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A B S T R A C T

For more than a century, researchers have attempted to understand why organisms behave similarly across
situations. Despite the robust character of generalization, considerable variation in conditioned responding both
between and within humans remains a challenge for contemporary generalization models. The current study
aims to investigate the extent to which variation in behavior in a context of generalization can be attributed to
differences in perception. We combined a fear conditioning and generalization procedure with a perceptual
decision task in humans. We found that the failure to perceive a novel stimulus as different from the trained fear-
evoking stimulus led to increased conditioned responding. Furthermore, perceptual errors yielded perceived
stimulus-outcome contingencies that differed substantially from the objective contingencies. Final, the impact of
a perceptual error was dependent upon these perceived contingencies. These findings suggest that generalization
across a perceptual dimension is to a large extent driven by perceptual errors that directly affect behavior but
also indirectly as they yield different learning experiences between individuals.

1. Introduction

Humans (and animals) often demonstrate remarkably similar beha-
vior across a variety of situations (Ghirlanda & Enquist, 2003; Mednick &
Freedman, 1960), a phenomenon called generalization. Generalization is
often investigated using a conditioning protocol, where an initially neutral
stimulus (conditioned stimulus, CS) starts to elicit a response (conditioned
response, CR), such as physiological arousal, after it has been linked to a
motivationally significant stimulus (unconditioned stimulus, US, e.g.,
food, pain). After the establishment of a CS-CR relationship, the extent to
which novel test stimuli (generalization stimuli, GS) elicit the CR is tested.
Typically, the strength or probability of a CR will decrease as a function of
physical dissimilarity between the GS and the CS (Ghirlanda & Enquist,
2003; Mednick & Freedman, 1960), resulting in a bell-shaped gradient
peaking around the CS. This generalization behavior seems to rely on the
degree of applicability of prior knowledge to the current situation, which
in this context seems to be a function of physical similarity. Whether this
behavior is reflective of an active decision process (i.e., generalization
occurs in spite of the fact that the subject can tell the difference between
two stimuli) (Dunsmoor & Paz, 2015; Shepard, 1987), is a function of
stimulus similarity (due to the overlap in distribution of activation across
units) (McLaren & Mackintosh, 2002) or reflects merely a failure to

perceptually discriminate between stimuli (Lashley & Wade, 1946;
Mostofsky, 1965; Prokasy, Hall, & Ball, 1963; Struyf, Zaman, Vervliet, &
Van Diest, 2015) is currently still debated (Onat & Büchel, 2015).

According to the decisional account, wider generalization gradients can
be attributed to a better-safe-than-sorry strategy, where participants re-
spond with a strong CR despite being aware that a GS is similar but not
identical to the CS (Dunsmoor & Paz, 2015; Shepard, 1987). This domi-
nant notion, that generalization reflects a post-perceptual decision process,
has been challenged in the past (Lashley & Wade, 1946; Mostofsky, 1965;
Prokasy et al., 1963) and more recently (Struyf et al., 2015). As an al-
ternative, it has been proposed that generalization occurs to the extent that
perceptual discrimination fails [i.e., the inverse hypothesis (Honig &
Urcuioli, 1981; Lashley & Wade, 1946; Mostofsky, 1965; Prokasy et al.,
1963)] with the bell-shaped generalization gradient merely reflecting a
probability gradient of perceptual errors (Struyf et al., 2015). Following
this perceptual account, the more a GS resembles the CS, the more likely it
is to be incorrectly identified as the CS and trigger a CR. The work of
Guttman and Kalish (1956), in which similar gradients were found across
a light wave spectrum, despite the fact that identical physical changes in
hue were assumed to result in different levels of perceived change in color
(Guttman & Kalish, 1956), has been used to contradict the perceptual
account. However, follow-up work has demonstrated that Guttman and
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Kalish selected stimuli based on incorrect psychometric functions and that
the obtained gradients in fact did relate to variations in perceptual sensi-
tivity (Blough, 1972; Honig & Urcuioli, 1981). At present, it therefore
remains unclear whether variation in generalized responding between and
within individuals can be attributed to differences in stimulus perception,
given its stochastic nature (Petzschner, Glasauer, & Stephan, 2015).

We recently developed a generalization protocol that simultaneously
evaluates generalization behavior (CR) and stimulus perception, in an
attempt to identify the mechanisms underlying generalization and to
account for differences between individuals (Struyf et al., 2015). In a one-
trial generalization procedure tested in a large sample, we found that in a
considerable portion of GS trials, GSs are indeed mistaken for the CS, and
these perceptual errors determined conditioned responding to consider-
able extent (Struyf, Zaman, Hermans, & Vervliet, 2017). Moreover, in a
differential fear conditioning procedure, individual variability in per-
ceptual errors during CS+ trials led to different learning trajectories
between individuals (Zaman et al., 2017), suggesting that variations in
stimulus perception account for inter-individual differences in learning. In
this experiment, during a perceptual categorization task participants ca-
tegorized the CS+ and CS- based on their perceptual features. The au-
thors found that many errors on CS+ trials during the acquisition phase
(categorization of the CS+ as the CS-) led to increased conditioned re-
sponding to both the CS+ and the CS-, whereas participants making few
errors only showed increased conditioned responding to the CS+. These
findings were related to differences in perceived CS-US contingencies
between the groups. For participants that made many errors on CS
+ trials, both the CS+ and the CS- were perceived as predictive of the US
(given that CS+ trials were reinforced regardless of whether the stimulus
was misidentified as CS- or not). Despite those preliminary findings, it
remains unclear to what extent generalization gradients are indeed driven
by perceptual misidentification, and more importantly, whether inter-
individual differences in generalization can be attributed in whole or in
part to differences in perceptual accuracy.

In order to assess differences between participants in the distribu-
tion of perceptual errors across the stimulus spectrum and to evaluate
their impact on the generalization gradient, we grouped participants
based on their differences in perceptual accuracy (using statistical
clustering methods) and compared the obtained generalization gra-
dients between groups. Cluster analysis is an explorative analytic tool
(i.e., data driven) that enables researchers to group individuals based
on similar data patterns (Hofmans, Ceulemans, Steinley, & Van
Mechelen, 2015). As such, the current study aims to more thoroughly
investigate the impact of perceptual errors on generalization.

In a human simple fear conditioning procedure, we tested the extent of
generalization after an acquisition phase where a CS was reinforced in 80%
of the trials by the presentation of an aversive picture (US). During the
generalization phase, on each trial one of six GSs or the CS was presented
and participants had to indicate (in a binary categorization task) whether
the stimulus was the same as the one presented during the acquisition
phase or not, after which US-expectancy ratings were collected and the US
was either presented or not. In participants making few perceptual errors,
we expected to observe a bell-shaped generalization gradient driven by the
probability distribution of perceptual errors and a binary response strategy
(high US-expectancy for stimuli identified as the CS and low US-ex-
pectancy for other stimuli). A flat gradient was expected for participants
making many perceptual errors during CS trials (CS identified as GS) as it
would lead to similar perceived CS-US and GS-US contingencies. Thus,
perceptual errors (perception of a GS as CS) were expected to heighten US-
expectancy only for those with few errors on CS trials.

2. Material and methods

2.1. Participants

A total of 134 participants took part in the study in exchange for
course credits, of which 133 (117 females, mean age 18.43, SD 1.38)

were included in the final analyses (one subject did not produce any
responses). This number is sufficient given benchmarking studies on
cluster procedures (Steinley & Brusco, 2011). Participants were all 1st
year bachelor students in psychology at KU Leuven and received a
course credit as compensation. The study was approved by the local
university ethics committee (G-201610641).

2.2. Stimuli and apparatus

Seven differently sized white circles were created (varying in dia-
meter from 7.37 to 11.94 cm in steps of 0.762 cm) against a black
background (similar to 13). In line with standard practices to assess
generalized responding at both sides of the CS across the stimulus
spectrum (Ghirlanda & Enquist, 2003), the middle circle served as CS, the
others as GSs. Participants individually selected one of three aversive
pictures of the International Affective Picture System [IAPS (Lang,
Bradley, & Cuthbert, 2008);] as US, based on written content descrip-
tions. They were instructed to select a picture that they anticipated to be
aversive yet tolerable. Upon making a selection, the US was presented
once and participants had the opportunity to change the US if they
thought it was not sufficiently or too aversive. Three levels of aversive-
ness were adopted similar to (Struyf et al., 2017). The most strongly
aversive US [selected by 57.9% of the participants (n=77)] was an
image of a bloodied corpse [in young adults rated as a 7.77 on arousal
(1= calm, 9= excited) and as a 1.77 on valence (1=unpleasant, 9
pleasant) (Grühn & Scheibe, 2008)], the moderately aversive US [se-
lected by 39.8% of the participants (n=53)] was a picture of a disabled
child [arousal rating of 5.86 and valence rating of 3.14 in young adults
(Grühn & Scheibe, 2008)], and the mildly aversive US [selected by 2.3%
of the participants (n=3)] was a picture of a holstered gun [arousal
rating of 4.92 and valence rating of 3.65 in young adults (Grühn &
Scheibe, 2008)]. In our study, the moderate US received an average
unpleasantness score of 3.57 (SD 2.07) and the strongly aversive US was
rated 7.63 (SD 1.41) on a visual analogue scale (VAS) ranging from 0
(‘not unpleasant’) to 10 (‘very unpleasant’); no scores were obtained for
the mild US.1 The experiment was programmed in Affect 4 (Spruyt,
Clarysse, Vansteenwegen, Baeyens, & Hermans, 2010).

2.3. Procedure

The experiment was conducted in a classroom equipped with Dell
desktop computers. Participants were invited in groups of maximum 20
and were separated by an empty desk. At the beginning of the experi-
ment, participants received written instructions to work individually
and in silence at their own pace. An experimenter was present to pro-
vide assistance and to make sure that no communication occurred
among participants.

Participants were acquainted with the experimental task during 5
practice trials. For this purpose, differently sized squares were used
instead of the CS or GSs. On every trial one of two squares was pre-
sented, which participants had to categorize as same or different (one
was presented prior to the discrimination task), after which a US-ex-
pectancy rating was obtained. The actual experiment comprised a ha-
bituation (6 trials), acquisition (12 trials) and generalization phase (48
trials). The habituation and acquisition phase were presented succes-
sively without break, and only comprised CS trials. During each habi-
tuation trial, the CS was presented on screen for 8000ms. No perceptual
categorization was prompted during these trials. A US-expectancy scale
ranging from 1 (‘certainly no picture’) to 10 (‘certainly picture’) ap-
peared at the bottom of the screen 3000ms after CS onset and remained
present until the CS disappeared. Trials were separated by a 2000ms

1 These averages are based on only 15% of the participants, as the majority
failed to provide an unpleasantness rating due to a relatively short response
window.
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intertrial interval (ITI) during which the screen remained black.
Acquisition trials had an identical trial structure apart from the fact that
80% of the trials included a 1500ms presentation of the US, onset of
which coincided with CS offset.

Prior to the generalization phase, participants received on-screen
instructions to identify the circle presented on the upcoming trials as
‘identical’ or ‘different’ from the circle presented during the preceding
phase in addition to their US-expectancy ratings. On every general-
ization trial one of the GS or the CS was presented for 8000ms.
Categorization response buttons appeared at the start of each trial (si-
multaneous with circle onset) at the bottom of the screen for 3000ms
after which the US-expectancy scale appeared for 5000ms (Fig. 1A).
The location of the cursor, required for responding, was reset to the
middle of the screen at the onset of each trial and again at the onset of
the US-expectancy scale. The generalization phase contained 12 CS
trials and 36 GS trials (6 trials per GS). Trials were presented in a
pseudorandom order composed of six consecutive blocks containing
6 GS trials (one of each GS) and 2 CS trials each, randomized within
each block. When participants failed to respond within the provided
time window (3 s for the categorization response, 5 s for the US-ex-
pectancy rating), the value was registered as missing (less the 6% of the
data).

Interindividual differences in trait anxiety were measured using the
STAI-T questionnaire (range: 20–80, mean: 46.81, SD: 8.87, see
Fig. 1B), which assesses an individual's tendency to appraise situations
as threatening and to respond with anxiety across 20 self-report ques-
tions. The validated Dutch version was used (Van der Ploeg, Defares, &
Spielberger, 2000). STAI-T scores were missing for 20 participants due
to a programming glitch.

2.4. Data analysis

All analyses have been reported and the study has been pre-
registered on the Open Science Framework (OSF) (osf.io/u3fcs). All
data is publicly available at OSF (osf.io/u3fcs). Data from the habi-
tuation and acquisition phase (combined) were analyzed with a mixed
model that had Trial as a fixed effect and a subject-dependent intercept
(random effect). Mixed models provide powerful and flexible ap-
proaches to analyzing repeated-measures data (Blackwell, de Leon, &

Miller, 2006) and use the Satterthwaite approximation to estimate the
degrees of freedom (Satterthwaite, 1946).

Categorization data per stimulus were transformed in a stimulus'
probability of being categorized as the CS (‘same’ response) (calculated
as the number of ‘same’ responses for a given stimulus divided by the
total number of recorded responses (‘same’ or ‘different’ response) for
that stimulus), resulting in a probability distribution across the stimulus
dimension, and were then analyzed using mixed models with Stimulus
(continuous; 4–10) and Stimulus2 (the product of Stimulus with itself,
to model the bell-shaped curve) as fixed effects and a subject-dependent
intercept (random effect). Post-hoc tests applied the adjusted
Bonferroni correction. Next, a cluster analysis using the k-means algo-
rithm, as implemented in MATLAB (Hofmans et al., 2015), was used to
identify groups of participants (called clusters) with similar perceptual
performance across the stimulus dimension (i.e., the probability dis-
tributions of perceptual errors). The k-means algorithm identifies
clusters through iterative minimization of the sum of point-to-centroid
distances (using the squared Euclidean distance measure), where the
centroids are computed as the mean score profile per cluster. Each
subject is allocated to the cluster for which its squared Euclidean dis-
tance is minimal. The maximum number of centroids was set to 10. We
ran the analysis 10000 times, each time using a different random in-
itialization of the centroid matrix (Hofmans et al., 2015), to prevent
ending in a local optimum. The run with the lowest sum of squared
Euclidean distances was retained. Based on an automated scree test
(Ceulemans & Kiers, 2006; Wilderjans, Ceulemans, & Meers, 2013), the
solution with four clusters and thus four centroids was preferred.

The US-expectancy data (of the generalization phase) were analyzed
with a mixed model. Model 1 comprised Trial, Stimulus and Stimulus2

(to model the bell-shaped curve) as fixed effects. In Model 2,
Categorization and its interaction with Stimulus and Stimulus2 were
additionally included. Explorative, we tested for differences in overall
gradients – irrespective of categorization – between the different clus-
ters in a third model (fixed effects: Trial, Stimulus and Stimulus2,
Cluster, Cluster× Stimulus and Cluster× Stimulus2). In a final model
(model 4), the model was further extended with Categorization as well
as its interactions with Stimulus, Stimulus2, and Cluster. In all models a
random intercept was included. All performed analyses and (computed)
measures have been reported.

Fig. 1. (A) Trial structure during the generalization
phase. Upon presentation of the CS or GS stimulus, par-
ticipants indicated whether the stimulus was the same or
different as the one presented during the acquisition
phase. They then indicated their expectancy to be pre-
sented with the US, after which either the US (on 80% of
the CS trials) or a blank screen (on GS trials and 20% of
the CS trials) followed. (B) Distribution of STAI-T scores.
(C)Mean US expectancies during CS trials throughout the
experiment. Error bars represent standard errors of the
means.
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3. Results

3.1. Acquisition

As expected, US-expectancy ratings increased across trials in the
first phase of the experiment (habituation and acquisition) [Trial effect:
F(1, 2151.31)= 554.56, p < .001], suggesting that participants
learned the CS-US association. Exploratory analyses revealed that US-
expectancy ratings decreased slightly over the course of habituation
(β=−0.13, 95% CI [-0.20 to −0.07], p < .001), whereas from ac-
quisition onwards expectancy ratings increased (β=0.32, 95% CI
[0.28–0.35], p < .001] (Fig. 1C).

3.2. Generalization

3.2.1. Categorization
Across the entire sample, the CS was correctly identified on 65.48%

of the CS trials during the generalization phase, with large variations
between individuals (SD: 29%). On almost half of the GS trials (41.35%,
SD: 17%), the presented stimulus was incorrectly identified as the CS.
The probability that a stimulus was identified as the CS increased as the
size difference between the GS and CS decreased, resulting in a bell-
shaped perceptual categorization gradient [Stimulus effect: F(1,
791.52)= 146.88, p < .001; Stimulus2 effect: F(1, 791.51)= 207.16,
p < .001] (Fig. 2A). We exploratory tested for differences between the
CS and each GS and found significant differences for all GSs (all
p's < 0.001) except GS3 (p= .61).

Cluster analyses revealed 4 clusters in the classification data
(Fig. 2A). In Cluster 1 (called the ‘CS bias group’), CS classifications
were overall high for all stimuli, with a slight decrease for the most
extreme GSs. In Cluster 2 (called the ‘high accuracy group’), CS clas-
sifications peaked around the CS and declined strongly as GSs differed
more from the CS. In Cluster 3, CS classifications were overall low and
slightly skewed to GSs larger than the CS (called the ‘GS bias group’). In
Cluster 4 (called ‘the skewed group’), CS classifications were also low
and skewed with a peak towards the smallest circles (GS1 and GS2).
32.6% of the participants (n=43) were allocated to the CS bias group
(Cluster 1), 17.4% (n=23) to high accuracy group (Cluster 2), 24.2%

(n= 32) to the GS bias group (Cluster 3) and 25.8% (n= 34) to the
skewed group (Cluster 4).

Explorative, two indices were calculated to test whether perceptual
errors affect experienced CS-US and GS-US contingencies: (1) total
number of reinforced CS trials with a correct categorization (same re-
sponse on CS trials) relative to the total number of trials on which the
stimulus was identified as CS (same response on all trials). This para-
meter was used as a proxy for the perceived CS-US relationship. (2)
Total number of reinforced CS trials with an incorrect categorization
(perceived as different from the CS) relative to the total number of trials
on which the stimulus was identified as different from the CS. This
parameter was used as a proxy for the perceived GS-US relationship. A
one-way ANOVA revealed significant differences between the four
clusters in both perceived CS-US and GS-US contingencies [CS-US
contingency: F(2, 131)= 35.73, p < .001; GS-US contingency: F(2,
131)= 14.00, p < .001]. Post hoc testing (Table 1) revealed no dif-
ferences between the CS bias group (Cluster 1) and the GS bias group
(Cluster 3) or the skewed group (Cluster 4) for either contingencies. The
high accuracy group (Cluster 2) compared to all other groups (clusters
1, 3 and 4) had significantly higher CS-US contingencies and sig-
nificantly lower GS-US contingencies (see Table 1). The GS bias group
(Cluster 3) had a higher perceived CS-US contingency compared to the
skewed group (Cluster 4) but did not differ on perceived GS-US con-
tingency. Both in the CS bias group (Cluster 1) and the skewed group
(Cluster 4) the CS-US contingency did not differ from the GS-US con-
tingency [Cluster 1: t(22)= 0.98, p= .34; cluster 4: t(33)= 0.20,
p= .84] whereas in the high accuracy group (Cluster 2) and the GS bias
group (Cluster 3) the CS-US contingency was significant larger com-
pared to the GS-US contingency [cluster 2: t(42)= 20.41, p < .001;
Cluster 3: t(31)= 4.60, p < .001].

3.2.2. Relationship with STAI-T
We found no relationship between the STAI-T score and the prob-

ability of being allocated to one of the four identified clusters in the
classification data [χ2(3)=1.29, p= .73].

3.2.3. US-expectancy
As expected, we found a bell-shaped US-expectancy gradient across

Fig. 2. (A) Average probability per stimulus to be categorized as CS during the generalization phase (bars). Note that the light grey bars reflect perceptual errors as
the presented stimulus was different from the CS. The different lines represent the four identified clusters within the categorization data. (B–E)Mean gradients of US
expectancy per cluster with (trials on which the stimulus was categorized as CS= same; trials on which the stimulus was categorized as different sti-
mulus=different) and without accounting for CS categorizations (all trials= total). Error bars represent standard errors of the means.
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the stimulus dimension with its maximum located at the position of the
CS [Stimulus effect: F(1, 6106.70)= 264.73, p < .001 and Stimulus2

effect: F(1, 6106.69)= 265.21, p < .001]. In a second model, we ex-
plored whether the categorization of a stimulus as CS or as GS affected
the shape of the generalization gradients. We found no main effect of
Categorization (F(1, 5822.99)= 0.436, p= .51), but differences in
gradients depending on the categorization [Categorization× Stimulus
effect: F(1, 5822.33)= 5.14, p= .023 and Categorization× Stimulus2

effect: F(1, 5820.54)= 4.99, p= .025]. Post hoc we ran another model
where the interaction terms Categorization× Stimulus and
Categorization× Stimulus2 were omitted as interactions can poten-
tially affect true main effects in regression models (Aiken, West, &
Reno, 1991). We found a very strong effect of Categorization [F(1,
5814.36)= 463.65, p < .001] demonstrating that US-expectancy rat-
ings were overall higher when the stimulus was categorized as the CS
(Fig. 3). Explorative, we tested for differences between clusters on the
overall gradient without taking categorization into account (model 3).
We found a significant main effect of Cluster [F(3, 6139.87)= 44.92,
p < .001], as well as different shapes in generalization gradients
among clusters [Cluster× Stimulus effect: F(3, 6058.00)= 51.63,
p < .001; Cluster× Stimulus2 effect: F(3, 6058.03)= 56.66,
p < .001]. The different gradients in Fig. 2B–E demonstrate a rela-
tively flat overall gradient in the CS bias group (cluster 1) and the
skewed group (cluster 4), whereas for the high accuracy group (cluster
2) US expectancy decreases as a function of stimulus similarity, and
likewise but to a much lesser extent for the GS bias group (cluster 3).

Next, we extended the model and included Categorization as well as its
interactions (model 4). We found no main effect of Categorization [F(1,
5761.17)= 1.75, p= .19], but this effect was dependent upon Cluster
[F(3, 5756.97)= 74.69, p < .001]. For Cluster 1, 2 and 3 the classi-
fication of a stimulus as CS increased US expectancy with the most
profound increase for the high accuracy group (Cluster 2) (cluster 1:
β=1.07, 95% CI [0.71–1.43], p < .001; Cluster 2: β=3.51, 95% CI
[3.32–3.70], p < .001; Cluster 3: β=1.81, 95% CI [1.53–2.09],
p < .001). In the skewed group (Cluster 4) no effect of Categorization
was found on US expectancy (β=−0.06, 95% CI [-0.33–0.21],
p= .64) (see Fig. 2B–E). Furthermore, we found differences in the
shape of the gradient between clusters [Cluster× Stimulus effect: F(3,
5690.70)= 2.91, p= .033 and Cluster× Stimulus2 effect: F(3,
5690.76)= 2.61, p= .050]. The significant trial effect in model 1 and
3 [model 1: F(1, 6106.36)= 3.98, p= .046, model 3: F(1,
5685.16)= 4.08, p= .044] disappeared in models 2 and 4 [model 2: F
(1, 5703.05)= 1.61, p= .20; model 4: F(1, 5681.275)= 0.162,
p= .68]. Model parameters can be found in the supplemental in-
formation.

3.2.4. Relationship with STAI-T
Next, we repeated these four models but included STAI-T and its

interactions. For Model 1, we found no main effect of STAI-T [F(1,
5289.54)= 0.95, p= .33] nor an effect on the shape of the gradient
[STAI-T× Stimulus effect: F(1, 5198.74)= 1.81, p= .18; STAI-
T× Stimulus2 effect: F(1, 5198.76)= 1.61, p= .21]. Similarly for
models 2–4, STAI-T scores did not affect the shape of the gradient, in-
teract with the effect of cluster allocation (Model 2 all p's > 0.18), or
with the effect of Categorization (Model 3: all p's > 0.25) or both
(Model 4: all p's > 0.27).

4. Discussion

The inspection of gradients in conditioned responding has unequi-
vocally demonstrated the robustness of generalization, yet failed to
identify the mechanisms underlying this cross-species phenomenon.
The inclusion of perception in addition to conditioned responses as sole
outcome enables researches to investigate the extent to which gradients
relate to perceptual errors. We found large variations in the amount of
perceptual errors both for the CS and the GSs. This affected general-
ization gradients in a two-fold manner. First, stimuli during the gen-
eralization phase were associated with increased conditioned re-
sponding (i.e., US expectancy ratings) when they were identified as a CS
compared to as a GS. Second, it led to differences in perceived con-
tingencies between individuals that substantially differed from the ob-
jective CS-US and GS-no US probabilities for many individuals. The
impact of a perceptual error on subsequent conditioned responding was
dependent on the perceived contingencies. Furthermore, we found no
influence of trait anxiety on the probability of perceptual errors nor on
the gradient of conditioned responding. Most importantly, our data
provide strong evidence that behavioral variations within and between
individuals in a context of generalization are associated with variations
in perceptual errors reflecting an inability to discriminate a GS from a
CS.

Table 1
Means and standard deviations of perceptual errors during CS trials, GS trials and mean perceived CS-US and GS-US contingencies for each of the identified clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

% errors CS 18.61% (17%)a 13.39% (12%)a 44.33% (28%)b 62.75% (21%)c

% errors GSs 70.64% (12%)a 34.27% (9%)b 33.39% (11%)b 41.73% (8%)c

CS-US cont. 23.25% (6%)a,b 38.98% (8%)c 28.78% (12%)a 19.03% (8%)b

GS-US cont. 17.99% (22%)a 5.11% (4%)b 13.68% (7%)a 19.53% (7%)a

Mean % errors during stimulus categorization for CS and GSs, and mean perceived contingencies between the CS and US (CS-US cont.) and between the GSs and the
US (GS-US cont.). Standard deviation in brackets. Different superscripts (a,b,c) denote differences at p < .05, corrected for multiple testing by a factor 5 (i.e., adjusted
Bonferroni correction).

Fig. 3. Mean US expectancy regardless of stimulus categorization (all
trials= total), when categorized as CS (trials on which the stimulus was cate-
gorized as CS= same) or categorized as different from the CS (trials on which
the stimulus was categorized as different stimulus= different). Error bars re-
present standard errors of the means.
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Many recent studies on the role of perception in a context of gen-
eralization challenge the notion of the perfect observer (i.e., a one-on-one
relationship between small physical manipulations and their percep-
tion), an assumption implicitly embedded in contemporary general-
ization protocols and analyses (Struyf et al., 2015). Associative
learning, for instance, has been found to impair the ability to percep-
tually discriminate a CS from other stimuli (Laufer, Israeli, & Paz, 2016;
Laufer & Paz, 2012; Resnik, Sobel, & Paz, 2011; Schechtman, Laufer, &
Paz, 2010). These findings suggest perception as a potential key me-
chanism in generalization. Yet, the impact of these perceptual errors on
behavior remains unclear.

We identified distinct patterns of perceptual errors that were asso-
ciated with different generalization gradients. In the high accuracy
group (Cluster 2) the distribution of perceptual errors was characterized
by relatively few mistakes for the CS and the GSs (although they in-
creased as GSs more closely resembled the CS). In this group, US ex-
pectancy ratings followed the typical bell-shaped gradient, with a peak
in responding around the CS and a decline as CS-GS similarity de-
creases. However, the same behavioral data plotted based on its pre-
cursor (i.e., whether the circle was perceived as CS or as GS) revealed a
very different pattern. Stimuli perceived as CS elicit a strong response,
whereas the same stimuli identified as different from the CS result in
very low US expectancy ratings. It was the combination of this (almost)
binary response strategy with the probability gradient of perceptual
errors that yield the typical shape of the generalization gradient in this
cluster. In the GS bias group (Cluster 3), CS classifications where overall
low, peaked around the CS and were skewed to GSs on the right of the
CS. Similar to the high accuracy group, this pattern led to significantly
larger perceived CS-US contingencies [as relative more trials on which
the stimulus was perceived as CS (same response) were followed by the
US compared to trials on which the stimulus was perceived as a GS
(different response)] compared to the GS-US contingencies although CS-
US contingencies were overall lower and GS-US contingences overall
higher compared to those in the high accuracy group. In the GS bias
group, we found that stimuli perceived as CS elicit higher US ex-
pectancy levels compared to the same stimuli identified as GS. The
gradients obtained by plotting US expectancy based on the perceptual
categorizations (same vs different) revealed similar gradients across the
stimulus dimension, that differed strongly however in their overall US
expectancy levels. The finding that US expectancy still slightly de-
creased across the different stimuli despite all being categorized as the
same, we speculate, might indicate a hierarchical decision-making
process where both the outcome of the perceptual decision (Struyf
et al., 2015) and stimulus features (i.e., sensory input) (McLaren &
Mackintosh, 2002) are used as determinants of the conditioned re-
sponse. Our findings suggest however a proportionally much larger
impact of the former compared to the latter on the strength of re-
sponding.

Despite distinct probability distributions in perceptual errors, si-
milarly flat gradients for US expectancy are found for clusters 1 and 4.
In the CS bias group (Cluster 1) relatively few errors were made during
the CS, but many GS were incorrectly identified as CS, whereas in the
skewed group (Cluster 4) many errors were made for the CS and for GSs
that were smaller in size as the CS. Yet, US-expectancy gradients in both
clusters are characterized by a flat slope. One plausible explanation
could be that in both groups perceived CS-US and GS-US contingencies
did not differ. According to (Hearst, 1968), generalization gradients
emerge due to interacting excitatory and inhibitory properties which
depend on the associative strength of a stimulus with the US or its
absence. However, as perceived CS-US and GS-US contingencies be-
come more similar, the inhibitory properties of the GSs will switch to
excitatory properties. Consequently, the gradient is subject to excitatory
forces across the entire stimulus spectrum albeit the net excitatory
strength will be lower given the overall low perceived CS-US and GS-US
contingencies (Rescorla & Wagener, 1972). Thus, as perceived CS-US
and GS-US contingencies converge, their opposing effects on the

gradient (pulling it down or pushing it upward) dissolve towards an
overall slight upward pushing force. Another interesting finding is that
within this context the impact of a perceptual error on a CR is rather
limited. More precisely, US expectancies were not (Cluster 4) or only
slightly higher (Cluster 1) when a GS was perceived as CS compared to
when the same stimulus was perceived as GS. In the eyes of the per-
ceiver, both the CS and GSs can be predictive for the onset of the US.

We found no effect of trait anxiety scores on the extent of gen-
eralization. Using a differential fear conditioning procedure, Torrents-
Rodas et al. (2013) also did not find an effect of trait anxiety on the
shape of the generalization gradient. In their study the US was (most
likely) more threatening as it was an uncomfortable electrical shock. In
line with our findings, Struyf et al. (2017) found no effect of trait an-
xiety on the probability that a stimulus was perceived as either GS or CS
nor on the overall generalization gradient. They did find, however, a
relationship between trait anxiety and the probability that a stimulus
during the generalization phase was identified as the safety cue from
the acquisition phase (CS-). Furthermore, an overall weak effect of trait
anxiety on fear responding was reported when these CS- categorizations
were included in the generalization data. However, their findings are
preliminary and replication seems warranted. Together these findings
suggest that differences in trait anxiety are a poor predictor for varia-
tions in generalization gradients.

Despite these interesting findings some limitations should be ac-
knowledged. First, we only measured US-expectancy due to practical
reasons (i.e., testing location). Yet, similar gradients have been found
for both psychophysiological and self-reported measures (Lissek et al.,
2010; Torrents-Rodas et al., 2013) and US-expectancy ratings have
been demonstrated to be a valid proxy for fear learning (Boddez et al.,
2013). Similar to previous studies (Lenaert et al., 2014; Struyf et al.,
2017), participants controlled the US aversiveness level as they selected
one out of three IASP pictures of different levels of aversiveness, such
that the US was aversive but tolerable. This procedure has been de-
veloped as an analogue to calibration protocols with electrocutaneous
stimuli as US. Unfortunately, comparison of valence ratings between
the different USs was not possible due to the small number of partici-
pants that rated US valence prior to the experiment. Furthermore, the
explicit assessment of perception through the categorization task most
likely promoted attention to distinctive stimulus features which should
result in sharper gradients. Therefore, it would be interesting to re-
plicate the current paradigm with physiological measures and a control
group without a categorization task to investigate the effects of a per-
ceptual categorization task on generalization gradients. No control
group was included in the current study as the focus was on inter-in-
dividual differences in perceptual errors and their relationship to gen-
eralized responding. Finally, the decision made during the categoriza-
tion task might bias US expectancy. For example, one could argue that
when a stimulus is categorized as being different from the CS, one
would consequently also not expect the US. However, the gradients in
response strength per perceptual categorization contradict this as-
sumption. In a previous study we found similar findings despite US
expectancy being assessed prior to the categorization task (Struyf et al.,
2017). Furthermore, this comparison process is inherent to con-
temporary generalization models (Lissek, 2012) and its explicit as-
sessment most likely only affected the level of awareness. Finally,
reasons for the large interindividual differences in the distribution of
perceptual errors remain speculative but they may relate to differences
in spatial tuning at primary visual brain regions (Moutsiana et al.,
2016), biased perceptual decision-making, or be indicative of a memory
bias (Dunsmoor, Mitroff, & LaBar, 2009). Future research should in-
vestigate the role of these distinct mechanism in more depth.

In sum, accounting for perception enables us to explain variations in
behavior that otherwise would have been considered noise. Our data
provide strong evidence that generalization is mainly driven by per-
ceptual errors that affect behavior directly but also indirectly as they
lead to different learning experiences between individuals. The large

J. Zaman, et al. Behaviour Research and Therapy 114 (2019) 44–50

49



variation in both perceptual and fear generalization patterns and their
close relationship illustrate the need to further investigate inter-
individual differences in perception, memory and decision-making in a
context of fear generalization. Better insight in the mechanism under-
lying fear generalization could not only lead to vast theoretical im-
provements but also to more effective and person-tailored clinical
practices.
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