the EHR 
using real-time NLP. 

Our algorithm performed better than expected when compared to the training and test data. Prior to implementation, 
we estimated a sensitivity, specificity, and PPV of 0.881, 0.899, and 0.629, respectively, at the selected decision 
threshold. In practice, the algorithm achieved sensitivity, specificity, and PPV of 0.899, 0.949, and 0.781. We believe 
discrepancies are likely due to training and testing using a report-based model and implementing/reviewing the 
performance using an encounter-based approach. That is, the algorithm analyzed reports from any CXR order in first 
24-hours of each encounter; this usually included multiple views, with each image having its own associated radiology 
report (2.8 images/reports per encounter). Many of the reports in an encounter were identical to one-another, but 5.3% 
of encounters contained reports with conflicting results (at least one report was NLP+ and one was NLP-). Some of 
these report-level classifications are likely incorrect, but it is important to realize that pneumonia is not always evident 
in all CXR views. While they did not exhaustively review all individual reports to evaluate this, reviewers noted cases 
where different reports (views) from a single encounter supported opposite conclusions. In the other 94.7% of 
encounters, however, all reports in a given encounter/order set resulted in the same conclusion. 
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While not the primary focus of this paper, it is important to note the usefulness of the NLP/random forest algorithm 
in helping enroll patients in the CAP clinical trial. The BPA alerts triggered by the algorithm facilitated the enrollment 
of 344 patients into the trial. Some clinicians made treatment decisions early in the ED encounter, which often 
prevented their patients from being eligible for the trial. While most clinicians waited for returned CXR reports to 
make decisions, the algorithm proved critical in encouraging providers to add CAP to the problem list before starting 
treatment. Adding CAP to the problem list then triggered the BPA for enrollment and the CAP Antibiotic Advisor. 
The real-time nature of the NLP enabled nearly instantaneous capture of pneumonia in the problem list after CXR 
reports were available. Any significant delay in processing the reports would have resulted in reduced enrollment in 
the trial, or potential treatment decisions being made without the benefit of CDS. Additionally, utilizing the clinical 
trial teams and infrastructure allowed this implementation to benefit from extensive physician buy-in which can be 
difficult to achieve in other circumstances.  

As mentioned above, we did not review all NLP+ encounters where CAP was added to the problem list from the BPA, 
nor all NLP- encounters where there was no evidence of pneumonia. We believe this was justified by the fact that, 
among those reviewed NLP+ encounters where CAP was not added to the problem list through the BPA, 95% had 
supporting radiology reports. Additionally, it would be unlikely for pneumonia not to have been added to the problem 
list or encounter diagnoses if the patient was diagnosed with pneumonia. Conversely, only 36% of reviewed NLP- 
encounters (those that had pneumonia problems or encounter diagnoses in the EHR) had reports that supported a 
pneumonia diagnosis. This was possibly due to time restriction of only scanning reports ordered in the first 24-hours 
after ED admission; these individuals may have had later CXR that supported diagnosis.  

The most common errors in classification were false positives – classifying reports as supporting a diagnosis of 
pneumonia when they in fact did not. Only 16.5% of false positive encounters ever had some form of pneumonia 
added to the problem list; the majority of other false positive encounters were eventually diagnosed with different 
respiratory conditions (atelectasis, pleural effusion, bronchiolitis, etc.). Radiological findings for these diseases are, 
like pneumonia, often non-specific. These non-specific findings, along with possible (or “impossible to exclude”) 
pneumonia were frequently mentioned in the findings section of the report, but the impression sections further 
specified a higher likelihood of other diagnoses. Sections of origin for UMLS concepts were not captured; had they 
been, it is possible the random forest models would have learned to weight the impression section higher. The lack of 
radiology report section information may have contributed to false positives in other ways, too. Reviewers noted that 
some reports had indication sections that mentioned suspected pneumonia, and that would have inappropriately been 
captured by the NLP as input to the random forest. Reviewers also noted that approximately 10% of false positive 
patients had findings of cystic fibrosis, sickle cell anemia, or acute chest syndrome. In retrospect, this is unsurprising 
since our training data was taken from a previous study,2 and patients with these conditions were excluded from that 
study. Thus, our algorithm was not trained on radiology reports for patients with these conditions. 

Inaccurate negation detection was also a likely driver of false positives. Reviewers noted that historical or resolving 
pneumonia was frequently mentioned in false positive reports, and likely was not captured correctly by the NLP. 
Phrases such as “interval resolution of the right apical opacity” were not recognized as negated. Phrases such as 
"infection not excluded," "underlying pneumonia difficult to definitively exclude", and "opacities favored to represent 
atelectasis over pneumonia,” can be confusing for even human reviewers. They also noted that pneumonia was 
frequently mentioned in more specific terms (e.g., "right lower lobe pneumonia," "right middle lobe pneumonia," 
"multifocal pneumonia," bibasilar pneumonia, etc.), which would have been identified by the NLP as different UMLS 
concepts. Infrequently-used pneumonia concepts may not have been included in our model due to our methodology 
using the most-frequent UMLS concepts from the training set. 

Fewer errors were due to false negatives. Out of 2433 NLP- encounters, only 2% were classified as false negatives 
after review. Of those, reviewers noted relevant terms such as “empyema” and “air bronchograms” that usually suggest 
possible pneumonia, but did not seem to have the desired impact on classification. As noted for false positive errors, 
this may be due to these terms being infrequent in our training set.  Finally, a number of false negatives were in 
scoliosis patients where image-quality was deemed poor. It is unlikely that NLP could be used to compensate for poor 
image quality resulting in low-information CXR reports; however, additional training examples with limited 
information, appropriately categorized, could improve misclassification of similar reports. 
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Finally, the analysis revealed a number of areas where the algorithm could be improved in future work. Including 
section information in the random forest features would likely improve classification, as would additional training 
examples from patients with previously excluded conditions and low-quality imaging and reports. We also plan to 
enlarge the feature space to ensure all UMLS pneumonia concepts are included in future versions, as well as ensuring 
any radiological signs highly suggestive of pneumonia are included (in consultations with radiologists). The analysis 
of important features revealed a number of disparate pneumonia concepts, as well as similar concepts with distinct 
CUIs (e.g., multiple “opacity” concepts); we therefore plan to explore the use of concept normalization (i.e., binding 
similar concepts together, mapping rare pneumonia concepts to the base pneumonia concept) to improve recognition 
of pneumonia through the random forest. The most effective potential improvement, however, is likely in terms of 
negation detection. A thorough study of negation misclassification would help to identify additional trigger words to 
improve NegEx performance. Utilizing the ConText negation algorithm, instead of NegEx, may also improve negation 
and detection of historical conditions while only marginally increasing the processing time.27,30 In addition to these 
NLP improvements, performing a thorough grid search to optimize the hyperparameters of the random forest would 
also likely improve prediction accuracy; other machine learning classifiers should be evaluated, as well. In the event 
of a future wider-scale implementation, we will also reconsider the 24-hours-after-ED-admission time restriction used 
in the clinical trial. Similarly, we used the earliest CXR reports for our training examples, as we wanted training 
examples to reflect early presentation of pneumonia; this will also need to be re-evaluated if the system is put into 
wider use. Finally, as pneumonia is not solely a radiological diagnosis, we would like to explore the addition of clinical 
symptoms to the model. As was shown in our analysis of important random forest features, fever and cough did 
contribute to model performance when mentioned in the CXR reports. 

In conclusion, this work demonstrates that real-time NLP can effectively be integrated into the EHR to improve 
problem list completeness and delivery of CDS. While NLP and random forest models are effective at recognizing 
pediatric pneumonia from radiology reports, pneumonia is not solely a radiological diagnosis. The identification of 
supporting CXR reports, however, is an important component of most pediatric pneumonia diagnoses. By identifying 
such evidence, and triggering appropriate CDS when the diagnosis is confirmed by a provider, interventions such as 
this can expediate diagnosis and improve clinical care. 
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