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Abstract
This paper proposes the robust Bayes Factor as a

direct generalization of the conventional Bayes Factor
for a special case of independent two-sample com-
parisons. Such comparisons are of great importance
in psychological research, and more generally wher-
ever the scientific endeavour is to ascertain a potential
group effect. The conventional Bayes Factor as the
ratio of the marginal likelihoods under two considered
hypotheses demands for a precise, subjective speci-
fication of the prior distribution for the parameter of
interest. Thus, it lacks the possibility of incorporating
prior knowledge that is only available partially. Draw-
ing on the theory of Imprecise Probabilities, the robust
Bayes Factor is presented in view of lifting the restric-
tions on the specification of the prior distribution as
being precise. In practice, the robust Bayes Factor ap-
proach enables an analyst to specify hyperparameter
intervals, whose lengths correspond to the degree of
subjective prior uncertainty. Based thereon, a set of
(infinitely) many subjective prior distributions is es-
tablished to substitute one precise prior distribution.
Finally, the robust Bayes Factor is defined as an inter-
val, bounded by the minimal and the maximal resultant
Bayes Factor values. Latter are obtained by optimizing
the conventional Bayes Factor over the predefined set
of prior distributions. This explicit incorporation of
incomplete prior knowledge increases the feasibility of
applying a Bayesian approach to hypothesis compar-
isons in scientific practice. It reduces error-proneness,
enables for an inclusion of multiple perspectives and
encourages cautious, more realistic conclusions in hy-
pothesis comparisons.
Keywords: Bayes Factor, Imprecise Probabilities, Ro-
bustness, Bayesian Statistics, Prior Specification, Psy-
chological Research, Two-Sample Comparison

1. Introduction

The evaluation of statistical hypotheses is among the main
targets of applied sciences, especially in psychological re-
search (see e.g. Liu and Aitkin, 2008). Although being
analyzed frequentistically in the past by means of classic

hypothesis tests, a Bayesian approach to compare hypothe-
ses is gaining popularity (Van De Schoot et al., 2017). In
that, the so called Bayes Factor (BF) is a key quantity for
assessing the evidence within the data w.r.t. statistical hy-
potheses (see e.g. Gönen et al., 2005; Rouder et al., 2009),
whose recent developments are located within the field of
psychological research, such that a similar perspective is
adopted within this paper. A crucial difference between the
frequentist and the Bayesian approach is the presence of
subjective prior distributions in latter, which on the one
hand allows including prior knowledge into the statistical
analysis, but on the other hand yields results - especially
the Bayes Factor - that might be influenced strongly by
the exact specification of the prior distribution, leading to
heavy debates about how to specify these priors (see e.g. the
debate about extrasensory perception between Bem et al.
(2011) and Wagenmakers et al. (2011)).

Conventionally, a Bayesian analysis requires the prior
distribution to be precise: There should be a single proba-
bility distribution describing the prior knowledge. Yet, this
is a very strong requirement as, within a Bayes Factor anal-
ysis, the prior distribution formalizes the available knowl-
edge or beliefs about the parameter prior to the scientific
investigation, which might be accessible to the applied sci-
entist only vaguely (see e.g. Joyce, 2010; Goldstein, 2006).
Furthermore, requiring the researcher to specify a precise
and unambiguous probability distribution to represent the
available knowledge might be regarded as impossible in a
real-world situation. This might be easily realized as the
plethora of different “non-informative” priors (found in
almost all introductory text books about Bayesian statistics)
indicates that there is no agreement on how to formalize
non-knowledge even in the simplest contexts. Accordingly,
mis-specifying a precise prior distribution might seem un-
avoidable within an applied Bayes Factor analysis and re-
sults might be misleading. A conventional way to cope
with this issue is a sensitivity analysis (see e.g. Ríos In-
sua and Ruggeri, 2012), which assesses how a change in
prior distribution would have changed the result. However,
the researcher still needs to decide on a certain precise
distribution to use, which might be arbitrary, as many pre-
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cise prior distributions might be in accordance with the
(vaguely) available prior knowledge. In that sense, the most
reasonable solution is to use all these reasonable prior distri-
butions in the Bayes Factor analysis, which shall be referred
to as robust Bayes Factor (rBF) analysis, leading to a more
robust and less arbitrary result.

The purpose of this paper is to formally describe the
robust Bayes Factor in the context of two independent nor-
mally distributed samples with identical variance, which
is a commonly employed scenario within psychological
research, e.g. to assess gender differences. Therefore, a
conventional Bayes Factor analysis for this setting shall
be outlined in Section 2 first and its generalization to in-
clude sets of prior distributions instead of a single precise
prior distribution follows in Section 3.1, concluded by an
example (Section 3.2) and a short discussion (Section 4).

2. Bayes Factor

The experimental setup leading to the calculation of this
particular Bayes Factor may accord to that of a classical
two-sample t-test, whose basic endeavour is to examine
a potential group difference. Accordingly, observed data
z := (x,y) with x = (x1, . . . ,xn) and y = (y1, . . . ,xm) may be
realizations of independent, normally distributed random
variables Xi and Yj, i.e.

Xi
iid.∼ N(µ,σ2) i ∈ 1, ...,n (1)

Yj
iid.∼ N(µ +α,σ2) j ∈ 1, ...,m . (2)

Here, µ is the unknown mean of the first sample, σ2 the
unknown variance within each sample and α describes the
difference in means between both groups, which may be
referred to as the total effect (see e.g. Rouder et al., 2009).

For the purpose of consistent scalability across different
scientific contexts and as commonly done in psychological
research, latter shall be reparameterized as standardized
effect size

δ :=
α

σ
. (3)

Accordingly, the parameters δ and σ2 are not independent
of each other.

As δ explicitly represents the group difference of interest,
the hypothesis set may be outlined conventionally as

H0 : δ = 0 vs. H1 : δ 6= 0 . (4)

Whereas the null hypothesis H0 implies strict group
mean equality, the alternative H1 assumes a group effect
of yet unspecific extent. The corresponding Bayesian ap-
proach is to compare H0 and H1 by means of the Bayes
Factor as a measure of how well the hypotheses under
consideration predict observed sample data relatively.

Naturally, employing a simple null hypothesis, which
hypothesizes only one single δ value, is subject to heavy cri-
tique (see e.g. Cohen, 1994). A recently promoted Bayesian
alternative is to consider a region of practical equivalence
(ROPE) around δ = 0 (see e.g. Kruschke, 2018). This,
however, was mainly developed using Bayesian estima-
tion rather than Bayesian hypothesis comparison (see e.g.
Kruschke, 2015, Chapter 12), yet a few approaches to in-
corporate these considerations into Bayes Factor analyses
do exists (see e.g. Morey and Rouder, 2011). Nevertheless,
a simple null hypothesis was chosen within this paper to
build on the existing literature about Bayes Factors (see e.g.
Gönen et al., 2005; Rouder et al., 2009).

The calculation of the Bayes Factor is based on the idea
that the support for a scientific hypothesis depends on how
its marginal likelihood matches with an observed sample
in comparison to that of the other hypothesis under consid-
eration (see e.g. Morey et al., 2016). As to that, any Bayes
Factor calculation presumes the specification of a marginal
likelihood under either hypothesis.

Due to the precise assignment of δ under H0,
the corresponding likelihood function is defined as
f (z|µ,σ2,δ = 0). As µ and σ2 depict unknown param-
eters, prior densities π(µ) and π(σ2) need to be specified
in line with the Bayesian parameter conception. Finally,
this yields

m0(z) =
∫∫

f (z|µ,σ2,δ = 0)π(σ2)π(µ) dµ dσ
2 (5)

as the marginal likelihood under H0.
In the case of H1, however, the unspecific claim that δ

holds any other value but 0 still leaves δ an unknown pa-
rameter. Therefore, not only µ and σ2, but also δ needs to
be given a prior distribution under H1 to obtain the poste-
rior likelihood function. Due to its dependence on σ2 the
prior on δ is conditional and denoted as π(δ |σ2). It assigns
varying probability mass to a range of potential δ values in
accordance with their plausibility under H1. This modifica-
tion transforms H1 from a general into a specific hypothesis
and yields the corresponding Bayesian hypotheses set (see
e.g. Gönen et al., 2005; Rouder et al., 2009) as

H0 : δ = 0 vs. H1 : δ |σ2 ∼ π(δ |σ2) . (6)

Finally, the marginal likelihood under H1 ensues as

m1(z)=
∫∫∫

f (z|µ,σ2,δ )π(δ |σ2)π(σ2)π(µ)dµ dσ
2dδ .

(7)
The priors π(µ), π(σ2) and π(δ |σ2) need to be spec-

ified by the respective analyst according to her/his prior
information and beliefs. As stated above, π(µ) and π(σ2)
enter the posterior likelihood functions under both hypothe-
ses. It is argued that this common occurrence largely can-
cels their effects on the result of a hypothesis comparison
(see e.g. Wagenmakers et al., 2010). As to that, µ and σ2
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may be referred to as common or nuisance parameters. Ac-
cording to an initial proposal by Jeffreys (Jeffreys, 1961),
they shall herein be assigned the improper priors (see e.g.
Wang and Liu, 2016; Gönen et al., 2005)

π(µ) ∝ c and π(σ2) ∝
1

σ2 , (8)

where c > 0 is a constant value. The prior on µ states that
all potential values have equal credibility. The prior on σ2

states that larger values are less credible than smaller ones
and variance values very close to 0 have the highest cred-
ibility. This, however, might be questioned in real-world
applications so that informative priors for µ and σ2 might
be employed. Yet, for the context within this paper, the
choice of nuisance prior distribution does not affect the
Bayes Factor value (Wagenmakers et al., 2010). Accord-
ingly, σ2 might be treated as nuisance parameter, despite δ

being dependent on it.
The specification of the prior on δ on the other hand is

given an emphasized position within this evaluation pro-
cess. As it will later on enter the Bayes Factor only through
the marginal likelihood under H1, it considerably affects
on its outcome. Thus, π(δ |σ2) may be stated the (only)
test-relevant prior (Ly et al., 2016). The choice of a normal
distribution for the effect size prior is chiefly promoted in
psychological research (see e.g. Berger and Sellke, 1987;
Gönen et al., 2005; Rouder et al., 2018), as its shape is most
often reasonable to describe prior assumptions regarding
an yet unknown effect size. After all, probability mass is
hereby spread symmetrically around a certain mean µδ that
is deemed plausible and this probability mass declines as
the distance to the mean increases (see e.g. Rouder et al.,
2009; Matthews, 2011). This facilitates reasonable hyper-
parameter choices and in turn an alternative hypothesis
that might have a reasonable counterpart in the real-world.
Accordingly, a normal distribution, with parameters inde-
pendent of σ2, is chosen within this paper to represent prior
knowledge about the value of δ :

δ |σ2 ∼ N(µδ ,σ
2
δ
). (9)

In that, µδ and σ2
δ

are the only hyperparameters to be cho-
sen subjectively by the respective analyst (see e.g. Berger
and Sellke, 1987).

Finally, based on equations (7) and (5) the Bayes Factor
is commonly defined as the ratio

BF =
m1(z)
m0(z)

. (10)

The numerator measures the marginal likelihood of z un-
der the assumption of a π(δ |σ2) - distributed effect size.
The denominator depicts the counterpart under the assump-
tion of equal group means. As such, the above stated
Bayes Factor is typically interpreted as quantifying the
statistical evidence the data z hold for the presence of a

π(δ |σ2)-distributed effect size in comparison to an ab-
sence of an effect. Therefore, BF values larger than 1 favor
H1 and BF values smaller than 1 favor H0.

For precisely the above stated case, Gönen et al. (2005)
reported a closed-form implementation, which allows a
Bayes Factor formula that is solely dependent on the
pooled-variance two-sample t-statistic t under H0 and H1,
each. Its concrete implementation applies as

BF =
Tν(t |n1/2

δ
µδ ,1+nδ σ2

δ
)

Tν(t |0,1)
, (11)

where Tν(·|a,b) is the probability density function of the
non-central t-distribution with location a, scale

√
b and

ν = n+m−2 degrees of freedom. Eventually,

nδ =

(
1
n
+

1
m

)−1

(12)

is typically termed the effective sample size.
In addition to specifying the test-relevant prior π(δ |σ2),

a Bayes Factor analysis in a broader sense requires the spec-
ification of prior probabilities of the hypotheses themselves:
P(H1) and P(H0) = 1−P(H1). The Bayes Factor value BF
is used to update these beliefs in the hypotheses, resulting
in the posterior odds

P(H1|z)
P(H0|z)

= BF · P(H1)

P(H0)
, (13)

stating how strongly H1 is preferred over H0 after seeing
the data z.

Certainly, the prior situation consists of treating both the
hypotheses and the parameters as random variables with
probability distributions, allowing for Bayesian hierarchical
modeling (see e.g. Gelman et al., 2013; Rouder et al., 2018).

In summary, it can be stated that this special case
Bayes Factor for independent two-sample comparisons de-
pends on observed data only through their corresponding
t-statistic and on (subjective) prior knowledge in terms of
the hyperparameters µδ and σ2

δ
. This enables for a facile

calculation and standardized software implementations –
pleasant features that are otherwise unusual in the con-
text of Bayesian analyses. Among others, this granted the
Bayes Factor quite some popularity not only in psycholog-
ical research, as mentioned in the introduction, but also
in a number of other research domains (see e.g. Rouder
et al., 2018; Van De Schoot et al., 2017). Among its prefer-
able properties are the possibility to include data-external
information, its interpretation as evidence statement and
its foundation following the likelihood principle (Berger
and Wolpert, 1988) as well as the law of likelihood (Hack-
ing, 1965). In line with latter, the analysis is conditional
on the data and therefore sequential experimental designs
are argued to be no problem (Rouder, 2014), which allow
increasing the sample size if the evidence within the data is
not sufficient enough (see e.g. Schönbrodt et al., 2017).
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The basic cause, for which the Bayes Factor is ground-
edly criticized and backed away from, is mostly down to the
strict demand for a precise, test-relevant prior π(δ |σ2). Fi-
nally, this is the motivation for a generalizing robust Bayes
Factor, dedicated to loosen the Bayes Factors’ flawed de-
mand for prior precision.

3. Robust Bayes Factor

3.1. Theory

As outlined in the previous section, a common approach to a
Bayes Factor analysis is to assume a normal prior for δ (see
e.g. Berger and Sellke, 1987; Gönen et al., 2005; Rouder
et al., 2018). Accordingly, a first attempt to generalize
the Bayes Factor to allow sets of prior distributions is by
considering a set of normal distributions. In that, all normal
distributions with parameter values

µδ ∈ [µδ ,µδ ] (14)

σ
2
δ
∈ [σ2

δ
,σ2

δ
] (15)

shall be considered, where the intervals specify the param-
eter values that are considered as being in accordance with
the (potentially vague) prior knowledge about the respec-
tive parameter values, given the alternative hypothesis H1
is true and this prior knowledge is truly expressible as nor-
mal distribution. Therefore, in consequent generalization
of equation (9), the set

M := {N(µδ ,σ
2
δ
)|µδ ∈ [µδ ,µδ ],σ

2
δ
∈ [σ2

δ
,σ2

δ
]} (16)

represents the test-relevant prior, such that the hypotheses
might be formulated as

H0 : δ = 0 vs. H1 : δ |σ2 ∼M , (17)

with priors for the nuisance parameters as in equation (8).
Within this formulation, “δ |σ2 ∼M ” is analogue to the al-
ternative hypothesis in equation (6), in which a distribution
of δ |σ2 is provided. Within the framework of the robust
Bayes factor, however, the set M of prior distributions is
employed instead of a single prior distribution1. Therefore,
the alternative hypothesis states that δ is distributed in ac-
cordance with the (vaguely available) knowledge about δ ,
mathematically expressed by the set M . This set – or its
convex hull – shall be considered as an entity of its own
(c.p. Walley, 1991). Accordingly, the alternative hypothesis
H1 is allowed to contain all available information without
being overly precise.

For every precise distribution within M , it is possible to
calculate the corresponding precise Bayes Factor, leading

1. Technically, one could also argue that the convex hull of M can be
considered.

to a range of different Bayes Factor values, which shall be
referred to as robust Bayes Factor

rBF = [BF ,BF ] , (18)

where

BF = min
µδ∈[µδ ,µδ ]

σ2
δ
∈[σ2

δ
,σ2

δ
]

BF (19)

BF = max
µδ∈[µδ ,µδ ]

σ2
δ
∈[σ2

δ
,σ2

δ
]

BF . (20)

Analogue to the precise case, prior probabilities of the
hypotheses (P(H1) and P(H0)) might be updated by the
robust Bayes Factor, leading to a range of posterior odds[

BF · P(H1)

P(H0)
, BF · P(H1)

P(H0)

]
. (21)

Although not addressed within this paper, it might be possi-
ble to also specify the prior probabilities of the hypotheses
interval-valued (c.p. Schwaferts and Augustin, 2019).

In this case of a normal test-relevant prior, the robust
Bayes Factor and the corresponding posterior odds are in-
tervals, as the Bayes Factor is continuous in the parameters
µδ and σ2

δ
. As illustrated within the following example,

this allows the interpretation of the resulting robust Bayes
Factor to be straight forward.

3.2. Example

A fictitious example with simulated data (reproducible with
the R code in the electronic appendix) shall be given to il-
lustrate the methodology of the robust Bayes Factor, which
is based on a study by van Loo et al. (2017). The occur-
rence of major depression (MD) is about twice as high in
women than in men, however, once diagnosed potential
gender differences are less investigated. In that, it might be
assessed, if there is a gender difference in the recurrence of
MD, as some previous studies reported similar recurrence
rates and others reported higher recurrence rates for women
than for men (a summary of these studies is found in van
Loo et al., 2017). The risk of recurrence might be captured
by a score, which can calculated by a number of different
risk predictors (see van Loo et al., 2017). Within this exam-
ple, it is simply assumed that the score might be modeled
by a normal distribution and that both women (Y ) and men
(X) have an equal variance in score values (as in equations
(1) and (2)).

With Jeffreys priors for the nuisance parameters (see
equation (8)) and the standardized difference in score
means δ being hypothesized to be 0 (H0) or normally dis-
tributed N(µδ ,σ

2
δ
) conditional on σ2 (H1), the fictitious re-

search group is unable to precisely specify the test-relevant
prior due to a lack of overly excessive information and
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Figure 1: Dependence of the Bayes Factor value (color) on
the mean µδ (x-axis) and variance σ2

δ
(y-axis)

of the normal effect size prior within the first
exemplary analysis.

therefore employs the hypotheses as in equation (17). In
accordance with the previous studies, if there is a gender
effect (H1), δ might be positive but rather small. In that,
the research team figures out that normal prior distributions
for δ might be plausible with a mean parameter µδ rang-
ing from 0 to 0.5 and with a variance parameter σ2

δ
being

within the interval [0.5,3], leading to

M = {N(µδ ,σ
2
δ
)|µδ ∈ [0,0.5],σ2

δ
∈ [0.5,3]} . (22)

Note, that these considerations need to be based on previous
knowledge, which might be available more profoundly in a
real-world investigation (as it is the scientist performing the
investigation, who knows most about the effect of interest)
than in this simple example.

The research group now assess the recurrence rate scores
x and y of n = 10 men and m = 10 women, respectively,
which yield t = 1.46, nδ = 5 and accordingly

rBF = [0.67,1.50] . (23)

Figure 1 illustrates the dependence of the Bayes Factor
value on the hyperparameters µδ and σ2

δ
.

Due to the disagreement within the previous studies, the
research team did not prefer any hypothesis over the other,
prior to the investigation, so they set P(H1) = P(H0) = 0.5
as prior probabilities of the hypotheses, leading to posterior
odds with the same range (equation (23)).

Therefore, the data z favor H1 0.67 to 1.5 times as much
as H0 and there is no unambiguous evidence for either
hypothesis, because rBF contains both values larger and
smaller than 1. Analogously, expressed by the posterior
odds, the research team cannot believe in one hypothesis
more strongly than in the other. However, if the test-relevant
prior would have been specified precisely, there might have
been a single Bayes Factor value that might have favored
one of the hypotheses, but this conclusion would have been
arbitrary and therefore potentially misleading. In that, given
that the available prior information is only imprecisely
available within this example, the data is inconclusive about
the hypotheses, so the research team can neither state that
recurrence rates are similar for both women and men nor
that they are larger for women than for men.

In order to obtain more evidence, the research team as-
sess another 20 women and 20 men, so that n = m = 30.
The new results are

rBF = [0.18,0.42] (24)

with t = 0.65 and nδ = 15. Now, the data might be in-
terpreted as favoring the null hypothesis H0 1/0.42 = 2.4
to 1/0.18 = 5.5 as much as the alternative hypothesis H1,
being not inconclusive anymore. Analogue, Figure 2 illus-
trates the dependence of the Bayes Factor value on the
hyperparameters µδ and σ2

δ
. The data might be treated as

(slightly) favoring the hypothesis of similar recurrence rates
between women and men and, based on the prior probabili-
ties of the hypotheses, the research team believes into H0
2.4 to 5.5 times as much as into H1.

As illustrated by this example, the imprecision of prior
information leads to an inconclusive, but robust and less
arbitrary result that indicates a lack of information even
after collecting the first data set, which might have been
masked by pretending an arbitrary precision and is tackled
appropriately by collecting more data.

4. Discussion

This paper depicts the robust Bayes Factor both as a gen-
eralization of the conventional Bayes Factor and also as
a possibility to tackle one of the main criticisms against
the Bayes Factor, namely the arbitrariness of specifying a
precise prior distribution. Clearly, this asks for a discussion
of rBF’s effective advantages in scientific practice.

Put simply, the robust Bayes Factor generalizes the classi-
cal Bayes Factor in a way to render it more compatible with
scientific reality. It faces up to the fact, that numerically
precise credences are hardly ever attainable in practice and
precise prior choices can thus be alleged arbitrariness or un-
justified make-belief of precision (see e.g. Goldstein, 2006;
Kass and Raftery, 1995). Following a truly intuitive gener-
alization principle, the robust Bayes Factor is constructed to
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Figure 2: Dependence of the Bayes Factor value (color) on
the mean µδ (x-axis) and variance σ2

δ
(y-axis)

of the normal effect size prior within the second
exemplary analysis.

provide reliable results also in situations where prior knowl-
edge is partial: If one is unable to specify precise parameter
values in accordance with their prior knowledge, one might
still be able to locate parameters in value ranges and thus
specify intervals, which allow to represent the available un-
certainty in a more comprehensive way. At the same time,
the robust Bayes Factor approach upholds the notion that
subjective prior knowledge is a gain to statistical analyses
(compare e.g. Gelman et al., 2017; Matthews, 2011; Van-
paemel, 2010; Kass and Raftery, 1995). In that, it prompts
the respective researcher to reason about suitable param-
eter values and claim choices on parameter bounds, such
that the interval length reflects, but not exceeds, the actual
amount of uncertainty. In addition, prior assumptions are
laid out transparently through the set of prior distributions.
Furthermore, the robust Bayes Factor approach may be
approved for encouraging scientific consensus by enabling
multiple prior perspectives on the parameter of interest to
be merged into the set of prior distributions. The resulting
robust Bayes Factor might then yield greater acceptance
in the face of prior disagreement on a single precise prior
distribution (see e.g. Berger, 1990). One may even state
that the rBF result provides an analyst with an extended
overall impression of comparative evidence. Based on the
resulting interval length, (s)he may reflect about the Bayes
Factors overall robustness against differing hyperparameter
assumptions or individual uncertainty. As the resulting rBF

interval is considered and interpreted as an entity of its
own, cautious and solid conclusions are encouraged. The
demand for any evidence statement to be expressed with
reference to inherent prior imprecision, makes conclusions
less over-precise and withal more honest (see e.g. Augustin
et al., 2014).

Of course, the robust Bayes Factor approach has its limi-
tations. For the certain context employed within this paper,
the resulting robust Bayes Factor is a convex interval of
values. This, however, is not given in general and in certain
situations the robust Bayes Factor might only be a non-
convex set of values rather than an interval, which bears
difficulties for its interpretation. Assume a robust Bayes
Factor set contains two values, e.g. 3.0 and 3.2, but not
those values in between. The correct interpretation would
be that the data are evidence favoring H1 3.0 or 3.2 times as
much, but not e.g. 3.1 times as much, as H0. More research
is necessary on how to deal with this issue.

It may also be countered that the strengths of the robust
Bayes Factor approach are at cost of more vague statements
of comparative evidence. The expressiveness and clarity of
conclusions implies reasonably narrow rBF intervals and
if the rFB bounds are not either both above or below 1,
comparative evidence remains somewhat ambiguous, as in
the first part of the example (Section 3.2). If the specified
prior intervals of the hyperparameters are too broad to yield
conclusive results, one could either try to narrow them by
collecting additional information prior to the experiment or
collect additional data, as illustrated within the second part
of the example (Section 3.2). Finally, if neither is possible,
Berger (1990, p. 307) reasons that

”[...] then there are legitimate differences or un-
certainties in opinion which lead to different con-
clusions, and it seems wisest just to conclude that
there is no answer; more evidence is needed to
solve the ambiguity. Any ’alternative’ [approach]
which claims to do more, would simply be mask-
ing legitimate uncertainty by ’sweeping it under
the carpet’. ”

5. Outlook
The robust Bayes Factor was described for a first context of
two independent normally distributed samples with an im-
precise normal effect size prior within this paper. Besides
employing it within an applied scientific investigation, its
further development might comprise two different steps.
First, the robust Bayes Factor might be extended to different
experimental setups, such as those that assess correlations
or dependent variables within more than two groups. Sec-
ond, the restriction of the prior distributions being normal
within the prior set of distributions might be removed to
allow all desired shapes of prior distributions. Latter, how-
ever, might require a solution to interpreting non-convex
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sets of Bayes Factor values and advanced computational
methods to calculate respective Bayes Factor values, which
could be avoided within this paper due to the availability
of close form formulas.

Appendix A. R Code

R code to replicate the example and generate Figures 1
and 2 is provided electronically.
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