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Abstra
t

The 
lass imbalan
e problem 
auses a 
lassi-

�er to over-�t the data belonging to the 
lass

with the greatest number of training exam-

ples. The purpose of this paper is to argue

that methods that equalize 
lass membership

are not as e�e
tive as possible when applied

blindly and that improvements 
an be ob-

tained by adjusting for the within-
lass im-

balan
e. A guided resampling te
hnique is

proposed and tested within a simpler letter

re
ognition domain and a more diÆ
ult text


lassi�
ation domain. A fast unsupervised


lustering te
hnique, Prin
ipal Dire
tion Di-

visive Partitioning (PDDP), is used to deter-

mine the internal 
hara
teristi
s of ea
h 
lass.

The performan
e improvement in 
ategories

that su�er from a large between-
lass imbal-

an
e (few positive examples) are shown to be

improved when using the guided resampling

method.

1 INTRODUCTION

The 
lass imbalan
e problem o

urs when there is a

large dis
repan
y between the prior probabilities of the

individual 
lasses. That is, one 
lass is represented by

a greater number of training examples than the other.
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If this problem exists within the training data, it


an be diÆ
ult for a 
lassi�er to learn the 
on
ept for

whi
h there were few examples.

Several methods have previously been proposed to deal

with this problem in
luding prior s
aling, probabilisti


sampling, post s
aling [6, Lawren
e et al., 1998℄ and
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Throughout this paper, we fo
us on 
on
ept-learning

problems in whi
h one 
lass represents the 
on
ept at hand

(positive 
lass) while the other represents 
ounter-examples

of the 
on
ept (negative 
lass).

equalizing 
lass membership [5, Kubat and Matwin,

1997℄. One short
oming of these approa
hes, however,

is that they avoid 
onsidering the 
ase where, within a

single 
lass, the data is distributed a

ording to a mix-

ture density whose 
omponents have relative densities

that may vary greatly. When fa
ed with su
h a situa-

tion the existing methods that address the 
lass imbal-

an
e problem may be 
ounterprodu
tive. While they

de
rease the di�eren
e between the prior probabilities

of the 
lasses (the between-
lass imbalan
e), there is

a 
han
e they will in
rease the di�eren
e between the

relative densities of the sub
omponents within ea
h


lass (the within-
lass imbalan
e). Solving one prob-

lem by 
reating another is obviously undesirable.

2 THE PROBLEM

As previously observed [8, Mit
hell, 1997℄, the 
lass

imbalan
e problem 
auses a 
lassi�er to over-�t the

data belonging to the 
lass with the greatest number

of training examples. A simple and e�e
tive method

for dealing with this problem 
onsists of equalizing


lass membership by randomly sele
ting and dupli-


ating examples from the underrepresented 
lass until

the two 
lasses are balan
ed. Although this approa
h

has been shown to in
rease 
lassi�
ation a

ura
y over

that of non-resampling methods [3, Estabrooks, 2000℄,

none of these studies took into 
onsideration the fa
t

that within-
lass imbalan
es may o

ur in addition to

between-
lass imbalan
es.

The purpose of this paper is to argue that methods

that equalize 
lass membership are not as e�e
tive as

possible when applied blindly and that improvements


an be obtained by adjusting for the within-
lass im-

balan
e.

If we 
an determine the nature of the sub
omponents

within ea
h 
lass, we 
ould use that knowledge to guide

the resampling. The elements in ea
h sub
omponent

within ea
h 
lass 
an then be resampled until ea
h

sub
omponent has the same number of examples as



the largest sub
omponent. Then the between-
lass

imbalan
e 
an be eliminated by randomly sele
ting

and dupli
ating members of the underrepresented 
lass

(equalizing 
lass membership). This method is here-

inafter referred to as guided resampling.

We attempt to establish an upper bound of the perfor-

man
e for the guided resampling method by using our

prior knowledge of the nature of the sub
omponents

to guide the resampling as des
ribed previously.

In a typi
al 
lassi�
ation problem, we generally would

not know the exa
t partitioning of the sub
omponents

in advan
e. In order to guide the resampling, an unsu-

pervised 
lustering algorithm 
an be run on ea
h 
lass

of the training data in an attempt to �nd any within-


lass imbalan
es. The 
lusters found are used to guide

the resampling as previously des
ribed.

3 METHOD

We �rst employ a method of unsupervised 
lustering to

dete
t any within-
lass imbalan
es in both the positive

and negative 
lasses. Using this information, we 
an

avoid in
reasing the di�eren
es in the relative densities

of the sub
omponents of ea
h 
lass by equalizing the

number of members in ea
h sub
omponent.

The unsupervised 
lustering te
hnique, Prin
ipal Di-

re
tion Divisive Partitioning (PDDP), was used to de-

termine the internal 
hara
teristi
s of ea
h 
lass. In

our experiments, we used our knowledge of the sub-


omponents in ea
h 
lass to for
e PDDP to �nd that

number of 
lusters within the ea
h 
lass. The 
lusters

were then resampled so that the dis
overed 
lusters

a
ross both 
lasses ea
h had the same number of ex-

amples.

A de
ision-tree based 
lassi�er, C5.0[9, Quinlan, 1998℄,

was trained and used to 
lassify new examples. The re-

sults of the guided resampling te
hnique are 
ompared

to the results obtained in the absen
e of a resampling

strategy and in the presen
e of a blind resampling

strategy, whi
h resamples at random without taking

within-
lass imbalan
es into 
onsideration.

3.1 PDDP

The Prin
ipal Dire
tion Divisive Partitioning (PDDP)

[2, Boley, 1997℄ algorithm operates on a set of m sam-

ples where ea
h sample is a ve
tor of n-dimensions


ontaining the attributes of that an example from the

training set.

The algorithm determines the internal stru
ture of a


lass by dividing the set of do
uments into two 
lusters

by using the prin
ipal dire
tion of an n � m matrix

whose i-th 
olumn is the ve
tor representing the i-th

example. This pro
ess is re
ursively applied to ea
h of

the 
lusters 
reated. The result is a binary tree where

the leaf nodes represent the 
lusters.

PDDP was 
hosen as the method to determine the in-

ternal stru
ture of a 
lass be
ause of it's eÆ
ien
y. It's

expe
ted running time is linear in the number of do
-

uments m, modulo the number of iterations with the

SVD 
omputation, whereas most 
lustering algorithms

typi
ally have O(m

2

) running time.

3.2 Performan
e Measures

Classi�
ation error is not a good performan
e metri


to use when the prior probabilities of the 
lasses di�er

signi�
antly. [6, Lawren
e et al., 1998℄ When there is a

large between-
lass imbalan
e, it is trivial to obtain a

low error rate simply by 
lassifying all the do
uments

as members of the larger 
lass. Statisti
s su
h as Pre-


ision and Re
all, two well-known performan
e metri
s

within the Information Retrieval 
ommunity, are not

sensitive to this problem.

The Pre
ision of a 
lass is the proportion of events la-

beled as that 
lass whi
h were predi
ted to be in the


lass. The Re
all of a 
lass is the proportion of 
or-

re
tly dete
ted events whi
h are labeled as that 
lass.

For the purposes of 
omparison, it is 
onvenient to


ombine Pre
ision (P ) and Re
all (R) into a single

measure of performan
e: the F-measure. [10, van Ru-

jsbergen, 1979℄ When Pre
ision and Re
all are 
onsid-

ered equally important, the F-measure (F ) redu
es to

Figure 1.

F =

2PR

(R+ P )

Figure 1: F-Measure

The F-measure lies between zero and one, with val-

ues 
lose to one indi
ating better performan
e. It is a

useful performan
e metri
 be
ause it gives low s
ores

to methods that obtain high pre
ision by sa
ri�
ing

re
all or vi
e versa.

4 EXPERIMENTS

4.1 Letter Classi�
ation

To test the pra
ti
ality of this strategy, we �rst tested

our approa
h on a simple real-world domain. Using

the letter re
ognition data set available from the UC

Irvine Repository, we de�ned a subtask in whi
h the

positive 
lass 
ontained the vowels a and u and the

negative 
lass 
ontained the 
onsonants m, s, t and

w. Rather than assuming the same number of exam-



ples per letter in the training set, we took a subset of

the examples for ea
h letter in a way that re
e
ts the

letter frequen
y in English text.
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While introdu
ing

within-
lass imbalan
es, this sampling has the advan-

tage of 
reating a more realisti
 training set than the

one available from the UCI Repository.

In the negative 
lass, the 
onsonants, w is severely

underrepresented. If a blind resampling te
hnique is

used, there is a good 
han
e that examples of w will

not get dupli
ated often in the resampling pro
ess. If

we use knowledge of the sub
omponent of the nega-

tive 
lass, we 
an ensure that the examples of w get

appropriately resampled.

Four experiments were performed on this domain: one

with no resampling; one where the between-
lass im-

balan
e is blindly eliminated; one where PDDP was

for
ed to 
hoose four 
lusters for the negative 
lass

and two 
lusters for the positive 
lass for the guided

resampling pro
ess; and one where we use our prior

knowledge of the sub
omponents of ea
h 
lass of the

training set to guide the resampling.

4.1.1 Results

The results from this experiment are reported in Ta-

ble 1. They indi
ate that there was no di�eren
e in

Pre
ision or Re
all (and hen
e no di�eren
e in the

F-Measure) between the methods of no resampling

and blind resampling. When PDDP was used to �nd

the sub-
omponents within ea
h 
lass using the prior

knowledge of the a
tual number of sub-
omponents,

slight improvements in Pre
ision and signi�
ant im-

provements in Re
all are seen. When we used the prior

knowledge of the sub
omponents in ea
h 
lass to guide

the resampling, it outperforms methods of blind or no

resampling but does not perform as well as when the


lusters were 
hosen by PDDP.

Table 1: Results of Letter Classi�
ation Experiment

METHOD P R F

No Resampling 0.905 0.818 0.859

Blind Resampling 0.905 0.818 0.859

Guided Resampling

(# Clusters Known) 0.923 0.914 0.919

Guided Resampling

(Using Known Clusters) 0.935 0.877 0.905

Noti
e that using either method of guided resampling

leads to an improvement in both Pre
ision and Re
all.
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The following frequen
ies were used: a: .0856, u:

.0249, m: .0249, s .0607, t: .1045, w: .0017. [4, Konheim,

1981℄ These letters were 
hosen be
ause their frequen
ies

lead to both between-
lass and within-
lass imbalan
es.

These results served as motivation for trying the

guided resampling te
hnique on the more diÆ
ult

problem of Text Classi�
ation.

4.2 Text Classi�
ation

The guided resampling te
hnique proposed in the pre-

vious se
tion is tested within a text 
lassi�
ation do-

main. More spe
i�
ally, the problem of 
lassifying an

arti
le a

ording to its topi
.

The same four experiments were performed on this

domain as on the letter 
lassi�
ation domain.

4.2.1 Reuters-21578

The Reuters-21578 
olle
tion[7, Lewis, 1999℄ is a 
ol-

le
tion of 21578 do
uments originally assembled by

Reuters Ltd. in 1987 and later formatted in SGML

by David D. Lewis and Stephen Harding. A subset of

the Reuters-21578 
olle
tion was used to test the afore-

mentioned te
hniques within the real world domain of

text 
lassi�
ation.

Spe
i�
ally, we 
onsidered do
uments that were as-

signed topi
s under the 
ategories earn, a
q, money-

fx, grain, 
rude, trade,interest, ship, wheat and 
orn

ea
h of whi
h are represented by a di�erent number of

examples as seen in Figure 2.

Table 2: Number of arti
les for ea
h topi


CATEGORY NUMBER OF ARTICLES

earn 2709

a
q 1488

money-fx 460

grain 394


rude 349

trade 337

interest 289

wheat 198

ship 191


orn 160

The experiment is repeated with ea
h 
ategory taking

a turn as the positive 
lass. The negative 
lass in ea
h


ase 
onsists of all the other arti
les that are not in

the positive 
lass.

This text 
lassi�
ation domain was initially 
hosen for

our experiments be
ause it was easy to establish an

upper bound performan
e sin
e the sub-
omponents

of the negative 
lass are perfe
tly known. To establish

an upper bound on performan
e for this te
hnique, the

prior knowledge of the sub-
omponents of ea
h 
lass is

again used to guide the resampling. In an ideal situa-



Figure 2: Comparison of F-measure for all 
ategories

tion, the unsupervised 
lustering algorithm 
ould per-

fe
tly dete
t these sub-
omponents and that informa-

tion 
ould be used to guide the resampling a

ordingly.

Training and testing sets were derived a

ording to the

mod-apte split [1℄[Apte, 1994℄ for the Reuters-21578


olle
tion.

4.2.2 Data Representation

As is standard in text 
lassi�
ation experiments, stop

words were removed from all do
uments and the re-

maining words were stemmed using a Porter stemmer

in order to redu
e the number of unique words. A fea-

ture ve
tor was formed for ea
h do
ument 
onsisting of

the 
ounts of the 500 most frequently o

urring words

(not in
luding the stop words) over the entire do
u-

ment set. This is often referred to as the bag-of-words

model.

4.2.3 Results

Overall, the results of our method on this domain are

not parti
ularly promising. Many of the 
ategories

show de
reased performan
e when using guided re-

sampling over blind resampling even when the prior

knowledge of the 
lusters is used. See Figure 2.

Table 3: Average Pre
ision, Re
all and F-Measure over

all 
ategories

METHOD P R F

No Resampling 0.617 0.394 0.455

Blind Resampling 0.580 0.545 0.560

Guided Resampling

(# Clusters Known) 0.650 0.51 0.544

Guided Resampling

(# Upper Bound) 0.601 0.751 0.665

Figure 3: Comparison of F-measures for 
ategories

where guided resampling shows improvement

Three 
ategories (
orn, wheat and Interest), however,

do show improvements in Pre
ision and Re
all when

using guided resampling (with knowledge of the num-

ber of sub-
lusters) over blind resampling and this is

re
e
ted in their respe
tive F-Measures. See Figure 3.

When using no resampling or blind resampling, no

do
uments were 
orre
tly 
lassi�ed for 
orn or wheat

when those 
ategories were a
ting as the positive 
lass.

Using PDDP to �nd the 
lusters for guided resam-

pling, C5.0 was able to 
orre
tly 
lassify 1 and 2 do
-

uments for 
orn and wheat respe
tively. When knowl-

edge of the sub
omponents is used to guide resampling

in these 
ategories, 31 do
uments are 
orre
tly 
lassi-

�ed as 
orn and 60 are 
orre
tly 
lassi�ed as wheat.

When the interest 
ategory is 
onsidered to be the

positive 
lass, guided resampling using PDDP showed

improvement over the method of blind resampling.

While using PDDP to guide the resampling does

not, in general, a
hieve results approa
hing the upper

bound, it does a
hieve better results than when using

a blind resampling strategy on these three 
ategories.

It is worth noting that these 
ategories su�ered some

of the greatest between-
lass imbalan
es of the entire

data set.

5 DISCUSSION

It is likely that the poor results on the Text Classi�
a-

tion domain are the result of the representation that

we used for the do
uments. Limiting the feature ve
-

tors to the top 500 most frequently o

urring words


an ex
lude a lot of relevant information for ea
h do
-

ument. In that 
ase, do
uments that share like terms

may not be 
lustered together if those terms are not

within the set of words 
onsidered for the feature ve
-

tor.



The improvements seen by using guided resampling

on very imbalan
ed data sets 
ould be applied when

methods of blind resampling fail in allowing a 
lassi�er

to be trained to re
ognize members of the underrepre-

sented 
lass.

6 FUTURE WORK

Our experiments showed that guided resampling 
an

be useful in the 
ase of severe imbalan
es. However,

to this point, we have assumed that either full knowl-

edge about the sub
omponents 
onstituting ea
h 
lass

is available or the number of sub
omponents in ea
h


lass is known. The �rst assumption is very unlikely

while the se
ond one is only true in some 
ases.
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An important goal for the future is thus to derive ways

to estimate the 
orre
t number of sub
omponents per


lass as well as their nature.

It would also be worthwhile to study more rigorously

the e�e
ts of guided resampling on data where there is

very little imbalan
e. If guided resampling were to be

employed when analyzing a new data set whose 
har-

a
teristi
s are unknown, the random sele
tion of ex-

amples from dis
overed 
lusters may negatively a�e
t

performan
e.

On
e the pra
ti
ality of our approa
h is fully estab-

lished, we would also like to test its generality by ap-

plying it with other 
lassi�
ation and 
lustering sys-

tems and on other domains where the imbalan
ed data

set problem exists. It would be interesting to deter-

mine the e�e
tiveness of this method when using 
las-

si�ers other than C5.0 su
h as Multi-Layer Per
eptrons

based 
lassi�ers and when using methods of unsuper-

vised 
lustering other than PDDP su
h as k-means


lustering or self-organizing maps.

7 CONCLUSION

We have proposed a method for improving methods

that deal with the between-
lass imbalan
e problem by

taking any within-
lass imbalan
es into 
onsideration.

These within-
lass imbalan
es are dete
ted using Prin-


ipal Dire
tion Divisive Partitioning, an unsupervised


lustering algorithm.

The proposed method has shown improvement over

existing methods of equalizing 
lass imbalan
es, espe-


ially when there is a large between-
lass imbalan
e

together with severe imbalan
e in the relative densi-

ties of the sub
omponents of ea
h 
lass.

3

For example, a hospital may know the number of dif-

ferent strains of a ba
teria without knowing whi
h patient

is a�e
t by whi
h strain.

A
knowledgements

Adam Ni
kerson would like to a
knowledge NSERC for

an Undergraduate Student Resear
h Award. Nathalie

Japkowi
z and Evangelos Milios would like to a
knowl-

edge NSERC for their Resear
h Grants.

Referen
es

[1℄ Apte, C., Damerau, F., and Weiss, S. To-

wards language independent automated learning

of text 
ategorization models. In Pro
eedings of

the 17th Annual ACM/SIGIR 
onferen
e, 1994.

(1994).

[2℄ Boley, D. L. Prin
ipal dire
tion divisive par-

titioning. Te
h. Rep. TR-97-056, University of

Minnesota, Minneapolis, MN, 1997.

[3℄ Estabrooks, A. A 
ombination s
heme for in-

du
tive learning from imbalan
ed data sets. Mas-

ter's thesis, Dalhousie University, Halifax, Nova

S
otia, Canada, 2000.

[4℄ G. Konheim, A. Cryptography { A Primer. John

Wiley, 1981.

[5℄ Kubat, M., and Matwin, S. Addressing the


urse of imbalan
ed training sets: One sided se-

le
tion. In 14th International Conferen
e on Ma-


hine Learning (San Fran
is
o, CA, 1997), Mor-

gan Kaufmann, pp. 179{186.

[6℄ Lawren
e, S., Burns, I., Ba
k, A., Tsoi, A.,

and Giles, C. L. Neural network 
lassi�
ation

and unequal prior 
lass probabilities. In Tri
ks of

the Trade, G. Orr, K.-R. M�uller, and R. Caru-

ana, Eds., Le
ture Notes in Computer S
ien
e

State-of-the-Art Surveys. Springer Verlag, 1998,

pp. 299{314.

[7℄ Lewis, D. Reuters-21578 text 
ategorization test


olle
tion distribution, 1999.

[8℄ Mit
hell, T. M. Ma
hine Learning. M
Graw-

Hill Series in Computer S
ien
e. WCB M
Graw-

Hill, Boston, MA, 1997.

[9℄ Quinlan, R. Data mining tools see5 and 
5.0.

Te
h. rep., RuleQuest Resear
h, 1998.

[10℄ van Rijsbergen, C. Information Retrieval,

2nd ed. Butterwortths, London, 1979.


