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Abstract

This paper develops a tight integrity risk bound for Residual-Based (RB) Advanced Receiver 

Autonomous Integrity Monitoring (ARAIM). ARAIM measurement models include nominal 

biases accounting for unknown but bounded errors, and faults of unbounded magnitude. In RB 

methods, upper bounding the integrity risk requires that one finds the worst-case directions of both 

the multi-satellite fault vector and of the all-in-view nominal bias vector. Previous methods only 

account for the worst-case fault direction assuming zero nominal bias. To address this issue, in 

this paper, we derive a new bounding method in parity space. The method establishes a direct 

relationship between mean estimation error and RB test statistic non-centrality parameter, which 

accounts for both faults and nominal errors. ARAIM performance is evaluated to quantify the 

improvement provided by the proposed method over previous approaches.

Index Terms—

GNSS; ARAIM; RAIM; Integrity; Fault Detection and Exclusion; Chi-squared

I. INTRODUCTION

GLOBAL Navigation Satellite Systems (GNSS) can provide navigation service for safety 

critical civilian aviation applications. However, satellite signals are vulnerable to faults 

including satellite and constellation faults, which are significant threats to safety. GPS 

Receiver Autonomous Integrity Monitoring (RAIM) is currently used as a means of 

fault detection and exclusion in en-route phases of flight. Future dual-frequency and 

multi-constellation GNSS are motivating the development of a new version of RAIM that 

can achieve significant navigation performance improvements. This new concept is called 

Advanced RAIM (ARAIM). ARAIM is expected to meet stringent requirements, for both 
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en-route and final approach, including RNP0.1 (‘RNP’ stands for Required Navigation 

Performance) and LPV-200 (Localizer Precision Vertical) [1], [2].

Thus, the measurement error models used in ARAIM are under higher scrutiny than 

in conventional RAIM. In conventional RAIM, satellite ranging errors are over-bounded 

by zero-mean Gaussian functions (over-bounded in the CDF sense as described in [3]), 

whereas ARAIM assumes measurements with non-zero mean, because, for example, of 

signal deformation and antenna biases. Nominal biases were observed from high-resolution, 

low-noise measurements in [4]. These biases may be constant or repeatable, but would be 

cumbersome to calibrate for each individual receiver [5]. Under fault-free conditions, the 

mean ranging error is modeled as never exceeding a predefined ‘nominal bias’ parameter 

(the maximum and minimum values of the nominal bias for integrity purposes are bnom = 

±0.75m [6], [7]).

Two main implementations of ARAIM have been widely used [8]. First, Solution Separation 

(SS) [9] is a position domain method that performs fault detection and exclusion by 

monitoring the consistency of satellite subset solutions with the all-in-view position. This 

approach was proposed to solve the integrity problem under multiple fault hypothesis in 

[10]. Much work has gone into applying this method to ARAIM [6], [11]–[15]. The SS 

method is used in the ARAIM baseline algorithm for its ability to efficiently deal with 

multiple simultaneous measurement faults and with nominal biases. A SS ARAIM integrity 

risk bound accounting for multi-satellite unbounded faults and all-in-view bounded biases 

is derived in [7]. The second approach is chi-squared Residual Based (RB) RAIM, or 

equivalently parity-based RAIM [16][17]. It is a range domain method that detects and 

excludes faults by comparing observed versus estimated pseudo-ranges [18]. RB RAIM 

is often implemented using a least-square estimator. Assuming that nominal ranging error 

vector follows a known multi-variate Gaussian distribution, the sum of squares of the 

residuals weighted by the inverse measurement error covariance matrix is the RB detection 

test statistic. It follows a chi-square distribution under fault-free conditions, and a non-

central chi-square distribution under faulted conditions. The RB method has mostly been 

implemented to account for single-satellite faults assuming zero-mean Gaussian range errors 

[17], [19]. Reference [20] identifies the differences between the SS and RB methods. An 

analytical expression of the worst-case fault, which maximizes the integrity risk assuming 

zero nominal bias, is given in [8], [21].

Although the baseline ARAIM algorithm is derived using SS, receiver manufacturers 

who previously used RB approaches in their GPS-based RAIM products may prefer 

implementing RB methods in multi-constellation ARAIM to ensure compatibility with 

legacy products. But there is currently no RB ARAIM method designed to efficiently 

account for both multi-satellite unbounded faults and all-in-view bounded biases. Thus, it 

is unclear whether or not RB ARAIM can provide tighter integrity risk bounds than SS 

ARAIM. The objective of this paper is to address this gap.

In this paper, we derive a new RB method that tightly bounds the integrity risk by directly 

expressing the mean positioning error in terms of the non-centrality parameter of the non-

centrally chi-square distributed RB detection test statistic. This expression not only accounts 
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for unbounded faults affecting a subset of measurements as in [8], [17], [19]–[23], but 

also accounts for nominal, bounded biases simultaneously affecting all measurements. A 

performance analysis illustrates the fact that a tight integrity risk bound is achieved.

2. RELATED WORK

A. Position Estimation Error

Let n be the number of visible satellites. The measurement equation can be expressed as:

z = Hx + b + v + f (1)

where z is a n × 1 vector of range measurements from user to satellite, normalized following 

the process described in [8], H is an n × m normalized observation matrix, m is the number 

of state parameters to be estimated, x is the m × 1 position and receiver clock parameter 

vector, b is the n × 1 normalized nominal bias vector, f is the n × 1 normalized fault 

vector, and v is the n × 1 normalized measurement noise vector composed of zero-mean, 

unit-variance independent and identically distributed (i.i.d.) random variables. The nominal 

bias is an unknown error having lower and upper bounds (the maximum and minimum 

values of this nominal bias for integrity purposes are bnom = ±0.75m [6], [7]).

The least-squares estimate of x is expressed as:

x0 = H∗z (2)

where subscript 0 indicates the all-in-view solution, using all available measurements. H* is 

the left pseudo-inverse of H, and is defined as

H∗ = HTH −1HT (3)

Substituting Equation (1) into Equation (2), we have:

x0 = H∗z = H∗ Hx + b + v + f
= x + H∗ b + v + f

(4)

The positioning error for the state of interest, resulting from the difference between the state 

estimate and the true state, is expressed as:

ε0 = ed
T x − x = h ∗ T v + b + f (5)

where ed is a m × 1 column vector used to extract the state of interest in x, for example 

using ed = 0 0 1 0 T  to extract the vertical position state (assuming a single constellation, 

i.e., a single receiver clock bias parameter), h* is a n × 1 column vector made of the row of 

H* corresponding to the state of interest h∗ = ed
TH∗ T

. The term h*T b on the right-hand 

side of equation (5) captures the impact of nominal bias on the state estimate error. Since 
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v is composed of zero-mean, unit-variance i.i.d. Gaussian variables, s0 follows a Gaussian 

distribution whose mean value is:

E ε0 = h ∗ T b + f (6)

B. Residual-Based ARAIM Fault Detection Method

To mitigate the impact of a fault vector f simultaneously impacting a number of satellites 

ni, we can use self-contained (or, receiver autonomous) redundancy-based methods if the 

number of visible satellites n is larger than or equal to m + ni. The case where n < m + ni 

impacts continuity and is beyond the scope of this paper. Parity based detection methods are 

equivalent to RB approaches. The (n − m) × n parity matrix Q is defined such that its rows 

form an orthonormal basis for the left null space of the measurement matrix H, i.e.,

QH = 0 (7)

QQT = In − m (8)

QTQ = S (9)

where In is an n × n identity matrix. An equivalent expression of the n × n matrix S is given 

by: S = In − HH*. The row space of Q is the parity space of H [22]. Projected in parity 

space, the measurement vector z, fault vector f, measurement noise vector v and nominal 

bias vector b become p = Qz, pf = Qf, pv = Qv, and pb = Qb respectively.

Vector p is the parity vector, which can be expressed as:

p = Qz = Q Hx + b + v + f = pb + pv + pf (10)

Because v is composed of zero-mean, unit-variance i.i.d. random variables, elements of pv 

follow a Gaussian distribution. The covariance matrix of these elements is written as:

cov pv, pv = cov Qv, Qv = Qcov v, v QT (11)

which indicates that the elements of pv are zero-mean, unit-variance i.i.d. random variables. 

Therefore, we can express the parity-based (or equivalently, the RB) detection test statistic 

as:

q = p 2
2 χ2 n − m, λ2

(12)

where we used the notation p 2
2 = pT p, and χ2 n − m, λ2  designate a non-central chi-square 

distribution with k degrees of freedom and non-centrality parameter, or NCP, λ2. In this 

case, λ2 is expressed as:
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λ2 = pf + pb 2
2

(13)

If q exceeds a threshold Tχ2, a fault has been detected. The detection threshold is given by:

Tχ2 = χn − m, λ0
−2 Pfa (14)

where Pƒa is the required probability for false alarm, and λ0
2 = pb

T pb [21]. This threshold 

ensures the continuity of ARAIM operation that may interrupt by false alarm.

C. Integrity Risk Evaluation

ARAIM performs autonomous fault detection and integrity monitoring in the airborne 

receiver. Integrity monitoring is defined as the timely provision of information to users 

about the level of trustworthiness of the navigation system[23]–[25]. The integrity risk 

or probability of hazardous misleading information (HMI) is the risk of the positioning 

error exceeding the alert limit while the detection test statistic is below the threshold. The 

probability of HMI is expressed as:

PHMI = P HI, D (15)

where hazardous information HI is the event of the positioning error exceeding the alert 

limit, and D is the no-detection event, which indicates the test statistic is lower than 

the threshold. To bound the integrity risk, we consider all possible fault hypotheses. The 

integrity risk can be expressed as [7]:

PHMI ≤ ∑
i = 0

ℎ
P ε0 > l, q < Tχ2 Hi P Hi (16)

where ε0 is the error of position estimation, l is the alert limit (i.e., a predefined limit on 

acceptable errors, e.g., specified in [2] for ARAIM), Tχ2 is the threshold for test statistic q, 

h is the total number of fault hypotheses, Hi is the ith hypothesis, and i = 0 is the fault-free 

hypothesis index. Because the RB test statistic and the least-squares positioning error are 

statistically independent[8], [14], the inequality in (16) can be rewritten as:

PHMI ≤ ∑
i = 0

ℎ
P ε0 > l Hi P q < Tχ2 Hi P Hi (17)

which facilitates the calculation of the integrity risk bound.

III. PROPOSED INTEGRITY RISK BOUNDING METHOD

In previous RB implementations [8], [17], [19]–[21], [23], the integrity risk bound was 

evaluated by: first, upper-bounding the failure mode slope (FMS), i.e., the ratio of mean 

estimation error over test statistic’s NCP, which is equivalent to finding the worst-case 
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fault vector direction [21]; and then, determining the maximum probability of HMI over 

all possible fault magnitudes using a one-dimensional search process. In contrast, in this 

section, we focus on upper-bounding the mean estimation error, but we directly express 

it in terms of the test statistic’s NCP. This provides the means to not only account for 

faults impacting a sunset of measurements, but also for nominal bounded errors potentially 

affecting all observations.

A. An Upper Bound on Positioning Error

The error of the least square position estimation follows a Gaussian distribution [8], with 

standard deviation σ0. Under the fault-free hypothesis (for i = 0), the mean value of 

estimation error is obtained using Eq. (6), and is given by:

E ε0 = h ∗ Tb (18)

Therefore, the absolute value of the positioning error can be bounded using the following 

inequality:

E ε0 ≤ h ∗ T ⋅ 1n × 1 × bnom under Hi
for i = 0

(19)

where |·| designates the element-wise absolute value of the vector argument, 1n×1 is an n × 1 

vector of ones, bnom is the maximum value of the nominal bias.

Under the ith (i ≠ 0) fault hypothesis, let ni be the number of faulty measurements in the 

ith subset for i = 1, …, h. To facilitate exposition, we assume without loss of generality 

that the ith subset corresponds to the first ni elements of z. Note that ni is no greater than 

n − m, otherwise the fault may be undetectable [8]. In ARAIM and in other GNSS-based 

applications, the prior probability of faults impacting more than n − m measurements is 

small enough that it can be budgeted out of the integrity risk requirement [2], [6]–[8]. 

The mean value of the all-in-view positioning error |E(ε0)| is bounded using the following 

inequality:

E ε0 ≤ gi wiT pf + pb + ci
for i = 1, ⋯, ℎ . (20)

where:

wiT = 1
gi

h∗Ai Ai
TSAi

−1Ai
TQT

(21)

ci = hi
∗ T ⋅ 1n × 1 × bnom (22)

gi = h∗Ai Ai
TSAi

−1Ai
Th ∗ T for i = 1, ⋯, ℎ . (23)
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wiT  is a unit vector after normalization by gi, h* is the row of H* corresponding to the state 

of interest, Ai = Ini, 0ni × n − ni
T  is a n × ni matrix with Ini occupying the first ni × ni block 

and with zeros occupying the other block, hi
∗ is the row of Hi

∗ corresponding to the state of 

interest and Hi
∗ is obtained using equation (3) by setting the ith row of H to zero. Appendix 

A gives a proof of Eq. (20).

Because wiT  is unit magnitude, by substituting λ for pf + pb 2 as defined in Eq. (13), we 

can further bound the positioning error in Eq.(20) using the following inequality:

E ε0 ≤ gi wiT pf + pb + ci
≤ gi pf + pb 2 + ci = giλ + ci for i = 1, ⋯, ℎ . (24)

This positioning error bound has a linear relationship with the square root of the detection 

test statistic’s NCP λ.

It is worth noting that gi in equation (23) is equal to the worst-case FMS in [8], [21]. 

However, the method in [8], [21] only accounted for zero mean measurement errors on 

a subset of measurements. Equation (24) allows for all measurements to be impacted by 

nominal biases, and for a subset of measurements to be faulty, while still guaranteeing a 

bound on E(ε0).

For consistency of notations between fault-free and fault hypotheses, we extend the 

definition of gi i ≠ 0  in Equation (23) to include the fault-free hypothesis (i = 0) with g0 = 0:

gi =
0 if i = 0

h∗Ai Ai
TSAi

−1Ai
Th ∗ T if i ≠ 0

(25)

where i = 0 indicates the fault-free hypothesis. Other notations remain unchanged. For 

example, by definition of hi
∗, we use the notation h∗ = h0

∗, and c0 is c0 = h ∗ T ⋅ 1n × 1 × bnom

in Equation (19). Vector wiT  in Equation (21), where the inverse of gi is taken, is no longer 

needed. Therefore, the positioning error bound is given by:

E ε0 ≤ giλ + ci for  i = 0, ⋯, ℎ (26)

B. Integrity Risk Evaluation

As expressed in (17), the RB integrity risk can be expressed as the sum over all fault-free 

and fault hypotheses of the product of the probability of hazardous information P(|ε0| > l|Hi) 

and the risk of no detection P q < Tχ2 |Hi  weighted by P(Hi).

When evaluating the PHMI contribution under the fault-free hypothesis, Eqs. (25) and 

(26) are used to obtain an upper-bound on P(|ε0| > l|H0). In addition, an upper bound on 

P q < Tχ2 |H0  is obtained considering the fact that λ is lower bounded by 0.
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Under a fault hypothesis, fault and bias both impact |ε0| and q. We have expressed |ε0| and q 
in terms of λ. In particular, using equation (26), we can upper-bound the mean positioning 

error for any value of λ. Thus, a one-dimensional search over λ-values can be performed to 

determine the maximum PHMI in Eq. (17), as illustrated in Fig. 1. This section has proved 

that an upper-bound on PHMI can be regarded as considering the worst-case fault mode slope 

(as in [21]), and shifting the failure mode line up by ci to account for nominal measurement 

errors.

IV. PERFORMANCE ANALYSIS

To demonstrate the reduction in integrity risk brought by the proposed method as compared 

to prior work on RB ARAIM in [21] and to SS ARAIM [8], [26], two example applications 

are considered: an illustrative single-state, three-measurement example, which is also 

used in [21] and [27], and an example of availability performance analysis of ARAIM 

fault detection (FD) for worldwide vertical guidance of aircraft assuming dual-frequency 

measurements from baseline GPS and Galileo constellations [7].

A. Illustrative Single-state Three-measurement Example

For the illustrative single-state, three-measurement example, simulation parameters are given 

in Table I. This example only considers the single fault hypothesis. The integrity risk is 

evaluated versus a range of alert limit values, for conventional RB and SS ARAIM methods. 

Two values of the nominal bias are considered: bnom = 0m, and bnom = 0.75m, in which case 

the proposed method becomes relevant in comparison to SS and the previous RB ARAIM 

method in [21].

For this illustrative example, Fig. 2 presents values of the integrity risk for a range of alert 

limits (normalized by the state estimation error standard deviation). For bnom = 0m, the 

differences between the RB and SS ARAIM approaches are analyzed in detail in [8]. For 

bnom = 0.75m, the proposed RB ARAIM method outperforms both SS ARAIM and the RB 

ARAIM approach given in [21]. For the entire range of alert limits under consideration, the 

new method’s integrity risk bound is almost an order of magnitude lower than previous SS 

and RB ARAIM approaches. The new bound assuming bnom = 0.75m approaches that of 

conventional methods that assume bnom = 0m.

B. Worldwide Availability Performance of The Proposed Method

In this section, we evaluate the availability performance of ARAIM fault detection algorithm 

for worldwide vertical guidance of aircraft assuming dual-frequency measurements from 

baseline GPS and Galileo constellations. LPV-200 availability maps are shown in Fig.3 and 

Fig.4, which respectively present the availability of the SS method and of the proposed 

RB method. Availability is computed for a 10 deg-by-10 deg grid of locations, and is color-

coded from red to blue corresponding to values of 95% to 100%. Coverage performance 

is given in the figures’ titles: coverage is defined as the percentage of locations that meet 

an availability performance greater than 99.5%. This percentage is weighted by the cosine 

of the location’s latitude because low latitude regions represent larger surfaces. For short, 

this metric is noted coverage of >99.5% availability, or simply coverage. The conventional 
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RB method is not evaluated because the conventional RB method cannot account for both 

multi-satellite unbounded faults and all-in-view bounded biases. The main parameters for 

this simulation are listed in Table II.

Fig. 3 illustrates the worldwide LPV-200 availability performance using SS-ARAIM 

algorithm. In the simulation, an optimized estimator proposed in [12] is employed to 

improve the performance. The result indicates that >99.5% coverage, i.e., the percentage 

of locations that achieve better than 99.5% availability, using SS method is 91.31%. The 

result of the proposed method in this paper is shown in Fig.4, which demonstrates 98.2% 

of the world locations achieve availability better than 99.5%. This result indicates that the 

proposed method outperforms the SS-ARAIM.

V. CONCLUSION

This paper describes a new approach to bound the impact of nominal measurement biases on 

integrity risk in residual-based (RB) Advanced Receiver Autonomous Integrity Monitoring 

(ARAIM). A method is derived to find a tight bound on the integrity risk when using an 

RB test statistic for fault detection. The proposed method was evaluated using illustrative 

examples, as well as in more realistic ARAIM LPV-200 availability coverage example. 

Under the configuration described in this paper, the proposed method achieved navigation 

service coverage improvement as compared to solution separation (SS) ARAIM.
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APPENDIX A

For this proof, we consider a fault-free subset solution. Subset solutions are used in the 

derivation, but are not needed in practical implementation. In order to formulate the position 

estimate calculated by the fault-free satellite subset, we set to zero the row (or rows) 

corresponding to the ith fault hypothesis. The observation matrix becomes:

Hi = I − AiAi
T H (27)

where Ai = Ini, 0ni × n − ni
T  is the number of faults, Ai is n × ni with Ini occupying the 

first ni rows and columns, otherwise zero. Here, without losing generality, it is assumed that 

the hypothetical faulty measurements are the first ni elements of z. Then, the solution of the 

fault-free subset can be written as:

xi = Hi
THi

−1Hi
Tz = Hi

∗z (28)

Thus the xi is not affected by the fault. Then we have:

E xi = Hi
∗z = Hi

∗ Hix + b + fi = x + Hi
∗b (29)

where x is the true state.

We consider the term Hi
THi that can be expressed as:

Hi
THi = HT I − AiAi

T H
= HTH − HTAi HTAi

T (30)

According to Woodbury’s Formula, the inverse matrix is deduced as:
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Hi
THi

−1

= HTH −1

− H∗Ai −I + HTAi
TH∗Ai

−1
HTAi

T HTH −

= HTH −1 + H∗Ai Ai
TSAi

−1Ai
TH ∗ T

(31)

We rewrite Hi
∗ as:

Hi
∗ = Hi

THi
−1Hi

T = Hi
THi

−1HT I − AiAi
T (32)

Substituting Eq.(31) we have:

Hi
∗ = HTH −1HT + H∗Ai Ai

TSAi
−1Ai

TH ∗ THT

I − AiAi
T (33)

Substituting (I − S) for H*THT, the above equation becomes:

Hi
∗ = H∗ + H∗Ai Ai

TSAi
−1Ai

T I − S I − AiAi
T

= H∗ − H∗AiAi
T + H∗Ai Ai

TSAi
−1Ai

T

− H∗Ai Ai
TSAi

−1Ai
TAiAi

T

− H∗Ai Ai
TSAi

−1Ai
TS

+ H∗Ai Ai
TSAi

−1Ai
TSAiAi

T

= H∗ − H∗AiAi
T + H∗Ai Ai

TSAi
−1Ai

T

− H∗Ai Ai
TSAi

−1Ai
T

− H∗Ai Ai
TSAi

−1Ai
TS + H∗AiAi

T

= H∗ − H∗Ai Ai
TSAi

−1Ai
TS

(34)

Thus, we have:

H∗ − Hi
∗ = H∗Ai Ai

TSAi
−1Ai

TS (35)

To facilitate the derivation of the estimation error in terms of the parity vector, we 

introduce a notation from SS methods. This is an intermediary step in the derivation. 

The final expression will be in terms of RB quantities (i.e., of parity vector components). 

Relationships between SS and RB test statistics are derived in [8]. The difference between 

x0 and xi (the solution separation vector) is expressed as:
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Δx = x0 − x1 = H∗ − Hi
∗ z

= H∗Ai Ai
TSAi

−1Ai
TSz

(36)

Substituting the definition of matrix S in Eq. (9) into (36), we have:

Δx = H∗Ai Ai
TSAi

−1Ai
TQTQz

= H∗Ai Ai
TSAi

−1Ai
TQT p

(37)

The mean of Δx is expressed as:

E Δx = H∗Ai Ai
TSAi

−1Ai
TQT pf + pb (38)

Taking the expectation of the solution separation Δx in (36) and substituting into (29), we 

find the following equation

E Δx = E x − E xi = E x0 − x − Hi
∗b

= E ε0 − Hi
∗b

(39)

where ε0 is the error of the estimate x0.

The estimate error ε0 for the state of interest is obtained using the vector ed, and is expressed 

as:

ε0 = ed
Tε0 (40)

where d = 1,2,3 designates three dimensions of position, e.g. east, north, and up, ed denotes a 

m × 1 vector whose d th element is 1 and other elements are zeros.

Extracting the state of interest and substituting Eq. (38), Eq. (39) can be transformed into

E ε0 = E Δx + hi
∗b

= h∗Ai Ai
TSAi

−1Ai
TQT pf

+pb + hi
∗b

= wi
T pf + pb + hi

∗b

(41)

where

wiT = h∗Ai AiT SAi
−1AiT QT

the scalar Δx is extracted from vector Δx using:
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Δx = ed
TΔx (43)

h* is the row of H* corresponding to the state of interest h∗ = ed
TH∗ , and hi

∗ is the row of 

Hi
∗ corresponding to the state of interest hi

∗ = ed
THi

∗ .

The magnitude of wi
T  is calculated as

gi = wi
Twi

= h*Ai Ai
TSAi

−1Ai
TQTQAi Ai

TSAi
−1Ai

Th ∗ T

= h*Ai Ai
TSAi

−1Ai
Th ∗ T

(44)

Then, we normalize wi
T  as

wiT = 1
gi

h∗Ai Ai
TSAi

−1Ai
TQT

(45)

Therefore, Eq. (41) can be rewritten as

E ε0 = giwiT pf + pb + hi
∗b (46)

Using triangle inequality, we have

E ε0 ≤ gi wiT pf + pb + hi
∗b

≤ gi wiT pf + pb + ci
(47)

where ci = hi
∗ T ⋅ 1n × 1 × bnom is a bound of hi

∗b . Now, the Eq. (20) has been proved.
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Fig. 1. 
Illustration of Hazardous Misleading Information (HMI) probability bounding method. The 

square root of the non-centrality parameter λ and upper bound of |E(ε0)| are related by the 

slope gi. The probability of hazardous misleading information (PHMI) is upper-bounded by 

searching over values of λ till a maximum in PHMI is found.
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Fig. 2. 
Comparison of integrity risk values using different ARAIM methods, and different nominal 

bias bounding methods. The figure shows the sensitivity of the integrity risk versus alert 

limit (normalized by state estimate error standard deviation) on the X-axis.
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Fig. 3. 
Worldwide LPV-200 availability performance of SS-ARAIM fault detection algorithm. This 

performance evaluation employs an optimized estimator proposed in [12].
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Fig. 4. 
Worldwide LPV-200 availability performance of the proposed algorithm.
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TABLE I

SIMULATION PARAMETERS

Name Value

Observation Matrix H = 1 1 1 T

Noise v∼ N(0, I)

False Alarm Probability Pƒa = 10−6

Prior Fault Probability PHi = 10−3

Alert Limit l = 0.5 to 4m

Maximum Nominal Bias bnom = 0.75m
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TABLE II

SIMULATION PARAMETERS

Name Value

Integrity Risk Requirement 10−7

Alert Limit Requirement 35m

Continuity Budget Allocated to The Vertical Mode 1.3 × 10−6

Prior Probability of Satellite Fault 10−5

Prior Probability of Constellation Fault 10−4

URA/URE 1.5m/1m

Nominal Bias 0.75m
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