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Abstract
This paper has two goals. The first goal is to say some-
thing about how one might combine different agents’
imprecise probabilities to generate an aggregate impre-
cise probability. The second goal is to champion the
very general theory of “belief models” (de Cooman
“Belief models: an order theoretic investigation” An-
nals of Mathematics and AI 2005) which, I think, de-
serves more attention. The belief models framework is
interesting partly because many other formal models
of reasoning appear as special cases of belief models
(for example, propositional logic, ranking functions,
imprecise probability).
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sions, Lattice Theory

1. Belief Structures

The basic idea of this paper is to start with the idea that
the most important structural features of epistemic states
are informativeness and coherence. This gives rise to the
“belief models” framework first put forward by Gert de
Cooman [5]. We then show that this very general model
is sufficient to generate a rich and interesting theory of
aggregation.

Consider representing agents’ epistemic states using sets
of sentences in some propositional language. One state
is more informative than another just in case the latter is
a subset of the former. There is a least informative epi-
stemic state: the empty set. This relation of informativeness
partially orders the possible epistemic states, and further
gives the epistemic states the structure of a bounded lat-
tice. That is, the least upper bound of a set of epistemic
states is itself an epistemic state: it is the intersection of
the sets of sentences. Likewise for greatest lower bound.
There are two ways a set of sentences can be defective as an
epistemic state: it can be self-contradictory or incoherent,
or it can be incomplete in the sense of not including the
logical consequences of elements of the set. Sets of sen-
tences that have neither of these flaws are privileged: they
are the good states to be in. Call these the coherent states.
States that don’t include all of their logical consequences
can be “completed”, that is, mapped to a coherent state by
a closure operator. The top element of the lattice – the set
of all sentences – is not coherent: it is contradictory.

Informativeness and coherence are also characteristic of
Imprecise Probability models of epistemic states. We’ll be
working with lower previsions [14, 2, 25]. For example, for
lower previsions, P and P′, say that P dominates P′ when
P(g) ≥ P′(g) for all g. P is more informative than P′ just
in case P dominates P′. This relation of informativeness
gives the set of lower previsions the structure of a bounded
lattice. The bottom element is the vacuous prevision. Infima
and suprema of lower previsions (pointwise minima and
maxima) are lower previsions. A lower prevision can be
defective in two ways: it can suffer sure loss, or it can
be partial. Lower previsions with neither of these defects
are privileged, and as before we can call them “coherent”.
Partial lower previsions can be “completed” through the
procedure of natural extension. The top element of this
lattice – the lower prevision that assigns value ∞ to every
gamble – is obviously incoherent.

In what follows, it will be conceptually useful to be able
to identify a lower prevision with its associated closed con-
vex set of linear previsions and thus with a closed convex
set of probabilities (a credal set). While there are some
subtle distinctions that such loose talk will fail to make,
nothing will hang on that in my discussion of lower previ-
sions as a belief structure. Note that thinking in terms of
credal sets makes the idea that the incoherent lower pre-
vision is the top element of the lattice more intuitive: an
incoherent lower prevision dominates no linear previsions,
and thus the associated credal set is empty. Since a more
informative credal set is a subset of another, the incoherent
credal set – the empty set – is a subset of all others and is
thus the top element.

So both propositional logic and lower previsions have
this structure of informativeness and coherence. Abstract-
ing from the details of the two cases gives us the general
theory of belief models. Let S be a set of belief models,
partially ordered by � (read as “is less informative than”),
such that 〈S,�〉 is a complete bounded lattice.1 Let C⊆ S
be the subset of coherent belief models, and stipulate that
C is closed under arbitrary non-empty infima. To be clear,
we are saying that there is some, exogenously specified,
subset of S that we are taking to be the coherent belief

1. That is, the relation � is reflexive, transitive and antisymmetric; the
partially ordered set is such that the operations of taking a least upper
bound or greatest lower bound of a set of elements results in an
element of the set; the poset has elements 1 and 0 such that for all
elements of the lattice x, 0� x� 1;
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models. In most particular instances of belief models, we
will have some internal grasp on what the coherent models
are, for example, the logically closed and consistent sets of
sentences, but as far as the abstract formal theory of belief
models is concerned, C is just exogenously given. Stipulate
further that 1S /∈ C. 〈S,C,�〉 is called a belief structure.
The elements of S are the belief models: the representations
of potential epistemic states. The elements of C are the
coherent belief models. Let C = C∪{1S}, and define a
closure operator:

ClS(ϕ) = inf{κ ∈ C,ϕ � κ}

A further property shared by propositional logic and
lower previsions is that the maximally informative coher-
ent elements play a special role: the full structure of the
space of coherent belief models can be recovered from the
maximal coherent elements.

In the propositional logic case, the maximally inform-
ative coherent sets of sentences are, in effect, the sets of
consequences of a state description or possible world. This
means that the logically closed and logically consistent sets
of sentences are in a one-to-one correspondence with sets
of state descriptions. Likewise, the maximal elements of
the belief structure of lower previsions are the linear previ-
sions. Indeed, the set of linear previsions that dominate a
given coherent P will be a closed and convex set of linear
previsions, and any closed and convex set of linear previ-
sions gives rise to a lower prevision by taking the pointwise
minimum [25, p. 71].

Let M = {m ∈C : For all ϕ ∈C,m� ϕ⇒m = ϕ}. The
m ∈M are the belief models that are “just under” the max-
imal element. They are the atoms of the dual structure. Let
M(ϕ) = {m ∈M,ϕ � m}. Call a belief structure a strong
belief structure, when, for all ϕ ∈C, ϕ = infM(ϕ). That is,
a belief structure is strong just when you can recover all the
information about the coherent belief models from looking
at the maximally informative elements of the structure.2

The formal framework of belief models was introduced
in [5], and it provides a very general theory of rational be-
lief. In that paper de Cooman went on to show that one can
recover a significant portion of AGM belief revision the-
ory [1, 9] in the framework of belief models. In particular,
belief models admit of an analogue of the representation
theorem of expansion, and strong belief models also admit
of a representation of revision. Contraction appears to be
more recalcitrant to a belief models treatment.3 In essence

2. I conjecture that this “strongness” condition can be weakened to
the condition that says that every element of C is such that it is the
supremum of the set of maximal ideals that contain it. This would
allow some versions of ranking functions to be “strong”.

3. What is missing is the representation of a contraction operator by a
function determined by a relation on the states. One could define a
contraction operator using the Harper identity K−A = K∩ (K∗¬A), so
the sense in which the belief models theory of AGM is incomplete is
minimal.

what de Cooman did was point out that the proofs of those
representation theorems relied only on the lattice structure,
and not really on any distinctively logical structure. My
goal is to point out that the same is true for a large body
of literature on “logic based merging” aggregation operat-
ors [10, 11]. This gives us a new suite of tools to bring to
bear on the question of how to aggregate various kinds of
epistemic states.

Lower previsions and propositional logic are not the only
theories that have this informativeness and coherence struc-
ture. Possibility theory [4] and ranking functions [21, 22]
are belief structures, with pointwise dominance as the re-
lation of informativeness, although this sort of structure
appears not to be strong (but see footnote 2). Various repres-
entations of preference are a belief model. Informativeness
corresponds to refinement of the relation. This idea will not
be pursued in this paper, but preferences are important in
the literature on aggregation more generally, so followup
work on the impossibility results (e.g. Arrow’s theorem)
will pay much more attention to preferences. Strongness of
these sorts of structures depends on the details. Other ex-
amples of belief models more akin to the lower previsions
approach I am about to discuss include sets of desirable
gambles [19], and choice functions [20, 26].

One property that de Cooman does not appeal to, but that
will be necessary in the current setting is the following.

For distinct a,b,c ∈M we have c� (a∧b) (*)

This property is a consequence of distributivity,4 and since
both propositional logic and lower previsions give rise to
distributive lattices, it is something that holds of both cases
above.

2. Merging Operators for Belief Structures

The main topic of the remainder of this paper is aggregation.
Consider a group of agents each of whom has some opinion
represented by a belief model. The question naturally arises:
how might we generate a new belief model that is, in some
sense, an aggregate of the belief models of the individuals?
As [24] discuss, there are various understandings of how
an aggregate might be interpreted, and so there is not a
univocal answer as to what is the right way to aggregate.
For example, one might be aggregating so as to make a
decision, in which case, an uninformative aggregate will
be unhelpful, whereas if the goal of the aggregation is to
generate a “common ground” position as the basis for future
collaborative enquiry, perhaps the uninformative aggregate
is more appealing. In short, pluralism about aggregation
seems a natural position.

4. For distinct co-atoms a,b,c we have c∨ (a∧b) = (c∨a)∧ (c∨b) =
1∧1 = 1 6= c, so c� (a∧b). And thus for any c distinct from a,b we
have c /∈M(a∧b).
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So, let Ψ stand for the collection of individual agents
attitudes: Ψ is a multiset of belief models. Consider further
the possibility that there might be some independent con-
straints that we would like our merging operator to satisfy.
Let the belief model µ represent these constraints. In the
propositional case, we can represent a constraint by a set
of possible worlds – the worlds where the constraint holds
– and thus by a proposition, and thus by a set of sentences.
The idea is that whatever else the merging operator does,
it must output a belief model that is more informative than
the constraint.

Recall that here and throughout, ∧ and ∨ are order-
theoretic “meet” and “join”, not logical “and” and “or”.

As de Cooman did for belief revision, we will start our
study of aggregation for belief models by taking inspira-
tion from the literature on propositional logic approaches
to aggregation, in particular from [10, 11]. Call ∆µ(Ψ) a
merging operator if Ψ is a multiset of belief models, and µ

is a belief model representing the constraints the aggregate
belief must satisfy, and ∆ satisfies:
IC0 µ � ∆µ(Ψ)
IC1 If µ is consistent then ∆µ(Ψ) is consistent
IC2 If

∨
Ψ∨µ is consistent then ∆µ(Ψ) =

∨
Ψ∨µ

IC4 If µ � ϕ1 and µ � ϕ2 then ∆µ(ϕ1 tϕ2)∨ϕ1 is con-
sistent if and only if ∆µ(ϕ1tϕ2)∨ϕ2 is consistent

IC5 ∆µ(Ψ1tΨ2)� ∆µ(Ψ1)∨∆µ(Ψ2)
IC6 If ∆µ(Ψ1) ∨ ∆µ(Ψ2) is consistent then, ∆µ(Ψ1) ∨

∆µ(Ψ2)� ∆µ(Ψ1tΨ2)
IC7 ∆µ1∨µ2(ψ)� ∆µ1(Ψ)∨µ2
IC8 If ∆µ1(Ψ) ∨ µ2 is consistent then ∆µ1(Ψ) ∨ µ2 �

∆µ1∨µ2(ψ)

These conditions can be motivated in the following way
(following [10]). IC0 just says that the output of the mer-
ging operator had better satisfy the constraints that we want
it to. IC1 says that we want the output of the merging oper-
ator to be consistent, unless we require it to be inconsistent
by plugging in inconsistent constraints. IC2 tells us that in
the ideal case where we are merging a collection of belief
models (and constraints) that are such that they are all con-
sistent with each other, then the merging operator should
output the supremum of the set of belief models (and con-
straints). The equivalent claim for sets of sentences says
that if there is a non-empty intersection of the belief sets,
that should be the output of the merging operator. We might
want to split IC2 into two sub-conditions:

IC2a ∆µ(Ψ)�
∨

Ψ∨µ

IC2b If
∨

Ψ∨µ is consistent then
∨

Ψ∨µ � ∆µ(Ψ)

There is no IC3 for belief models, since the condition is
trivial. The condition would have said something like “lo-
gically equivalent multisets of belief models should be
treated equivalently”, but since we have effectively quotien-
ted out logical equivalence, there’s nothing for the condition
to do. We skip number 3 in order to keep our numbering of
the conditions correspond to that of [10]. IC4 states a kind

of “fairness” condition. Other things being equal, the output
of merging ϕ1 with ϕ2 should not be consistent with one
of them but not the other. IC5 and IC6 together, following
on from the intuition driving IC2, say that if there’s some-
thing common to the merging of two subgroups, then that
should be the output of merging the groups together. IC7
and IC8 govern how merging should respond to making the
constraints stronger (more informative). These conditions
are fairly plausible constraints on aggregation, but finding
an operator that satisfies them is non-trivial.

Note that, holding ∆ and Ψ fixed, we can define a re-
lation over maximal belief models by looking at pairwise
comparisons as follows:

m EΨ m′ iff ∆m∧m′(Ψ)� m (1)

Indeed, each Ψ gives rise to such an ordering,5 and thus ∆

gives rise to a syncretic assignment: a syncretic assignment
is an assignment of a relation over M, EΨ to each multiset
Ψ, such that:
S0 For each Ψ, EΨ is a total order on M
S1 If a ∈M(

∨
Ψ) and b ∈M(

∨
Ψ) then a EΨ b

S2 If a ∈M(
∨

Ψ) but b /∈M(
∨

Ψ) then a CΨ b
S4 For all a ∈M(ϕ) there is some b ∈M(ϕ ′) such that

b Eϕtϕ ′ a
S5 If a EΨ1 b and a EΨ2 b then a EΨ1tΨ2 b
S6 If a CΨ1 b and a EΨ2 b then a CΨ1tΨ2 b
S7 EΨ is smooth, meaning for all µ , for all m ∈M(µ), if

m is not minimal with respect to EΨ then there is an
m′ ∈M(µ) such that m′ is minimal and m′ CΨ m.

And, given a syncretic assignment we can define a merging
operator as follows:

∆µ(Ψ) = inf
�

min
EΨ

{M(µ)} (2)

Indeed, the two concepts are interdefinable.

Theorem 1 If ∆ satisfies IC0–8, then the syncretic assign-
ment defined by equation (1) satisfies S0–7.

Theorem 2 If EΨ satisfies S0–7, then the merging oper-
ator defined by equation (2) satisfies IC0–8

Remark 3 Using equation (1) to define a syncretic as-
signment, and then using equation (2) to define a merging
operator returns the original merging operator.

Before continuing, let us note a further interesting con-
nection between this work and that of [5]. Letting K∗A stand
for revising knowledge base K by proposition A, [11] show
that K∗A = ∆A(K). That is, if ∆ is a merging operator, then
one can recover an AGM revision operator through the
above equation.6

5. One can think of this along the lines of an entrenchment ordering á
la AGM theory [1, 9].

6. The converse is also sort of true, but much more complicated.
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So we have seen that we can generate a merging oper-
ator by defining a syncretic assignment: a class of relations
over the maximal elements of the belief structure. One nat-
ural thought is that these relations are determined by some
“distance” over elements of M. The following discussion
builds on [12]. For convenience, I am going to call max-
imal coherent belief models “worlds”, in analogy to the
propositional case. Start from a distance between worlds:
D(m,m′) satisfying:
D0 D maps pairs of worlds to real numbers
D1 D(m,m′) = D(m′,m)
D2 D(m,m′) = 0 iff m = m′

Define a distance between worlds and belief models:

D(m,ϕ) = min
ϕ�m′
{D(m,m′)} (3)

Define a distance aggregation function F satisfying:
F0 F takes a sequence of real numbers and outputs a real

number
F1 If x≤ y then F(x1, . . . ,x, . . . ,xn)≤ F(x1, . . . ,y, . . . ,xn)
F2 F(x1, . . . ,xn) = 0 iff x1 = · · ·= xn = 0
F3 For all x ∈ R, F(x) = x

Let Ψ = {{ϕ1,ϕ2, . . . ,ϕn}} Define a distance between
worlds and multisets of belief models:

D(m,Ψ) = F(D(m,ϕ1),D(m,ϕ2), . . . ,D(m,ϕn))

Define a relation between worlds depending on Ψ:

m EΨ m′ iff D(m,Ψ)≤ D(m′,Ψ) (4)

And use equation (2) to define a merging operator. Call this
∆D,F .

Theorem 4 If D satisfies D0–2, F satisfies F0–3, and the
relation defined by equation (4) is smooth (satisfies S7) then
∆D,F satisfies IC0–2 and IC7,8.

Consider the further properties that F might satisfy.
F4 For a permutation σ , F(x1, . . . ,xn) =

F(σ(x1), . . . ,σ(xn))
F5 F(x1, . . . ,xn) ≤ F(y1, . . . ,yn) ⇒ F(x1, . . . ,xn,z) ≤

F(y1, . . . ,yn,z)
F6 F(x1, . . . ,xn) ≤ F(y1, . . . ,yn) ⇐ F(x1, . . . ,xn,z) ≤

F(y1, . . . ,yn,z)

Theorem 5 If D satisfies D0–2, F satisfies F0–3 and the
relation defined by equation (4) is smooth (satisfies S7)
then: F satisfies F4–6 iff ∆D,F satisfies IC0–8.

Among the functions that satisfy F0–6 are summation
and a lexmax.7

7. Lexmax returns a value such that the ordering on M coincides with
the following procedure: Associate each m with a list of distances
between m and each ϕ , with the distances in ordered from biggest to
smallest, order the m according to the lexicographic ordering of the
lists of ordered distances. See [12, p. 60] for details.

The only slight wrinkle in the belief models version of
this theorem is that the relation defined by the distance
must be smooth (i.e. satisfy S7). This can be achieved in a
couple of different ways: have the codomain of the distance
function be well-ordered ([12] have “distances” into N);
or consider cases where D is a metric on M and C is a
collection of closed (in the induced topology) subsets. This
latter case is what happens with lower previsions with a
well-behaved distance such as Euclidean distance.

For more on distance based merging in general, see [12,
11]. It is interesting to note that there are, in essence, two
moving parts here: D and F . However, not much has been
written about alternatives to min in equation (3). Exploring
this possibility must be left for a later paper.

The upshot of the above theorems is that we have a short-
cut to generating aggregation rules for belief models. That
is, whenever we have a formal theory that satisfies the pretty
minimal conditions of belief structures, we can generate
aggregation rules for such a structure simply by thinking
about “distances” between the maximal elements of the
structure.8 In the next section we will do this for credal
sets. Since the maximal elements of the belief structure of
credal sets are the probability functions, we can use the
extensive literature on distances between probabilities as a
springboard to new aggregation procedures.

Dubois et al. also discuss a formal theory of aggregation
with an extremely wide scope [7]. In their framework, they
take the triple of core (most plausible elements), support
(minimally plausible elements) and plausibility ordering to
be primitive, and they show that many formal models fit
this mould including the ones discussed here. They then dis-
cuss an “information ordering” as derived from the above.
What the belief models approach does is shows how far
you can get with just the structure imposed by the inform-
ativeness relation. This is interesting for two reasons. First,
informativeness and coherence seem like more natural first
principles for a general representation of attitudes than do
core, support and plausibility ordering. We can see this
from the fact that this structure applies in a kind of trivial
way to, for example, propositional logic belief sets. (the
core is identical to the support, and the plausibility order-
ing is the equivalence relation for a two-element partition).
Second, informativeness and coherence seem applicable
even in the context of non-epistemic attitudes such as pref-
erence, whereas the notions of support and core seem in-
escapably epistemic. We also go beyond existing accounts
of generalised merging by making room for “independent
constraints”.

8. “Distances” in inverted commas here because D0–2 are weaker than
the typical properties of distance (e.g. of a metric).
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3. Merging Operators for Lower Previsions
and Probabilities

We now focus on the question of how to define interesting
merging operators for belief models, and in particular what
this can tell us about aggregating lower previsions. We will
pay particular attention to drawing connections to the liter-
ature on aggregating probabilities, which are a special case.
We will, for the most part, be suppressing the independent
constraints µ : we can presume for this section that µ = 0S.

3.1. A Crude Merging Operator

As a warm up, let’s consider a crude form of aggregation
for credal sets, as discussed by several authors [7, 6].9 Let’s
presume for the moment that the independent constraints
are trivial. Consider the following simple aggregation rule:
if the credal sets have a non-empty intersection then the
aggregate should be that intersection, and if not, then the
aggregate should be the (closure of the convex hull of) the
union of the credal sets. Does this aggregation rule satisfy
IC0–8? It might not be immediately obvious that it does, but
we can show it does by constructing a syncretic assignment
that satisfies S0-7. Divide M into three parts: A the possibly
empty set that contains all probabilities in the intersection
of the credal sets in Ψ; B the set containing all probability
functions that are in some but not all members of Ψ; C
the set containing probability functions in no member of
Ψ. Recalling that

∨
Ψ is the intersection of the credal sets

in Ψ, and
∧

Ψ is the union, we have: A = M(
∨

Ψ), B =
M(
∧

Ψ) \A, and C = M \B∪A. Recall that the point of
a syncretic assignment is that the things that are minimal
in the ordering are included in the aggregation. So we
want members of A (if there are any) to be lowest, and
members of B to be higher in the ordering than those in A,
but lower than those in C. So, define EΨ as follows: for all
a,a′ ∈ A,b,b′ ∈ B,c,c′ ∈C,

• a Eψ a′ and a′ Eψ a and likewise for b,b′ and c,c′.
• a CΨ b CΨ c

Alternatively, the same ordering is induced by this function
via Equation (4):

Dc(m,Ψ) =


0 if

∨
Ψ� m

1 if
∧

Ψ� m
2 otherwise

It’s pretty clear that such a class of relations is indeed a
syncretic relation in the sense of satisfying S0–7.

Note that we are defining Dc(m,Ψ) directly, rather than
have it determined by a D,F pair as above, but we define
the merging operator on the basis of this function through

9. The discussion in this paper is, as they say, inspired mostly by Peter
Walley’s 1982 Technical Report “The elicitation and aggregation of
imprecise probabilities”. I have been unable to find a copy of this
report, so I base this discussion on what Dubois et al. say about it.

equations (4) and (2). This may seem a trivial, and unhelp-
ful sort of aggregation, but it commutes with aggregating
by taking products [6], and with conditionalisation [24, 23].
This sort of approach also seems in line with what [8] say
about resolving disagreement through IP.

Consider now another aggregation procedure. Start with
the so-called “drastic distance”:

Dd(m,m′) =

{
1 if m = m′

0 otherwise

Pair this with summation as the F function and we know
that this determines an aggregation function that satisfies
IC0–8. We need to consider which m ∈M will have the
smallest sum of minimum distances with respect to Dd .
It is easy to see that those m will be the ones that are in
the most of the M(ϕ)s for ϕ ∈ Ψ. In essence, what this
approach does is find the biggest number n such that a
subset of Ψ of size n has a coherent supremum, collect
together all probability functions that appear in a subset
of that size, and take the closure of the convex hull of that
set to be the aggregate. This is motivated by the same intu-
itions that support the above intersection-or-union merging
operator, but it is a little more fine-grained. It is, in essence,
a maximal consistent subset approach, where maximality
is determined by the cardinality of the subset of Ψ, rather
than in terms of set inclusion, as is typical. This kind of
MCS has been discussed in the logic case by, for example,
[11]. This approach is still somewhat unintuitive as can
be seen in Figure 1:10 since the intersection of credal sets
is empty, the merging operator yields the closure of the
convex hull of the union of the credal sets. If one member
of the collective grows slightly such that the intersection is
now non-empty, the aggregate shrinks discontinuously to
become the intersection of the credal sets.

3.2. Distance Based Merging

Let’s look at what distance-based merging actually gives
us with more discriminating distance functions.

∆
D,F
µ (Ψ) = (5)

inf
�

arg min
µ�m

{
F( min

ϕ1�m1
D(m,m1), . . . , min

ϕn�mn
D(m,mn))

}
If we let F be summation, this bears some surface resemb-
lance to the (unweighted) “coherent approximation prin-
ciple” [16, 18, 17], which, translated into our current frame-
work11 looks like this:

∆
CAP
µ (Ψ) =

10. A quick note on how to read these diagrams. Each point in the space
represents a probability function over three mutually exclusive and
exhaustive events, a,b,c. The closer the point is to the vertex labelled
a, the higher the probability of a and so on. The purple shape marks
the agggregate credal state.

11. Nobody in this literature is thinking about independent constraints,
but the translation here seems plausible in they were.
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a

b c

a

b c

Figure 1: Discontinuous aggregation

inf
�

arg min
µ�m

{
∑

ϕ∈Ψ

D(m,ϕ)

}

The difference between the two is that the D in the CAP has
to be defined over all belief models, whereas ∆D,F needs D
over M only. We know that these are distinct aggregation
procedures, however, since the CAP will typically output
a precise probability, whereas, since (5) satisfies IC2, it
will sometimes output a larger credal set. So this is a new
aggregation rule discovered through the use of the belief
models approach. It’s not necessarily a rule I would endorse
for reasons we will come to shortly, but note that because
we arrived at the rule through the belief models approach
we immediately know that it satisfies IC0–8.

Note that if every ϕ ∈ Ψ is in M then the two expres-
sions coincide and for that special case, results in [17]
tell us that if D is squared Euclidean distance, the aggreg-
ate is equivalent to linear pooling and if D is Generalised
Kullback-Leibler divergence, merging is by geometric pool-
ing. That is, if you input precise probabilities, the aggregate
output is also precise. And in fact, this sort of distance
based merging will often yield a precise probability. Es-
sentially, if D is some conventional distance function and
F is continuous, you’re looking for members of M that
minimise a continuous real-valued function: it’s rare that

there’ll more than one such m. Thinking in terms of credal
sets, ∆ will output a coherent (i.e. closed and convex) credal
set, such that each extremal element of that set minimises a
sum of minimum distances. Only in specific circumstances
will such a set not be a singleton. One such non-singleton
case is where the multiset of credal sets has a non-empty
intersection. To give the flavour of another possible kind of

a

b c

Figure 2: Non-singleton aggregation

case, consider Figure 2. But in most other circumstances, it
seems like the set of points minimising the above formula
will be a singleton. This seems a somewhat unsatisfactory
result for IP aggregation.

A further issue with this approach is that it doesn’t seem
to “respect” how imprecise each agent is. For example, con-
sider Figure 3. In both cases, the aggregate is the singleton
that assigns 1

3 to each of a,b,c. And yet, in the lower case,
it seems like the green agent’s confidence that c’s prob-
ability is about 1

2 ought to affect the aggregation in some
way.12 This is, of course, merely an impressionistic sketch
of what seems unsatisfying about this approach, and more
work could certainly be done on merging along the lines of
Equation (5).

To give another example of an aggregation rule, consider
using Euclidean distance for D and the lexmax rule for
F . This amounts to aggregating by determining, for each
probability function, a sequence of minimum distances, one
for each member of Ψ. We then order these from greatest
to lowest, and then pick the elements that are minimal with
respect to the lexicographic order. So, essentially, (lexi-
)minimise maximum minimum distances. We can contrast
this with taking F to be summation by considering a case
like the top image of Figure 3 except that there are, say,
ten “copies” of the blue credal set and one each of the red
and green. For the lexicographic rule, the fact that there are

12. How the precision of the agents being aggregated ought to affect the
aggregation is a question I have not explored deeply, but it certainly
seems like a method that precludes that precision having any effect
seems to have a flaw. For one take on aggregation and precision, see
[13].
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b c

a

b c

Figure 3: Aggregation and precision

more a-favouring members makes no difference, and the
purple point in the figure is where the aggregation would
be. For the sum rule, the aggregate would be closer to the
bottom tip of the blue shape, since the copies would make a
difference to the sum of minimum distances. This illustrates
the difference between majoritarian (sum) and arbitration
(lexicographic) aggregation rules [10, 11].

3.3. Other Work on Merging Credal Sets

An important work on the aggregation of IP is an unpub-
lished technical report by Peter Walley. I haven’t found a
copy of this report, but [7] discusses Walley’s work, and
I discuss it here, based on my second hand knowledge of
it. In the interests of space I suppress discussion of those
principles Dubois et al. say Walley considers dubious. The
remaining criteria, translated into the above formalism look
like this:13

Coherence ∆(Ψ) should be a coherent belief model (i.e. a
convex set of probabilities).

Unanimity
∧

Ψ� ∆(Ψ
Reconciliation If

∨
Ψ is consistent then ∆(Ψ)∨ϕ is con-

sistent for all ϕ ∈Ψ.

13. I have suppressed the independent constraints, since they are not
something Walley considered.

Indeterminacy ∆(Ψ)�
∨

Ψ

Strong reconciliation If
∨

Ψ1 is consistent then for any
Ψ2, ∆(Ψ1tΨ2)∨ (

∨
Ψ1) is consistent

Conjunction If
∨

Ψ is consistent then
∨

Ψ� ∆(Ψ)
Symmetry Permuting the elements of Ψ does not influ-

ence the aggregate
Complete ignorance ∆(Ψ t 0S) = ∆(Ψ) (i.e. an agent

who provides no information can be ignored)
Updating Merging should commute with rational update

Coherence is, essentially, IC1. Unanimity seems natural,
but in a context where arbitrary independent constraints
are possible, we can’t rule out the possibility that the inde-
pendent constraints would force us to output an aggregate
incompatible with all the probabilities in the union of the
credal sets. Reconciliation is a bit like IC4, but IC4 is
weaker in being a biconditional rather than an absolute re-
quirement. Strong reconciliation is also not a consequence
of IC0–8. Indeterminacy is, in effect, IC2a and Conjunc-
tion is IC2b. Symmetry is a consequence of taking the
input to be a multiset, rather than, say, a sequence of belief
models. It follows from S1 that a,0S b for all a,b,∈M. To-
gether with the other properties S0–7, it appears that every
merging operator in this framework will satisfy Complete
ignorance.14 Whether all merging operators satisfy updat-
ing is an open question. As mentioned above, it appears
that certain operators do.

Moral and del Sagrado also discuss some desirable prop-
erties of credal set aggregation functions. They mention
Symmetry (which they call P1), Indeterminancy (P3) and
Conjunction (P5) all of which are validated in the current
framework. They also discuss Complete ignorance (P4) and
Unanimity (P6) which are probably validated by most if not
all merging operators. Their final property, (P2) exploits
the mixture space structure of lower previsions that has, so
far, made no appearance in this paper.
Mixture closeness If we have ϕ1, . . . ,ϕn and ϕ ′1 is such

that for every p ∈ ϕ1,q ∈ ϕ j( j ≥ 2) there is a p′ ∈ ϕ ′1
such that p′ is a convex combination of p and q, then
∆(ϕ ′1,ϕ2, . . . ,ϕn)⊆ ∆(ϕ1,ϕ2, . . . ,ϕn)

P2 intuitively says that if you replace ϕ1 with ϕ ′1 which is
uniformly “closer” to each other ϕ j, then the aggregation
should be more precise (a smaller set of probabilities). I
don’t yet have a firm opinion on whether this is a sensible
thing to require of aggregation.

3.4. Linear Pooling

In the discussion of the CAP above, we mentioned linear
pooling. Now, we know that a convex combination of co-
herent lower previsions is coherent [25, p. 59]. So can we
recover linear pooling as an aggregation method in this
framework? One of the few papers to discuss aggregating

14. It remains a project for future work to see what this means for major-
itarian merging operators [11].
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imprecise probabilities [15] proposes this as a method.15

Define:
Ψ
∗
{λi}(X) = ∑

ϕi∈Ψ

λiϕi(X) (6)

For any non-negative weights that sum to one,
∧

Ψ�Ψ∗ �∨
Ψ. And, indeed, the latter inequality can be strict even

when
∨

Ψ is consistent, thus this aggregation procedure
does not satisfy IC2a.16 The linear pool can also violate
IC2b. Despite this, it is an interesting and natural aggrega-
tion worthy of further study.

4. Conclusion

I hope to have shown that the belief models framework
is worthy of study. I think this is so both as a general
model for theorising about rational belief, and also as a
method for importing valuable work from propositional
logic approaches into a broadly probabilistic way of doing
things.
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Appendix A. Proofs

First, we summarise, without proof, some results from [5].
Call a belief model ϕ consistent when its closure ClS(ϕ) is
in C.

Lemma 6 The following are equivalent:
• ϕ is consistent
• ClS(ϕ)≺ 1S
• ϕ � κ for some κ ∈ C

If we are talking about a strong belief structure, then each
of the above is equivalent to:

• M(ϕ) 6= /0

Lemma 7
• M(ϕ) = M(ClS(ϕ))
• ClS(ϕ) = infM(ϕ)
• ϕ � ϕ ′ iff M(ϕ ′)⊆M(ϕ)
• M(ϕ ∨ϕ ′) = M(ϕ)∩M(ϕ ′)

15. There is a great deal more in this paper than I have space to discuss
here.

16. Note that if every member of Ψ is maximal, then either they all
coincide, or their supremum is inconsistent, thus this result does not
conflict with what I said earlier about ∆D,F coinciding with CAP and
thus with linear pooling in this circumstance.

The first three proofs follow those of [10, 3]. The innovation
here is to demonstrate that their proofs only essentially rely
on the order-theoretic structure of the propositional logic
they took to be their target.
Proof of Theorem 1 S0: m∧m′ is consistent (since C is
closed under infima), and thus by IC1 ∆m∧m′(Ψ) is con-
sistent. By IC0 ∆m∧m′(Ψ)� m∧m′, thus M(∆m∧m′(Ψ))⊆
M(m∧m′) = {m,m′}. So at least one of m or m′ is in
M(∆m∧m′(Ψ)), and thus either m EΨ m′ or m′ EΨ m.

/0 6= M(∆m(Ψ)) ⊆M(m) = {m}. So m � ∆m∧m(Ψ) and
thus m EΨ m.

Let a,b,c ∈M and assume for contradiction that a EΨ b,
b EΨ c but a 5Ψ c. Since a 5Ψ c, we have ∆a∧c(Ψ) = c.
Now consider ∆inf{a,b,c}(Ψ)∨ (a∧ c). Take the case where
this is consistent first. By IC7,8 we know that this expres-
sion is equal to ∆inf{a,b,c}∨(a∧c)(Ψ) = ∆a∧c(Ψ) = c. This
means that, since M(∆inf{a,b,c}(Ψ)) is non-empty, it must
be equal to {c} or {b,c}.

Take these cases in turn. Assume M(∆inf{a,b,c}(Ψ)) =
{b,c}. Consider M(∆inf{a,b,c}(Ψ) ∨ (a ∧ b)) =
M(∆inf{a,b,c}(Ψ))∩M(a∧b) = b. Thus, since it is consist-
ent, by IC7 and IC8, b=∆inf{a,b,c}(Ψ)∨(a∧b) =∆a∧b(ψ),
which contradicts the fact that a EΨ b.

Now assume M(∆inf{a,b,c}(Ψ)) = {c}. For similar reas-
ons as above, c=∆inf{a,b,c}(Ψ)∨(b∧c) =∆b∧c(Ψ), which,
again, contradicts our original statement.

The other case to consider is when ∆inf{a,b,c}(Ψ) ∨
(a ∧ c) is not consistent, meaning M(∆inf{a,b,c}(Ψ) ∨
(a ∧ c)) = M(∆inf{a,b,c}(Ψ)) ∩M(a ∧ c) = /0. However,
M(∆inf{a,b,c}(Ψ) ⊆ {a,b,c} and is non-empty, thus
∆inf{a,b,c}(Ψ) = b. By considering ∆inf{a,b,c}(Ψ)∨ (a∧b),
we conclude that ∆a∧b(Ψ) = b meaning b CΨ a, which
contradicts our original statement. So EΨ is transitive.

S1: By IC2, ∆a∧b(Ψ) = a∧b so a EΨ b and b EΨ a.
S2: ∆a∧b(Ψ) = a (by IC2) so a CΨ b.
S4: Let a ∈ M(ϕ), and thus ϕ ∧ ϕ ′ is consistent.

Therefore, by IC1, ∆ϕ∧ϕ ′(ϕ tϕ ′) is consistent. Assume
for contradiction that M(∆ϕ∧ϕ ′(ϕ t ϕ ′)∨ ϕ) = /0. Thus,
since ∆ϕ∧ϕ ′(ϕ t ϕ ′) is not empty, and M(∆ϕ∧ϕ ′(ϕ t
ϕ ′)) ⊆ M(ϕ ∧ ϕ), it must be that M(∆ϕ∧ϕ ′(ϕ t ϕ ′)) ⊆
(M(ϕ ′)\M(ϕ)). This contradicts our assumption, and thus
∆ϕ∧ϕ ′(ϕ tϕ ′)∨ϕ is consistent. By S4, ∆ϕ∧ϕ ′(ϕ tϕ ′)∨ϕ ′

is consistent. Let b ∈ M(∆ϕ∧ϕ ′(ϕ t ϕ ′) ∨ ϕ ′). So b ∈
M(∆ϕ∧ϕ ′(ϕtϕ ′)), and thus ∆ϕ∧ϕ ′(ϕtϕ ′)∨(a∧b) is con-
sistent, and thus by IC7,8 b ∈M(∆a∧b(ϕ tϕ ′). Therefore,
b Eϕtϕ ′ a as required.

S5: By hypothesis, ∆a∧b(Ψ1)� a and ∆a∧b(Ψ2)� a. So
by IC5, ∆a∧b(Ψ1 tΨ2) � ∆a∧b(Ψ1)∨∆a∧b(Ψ2) � a and
thus a EΨ1tΨ2 b.

S6. From S5, we know that a EΨ1tΨ2 b, so we need to
show that b 5Ψ1tΨ2 a, or in other words, that ∆a∧b(Ψ1 t
Ψ2)� b. ∆a∧b(Ψ1)� b and thus, ∆a∧b(Ψ1)∨∆a∧b(Ψ2)�
b. Since ∆a∧b(Ψ1)∨∆a∧b(Ψ2) is consistent (a is in both
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halves), by IC5,6, ∆a∧b(Ψ1)∧∆a∧b(Ψ2) = ∆a∧b(Ψ1tΨ2).
Thus, ∆a∧b(Ψ1tΨ2)� b so b5Ψ1tΨ2 a.

S7: The proof that EΨ is smooth follows [3] proposition
40 (vi). Consider m ∈ M(µ) such that m is not minimal,
meaning m /∈M(∆µ(Ψ)). Now take some n ∈M(∆µ(Ψ));
we can be sure there is one because µ is consistent (and
IC1). Such an n is minimal in M(µ) with respect to EΨ,
by the above proof. So it just remains to show that n CΨ m.
m,n ∈M(µ), but m /∈M(∆µ(Ψ)) = minE{M(µ)}, so it is
not the case that m EΨ n. Since EΨ is a complete relation,
it must be that n CΨ m.

Proof of Remark 3 Assume that a ∈ M(∆µ(Ψ)) but
a /∈ minEΨ

M(µ). So there is some b ∈ M(µ) such that
bCψ a. ∆µ(Ψ)∨(a∧b) is consistent (since a∈M(∆µ(Ψ)),
so ∆µ(Ψ)∨ (a∧ b) = ∆a∧b(Ψ). This is so because, since
µ � a,b and thus µ ∨ (a∧ b) = a∧ b. Now, a /∈ ∆a∧b(Ψ),
because b CΨ a. Consider a /∈M(∆a∧b(Ψ)) = M(∆µ(Ψ)∨
(a∧ b)) = M(∆µ(Ψ))∩M(a∧ b). Since a ∈ M(a∧ b), it
must be that a /∈M(∆µ(Ψ)). This contradicts our original
assumption. Thus, M(∆µ(Ψ)⊆minEΨ

M(µ).
Now, suppose a ∈ minEΨ

M(µ) but (for contradiction)
a /∈M(∆µ(Ψ). For every b ∈M(µ), a EΨ b. a ∈M(µ) and
this µ is consistent. Therefore, by IC1, ∆µ(Ψ) is consist-
ent. Let b ∈ M(∆µ(Ψ). We know that a EΨ b and thus
a ∈ M(∆a∧b(Ψ)). But, b ∈ M(∆µ(Ψ)) ∩M(a∧) and so,
∆µ(Ψ)∨ (a∧ b) is consistent. Also, by assumption, a is
not in that intersection. By IC7,8 we know that this is equal
to ∆a∧b(Ψ) which is, in turn equal to b. This contradicts
our assumption. Thus minEΨ

M(µ)⊆M(∆µ(Ψ).

Proof of Theorem 2 IC0: By definition, M(∆µ(Ψ) ⊆
M(µ). Thus µ � ∆µ(Ψ).

IC1: M(µ) is not empty. Smoothness of EΨ guarantees
that there are no infinite descending chains of members of
M(µ) and thus, the set of minimal elements is non-empty.

IC2:
m ∈M(

∧
Ψ∨µ) = M(

∧
Ψ)∩M(µ). All and only those

m will be minimal according to EΨ, because of S1,2.
IC4: Consider a ∈M(∆µ(ϕ1tϕ2)∨ϕ1). For, c ∈M(µ),

a Eϕ1tϕ2 c. From S4 we know that there is a b ∈ M(ϕ2)
such that b Eϕ1tϕ2 a Eϕ1tϕ2 c So b ∈ M(∆µ(ϕ1 t ϕ2)).
Thus ∆µ(ϕ1tϕ2)∨ϕ2 is consistent.

IC5: Consider a ∈M(∆µ(Ψ1)∨∆µ(Ψ2)), meaning for
all b ∈ M(µ), a EΨ1 b and likewise for Ψ2. Thus, by S5
a EΨ1tΨ2 b, so a ∈M(∆µ(Ψ1tΨ2)).

IC6: Let a ∈ M(∆µ(Ψ1 tΨ2)). Assume for contradic-
tion that a /∈M(∆µ(Ψ1)∨∆µ(Ψ2)). So a /∈M(∆µ(Ψ1)) or
a /∈M(∆µ(Ψ2)), without loss of generality, assume it’s the
former. But since M(∆µ(Ψ1)∨∆µ(Ψ2)) is consistent, pick
some b in the maximal elements of it. b CΨ1 a and b EΨ2 a
so by S6 b CΨ1tΨ2 a, which contradicts our assumption.
So a ∈M(∆µ(Ψ1)∨∆µ(Ψ2)).

IC7: Let a ∈ M(∆µ1(Ψ) ∨ µ2). Since a EΨ b for all
b ∈ M(µ1), we have that a EΨ b for all b ∈ M(µ1 ∨ µ2).
Meaning that a ∈minEΨ

{M(µ1∨µ2)}= M(∆µ1∨µ2(Ψ)).
IC8: Let b ∈ M(∆µ1(Ψ) ∨ µ2). Consider

a ∈ M(∆µ1∨µ2(Ψ)) but suppose, for contradiction,
that a /∈ M(∆µ1(Ψ)). So b CΨ a but µ1 ∨ µ2 � b thus
a /∈min{M(µ1∨µ2)}. this contradicts what we supposed,
thus a ∈M(∆µ1(Ψ)).

It will be helpful to appeal to the shorthand
F(D(m,ϕi)) = F(D(m,ϕ1), . . . ,D(m,ϕn)).

Lemma 8 If D satisfies D0–2, then D(m,ϕ) = 0 en-
tails that ϕ � m. And further, if F satisfies F0–3, then
F(D(m,ϕi)) = 0 iff

∨
Ψ� m.

The final two proofs are similar to the propositional logic
case found in [12].
Proof of Theorem 4 Proofs that ∆D,F satisfies IC0,IC1
very similar to the corresponding parts of Theorem 1.

IC2 follows from Lemma 8.
IC7: Let m ∈M(∆D,F

µ1 (Ψ)∨µ2). For any m′ ∈M(µ1) we
have D(m,Ψ) ≤ D(m′,Ψ). Also, m ∈ M(µ1)∩M(µ2) =
M(µ1∨µ2). Thus m is minimal in M(µ1∨µ2).

IC8: Consider m′ ∈ M(∆D,F
µ1 (Ψ) ∨ µ2) and m ∈

M(∆D,F
µ1∨µ2

(Ψ). Suppose for contradiction that m /∈
M(∆D,F

µ1 (Ψ)). Thus D(m′,Ψ) < D(m,Ψ). Since m′ ∈
M(µ1∨µ2) we must have m /∈ ∆

D,F
µ1∨µ2

(Ψ). Contradiction.
Thus m ∈M(∆D,F

µ1 (Ψ)∩M(µ2).

Proof of Theorem 5 IC0–2, IC7,8 follow from Theorem 4.
IC4: First note that D(m,ϕ t ϕ ′) =

F(D(m,ϕ),D(m,ϕ ′)). Let µ � ϕ,ϕ ′ and suppose
for contradiction that ∆

D,F
µ (ϕ t ϕ ′) ∨ ϕ is con-

sistent but ∆
D,F
µ (ϕ t ϕ ′) ∨ ϕ ′ is not. It follows

that minϕ�m D(m,ϕ t ϕ ′) < minϕ ′�m D(m,ϕ t
ϕ ′). Thus minϕ�m F(D(m,ϕ),D(m,ϕ ′)) <
minϕ ′�m F(D(m,ϕ),D(m,ϕ ′)). By Lemma 8 the RHS is
equal to minm∈M(ϕ ′) F(D(m,ϕ),0) and the LHS is equal to
minm∈M(ϕ) F(0,D(m,ϕ ′)). By F4, and the above, we have
that:

min
m∈M(ϕ ′)

F(D(m,ϕ),0)< min
m∈M(ϕ)

F(D(m,ϕ ′),0)

So by F1 and F6

min
m∈M(ϕ ′)

D(m,ϕ)< min
m∈M(ϕ)

D(m,ϕ ′)

However, we also have the following:

min
m∈M(ϕ ′)

D(m,ϕ) = min
m∈M(ϕ ′)

min
m′∈M(ϕ)

D(m,m′)

= min
m′∈M(ϕ)

min
m∈M(ϕ ′)

D(m,m′)

= min
m′∈M(ϕ)

min
m∈M(ϕ ′)

D(m′,m)
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= min
m∈M(ϕ)

D(m,ϕ ′)

The first equalities follows by definition of D(m,ϕ), the
second is a simple fact about minima, the third is by D1, the
fourth is again the definition of D(m,ϕ) plus an exchange
of variable. These two results contradict, and thus it must
be that ∆

D,F
µ (ϕ tϕ ′)∨ϕ ′ is consistent.

IC5: Let m ∈ M(∆D,F
µ (Ψ1) ∩M(∆D,F

µ (Ψ2). Thus for
m′ ∈ M(µ) we have that D(m,Ψ1) ≤ D(m′,Ψ1) and
D(m,Ψ2) ≤ D(m′,Ψ2). Let Ψ1 = {{ϕ11, . . .ϕ1n1}} and
Ψ2 = {{ϕ21, . . .ϕ2n2}} And thus:

F(D(m,ϕ11), . . .D(m,ϕ1n1))≤ F(D(m′,ϕ11), . . .D(m′,ϕ1n1))
(7)

F(D(m,ϕ21), . . .D(m,ϕ2n2))≤ F(D(m′,ϕ21), . . .D(m′,ϕ2n2))
(8)

Now take inequality (7) and, using F5 repeatedly, “tack
on” each D(m,ϕ2i) onto the end, and similarly take in-
equality (8) and repeatedly “tack on” each D(m′,ϕ1i). This
produces:

F(D(m,ϕ11), . . .D(m,ϕ1n1),D(m,ϕ21), . . .D(m,ϕ2n2)

≤ F(D(m′,ϕ11), . . .D(m′,ϕ1n1),D(m,ϕ21), . . .D(m,ϕ2n2)
(9)

and:

F(D(m,ϕ21), . . .D(m,ϕ2n2),D(m′,ϕ11, . . .D(m′,ϕ1n1))

≤ F(D(m′,ϕ21), . . .D(m′,ϕ2n2),D(m′,ϕ11, . . .D(m′,ϕ1n1))
(10)

Using F4, the LHS of inequality (10) is equal to the RHS
of inequality (9), and thus we have that m ∈M(∆D,F

µ (Ψ1t
Ψ2)).

IC6: Suppose for contradiction that ∆
D,F
µ (Ψ1) ∨

∆
D,F
µ (Ψ2) is consistent but that ∆

D,F
µ (Ψ1)∨∆

D,F
µ (Ψ2) �

∆
D,F
µ (Ψ1 tΨ2). So there is some m in the RHS that is

not in the LHS. Without loss of generality assume that
m /∈ M(∆D,F

µ (Ψ1)). So there is some m′ ∈ M(∆D,F
µ (Ψ1)

such that D(m′,Ψ) < D(m,Ψ). Note that, since F has a
totally ordered codomain, F6 is equivalent to F5 but with
the inequalities being strict. Now, using the same technique
as for IC5 we can show that m /∈M(∆D,F

µ (Ψ1tΨ2)) which
contradicts our assumption. That concludes one direction
of the proof.

F4: ∆D,F is a function from multisets, so order of argu-
ments cannot make a difference.

F5: Let’s say we have xi and yi such that
F(x1, . . . ,xn) ≤ F(y1, . . . ,yn). Consider some m,m′ and
Ψ = {{ϕ1, . . . ,ϕn}} such that D(m,ϕi) = xi and
D(m′,ϕi) = yi. By definition, ∆

D,F
m∧m′(Ψ) � m and

∆
D,F
m∧m′(Ψ) � m′. Now we consider a ϕ ′ such that

D(m,ϕ ′) = D(m′,ϕ ′) = z. m,m′ ∈ M(∆D,F
m∧m′(ϕ

′)). So, by

IC5 m ∈M(∆D,F
m∧m′((tϕi)tϕ ′)) but not so for m′, and thus

F(x1, . . . ,xn,z)≤ F(y1, . . . ,yn,z).
F6: the proof works similarly to F5.
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