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Abstract

Nearly-Linear Models are a family of neighbourhood
models, obtaining lower/upper probabilities from a
given probability by a linear affine transformation with
barriers. They include a number of known models as
special cases, among them the Pari-Mutuel Model, the
e-contamination model, the Total Variation Model and
the vacuous lower/upper probabilities. We classified
Nearly-Linear models, investigating their consistency
properties, in previous work. Here we focus on how
to extend those Nearly-Linear Models that are coher-
ent or at least avoid sure loss. We derive formulae for
their natural extensions, interpret a specific model as a
natural extension itself of a certain class of lower prob-
abilities, and supply a risk measurement interpretation
for one of the natural extensions we compute.
Keywords: Pari-Mutuel Model, Nearly-Linear Mod-
els, natural extension, coherent lower probabilities,
risk measures, Value at Risk, Expected Shortfall.

1. Introduction

Within imprecise probabilities, special models play an im-
portant role, since they may be easier to understand for non-
experts and often ensure simplified procedures for checking
their consistency or making inferences with them. For in-
stance, the Pari-Mutuel Model (PMM) obtains an upper
probability

FPMM:min{(l—FS)PO,l} @))

from a given probability Py and a parameter § > 0, and has
been employed in betting, since it replaces a fair price (F))
with a more realistic infimum selling price (Ppym) [13, 15].
The upper probability Ppyy is coherent and 2-alternating,
and formulae for computing its natural extension are also
known.

Recently, we explored a family of models generalising
the PMM as well as other models [2, 3]. We termed them
Nearly-Linear (NL) Models, since like Ppyy in (1) they
return an upper or a lower probability from a given Py by a
linear affine transformation of Fy, with barriers to prevent
obtaining values outside the interval [0, 1], as detailed in
Section 2.1.

Each NL model is identified by two parameters. Accord-
ing to the different values the parameters may take, NL
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models are subdivided into three families, briefly recalled
later on: the Vertical Barrier Models (VBM), the Hori-
zontal Barrier Models (HBM), and the Restricted Range
Models (RRM). As shown in [2, 3], VBMs correspond
to lower and upper probabilities that are coherent. HBMs
ensure coherence in certain cases and RRMs only in an
extreme situation; both are generally only 2-coherent. On
the other hand, these models can represent various kinds
of beliefs, also some partly irrational and conflicting ones.
With respect to this, NL models are somewhat similar to
Neo-additive capacities, studied in [1, 5].

While the above mentioned aspects of NL models are
investigated in detail in [2, 3], here we focus on extensions
concerning these models. We concentrate on the natural
extension, a well-known concept that is one of the pillars of
the theory of Imprecise Probabilities in [15]. After recalling
some preliminary material in Section 2, we consider the
Vertical Barrier Model in Section 3. In 3.1, we show that
the VBM itself may be viewed as a natural extension of less
consistent (convex) models, while in Section 3.2 we study
the natural extension of a VBM on gambles, generalising a
known formula for the PMM. In Section 4 we determine
when a HBM avoids sure loss and introduce formulae for
computing its natural extension. We obtain simple expres-
sions in the finite case, and a general formula for a coherent
HBM. In Section 5 we present the results of an analogous
investigation for the RRM. A hint about a risk measure-
ment interpretation of VBMs is given in Section 6. Section
7 concludes the paper.

2. Preliminaries

Let . be a set of gambles (bounded random variables).
A map P:.¥ — R is a lower prevision on . if (be-
haviourally) VX € ., P(X) is an agent’s supremum buying
price for X, while an upper prevision P : . — R represents
a collection of infimum selling prices for the gambles in .7
[15]. When . is made of (indicators of) events only, we
speak of lower and upper probabilities of events, instead of
previsions of their indicators.

It is possible to refer to lower or alternatively upper pre-
visions only, by the conjugacy relation P(X) = —P(—X), if
X € ./ = —X € .. In the case of probabilities, conjugacy
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is written as
P(A) =1-P(-4),

assuming that A € ¥ = -A € .¥.
Lower (and upper) previsions may satisfy different con-
sistency requirements:

Definition 2.1 [11, 15] Let P: . — R be a given lower
prevision and denote with IN the set of natural numbers
(including 0).

(a) P is a coherent lower prevision on .7 iff, Vn € N,
Vs; >0, VX; € &, i=0,1,...,n, defining

G= Zn:Si (Xi — P(X;)) — s0(Xo — P(Xo)),
=1

it holds that supG > 0.

(b) P is a convex lower prevision on . iff (a) holds with
the additional convexity constraint ¥} | s;i = so = 1.

P is centered convex or C-convex iff it is convex, 0 €
& and P(0) = 0.

(¢) P avoids sure loss on .7 iff (a) holds with sy = 0.

(d) P is2-coherent on . iff, Vs1 >0, Vso € R, VXo,X; €
S, defining G, = 51 (X1 — P(X1)) — s0(Xo — P(Xo)),
it holds that sup G, > 0.

When P avoids sure loss on ., it is possible to apply a
well-known procedure termed natural extension [14, 15]
to find the least-committal coherent extension E of P on
any ./ D .. Least committal means that £ = P on . iff
P is coherent on ., that E > P in general, and that if Q
is coherent on . and Q > P on .7, then also Q > E on
' 1f the starting point is an upper prevision P, its natural
extension E has a symmetric meaning.

In a general situation, when P (or P) is defined on an
arbitrary set of gambles ., finding its natural extension
may be operationally not easy at all. However, in the sequel
we shall be concerned with some special situations that
make this task simpler.

Precisely, let P be a partition of the sure event, &7 (P)
the set of events logically dependent on P (the powerset
of P), Z(P) the set of all gambles defined on P. We shall
consider lower probabilities P defined on <7 (IP) that are
coherent and 2-monotone, i.e. such that

P(AVB)+P(AAB) > P(A)+P(B), VA,Bc ' (P).
(Correspondingly, P is 2-alternating if P(AV B) + P(A A
B) < P(A) + P(B),VA,B € o/ (PP).) Then, the natural ex-
tension of one such P, or its conjugate P, from .« (P) to
Z(IP) may be performed by making use of the Choquet
integral (cf., e.g., [6, Chapter 4], [14, Appendix C]), which
is helpful in obtaining the formulae that will be stated later
on.

We shall also be concerned with probability intervals,
which are lower and upper probability assignments on
a finite partition P. Denoting a probability interval with
[=[P(0),P(®)]pep, 0 < P(0) < P(w) <1,Vo €P,itis
well-known, see e.g. [14, Section 7.1], that I avoids sure
loss (on P) iff ¥ ,ep P(®) < 1 < ¥ pep P(), and that if 7
avoids sure loss its natural extensions on <7 (), E and its
conjugate E, are respectively 2-monotone and 2-alternating,
and given by

E@)=mux{ ¥ P(0),1- ¥ P@)} @

0=A 0=-A
E(A):min{ ZAF(w),1— Y E((o)}. 3)
0= w=-4A

If P is a convex lower probability, it does not necessarily
avoid sure loss: it does, iff P(0) < 0[10]. In any case, a con-
vex probability is characterised as follows by an envelope
theorem [10]:

Proposition 2.1 P:.¥ — R is a convex lower probability
on . iff there exist a non-empty set M of precise proba-
bilities on . and a function o : 4 — R such that

P(A) =min{P(A)+a(P):Pc.#}, VAc.Z.

2.1. Nearly-Linear Models

Denoting for the moment with gt : <7 (IP) — IR either a lower
or an upper probability, we have

Definition 2.2 [3] Given a probability Py on 7 (P), a € R
and b >0, u : o/ (P) — R is a Nearly-Linear imprecise
probability iff £(0) =0, u(Q) =1, and VA € o/(P)\
{0.Q},

1(A) = min{max{bPy(A) +a,0},1}.

In short, we write that yt is NL(a,b). NL models are closed
with respect to conjugacy [3]: if u is NL(a,b), then its
conjugate U°(A) = 1 — p(—A) is also NL(c,b), with

c=1—(a+b). 4)

Thus, every NL submodel is made up of a couple of conju-
gate imprecise probabilities. By convention we identify the
lower probability P with the parameters (a,b), the upper
probability P with (c,b). It can be shown that NL models
can be partitioned into 3 submodels, as follows.

a) The Vertical Barrier Model

Definition 2.3 A Vertical Barrier Model (VBM) is a
NL model where P and its conjugate P are given by:

P(A) = {rlnax{bPow Fad) FACa®)\(9)
®)
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P(A) = {g‘i“{“’o(f‘) +e1}, Zi if(m\{w}

with ¢ given by (4) and a,b satisfying

0<a+b<1, a<O. 6)

In a VBM, P is coherent and 2-monotone, P is co-
herent and 2-alternating. Among VBMs, we find the
following well-known neighbourhood models:

e Ifa=0,0<b< 1 (hence c=1-—b>0), the
g-contamination model (termed linear-vacuous
mixture model in [15]):

Bs(A):bPO(A)> VA #Q, BS(Q):L
Pe(A) =bPy(A)+1—b, YA#0, Ps(0)=0.

o If a+b =0 (hence ¢ = 1), the vacuous
lower/upper probability model:

BV(A) =0, VA#Q, EV(Q) =1,
Py(A)=1, VA#0, Py (0) = 0.

Note that we would obtain the same model also
for a+ b < 0, thus the condition a + b > 0 that
we require VBMs to satisfy is not restrictive.

e I[fb=1,—1<a <0 (hence c = —a), the Total
Variation Model [7, 13]:

Prym(A) = max{PRy(A) —c,0}, VA#Q,
Prym(A) = min{Py(A) +¢,1}, VA#O,
Prym(Q) =1, Prym(0) =0.

Prym (Ptvm) is the lower (upper) envelope of
the probabilities whose total variation distance
from Py does not exceed ¢ (€10, 1]). This model
is strictly related with the PMM, cf. [13, Section
3.2].

e Ifb=14+6>1,a=—6 <0, the Pari-Mutuel
Model [8, 13, 15]

Ppyiv(A) = max{(1+6)Py(A) — 3,0},
Poana(A) = min{ (14 8)Ry(A), 1}.

From a sellor’s viewpoint, a VBM improves over a
PMM, in the following sense: it is easy to see that
P(A) L c¢>0as Py(A) 0, and that ¢ = 0 in the PMM.
Thus, P(A) does generally not tend to 0 with Py, mean-
ing that a VBM with ¢ > 0 ensures a minimum posi-
tive selling price for any event A # @, even those very
unlikely (according to Fp).

b) The Horizontal Barrier Model
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Definition 2.4 A Horizontal Barrier Model (HBM)
is a NL model where, VA € o/ (P)\ {0,Q},

P(A) = min{max{bPy(A) +a,0},1},
P(A) = max{min{bPy(A) +c,1},0}, (7

with ¢ given by (4) and a,b satisfying the constraints
at+b>1,b+2a<1.

It is easy to see that a < 0, ¢ < 0,5 > 1 in a HBM.
Further, in this model an agent acting as a buyer under-
estimates the riskiness of a transaction on a high Fy-
probability event A (which s/he would buy at P(A) =1
iff Py(A) > l%“), while overestimating the risk of buy-
ing a low Py-probability event B (which s/he would
buy at P(B) = 0, i.e. for nothing, iff Py(B) < —%).

Despite its conveying an agent’s somewhat contradic-
tory attitudes towards risk evaluation, the HBM is not
always incoherent. Although P and P in a HBM are
generally only 2-coherent, it can be shown [3] that

Proposition 2.2 P in a HBM is a coherent upper
probability iff it is subadditive (i.e. iff P(A) + P(B) >
P(AV B),VYA,B € </ (P)). When P is coherent, it is
2-alternating too.

There are also instances of HBMs where P = P = P,
and P may or not be a precise probability.

¢) The Restricted Range Model

Definition 2.5 A Restricted Range Model (RRM) is
a NL model where VA € o/ (P)\ {0,Q}

P(A) =bRy(A)+a, P(A)=bPy(A)+c, (3)
with ¢ given by (4), and a, b satisfying

a>0,b+2a<1.

The name of this model arises from its property
P(A) € [a,a+b] C [0,1],VA € &/ (P)\ {0,Q}. It can
be seen that again an agent using this model’s P or
P has conflicting attitudes towards risk, or towards
high and low Py-probability events. P and P are al-
most never coherent in the RRM: they are iff P is a
partition of cardinality two, i.e. never in significant
problems.

3. Vertical Barrier Models and Natural
Extensions

With Vertical Barrier Models, we can discuss natural exten-
sions under two different perspectives: next to considering
the natural extension of a VBM to .Z(IP), we may wonder
whether the VBM itself is, or plays a role in, the natural
extension of something else.
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3.1. Vertical Barrier Models as Natural Extensions

We begin with this latter aspect, and consider the lower
probability Q(A) which is the first term of the maximum
defining P in Definition 2.3. It holds that

Proposition 3.1 The lower probability

Q(A) =bPy(A) +a, VA€ (P) )
in Definition 2.3 of a VBM (where a,b satisfy the con-
straints (6)) avoids sure loss; Q is convex iff b = 1. Its
natural extension on < (P) is precisely the lower probabil-

ity P of the VBM it originates from.

Proof Q avoids sure loss because Q < P by (5) (and (6),
for A = Q), and P < Py, as is easily seen [2, Property (i)
in Section 4]. Thus Q < Py and the characterisation of
avoiding sure loss in [15, Section 3.3.4 ()] applies.

If b =1, Q is convex, by Proposition 2.1 (with .#Z =
{P}, a(Py) = a). If b # 1, Q is not convex, since then
Q(Q) — Q(0) = b, contradicting [10, Proposition 3.4 (e)].

It remains to prove that P in (5) is the natural extension
EQ of Q. By coherence (ofEQ and P), EQ(Q) =P(Q)=1.

Now let A # Q, and recall that, since P is coherent and
P>0,

> E,. (10)

If bPy(A) +a > 0, then bPy(A) +a = P(A) > Ep(A) >
Q(A) = bPy(A) +a, with the first inequality following from
(10). Then P(A) = E(A).

If bPy(A) +a <0, then 0 < E,»(A) < P(A) = 0, thus
again P(A) = Ey(A). [ |

Thus, a VBM corrects the naive evaluation Q via natural
extension, by introducing barriers to its values.

More generally, it can be shown that a generalisation of
the VBM is the natural extension of a class of non-centered
convex probabilities. The next result is useful for this.

Proposition 3.2 Let I be a set of indexes and, for any
o €1, let Py : o7/ (P) — R be a probability, ayg < 0, such
that infaecraq € R. Define Py, = Py +aq, P = infger Py,
Then P is convex and avoids sure loss. Letting E , be the
natural extension of P, Ep the natural extension of P, it
holds that ;

Ep,=1InfE_,.
Ep= =

1D

By Proposition 3.2, P is a convex lower probability; since
P(0) = infgeraq <0, P is also non-centered, outside the
limiting situation aq = 0, V& € I. We may apply Proposi-
tion 3.1 to write explicitly E,, in (11), since any P, is a
lower probability of the type (9), with b = 1. We obtain
that Ep(Q) = 1, and, VA € &/ (P) \ {Q},

Ep(A)

= éréflmax{Pa(A) +ag,0}. (12)
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From (12) (and the coherence condition Ep(A) > 0),
Ep(A) =0 if 3a € I : Py(A) +ag < 0, while Ep(A) =
infyer(Py(A) +ag) otherwise. Thus, we may rewrite (12)
as follows:

1 ifA=Q
max{infye;(Py(A) +aq),0} otherwise.
(13)

We conclude from (13) that the natural extension of the
lower envelope P of a given set of lower probabilities P,
that ensure the condition ay < 0, Vo € I (with infgecjaq >
—o0) is formally analogue to a VBM (cf. (5)). It differs from
it because it replaces the lower probability that avoids sure
loss bPy(A) 4 a with infye;(Py(A) +aq), a convex lower
probability still avoiding sure loss.

3.2. The Natural Extension of a Vertical Barrier
Model

Let us consider now the problem of extending a VBM (that
is, extending its lower probability P or the conjugate upper
probability P) from &7 (P) to £ (IP). Take for instance P:
since it is coherent and 2-monotone, its natural extension
E(X) on a gamble X € Z(P) is a Choquet integral and as
such may be written in the form [14]

supX
P(X > x)dx.
infX

E(X)=infX + (14)
Equation (14) is a general formula for the natural extension
of a 2-monotone coherent P to a gamble X € Z(P). In
the case that P is the lower probability of a VBM, it may
be further specialised, as stated in Proposition 3.3. The
later Propositions 3.4 and 4.4 obtain similar results for the
natural extension of P in a VBM and of P in a coherent
HBM. The proofs of the three propositions follow a com-
mon pattern with minor modifications. We prove here only
Proposition 3.3.

Proposition 3.3 Let P: o/ (P) — R be the lower proba-
bility of a VBM. If a < 0, for any X € £ (IP) define

a
X = N >_7
X sup{xelR Py(X >x)> b},
(—X)* = max{x¥—X,0}. Then

E(X)=(a+b)i+ (1—(a+b))infX —bE™ ((x—X)T),
15)
where EP0 ((£— X)) is the (precise) natural extension of
Py to (X — X)+.

If a =0, the VBM is an €-contamination (if b # 0) or
vacuous (if b = 0) model and we get instead

E(X) = (1—b)infX +bED (X), (16)

with EP (X)) (precise) natural extension of Py to X.
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Proof We first write Equation (14) with P given by (5)
(note that the events (X > x) belong to &7 (P)):

supX

E(X) =infX + max {bPy(X > x)+a,0}dx. (17)

infX
In the second step, we split the integral in (17) into two,
according to whether its argument is O or not. For this, we
recognise that

bPy(X >x)+a>0 iff Py(X >x) > —g.

If a4+ b =0, P is the vacuous lower probability Py,
whose natural extension E;, we already know, Ey (X)
infX, VX € Z(P) [15].

If a=0, b >0, then ¥ = +o. We shall discuss this
subcase later, and for the moment we suppose a <0, a+b >
0. Then, it holds that 0 < —% < 1.

Given the preceding arguments, it is easy to realise that

infX <x¥ <supX (18)

and that (17) may be written as

X
E(X) =infX + (bPy(X > x)+a)dx
infX
X
=infX+b Py(X > x)dx+a(f—infX). (19)
inf X

To write the integral in (19) in a more convenient way, we
recognise that, for x < X, and for any o € P,

X(w)>x iff X(w)—x>0
iff min{X(w)—x,¥—x}>0
iff  min{X(®)—%+i—x,5—x} >0
iff min{X(w)—%0} >x—*.
Defining

Z =min{X —%,0}

and performing the substitution z = x — X, we get from (19)

0
E(X)=infX +b Py(Z > z)dz+a(%—infX).
infX—%
(20)
The next step consists in proving that
infZ =infX —%, supZ=0. 2n

For this, recall (18) and distinguish the following cases:

* infX <X <supX.
Then {w e P: X(w) <%} #0and {w € P: X(w) >
X} # 0, supZ = max{supy(X — %),0} =0, infZ =
min{infxg(X —i),O} = infxgj(X —.f) =infX —*.
s X=supX.

Hence, Z =X —supX, and supZ = 0, infZ = inf X —
supX = infX —*.
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e ¥ =infX.

Here Z =0, and supZ = 0 = infZ = infX — *.

Now, since (21) holds, we may apply it and (14) to the inte-
gral in (20), replacing [y Po(Z > z)dz = [27 Py(Z >
z)dz with EP0(Z) —infZ and getting

E(X) = infX +b(E™(Z) — infZ) + a(% — infX)

=infX +bEP(Z) + (a+b)(X—infX),  (22)
where Ef0(Z) is the natural extension of the precise proba-
bility Py to Z, which is its expectation [15, Section 3.2.2].
Since E? is linear, and because —Z = —min{X — &,0} =
max{f—X,0} = (¥—X)", we obtain from (22)

E(X)=infX —bE® ((—X)") + (a+b) (¥ —infX)
= (a+b)x+ (1 —(a+Db))infX —bEP ((x—X)").

To complete the proof, we still have to consider the case
a =0, b >0, where P is the lower probability of the &-
contamination model. Thus P is the restriction to events of
the coherent and 2-monotone lower prevision

E(X) =bE™(X)+ (1 —b)infX (23)
with EP(X) the linear natural extension of P to X. Since
the lower probability P is coherent and 2-monotone, its
natural extension is its unique 2-monotone extension [14],
and therefore coincides with E as given in (23). |

Remark 3.1 By Proposition 3.1, Proposition 3.3 also de-
termines the natural extension on £ (IP) of the lower prob-

ability Q in Equation (9).

Ifa=-6 <0,b=1+ 06, the VBM is a Pari-Mutuel

Model, and E(X) in (15) boils down to
EX)=x—(1+8)EM (x—X)")

which is in fact an expression for the natural extension of

Ppyv that may be found in [15, p. 131].

In the special case a = 0, b > 0, the VBM is instead
an g-contamination model (defined on </ (P)). Here (16)
states that its natural extension is again an £-contamination
model (defined on .Z(PP)). Putting 1 — b = 5, E(X) in
(16) is rewritten in fact in the form E(X) = §infX + (1 —
8)EP(X), that appears in [15].

Lastly, it is interesting to compare the natural extension
E(X) of a VBM with parameters a, b, given by (15), with
that, E,(X), of a VBM with parameters a’' = ka, b’ = kb,
k €]0,1[. Note that the choice of @’,b’ does not modify £,
which remains the same. It can be shown that E; is instead
given by

Ey(X) = kE(X) + (1 - K)inX,
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i.e., E; is a convex combination of the coherent prevision
E(X) and infX. As k | 0, E; | infX; this is not surpris-
ing, since k | 0 means also @' +b' | 0, and d’ + &' is the
maximum distance of P in a VBM(d’, ') from the vacuous
lower probability, whose natural extension on X is precisely
infX.

It is also possible to derive a formula for the natural
extension of the upper probability P of a VBM:

Proposition 3.4 Let P : o/ (P) — R be the upper proba-
bility of a VBM. If ¢ < 1, for any X € £ (PP) define

ﬁzsup{xelR:Po(X>x)21+g}, (24
b
(X —£)" = max{X — £,0}.
Then, if c < 1,
E(X)=(1—c)f+csupX +bEP ((X —%)T), (25)

where EP0((X — £)T) is the (precise) natural extension of
Pyto (X —)’5)+.

If c =1, P = Py, the vacuous upper probability, whose
natural extension is known to be E(X) = supX.

4. Natural Extensions of Horizontal Barrier
Models

Unlike the VBM, a HBM may be coherent (in rather special
cases, as we recalled in Section 2.1 b)) or not. In general,
it is only guaranteed to be 2-coherent, and in this case
we might extend it with the 2-coherent natural extension
studied in [12]. Rather than pursuing this avenue, in this
paper we shall extend, when possible, the HBM with the
usual (coherent) natural extension E. For this, we need to
know when a HBM (i.e., its P or P) avoids sure loss, since
this condition is necessary and sufficient for E(X) to be
finite, VX € .Z(P) [15].

In the case that partition IP is finite, the following propo-
sition answers this question and determines the natural
extension E of P on &/ (PP). Results are stated for upper
probabilities, since for them most formulae with HBMs are
more manageable. Since P is already defined on 7 (), we
stress that E is actually a least-committal correction of P
rather than a real extension, in the case that P avoids sure
loss but is not coherent on <7 (P).

Proposition 4.1 Let P : o/ (P) — R be the upper proba-
bility of a HBM, with P finite.

(a) P avoids sure loss on o (P) iff
Y P(w)>1.

wclP

(26)

Assume that P avoids sure loss, and define, YA € o (P),

E(A) :min{ Y F(m),1}.

0=A

27)

Then
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(b) E is a coherent and 2-alternating upper probability;

(¢) E is the natural extension of P on o (P).

Proof (Outline) Proof of (a). If P avoids sure loss, by [15,
Section 3.3.4 (a)] there is a probability P such that P(A) <
P(A),VA € o (P). Hence, 1 =Y ,cp P(®) < Y pep P(®).

Conversely, let (26) hold. Then we may deduce that P
avoids sure loss if we can establish that

(i) statement (b) holds, and
(ii) E(A) <P(A),VA € & (P).

In fact, there is then a probability P such that P < E < P,
so P avoids sure loss, again by [15, Section 3.3.4 (a)].

We prove here only (7). For this, observe that if (26)
holds, the probability interval [0, P(®)]uep avoids sure loss
(while being not necessarily coherent). Then by (3) its
natural extension on . (IP) coincides with E in (27) and is
2-alternating.

Proof of (b). This is the proof of (i) above.

Proof of (c). It is achieved, by the properties of the
natural extension, proving (ii) and that for any probability
P,if P<P,thenP <E. [ ]

Remark 4.1 Interestingly, condition (26) characterises
(together with P(®) € [0,1], Y@ € P) a generic upper prob-
ability P that avoids sure loss on P only [15, Section 4.6.1].
Knowing additionally that P belongs to a HBM makes the
same condition (26) equivalent to the fact that P avoids
sure loss on the broader environment < (P).

Moreover, the proof of (D) (i.e., of (i)) in Proposition 4.1
lets us deduce that, in a finite setting, a HBM (P, P) that
avoids sure loss has the same natural extension of the
probability interval [0,P(®)]pep. In this sense, these two
models are equivalent.

In general, however, NL models and (natural extensions
of) probability intervals do not overlap. As proven in [3], a
NL model is the natural extension on </ (P) of a coherent
probability interval in special instances only (including
the PMM - which was already shown in [8] - and the €-
contamination model).

Proposition 4.1 displays the simple formula (27) for com-
puting E on . (IP), but is useful also for a second step, that
of determining E (X) for any X € .Z(P). In fact, E(X) may
be thought of as the natural extension of E from < (P) to
&/ (P)U{X}, which is given by a Choquet integral, since
E is 2-alternating on </ (P) by Proposition 4.1. The next
proposition states the final result.

Proposition 4.2 Letr (P,P) be a HBM that avoids sure
loss on o (P), P ={w;,,...,w,}. Consider X € L (P),
taking m < n distinct values x; < x3 < ... < Xp.
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Define, for j=1,...,m

ej= w
0eP: X (0)=x;
and letk € {1,...,m} be such that
m m .
Y E( Z E(ej) (28)
=k j=k—

with the convention xy = 0, eg = 0 and where E is the
natural extension of P.
Then, we have

B0 =i (1- L)) + L vte)

Jj=k

(29)

Proof (Outline) The proof exploits the following form of
the Choquet integral of the simple gamble X with respect
to P [6, Equation (4.18)]:

¢) [xaP= hfl 0 (POC > 0) ~ PX > 01)) - G0)

where by definition (X > x,,41) = 0. Equation (29) follows
substituting P, given by (7), in (30), after some manipula-
tions (cf. also [9] for a similar technique). |

Remark 4.2 For some HBMs (they must satisfy the later
Equation (31) for some k € {2,...,m}), distinct numbers
may play the role of k in Equation (28). Yet, they return a
unique E(X) from Equation (29).

To see this, note that these numbers form an integer
interval J C {1,...,m}. Take any two contiguous k — 1,
k € J. From (28) with, alternatively, k = kand k=k—1,
we obtain the identity

m o
Z E(e
i

€1y

Let us now compute E(X) with (29) in the two cases. With
k=k—1and by 31), E(X) is given by

xia(1- ZE )+ ZxE

y jE(ej)

=L
j=k—1

With k = k, and using again (31), E(X) takes the same
value:

w1 (1- L E@) + Y xEle))
j=k j=k
—x (1= ) Ele) +Eg ) + L vE(e)
j=k—1 Jj=k
= i x;E(ej)
j=k—1
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By Proposition 4.2, in order to compute E we first have to
group the atoms of I’ where X (®) takes the same value (x;
on ¢;) and to determine k. For this, we need to know every
E(e;), which is achieved easily by (27) of Proposition 4.1.
If m = n, then obviously e; = ®; € P, E(ej) = P(®)).

The final formula (29) shows that the natural extension E
is very similar to a classical expectation with the probability
of e, i.e. that X takes the value x;, replaced by its upper
probability, and this for the highest m —k + 1 values of X.
The remaining values of X do not appear in the computation
(29), but for x;_;.

A special situation arises when k = 1: by (28) and Propo-
sition 4.1 (a) applied to the partition ' = {ej,e2,...,en},
it holds then that Y7 E(e;) = 1, so that E is a precise
probability on P’ and E(X) =
tion. However, this does not imply that the starting P in the
HBM is a precise probability also outside P'. For this, see
the next example, where P is precise on P’ = P, not even
coherent as an upper probability elsewhere.

YL x;E (e;) is an expecta-

Example 4.1 Given P = {®,m,03}, Py(®w;) = 0.2,
Py() = Py(w3) = 0.4, let (P,P) be a HBM with b = 1.3,
¢ =—0.1. Then, P(®1) = 1.3-0.2— 0.1 = 0.16, P(a) =
P(w3) = 0.42 and P(@;) + P(@) + P(w3) =1, so Pis a
probability on P. On the other hand, P(w; V @) = 0.68 >
P(w;) + P(w;) = 0.58 implies that P is not even coherent
as an upper probability on < (P), being not subadditive.
Yet, E(X) is computed as an expectation for X € £ (P).
For instance, with X(@;) = —1, X(an) =1, X(w3) =2,
from Q9 E(X) = —1-0.164+1-0.42+2-0.42 = 1.1.

If P (and P) in the HBM is coherent, we can still apply (29)
to compute E(X): now E(e;) is simply P(e;).

Let us now turn to the general case that P may be infinite.
We can still characterise the condition of avoiding sure loss
for P as follows:

Proposition 4.3 Let (P,P) be a HBM. P : o/ (P) — R
(hence its conjugate P) avoids sure loss on </ (P) if and
only if. for any ', finite partition coarser than P, it holds

that
Z Ple) > 1

ecP’

Since a coherent HBM is formed by P, P that are, re-
spectively, 2-alternating and 2-monotone, we can derive
an expression for E(X) or E(X) by means of the Choquet
integral. Unlike (29), the result applies no matter whether
P is finite or not, and is stated in the next proposition for P.

Proposition 4.4 Let (P, P) be a HBM that is coherent. Let
X € Z(P). Define

fu:sup{xelR:Po(ng)SH_%}

g :inf{xEIRIPO(X SX)Z_%}
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Z(®) = max { min{X (®) —5,,0},5 — 5} (w€P).

Then,

E(X)=(a+b)%+ (1—(a+b)) 5 +bEP(Z), (32)

where ER (Z) is the (precise) natural extension of Py to the
gamble Z.

Note that the structure of (32) is similar to that of (15)
and to the expression obtained for the PMM in [13, 15].

5. Natural Extensions of Restricted Range
Models

An investigation similar to that performed in Section 4 for
the HBM may be carried out for the RRM. This time more
manageable formulae are obtained referring to lower proba-
bilities. We gather the main results in the next proposition.

Proposition 5.1 Let P: o7 (P) — R be the lower proba-
bility of a RRM.

(@) IfP is infinite, P incurs sure loss.

In the next items, P is finite and made up of n elementary
events.

(b) P avoids sure loss on <7 (P) iff ¥ pepP(@) < 1 iff
b+na<1.

(¢) If P avoids sure loss on </ (P), for any A € o/ (P)\
{Q}, letting my be the number of atomic events of P
implying A (A =\, ®;,), it is

E(A) = bPO(A) +maa,

E@) =1 (33)

E is 2-monotone on < (P).

If P avoids sure loss on < (P), for any X € £ (P), the
natural extension E is given by

E(X) = (1—na—b)minX +bE? (X) + nak"(X),

(34)
where EP (X)), Efu(X) are the (usual) expectations of
X referring to, respectively, Py and the probability P,
uniformon P (P,(®) = % Vo).

Proposition 5.1 confirms, in its parts (a) and (), that RRMs
ensure weaker consistency properties than the other NL
models, also as for the condition of avoiding sure loss. In
particular, unlike HBMs (and of course VBMs) they cannot
avoid sure loss if IP is infinite.

When they avoid sure loss, their natural extensions on
&/ (P) and on .Z(P) can be easily computed by means of,
respectively, equations (33) and (34).

On &7 (P), E is actually a least-committal correction of
P (and its conjugate P). Note that E(®) = P(®), so P is
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coherent on P. Instead, P is coherent on P iff n = 2: this
follows, recalling (33) at the second equality, (4) and (8) at
the fourth, from E(®) = 1 — E(—®) = 1 —bPy(—®) — (n—

Na=1-b(1-P(w)—(n—1)a=Plow)—(n—2)a=
F(a)) iff n = 2. In [3], we proved that P is coherent on
&/ (P) iff n = 2; here we learn that not even the restriction
of P on IP is coherent for n > 2.

An interesting property, symmetric to that proven for
HBMs in Remark 4.1, may be established observing that
the probability interval J = [P(®), 1]ycp avoids sure loss
if P in the RRM does so (Proposition 5.1 (b)) and recalling
(2), (33). The property states that a RRM (P, P) that avoids
sure loss on &7 (P) and the probability interval J have the
same natural extension E given by (33).

The natural extension E on .Z(P) is by (34) a convex
linear combination of the vacuous lower prevision Py (X) =
minX and the expectations E0(X), Ef«(X).

6. An Interpretation in Terms of Risk
Measures

Any upper prevision P induces a risk measure. Indeed,
given a gamble Y, P(—Y) measures the riskiness of Y,
that is, it represents the amount to be provided in order
to manage possible losses from Y. Here, we shall refer the
risk measures to X = —Y’; this corresponds, when Y <0, to
thinking in terms of losses, a common practice for instance
in insurance.

One may wonder whether the natural extension E of P
in the VBM, given by (25) if P is non-vacuous, has an
interpretation as a risk measure. For this, we remark that £,
given by (24), coincides with sup{x € R: Po(X <x) < -7},
which is a well-known risk measure [4], the Value at Risk
of X atlevel —¢, VaR_¢(X).

As for By((X — %)), it is the Expected Shortfall of X
at level —¢, denoted by ES_q(X) [4]. It measures how
insufficient we expect VaR is in covering losses from X
(the losses not covered by VaR are given by (X —£)). As
a consequence, equation (25) can be equivalently written
as follows:

E(X) = (1-c)VaR_g(X)+csupX +bES_g (X). (35)

If the VBM is a TVM (Section 2.1 b)), then b = 1, f% =c,
and (35) specialises to

Ervm(X) = (1—c)VaR.(X)+csupX + ES.(X)

which is the Total Variation risk measure introduced in [13,
Section 4].
In the case of the PMM, wherea= -8 <0,b=1+6,

hence ¢ =1 — (a+b) =0and —§ = 15, (35) boils down
to

5
1+6
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Epvm(X) is a known risk measure, termed Tail Value at
Risk, TailVaR or TVaR s ; it corrects VaR adding to it a

term proportional to the lﬁf(pected Shortfall.

Passing from the PMM to a generic VBM, we see from
(35) and (36) that the role of VaR gets weaker. In fact, VaR
is replaced by a convex combination of VaR itself and of
supX, (1 —c)VaR_a(X)+csupX >VaR_g(X), while the
shortfall correction term is unchanged. Hence, E(X) corre-
sponds to a more prudential risk measure than Epyy (X),
since it requires a higher amount than Epyv(X) to cover
risks arising from the same X. Recall also that supX is the
most prudential choice for a risk measure of X, that cover-
ing all losses that may arise from X. It is also remarkable
that, replacing VaR with (1 — ¢)VaR and adding csupX
when passing from (36) to (35), we still obtain a coherent
upper prevision, or equivalently a coherent risk measure,
that may be viewed as a generalisation of TailVaR.

7. Conclusions

Inferences with Nearly-Linear Models that are coherent
or at least avoid sure loss can be performed by means of
the natural extension, using the formulae introduced in
the previous sections. In the case of the VBM, its natural
extension to gambles generalises that of the PMM, and has
an interpretation in terms of risk measures. With the HBM,
next to a similar procedure in the case it is coherent, simple
formulae are available in a finite environment to correct
the model to a coherent one if it avoids sure loss, and
to extend it to gambles. Similar formulae let us compute
the natural extensions of RRMs that avoid sure loss. As
a task for future work, there remains to explore how to
extend those NL models that do not avoid sure loss, but
are only 2-coherent. The most natural approach seems to
employ the results on the 2-coherent natural extension in
[12]. Still regarding inferential problems, we would also
like to study conditioning and the dilation effects with
these models. Further features of NL models that might be
investigated regard a deepening of their relationships with
other models, such as distortion models, and a study (in the
finite environment, when they are coherent) of the set of
their extreme points.
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