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Abstract
Probabilistic sentential decision diagrams are logical
circuits annotated by probability mass functions on the
disjunctive gates. This allows for a compact represent-
ation of joint mass functions consistent with logical
constraints. We propose a credal generalisation of the
probabilistic quantification of these models, that al-
lows to replace the local probabilities with (credal) sets
of mass functions specified by linear constraints. This
induces a joint credal set, that sharply assigns prob-
ability zero to states inconsistent with the constraints.
These models can support cautious estimates of the
local parameters when only small amounts of training
data are available. Algorithmic strategies to compute
lower and upper bounds of marginal and conditional
queries are provided. The task can be achieved in lin-
ear time with respect to the diagram size for marginal
queries. The same can be done for conditional queries
if the topology of the circuit is singly connected.
Keywords: probabilistic graphical models, credal sets,
logical constraints, arithmetic circuits, sentential de-
cision diagrams, sum-product networks

1. Introduction

Probabilistic graphical models [8] are widely used in artifi-
cial intelligence for machine learning and knowledge-based
decision-support systems. Such models provide a compact
description of joint probability mass functions based on a
factorization induced by conditional independence relations
among the model variables (and depicted as a graph). This
does not necessarily implies that inferences in the model
can be computed efficiently [9].

To prevent computational issues, some authors proposed
models based on logical compilation allowing for fast infer-
ences at the price of a less transparent structure and reduced
expressive power. Sum-product networks (SPNs) [15] are
the most popular example in this area. Remarkably, SPNs
can be also intended as a probabilistic counterpart of deep
neural networks and, when applied to machine learning,
they offer competitive performances [14].

Shortly after the first proposals for graphical models,
some authors considered the possibility of relaxing the
specification of the probabilistic parameters. In the area of
imprecise probabilities [16], this is often done by means of

credal sets, i.e., sets of probability mass functions induced
by a (typically finite) number of linear constraints. If the
first example of this approach is the credal set extension of
the notion of Bayesian network, called credal network [3],
one of the most recent ones is the credal set extension of
SPNs proposed in [12, 13]. These papers show that a credal
extension of SPNs can be achieved without compromising
the computational eases provided by the circuital approach.

In this paper we present a very similar approach intended
to achieve such a credal set extension in the case of prob-
abilistic sentential decision diagrams (PSDDs) [7]. The
formal analogies between PSDDs and SPNs allow for an
adaptation of the algorithms originally proposed in [12]
for credal SPNs to the case of credal PSDDs (to be called
CSDDs in the rest of the paper). The contribution is signi-
ficant as PSDDs can natively embed logical constraints, a
feature not offered by SPNs.

Overall, the goal of the paper is to propose CSDDs as
a new class of imprecise probabilistic graphical models,
which allows for a compact specification of joint credal
sets in the presence of logical constraints whilst keeping
tractable the inferences. On another perspective, in the
same spirit of recent articles such as [4], this work can
be regarded as another contribution in the aim of unifying
logic and imprecise probabilities.

The paper is organized as follows. In the next section we
open the discussion by means of a toy example from [7] to
be used along the paper to illustrate our approach. Section 3
contains background material about credal sets and PSDDs.
The technical results are in Section 4 where we define
CSDDs and in Section 5 where we derive two inference
algorithms. Conclusions and outlooks are in Section 6.

2. A Motivating Example

In this section we introduce a simple example advocating
the need of coherently combining logic and probability
by a circuital approach. In this toy example, originally
presented in [7], we start from a registration of the results
of 100 students in four subjects, namely logic (L), know-
ledge representation (K), probability (P) and AI (A). From
those data (Table 1), we want to learn a probabilistic model
such as a Bayesian network (BN) [8]. The white nodes in
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Figure 1 show a BN model that assumes conditional inde-
pendence between K and P given A and L. A Laplace prior
of strength one is used to learn the BN parameters. This as-
signs probability Pr(X = x)= [n(X = x)+ |X |−1]/[n(·)+1]
to the state x of variable X , where |X | is the cardinality
of X and n is a counting function for the data set (e.g.,
Pr(L = 0) = 70.5/101). Out of sixteen possible combina-
tions, Table 1 reports no observations for eight cases (grey
rows). Yet, seven of these eight cases (dark grey) are not
observed because of logical constraints: L∨P (it is compuls-
ory for a student to either take logic or probability), A→ P
(probability is prerequisite for AI), and K→ A∨L (know-
ledge representation is a prerequisite to either AI or logic).
The light grey row corresponds instead to a possible config-
uration for which we just do not have observations. The BN
cannot distinguish between those two cases and non-zero
probabilities can be therefore assigned to impossible events
(e.g., Pr(A = 1,P = 0)' 0.005).

Auxiliary nodes (grey nodes in Figure 1) should augment
the BN in order to embed the logical constraints. Each con-
straint induces a Boolean variable which is a child of all
the variables involved in the logical constraint and whose
conditional probability table has zero/one values modelling
the fact that the variable is true if and only if the logical
constraint is satisfied. The model is therefore queried given
the fact that the auxiliary variables implementing the con-
straints are in their true state. Such a BN approach to the
learning of probability mass functions that are subject to do-
main constraints might significantly increase the treewidth
of the original graphical model, thus potentially affecting
the speed of the inferences (exact inference is exponential
in this parameter).

L K P A #
0 0 0 0 0
0 0 0 1 0
0 0 1 0 6
0 0 1 1 54
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 10
1 0 0 0 5
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 13
1 1 0 1 0
1 1 1 0 8
1 1 1 1 3

Table 1: Results of 100 students in four subjects

P

A L

K

P∨LA→ P

K→ A∨L

Figure 1: A Bayesian net over four variables (white nodes)
with logical constraints (grey nodes)

3. Background

3.1. Credal Sets

Consider a variable X taking its values in a finite set X
and whose generic value is x. A probability mass func-
tion (PMF) over X , denoted as P(X), is a real-valued non-
negative function P : X → R such that ∑x∈X P(x) = 1.
Given a function f of X , the expectation of f with respect
to a PMF P is P[ f ] := ∑x∈X f (x) ·P(x). A set of PMFs
over X is called credal set (CS) and denoted as K(X). Here
we consider CSs induced by a finite number of linear con-
straints. Given CS K(X), the bounds of the expectation with
respect to K(X) can be computed. E.g., for the lower bound,
P[ f ] := minP(X)∈K(X) ∑x∈X f (x) ·P(x). This is a linear pro-
gramming task, whose optimum remains the same after
replacing K(X) with its convex hull. Such optimum is at-
tained on an extreme point of the convex closure. Moreover,
if f is an indicator function, the lower expectation is called
lower probability. Notation P is used instead for the upper
bounds and duality P( f ) =−P(− f ) holds.

In the special case of Boolean variables, it is easy to see
the number of extreme points of the convex closure of a CS
cannot be more than two, and the specification of a single
interval constraint, say 0≤ l ≤ P(x)≤ u≤ 1 for one of the
two states is a fully general CS specification.

Learning CSs from multinomial data can be done by the
imprecise Dirichlet model (IDM) [16]. This is a generalised
Bayesian approach in which a single Dirichlet prior with
equivalent sample size s is replaced by the set of all the
Dirichlet priors with this size. The corresponding bounds
for P(x) are

[
n(x)

n(·)+s ,
n(x)+s
n(·)+s

]
where the notation is analogous

15



CREDAL SENTENTIAL DECISION DIAGRAMS

to that in the previous section (e.g., with the counts in Table
1 and s = 1, P(K =>,L =⊥,A =>,P =>) ∈ 10

101 ,
11
101 ]).

Given PMF P(X1,X2), X1 and X2 are stochastically in-
dependent if and only if P(x1,x2) = P(x1) ·P(x2) for each
x1 ∈X1 and x2 ∈X2. Similarly, given CS K(X1,X2), we
say that X1 and X2 are strongly independent if and only if
stochastic independence is satisfied for each extreme point
of the convex closure of the CS.

3.2. Probabilistic Sentential Decision Diagrams

PSDDs offer an elegant approach to the learning of probab-
ilistic models from data subject to logical constraints [7]. A
PSDD is a circuit representation of a joint PMF assigning
zero probability to the impossible states of the logical con-
straints. This requires a parametrised directed acyclic graph
such that each non-root node is either a logical AND gate
with two inputs, or a logical OR gate with an arbitrary num-
ber of inputs and whose incoming wires are annotated with
the probabilities of a conditional mass function (that can
be learned from the data). These types of nodes alternate.
Each leaf node X is intended as a univariate mass function
assigning probability one to X , when X is always true, to
¬X when X is always false, or assigning θ to X (written as
(X : θ)) when X is true with probability θ (conditional to a
certain context encoded by the circuit). As an example the
circuit in Figure 3 with sharp numbers instead of intervals
associated to the wires defines a PSDD consistent with the
logical constraints of the toy example in Section 2.

PSDD inference, intended here as the computation of the
probability of marginal or conditional queries, takes time
linear in the size of the diagram [7]. Dedicated algorithms
have been developed to identify the smallest circuit model-
ling a given formula [2]. This makes inferences based on a
PSDD typically faster than those based on a BN with auxili-
ary nodes implementing the same constraints as in Figure 1.
Yet, PSDDs embed context-specific independence relations
and the problem of trading off the search for a small circuit
with the learning of proper dependence relations from the
data is still relatively unexplored [10]. This is not the case
of BNs, for which many structural learning techniques have
been proposed [8].

In the rest of this section we review the basic notions and
results about PSDDs. We start by defining a generalisation
of orders on variables based on the following definition.

Definition 1 (Vtree) Consider a finite set X of Boolean
variables. A vtree for X is a full binary tree v whose leaves
are in one-to-one correspondence with elements of X. We
denote by vl (vr) the left (right) subtree of v, i.e., the vtree
rooted at the left (right) child of the root of v.

A vtree for the example in Section 2 is in Figure 2. Note
that the in-order tree traversal of a vtree induces a total
order on the variables, but two distinct vtrees can induce in
this way the same order.

1

2

4 : L 5 : K

3

6 : P 7 : A

Figure 2: A vtree over four variables

Based on vtree, we can recursively define SDDs.

Definition 2 (SDD) A sentential decision diagram (SDD)
α normalised for vtree v is either a terminal or a decision.
The interpretation of an SDD α normalised for v, denoted
〈α〉, is a propositional sentence over the variables of v.

- Terminal: if v is a leaf with variable X, α might be a
constant, α ∈ {⊥,>}, or a literal, α ∈ {X ,¬X}. The
interpretations are as follows 〈α〉=⊥, 〈α〉=> and
〈α〉= X, 〈α〉= ¬X.

- Decision: if v not a leaf, α = {(pi,si)}k
i=1, where the

pi’s and si’s, called primes and subs, are SDDs norm-
alised for vl and vr respectively. The interpretations
〈pi〉’s form a partition and 〈α〉=

∨k
i=1〈pi〉∧〈si〉. The

pairs (pi,si)’s are called the elements of the decision
node and k is its size.

Given a SDD, and two of its nodes n and n′, if n is a
decision node and n′ appears as a prime or sub in n, we
call n a parent of n′. Whenever every node of a SDD has a
unique parent, we call the SDD singly connected.

As each decision represents an OR gate, and each of its
elements an AND gate, we can intend SDD α as a logical
circuit providing a representation of the formula 〈α〉.

Example 1 Let φ = A→ P. Given the vtree v = (A,P),
the interpretation of the SDD α normalised for v given
by 〈α〉 = (A∧P)∨ (¬A∧>) is logically equivalent to φ .
Hence α = {(A,P),(¬A,>)} is the SDD (normalised for
v) corresponding to φ .

The following definition characterises paths in SDDs.
This is needed to provide a semantics to the parameters
when annotating SDDs with probabilities.

Definition 3 (Context) Let n be a node (either terminal
or decision) of an SDD. Denote as (p1,s1) . . .(pl ,sl) the
path from the root to node n. Then the conjunction of the
interpretations of the primes encountered in this path, i.e.,
〈p1〉∧ · · ·∧ 〈pl〉, is called the context of n and denoted as
γn. The context γn is feasible if and only if si 6=⊥ for each
i = 1, . . . , l.
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Example 2 Consider the underlying SDD α in Figure 3,
and let n be the terminal node associated to the first occur-
rence of A (from the left). Then γn = ((¬L∧K)∧P). Indeed,
the path from the root to node n is given by (p1,s1)(p2,s2)
with 〈p1〉= ((¬L∧K)∨(L∧⊥)) = (¬L∧K) and 〈p2〉=P.

The interpretation of a node is implied by its context
and by the interpretation of the SDD to which it belongs,
i.e., for each node n of an SDD r, 〈r〉∧ γn |= 〈n〉. Moreover,
nodes normalized for the same vtree node have mutually
exclusive and exhaustive contexts. In other words the OR
gates associated to decision nodes act as XORs.

We are now in the condition of providing a formal defin-
ition of PSDDs as parametrised SDDs inducing a PMF
over the variables of the vtree. For each terminal node >,
a positive parameter θ is provided such that 0 ≤ θ ≤ 1.
The notation for such a terminal node is X : θ , where X is
the variable of the leaf vtree node that > is normalised for.
Terminal nodes other than > appear as they are; for each
decision node {(pi,si)}k

i=1, each prime pi is provided with
a θi > 0, such that ∑

k
i=1 θi = 1, while θi = 0 if and only if

si = ⊥. Notation {(pi,si,θi)}k
i=1 is used. In other words,

PSDDs are SDDs with PMFs associated to the terminal and
decision nodes.

In a PSDD α , each node n induces a PMF Pn over the
variables of the vtree node it is normalised for. Accord-
ing to the Base Theorem for PSDDs [7, Theorem 1], such
PMF Pn assigns zero probability to events which do not
respect the propositional sentence associated to the SDD
n, more precisely, for any instantiation xxx of variables XXX
of the vtree n is normalised for, Pn(xxx) > 0 iff xxx |= 〈n〉.
Moreover, the probabilities Pn(〈pi〉) are the parameters
θi’s of n = {(pi,si,θi)}k

i=1.

We simply denote as P the (joint) PMF induced by the
root r. PMF Pn induced by an internal node can be obtained
by conditioning P on a feasible context of the considered
node [7, Theorem 4]: for each feasible context γn of n,
Pn(·) = P(·|γn). Finally, we have the following result about
independence [7, Theorem 5]: according to P, the variables
inside v are independent of those outside v given context
γn. This is the PSDD analogous of the Markov condition
for Bayesian networks.

PSDD inferences are computed with respect to the joint
PMF P. The probability of a joint state e of a set of PSDD
variables can be obtained in linear time with respect to
the diagram size by the bottom-up scheme in Algorithm 1
Given a vtree node v, notation ev is used for the subset of e
including only the variables of v. Note also that the node
index n in the loop runs in inverse topological order and
this guarantees that the message π(n), to be computed after
the else statement, is always a combination of messages
already computed.

Algorithm 1 Probability of evidence [7]
input: PSDD, evidence e
for n← N, . . . ,1 do

π(n)← 0
if node n is terminal then

v← leaf vtree node that n is normalized for
π(n)← Pn(ev)

else
(pi,si,θi)

k
i=1← n (decision node)

π(n)← ∑
l
i=1 π(pi) ·π(si) ·θi

end if
end for
output: P(e)← π(1)

4. Credal Sentential Decision Diagrams

In this section we present a generalization of PSDDs (see
Section 3.2) based on the notion of credal set provided in
Section 3.1. This can be achieved as follows.

Definition 4 A credal sentential decision diagram (CSDD)
is an SDD augmented as follows.

• For each terminal node>, an interval [l,u] is provided
such that 0 < l ≤ u < 1. The notation for such a ter-
minal node is X : [l,u], where X is the variable of
the leaf vtree node that > is normalised for. Terminal
nodes other than > appear as they are.

• For each decision node n = {(pi,si)}k
i=1 a CS Kn(P)

over the variable P is provided. The states of the vari-
able are the interpretations (formulas) 〈pi〉 associated
to the primes pi occurring in n. We require P(〈pi〉)= 0
for each P(P) ∈Kn(P) if and only if 〈si〉=⊥.

A CSDD is singly connected is its underlying SDD is
singly connected, i.e., the undirected graph underlying the
circuit is a tree.

Besides the CSs associated to the primes of each de-
cision node, the intervals [l,u] assigned to terminal nodes
> are also CS specifications (see Section 3.1). A CSDD
can be therefore regarded as a PSDD whose local PMFs
have been replaced by CSs. This also gives a semantics for
these CSs, which are regarded as conditional CSs for the
variables/events in the associated nodes given the context.

Exactly as a PSDD defines a joint PMF, a CSDD defines
a joint CS. Such a CS, called here the strong extension
of the CSDD and denoted as Kr(XXX), where r is the root
node of the CSDD, is defined as the convex hull of the
set of joint PMFs obtained by all the PMF specifications
on the terminal and decision nodes consistent with the
corresponding CSs.

By definition of CSDD strong extension and by the Base
Theorem for PSDDs, we have the following result.
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Theorem 5 (Base) For each node n of a CSDD, for each
instantiation z of its variables Z,

Pn(zzz)> 0 iff zzz |= 〈n〉 , (1)

Pn(zzz) = 0 iff zzz 6|= 〈n〉 , (2)

where Pn(zzz) = minP(Z)∈Kn(Z)P(z) and Pn(zzz) =
maxP(Z)∈Kn(Z)P(z).

CSDD inferences are intended as the computation of
lower and upper bounds with respect to the strong exten-
sion.

An important remark is that, as the extreme points of the
convex hull of a set also belong to the original set, the ex-
treme points of the strong extension are joint PMFs induced
by PSDDs (whose local PMFs are consistent with the local
CSs in the CSDD). As a consequence of that, a CSDD
encodes the same probabilistic independence relations of
a PSDD based on the same SDD, but based on the notion
of strong independence instead of that of stochastic inde-
pendence (see Section 3.1). Thus, the variables of a node
are strongly independent from the ones outside the node
when its context is given and feasible. In this sense, the
relation between PSDDs and CSDDs retraces that between
BNs and credal networks [3].

Figure 3 depicts a CSDD modeling the data and the
constraints of the toy example in Section 2. The circuit
is that of a SDD modeling the logical constraints among
the four Boolean variables, while the probability intervals
associated to the wires are obtained by the local IDM (Sec-
tion 3.1). When the application of the IDM involves zero
counts because of the logical constraints, the IDM interval
associated to the impossible event is replaced by a sharp
zero.

Note also that the CSs of a CSDD are associated to
conditional probabilities based on the context (Definition
3). The number of variables involved in the context in-
creases with the distance from the root node. For contexts
involving many variables we might therefore have only a
small amount of data consistent with the context and, con-
sequently, very large probability intervals (see Section 3.1).
On one side, this justifies the need of a robust statistical
learning of the parameters as the one provided by the IDM
when only few learning data are available. On the other
side, this issue confirms the need for structural learning
algorithm able to decide the optimal structure for a PSDD
or CSDD [10, 11].

5. Inference in CSDDs

5.1. Marginal Queries

Algorithm 1 computes the probability of a marginal query
in a PSDD. Algorithm 2 provides an extension of this
procedure to CSDDs, allowing for the computation of

lower/upper marginal probabilities. The procedure follows
exactly the same scheme based on a reverse topological
order with respect to the terminal and the decision nodes.
Unlike Algorithm 1, every time a decision node is pro-
cessed, Algorithm 2 also requires the solution of a linear
programming task whose feasible region is the local CS.

Algorithm 2 Lower probability of evidence
input: CSDD, evidence e
for n← N, . . . ,1 do

π(n)← 0
if node n is terminal then

v← leaf vtree node that n is normalized for
π(n)← Pn(ev)

else
((pi,si)

k
i=1,Kn(P))← n (decision node)

π(n)←min[θ1,...,θn]∈Kn(P) ∑
k
i=1 π(pi) ·π(si) ·θi

end if
end for
output: P(e)← π(1)

To see why the algorithm properly computes P(e) just
regard the output of Algorithm 1 as a symbolic expression
of the local probabilities involved in the CSDD local CSs.
This is a multi-linear function of these probabilities subject
to the linear constraints defining the CSs. The optimizations
with respect to the CSs of the terminal nodes can be done
independently of the others. Afterwards, the decision nodes
that are parents of terminal nodes can be safely processed
and so on. This is clearly the reverse topological order in-
dexed by the counter n. The algorithm runs in polynomial
time as it requires the solution of a single linear program-
ming task for each local CS of the CSDD. Note that for
terminal nodes the optimization is trivial as it only consists
in the computation of a lower probability for a CS over
a Boolean variable. An analogous procedure can be also
defined for upper probabilities.

The intuition above is made formal by next theorem,
which states that the output of Algorithm 2 is indeed the
lower bound of a query with respect to the strong extension
of the CSDD.

Theorem 6 For any node n normalized for vtree v and for
an evidence e over some variables in a CSDD:

π(n) = Pn(e) . (3)

Proof If n is a terminal node, the theorem is true by defin-
ition of Algorithm 2 (the computation of Pn(ev) is imme-
diate). Let n = ({(pi,si)}k

i=1,Kn(P)) be an internal node
and assume that the theorem holds for n’s descendants. If l
and r are the left, respectively right sub-vtree of v, we have
that:

Pn(e) = min
Pn(Z)∈Kn(Z)

Pn(e)
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[ 10
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11
101 ] [ 30

101 ,
31
101 ] [ 60

101 ,
61
101 ]

1 0 1 0 1 0 [ 18
31 , 19

31 ] [ 12
31 , 13

31 ] 1 0 1 0

[ 24
31 , 25

31 ] [ 54
61 , 55

61 ][ 3
13 , 4

13 ]

K

¬L

⊥

L

A

P

⊥

¬P

K :

L

⊥

¬L

¬A

¬P

A :

P

¬K

¬L

⊥

L

A :

P

⊥

¬P

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧

∨

Figure 3: A CSDD for the toy example in Section 2

= min
Pn(Z)∈Kn(Z)

k

∑
i=1

Ppi(el) ·Psi(er) ·θi

= min
[θ1,...,θk]∈Kn(P)

k

∑
i=1

π(pi) ·π(si) ·θi . (4)

The second equality comes from [7, Theorem 7]. The
last equality is due to the fact that, at this point, in order to
minimize this quantity, one can first minimize separately
Ppi(el) and Psi(er) because these minimizations are done
over two distinct CSs (the strong extension of the sub-
CSDD rooted at pi and the strong extension of the sub-
CSDD rooted at si), and then, with the obtained values,
solve the LP over the CS Kn(P) attached to node n. Hence,
the induction hypothesis applies.

As an example of the application of Algorithm 2 consider
the query (A =⊥,P =⊥) for the CSDD in Figure 3. Out
of three parent edges of the root decision node, only the
second one gives a non-zero contribution. Thus, by simple
multiplication of the lower bounds of the IDM intervals
we obtain P(A =⊥,P =⊥) = 18

31 ·
30
301 = 540

3131 and similarly
P(A =⊥,P =⊥) = 19

101 .

5.2. Conditional Queries

In the previous section we showed how to compute the
lower (or upper) marginal probabilities in a CSDD by Al-
gorithm 2. This corresponds to a sequence of linear pro-
gramming tasks whose feasible regions are the local CSs
of the CSDD processed in reversed topological order, thus
taking polynomial time with respect to the diagram size. In
this section we show that something similar can be done for
conditional queries under the additional assumption that
the CSDD is singly connected.

Let X = x denote the variable and state to be queried and
eee the available evidence about other variables in a CSDD
α rooted at r with variables XXX . The task is to compute the
lower conditional probability with respect to the strong
extension, i.e.,

P(x|eee) = min
P(XXX)∈Kr(XXX)

P(x,eee)
P(eee)

. (5)

Note that, in order for P(x|eee) to be defined, we need to
assume that eee is consistent with the underlying SDD’s in-
terpretation 〈α〉. To see this, assume there is a total instan-
tiation of XXX extending eee. Then, given an extreme point
P(XXX) of the strong extension Kr(XXX), the Base Theorem for
PSDDs tells us that P(xxx)> 0 if and only if xxx |= 〈α〉. This
immediately yield that the denominator in the right hand
side of Equation (5) is positive for each extreme point of
the strong extension Kr(XXX) if and only if eee is consistent
with 〈α〉.

The task in Equation (5) corresponds to the linearly con-
strained minimization of a (multilinear) fractional function
of the probabilities. This prevents a straightforward applic-
ation of the same approach considered in the previous sec-
tion. Thus, we consider instead a decision version of the op-
timization task in Equation (5), i.e., deciding whether or not
the following inequality is satisfied for a given µ ∈ [0,1]:

P(x|eee)> µ . (6)

As for the algorithm in [5], an algorithm able to solve
Equation (6) for any µ ∈ [0,1] inside a bracketing scheme
linearly converges to the actual value of the lower probabil-
ity.

As P(x|eee)+P(¬x|eee) = 1 for each P(XXX) ∈ Kr(XXX), and
assuming that P(eee)> 0, Equation (6) holds if and only if
the following inequality holds:

min
P(XXX)∈Kr(XXX)

[(1−µ)P(x,eee)−µP(¬x,eee)]> 0 . (7)
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For evidence (variable instantiation) eee and vtree node v,
we will use the notation eeev to denote the subset of instanti-
ation of eee that pertains to the variables of vtree v, and eeev to
denote the subset of eee that pertains to variables outside v.

If eee |= ¬x, then P(x,eee) = 0, and similarly if eee |= x, then
P(¬x,eee)= 0. Otherwise both x,eee= x,eeev and¬x,eee=¬x,eeev,
and therefore P(x,eee) = P(x,eeev) and P(¬x,eee) = P(¬x,eeev),
where v is the leaf node with variable X in the vtree the
CSDD is normalized for. In the following we might there-
fore assume eeev = eee.

Let n = (p1,s1,θ1), . . . ,(pk,sk,θk) be a decision node of
a PSDD that is normalized for vtree node v with left child l
and right child r. By [7, Theorem 6], for evidence eee′ it holds
that Pn(eee′) = ∑

k
i=1Ppi(eee

′
l)Psi(eee

′
r)θi. Now suppose that the

decision root of the CSDD r = ({(pi,si)}k
i=1,Kr(P)) is

normalized for vtree node v and that X occurs in the left sub-
vtree, the case when X occurs in the right sub-vtree being
mutatis mutandis the same. Hence, assuming the CSDD is
singly connected, we have that Equation (7) rewrites as:

min
[θ1,...,θk]∈Kr(P)

k

∑
i=1

π(pi)σ(si)θi > 0 . (8)

where

π(pi) := min
Ppi (ZZZ)∈K

pi (ZZZ)
[(1−µ)Ppi(x,eeel)−µPpi(¬x,eeel)]

(9)
and

σ(si) =

{
Psi(eeer) if π(pi)< 0
Psi

(eeer) otherwise.
(10)

The evaluation of π(pi) in Equation (9) is just another
instance of the original minimization in Equation (7). If the
CSDD in Equation (7) is a terminal, call it n, and assume X
occurs in n. As optimal values are attained on the borders
of the domain, the left hand side of the equation rewrites
as:

λn(µ) := min
{

(1−µ)Pn(x)−µPn(¬x),
(1−µ)Pn(x)−µPn(¬x)

}
, (11)

where the lower and upper probabilities in the above ex-
pression are those associated to the bounds in the CS spe-
cification for X => and the other values are obtained by
the conjugacy relation P(x) = 1−P(¬x).

The idea of the procedure to solve Equation (7) goes
therefore as follows. Consider any terminal node n and the
corresponding vtree node v. If X occurs in v, we associate to
n the value π(n) := λn(µ). Otherwise we may associate any
value to it, say π(n) = 0. The reason for the latter choice
will become obvious in a moment. We then proceed bottom
up. Let n be a decision node with corresponding vtree
node v. Consider its elements (p1,s1), . . . ,(pk,sk), with
associated values π(pi), resp. π(si). If X does not occurs
in v, then as before the value we are going to associate to

n does not really matter, and thus let π(n) = 0. Otherwise,
X occurs in either vl or vr, say vl . Hence, we use the left
hand side of Equation (8) to determine the value associated
with n, that is π(n) :=min[θ1,...,θk]∈Kn(P) ∑

k
i=1 π(pi)σ(si)θi.

Notice that, since X does not occur in vr, the value π(si)
previously associated to a subs si of n does not matter in
the calculation of π(n). This justifies the arbitrary choice
above when X does not occur in the vtree corresponding to
a node.

To sum up, define, for a terminal node n:

Λn(µ) :=
{

λn(µ) if X occurs in n
0 otherwise . (12)

The discussion above then justifies Algorithm 3 and its
correctness in deciding whether or not inequality (6) is
satisfied for a given µ ∈ [0,1] for singly connected CSDDs.

Algorithm 3 Lower conditional probability
input: CSDD, µ , X = x, eee
for n← N, . . . ,1 do

π(n)← 0
v← vtree node that n is normalized for
if node n is terminal then

π(n)← Λn(µ) as in Eq. (12)
else
((pi,si)

k
i=1,Kn(P))← n (decision node)

if X occurs in v then
if X occurs in vl then

u← vl and w← vr

ui← pi and wi← si for 1≤ i≤ k
else if X occurs in vr then

w← vl and u← vr

ui← si and wi← pi for 1≤ i≤ k
end if
π(n)← min[θ1,...,θk]∈Kn(P) ∑

k
i=1 π(ui) · σ(wi) · θi

with σ as in Eq. (10)
end if

end if
end for
output: sign[P(x|eee)−µ]← sign[π(1)]

The procedure described by Algorithm 3 requires the
solution of a number of linear programming tasks, whose
feasible regions are the local CSs associated with the
CSDD, equal to the number of decision nodes. The com-
putation of the coefficients of the objective function in
these tasks requires a call of Algorithm 2 for each optimiz-
ation variable to compute the quantities in Equation (10).
Note also that the optimization in Equation (9) should be
performed before the one in Equation (10). As discussed
before, by iterated calls of Algorithm 3, we can therefore
compute lower conditional queries in polynomial time in
case of singly connected CSDDs.

To conclude the section, let us demonstrate how Al-
gorithm 3 works in practice by considering the CSDD in
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Figure 3. We consider the query L => given evidence A =
>. Let us leave unspecified the value of µ ∈ (0,1). The last
linear programming task required by the algorithm is the
one associated to the root of the CSDD. The (IDM) linear
constraints of this task are θ1 ∈ [ 10

101 ,
11
101 ], θ2 ∈ [ 30

101 ,
31
101 ]

and θ3 ∈ [ 60
101 ,

61
101 ] and ∑

3
i=1 θi = 1. In the rest of this sec-

tion we show that the objective function for this task has
form:

f (θ1,θ2,θ3) :=−µ ·θ1 +(1−µ) · 36
403 ·θ2−µ · 55

61 ·θ3 .
(13)

Consider first the terminal nodes normalized for vtree
node 4 in Figure 2, i.e., those terminal nodes n concern-
ing variable L and whose contribution is given by λn(µ).
Between those, nodes labelled by L give contribution
(1−µ) while those labelled by ¬L give contribution −µ .
This is because Pn(L =>) = Pn(L =>) = 1 if n = L and
zero otherwise and, similarly, Pn(L =⊥) = Pn(L =⊥) = 1
if n = ¬L and zero otherwise.

As explained in the previous section, at the beginning of
the calculation π(n) is set to 0 for all terminal nodes not
associated to vtree node 4, and their contribution will be
eventually computed (as a σ ) when the procedure reach
their unique parent decision node. We then proceed bottom
up, starting from the decision nodes constituted by the
primes and subs occurring as elements of the root. Notice
that L occurs only in the primes as (left) variable, meaning
that we need to consider those three decision nodes first.
For what concerns the first prime p1 = {(¬L,K),(L,⊥)},
we have π(p1) = π(¬L) ·σ(K) ·1+π(L) ·σ(⊥) ·0 =−µ .
The parameters of p1 are sharp, and therefore there is no
minimization to perform. Moreover, as the evidence does
not contain K, the computation of σ is trivial. Similarly, for
p3 it holds π(p3) = −µ . For p2 = {(L,>),(¬L,⊥)} the
situation is analogous, and the computation gives:

π(p2) = π(L) ·σ(>) ·1+π(¬L) ·σ(⊥) ·0 = 1−µ.

As the sign of the contributions π(pi) are known, we
can thence compute σ(si), for i = 1,2,3. Since π(p1)
and π(p3) are negative, both σ(s1) and σ(s3) are ob-
tained by taking the upper probability of the evidence, i.e.,
σ(s1) = 1 and σ(s3) =

55
61 . On the other hand, the positivity

of π(p2) yields that in case of σ(s2) we have to minimize
0 ·θ1 +

3
13 ·θ2 with respect to the local CS attached to s2.

This is achieved for the lower bound of the right branch
and gives 3

13 ·
12
31 = 36

403 . To conclude with the example, the
minimization of the objective function in Eq. (13) with
respect to the above described IDM constraints for differ-
ent values of µ according to a bisection scheme allows to
approximate the value for which the minimum is equal to
zero as µ ' 0.0395. The obtained value can be regarded as
an estimate for the exact value of P(L =>|A =>).

6. Conclusions
We proposed a new class of imprecise probabilistic graph-
ical models based on a credal set extension of probabilistic
sentential diagrams. Two efficient algorithms for marginal
and conditional queries are provided. The results are per-
fectly analogous to those already derived in [12] for sum-
product networks. Despite the strong analogies between
SPNs and PSDDs, the latter models can also embed logical
constraints, something that cannot be achieved by SPNs.
This makes the present contribution relevant and, at the
present moment, the most natural way to embed logical
constraints in imprecise probabilistic graphical models. A
lot of future work has to be done. First of all, we intend to
explore the possibility of performing efficient credal classi-
fication with CSDDs in the presence of logical constraints
(e.g., multi-label classification as in [1] or spatio-temporal
data managing as in [6]). On the theoretical level the char-
acterisation of the computational complexity of various
inference tasks in these models (without imposing specific
restrictions on the underlying structure) should be provided
together with dedicated studies about the relations between
credal networks and CSDDs, but also about the coherence
relations characterising these new class of models.
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