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Abstract
One way of putting a popular objection to the Bayesian
account of belief and decision is that it does not allow
a role for something akin to the Keynesian concept
of ‘weight of evidence’ in choice. This paper argues
that a recently-defended approach, which refines the
credal-set representation of beliefs to give pride of
place to an agent’s confidence in her beliefs, can do
so fruitfully. Motivated by the use of confidence by
the IPCC and US Defense Intelligence Agency in their
assessments of uncertainty, the paper then considers
the consequences of the proposed approach for uncer-
tainty reporting. On the one hand, when connected
to decision, the model affords a clear separation of
the belief and value factors: an important quality in
policy making contexts where these are the responsib-
ility of different actors. On the other hand, the issue
of inter-agent confidence calibration is discussed, and
a calibration scale is proposed and defended, on the
basis of weight-of-evidence version of David Lewis’s
Principal Principle.
Keywords: confidence in belief, uncertainty report-
ing, Keynesian weight of evidence, rational decision,
confidence ranking, credal sets.

1. Introduction

The Bayesian representation of beliefs by probability meas-
ures is the centre-piece of an apparatus central in decision
theory, statistics, decision analysis and uncertainty commu-
nication. Sets of probability measures—sometimes called
credal sets or imprecise probabilities—have been defended
as an alternative representation of rational belief, which
overcomes some of the most troublesome challenges to
Bayesianism [34, 35].

A major motivation focusses on Bayesianism’s purported
inability to faithfully capture apparently relevant properties
of beliefs. Consider two urns each containing 100 balls,
each of which is only black or white: for one of the urns
(the small-sample urn), you have observed 2 draws (with
replacement), one of which was black; for the other (the
large-sample urn), you have observed 1 million draws (with
replacement), half of which were black. Bayesianism en-
joins you to have a precise degree of belief (or credence,
or subjective probability) about the colour of the next ball
drawn, for each urn—say, 1

2 in it being black for both urns.
However, as Keynes noted [32], even if the balance of evid-

ence in favour or against the next draw being black is the
same in both cases, the amount of or weight of evidence
differs. So even if you were willing to adopt the degree of
belief 1

2 for both events, it seems clear that the weight of
evidence in support of that (degree of) belief is larger in
the case of the large-sample urn. If the balance of evidence
is something to be reflected in a rational agent’s degree of
belief, it is difficult to see why the weight should not.

Indeed, some Bayesians suggest that weight of evidence
can be captured using the apparatus of (precise) probability
measures alone, in a variety of ways [19, 45, 30]. How-
ever, when it comes to the decision of which urn to bet
on, Bayesianism dictates that, since the degrees of belief
are the same, you should be indifferent between betting on
the colour of the next ball drawn from the small- or large-
sample urns. Whatever ways there are of capturing some-
thing like weight in the framework of Bayesian probability,
they remain irrelevant for choice. As noted by Ellsberg
[11], this seems both descriptively inaccurate and norm-
atively unreasonable. Many people strictly prefer betting
on the colour from the large-sampled urn [1], and indeed,
the difference in your ignorance about the two urns—or in
the weight of evidence in the two cases—seems to justify a
preference between them [35, 18]. In a word, the objection
is that something of the order of the weight of evidence can
reasonably have a role in choice, and Bayesianism denies
it any such role.

This stylized example is indicative of real-world chal-
lenges. A climate scientist considering his judgement on a
climate prediction in a particular emissions scenario will
have to take into account research in several fields with
a variety of methods. In doing so, she will have to make
calls about the direction in which that evidence is point-
ing, but also about the quality and amount of the existing
evidence. These will be ‘subjective’ elements of her belief,
like Bayesian subjective probabilities, and such domains
make use of belief elicitation from experts, or ‘expert elicit-
ation’ [9, 40, 48]. However, unlike Bayesian beliefs, there
seem to be two factors—one the subjective equivalent of
something like the balance, and the other the subjective
equivalent of the weight. It seems reasonable that the lat-
ter may have a role to play in rational decision, despite
the fact that, as the previous example shows, Bayesianism
denies it any such role. Henceforth, we shall refer to the
probability judgements—reflecting the direction evidence
is pointing—as the beliefs or credal judgements, and use the
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term confidence in beliefs to denote the subjective appraisal
of the support for them.

Such factors are already appearing in uncertainty re-
porting. Institutions such as the IPCC use an uncertainty
reporting language that permits expression both of probab-
ility judgements concerning events of interest, as well as
some indication of the quality and amount of evidence inter
alia behind those judgements, usually called confidence
[38]. For instance, here is a statement from a recent report:

In the Northern Hemisphere, 1983–2012 was
likely [i.e. probability between 66% and 100%]
the warmest 30-year period of the last 1400 years
(medium confidence). [29, 3]1

A similar language is used by the US Defense Intelligence
Agency [13], which also faces situations of severe uncer-
tainty.

This paper considers how something of the order of
weight of evidence or confidence in beliefs can be form-
ally represented, and how such models can contribute to
effective uncertainty reporting. It first presents an account
of confidence in beliefs and its role in decision recently
developed in the economics and philosophy literature. It
then examines two theoretical desiderata for an uncertainty
reporting language, showing how the proposed approach
satisfies one, and proposing a calibration scale allowing it
to satisfy the other.

2. Confidence in Beliefs and Decision

2.1. A Model of Confidence in Beliefs

Let us begin by recalling the imprecise probabilities (IP) or
‘set of probability measures’ representation of belief. Let ∆

be the set of probability measures over a fixed state space Ω

with σ -algebra Σ. Statements about degrees of belief—such
as ‘A has a higher degree of belief than B’, ‘A has a higher
degree of belief than 1

2 ’, ‘A is probabilistically independent
of B’ and so on— are called credal statements, or credal
judgements, and correspond to sets P ⊆ ∆. (‘A has a higher
degree of belief than B’ is the set {p ∈ ∆ : p(A)≥ p(B)}
and so on.) According to the IP representation (defended
by [35, 31], for example), an individual’s state of belief is
represented not by a single probability measure but by a
set C ⊆ ∆ of such measures, which we call an imprecise
probability (IP) or credal set. For example, an agent will
have a higher degree of belief for a proposition A than B
if p(A) ≥ p(B) for all probability measures p ∈ C . More
generally, an agent will hold a credal judgement P if C ⊆ P.
The set of probability measures C involved in the imprecise

1. Note that the event in question is non-stochastic (it is either true or
false), so the probability judgement cannot be interpreted in an object-
ive or frequentist way, and is most naturally construed as epistemic
or subjective probability.

probability representation hence generates a set of credal
judgements, namely those to which the agent adheres.

If this representation is to properly overcome the chal-
lenge of appropriately capturing confidence or weight of
evidence, credal sets need to be construed as reflecting
such factors. Some have suggested considering them to
reflect both belief (or balance of evidence) and confidence
(or weight of evidence) [50]. For instance, in the leading
example, an agent may hold the (precise) credal judge-
ment of 0.5 for black being drawn from the large-sample
urn, but not hold this judgement for the small-sample urn.
There will be other, more imprecise, credal judgements
(e.g. [0.01,0.99]) held by the agent concerning both the
small- and large-sample urns. Precisely which judgements
are held for, say, the small-sample urn will depend on how
the agent trades off considerations of balance (which points
to 0.5) and weight (which pushes for larger intervals).

Note that this approach has trouble accounting for the in-
tuition that one can have the same precise credal judgement
of 0.5 for both urns, just with much less confidence—or
lower weight of evidence—in one case. This is because
the IP approach is an all-or-nothing affair: credal judge-
ments are either held or not, so the only way to distinguish
the two cases is to jettison judgements that a typical agent
would seem to hold, but with low confidence. This may be
an indication that the approach has trouble reflecting the
fact that confidence—like weight of evidence—comes in
degrees.

A recently-defended belief representation, which cap-
tures specifically such degrees, replaces the single set of
probability measures by a nested family of such sets: that
is, a family where each member is contained in or con-
tains each other member [24, 27].2 Such a nested family is
called a confidence ranking. The sets in the family corres-
pond to levels of confidence, with larger sets corresponding
to higher levels (see Figure 1). As noted above, each set
generates a collection of credal statements: these repres-
ent the credal judgements the agent holds to the corres-
ponding level of confidence. For larger sets in the family,
corresponding to higher confidence levels, the generated
collections of credal statements are smaller, and so fewer
credal judgements are held by the agent at higher confid-
ence levels. In particular, the nested structure implies that
any credal judgement held with high confidence is retained
at any lower confidence level, as one would expect. See
[24, 27] for more detailed discussion.

For the purposes of this paper, the sets in the confid-
ence rankings are not assumed to be closed or convex,
and the rankings themselves need not be continuous. (In
decision-theoretic representation results, such properties
often drop out naturally, see [24, 26].) The interpretative
remarks above and the points made below do not dependent

2. Similar representations have been proposed and explored by [14, 41].
A crucial difference is in the ordinality of the model used here at the
second order level; see [27] for further discussion.
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Figure 1: Representation of confidence in beliefs (black) and relation to decision (blue)

on such properties. We do assume that confidence levels
are totally ordered, as in the IPCC scale. The framework
can be extended beyond this assumption; see [23] for a
preliminary discussion.

Just as credal sets correspond to sets of credal judge-
ments, each confidence ranking Ξ induces an order �Ξ on
credal statements—defined by P�Ξ Q if and only if, for all
C ∈ Ξ, C ⊆Q implies C ⊆ P—which captures the relative
confidence that the agent has in them. So, for example, if
p(A) = 1

2 for all probability measures in a small set in the
confidence ranking Ξ, but not in larger sets, but p(B) = 1

2
for all probability functions in a larger set in Ξ, then Ξ rep-
resents an agent who is more confident in her assessment
of 1

2 for her degree of belief in B than in her assessment of
1
2 for her degree of belief in A (see Figure 1 for a graphical
representation of the confidence in judgements concerning
A). Taking as A the event that the next ball drawn from the
small-sample urn is black, and similarly for B and the large-
sample urn, Ξ thus faithfully renders the intuition that the
credence of 1

2 is held concerning both urns, but with differ-
ent amounts of confidence. It can thus reflect the differing
weights of the evidence supporting these judgements.

Note furthermore that whilst such an agent will have
low confidence for the credence 1

2 in the case of the small-
sample urn, she will have higher confidence for less precise
credal judgements. For instance, she will be maximally
confident in the credal judgement [0.01,0.99] concerning
that urn if p(A) ∈ [0.01,0.99] for all probability functions
contained in some set in Ξ. So confidence rankings expli-
citly portray the trade-off between credal precision and
confidence (or balance precision and weight): more precise
credal judgements may be held, but with less confidence
(or support from the evidence). Whilst set out explicitly,
the agent is not assumed or asked to make a call about what

confidence gain justifies a particular loss in precision: she
is need not settle on a single credal set.3

2.2. Confidence in Belief and Decision Making

The previous model has been developed and defended in
tandem with an account of the role of confidence in belief
in decision making, based on the following maxim:

Maxim the higher the stakes involved in the decision, the
more confidence is required in a belief for it to play a role.

This appears to be a sensible way of relating two aspects
of a decision: its importance (or the stakes involved in it),
and the beliefs one relies on to take it. To the extent that
confidence reflects something of the order of the weight of
evidence behind a belief or credal judgement, the maxim
sets out a role for weight: ceteris paribus, more important
decisions should be based on beliefs benefiting from more
support or weight of evidence. It directly motivates the
following formal framework for decision.

Assume firstly that to each decision or option the agent
is faced with, she can associate a level of confidence ap-
propriate for it. As noted above, the confidence levels cor-
respond to sets in the confidence ranking: so assigning a
confidence level to a decision amounts to assigning a set
in the confidence ranking. Moreover, the maxim requires
that the assignment is made on the basis of the stakes in-
volved: more important decisions—those involving larger
stakes—call for more confidence, and are thus associated
to higher confidence levels, which correspond to larger
sets in the confidence ranking. In summary then, we take

3. There are interesting synergies between this account of weight of
evidence and Isaac Levi’s reading of Keynes in [36]. For instance,
he assimilates Keynes’s weight of argument with Shackle’s potential
surprise [44], which corresponds roughly to an order on the state
space. Somewhat analogously, the confidence rankings proposed here
are orders on the probability space (and hence arguably capture more
appropriately the balance precision-weight trade-off).
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a function D that assigns a set in the confidence ranking
to each decision, such that decisions with higher stakes
are sent to larger sets (see Figure 1). Such a function is
called a cautiousness coefficient. It represents the agent’s
attitudes to uncertainty, in much the same way as the utility
function in standard Bayesianism is often interpreted as a
representation of her desires for outcomes (Section 3.1).

The suggested rendition of the aforementioned maxim
is simple: to evaluate an option, use the set of probability
measures in the confidence ranking that corresponds to the
decision at hand according to the cautiousness coefficient.
Why? This amounts to using the credal judgements held
to the corresponding level of confidence. But this is the
level picked out (by the cautiousness coefficient) as being
appropriate for the decision at hand, on the basis of the
stakes involved. So using this set of probability measures
basically means that the agent only relies on beliefs that she
holds with enough confidence given the stakes involved in
the decision. This procedure is thus faithful to the maxim.

This does not yield a single decision rule as much as a
family of rules. Indeed, it just picks out a set of probability
measures, or IP, but does not specify how to choose on
the basis of it. Several decision rules for IPs have been
proposed; each of these, when inserted into the framework,
will result in a corresponding confidence-based decision
rule. For example, using the maximin-EU or Γ-Maximin
decision rule [17, 3], which looks at the lowest expected
utility calculated across the set of probability measures,
naturally yields a rule which evaluates an act f according
to:

inf
p∈D( f )

EUp f (1)

where EUp f is the expected utility of f calculated with
probability p and utility U ,4 and D is a cautiousness coeffi-
cient assigning to every act a confidence level. Alternatively,
if one uses the unanimity or maximality rule [4, 49], then
f will be chosen over g if and only if:5

EUp f > EUpg for all p ∈ D(( f ,g)) (2)

where D is a cautiousness coefficient assigning to every
binary choice (pairs of acts) a confidence level. 6

These examples also illustrate how confidence-based
decision rules are basically extensions of (corresponding)
IP decision rules. For example, the standard maximin-EU
rule is just like (1) except that D( f ) in the infimum is

4. Since the focus here is on belief, we follow standard Bayesianism
in assuming throughout the paper a precise utility or desirability
function as a representation of desires over outcomes.

5. There are different versions of this rule depending on the sort of
dominance required, e.g. strict or weak order in (2). The points made
in the discussion hold for all variants.

6. As the two examples illustrate, models in the confidence family may
also differ on their treatment of the stakes associated to a decision.
See [24, 26, 25] for technical details and further discussion.

replaced by a fixed set C , and similarly for (2).7 So the
confidence-based family of rules can account for any choice
patterns that imprecise probabilities can. Returning to the
previous example, at any reasonable confidence level, the
agent will endorse the credal statement that the probability
of getting black from the large-sample urn is 1

2 ; by contrast,
whenever the confidence level is high enough, she may
not hold such a precise credal judgement concerning the
small-sample urn, instead restricting herself to intervals,
such as [ 1

4 ,
3
4 ]. Under (1), when the stakes are high enough

to merit such a confidence level, she will use 1
2 to evaluate

the act of betting on the large-sample urn, whilst look at
the minimal expected utility over [ 1

4 ,
3
4 ] in evaluating the

bet on the small-sample urn. Since the latter value is lower
than the former, she will prefer to bet on the large-sample
urn. To the extent that confidence can reflect the weight of
evidence behind a credal judgement, this captures faithfully
the intuitive role of weight of evidence in choice noted in
the Introduction.

Analysis of several decision models in the confidence
family points to a single essential behavioural difference
between the imprecise probability and the confidence-based
approaches: stakes independence. Formulated in the lan-
guage of bets, stakes independence is the assumption that,
if an agent is willing to buy a bet on event E with stakes
S8 for a price of q.S, then she is willing to buy a bet on the
same event with stakes S′ for a price of q.S′, and this for any
S and S′. In other words, the lower betting quotient—the
supremum proportion of the stakes for which the agent is
willing to buy the bet—is independent of the stakes.9

The rational credentials of this assumption are question-
able. Consider an urn containing 100 black and white balls,
and an agent who knows that there are at least 10 black
balls in it and has observed two draws (with replacement),
one of which is black. She may be willing to buy a $10
million bet on the next ball drawn being black for $1 mil-
lion, but may be willing to pay much more than $0.10 to
buy a bet on the same event when only $1 is at stake. After
all, in latter case, less is at stake, so it does not seem so un-
reasonable to rely on beliefs in which she has more limited
confidence in evaluating the gambles. This would suggest
that the lower betting quotients may depend on the stakes
involved. Certainly, such dependence does not appear to be
irrational. Moreover, it naturally seems to go in a particular
direction: when the stakes are higher, the decision maker
may reasonably refuse to buy at betting quotients that she
would have accepted at lower stakes.

7. The maximin-EU rule [17] is standardly formulated using convex
closed sets and hence minima instead of infima; the corresponding
confidence representation involves closed and convex confidence
rankings [24].

8. I.e. the bet pays S is E and nothing if not.
9. Technically, in terms of lower previsions, stakes independence is

equivalent to the positive homogeneity axiom [49].
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It turns out, in a range of frameworks and under a variety
of decision models, that replacing a stakes-independence
condition in an appropriate characterisation of imprecise
probabilities by a stakes-dependence condition along these
lines yields a characterisation of the confidence model
[24, 26, 27]. To the extent that stakes independence appears
to be overly restrictive as a normative condition, whilst
stakes dependence does not, this might suggest that the
confidence approach has as strong, if not stronger, normat-
ive credentials when it comes to decision than the standard
imprecise probability approach.

Moreover, this suggests a ‘rule-of-thumb’ way of under-
standing confidence in beliefs in its relationship to choice.
The interpretation of degrees of belief in terms of betting
quotients gives a useful grasp on the concept, which can
help guide intuition. The previous discussion suggests a
similar ‘proxy’ for confidence: the confidence in a degree
of belief is reflected in the stakes to which one is willing
to let that degree of belief guide one’s betting behaviour.
As such, the introduction of confidence in belief appears
a natural addition to degrees of belief: beyond the odds
one gets (reflecting degrees of belief), there is the issue of
how much one is willing to bet on those odds (reflecting
confidence in those beliefs).

Note finally that the combination of this account of
decision with the connection between weight of evid-
ence and confidence provides a reply to the question of
the role that weight of evidence should play in choice,
which Keynes himself famously found ‘highly perplex-
ing’ [32, p357].10 Weight of evidence—and more generally
confidence—regulates the probability judgements which
can be relied upon, according to the maxim that for more
important decisions, only those in which one has more
confidence are appropriate for use.

3. Confidence and Uncertainty Reporting

The ubiquity of the Bayesian model of belief in practical
applications is at least in part due to its capacity to support
group decision making, especially in situations where dif-
ferent actors (experts, scientists, the public, policy makers)
are responsable for different factors or parts of the de-
cision making process (‘group beliefs’, ‘group values’).
Two properties of the model are theoretically central in
such situations. One is the clear separation of the elements
of a decision paradigm which correspond to or capture
beliefs—the probabilities, in the Bayesian approach—and
those which reflect values or tastes—the utility function.
This permits the theoretical division of decision-making

10. ‘In marginal cases, therefore, the coefficients of weight and risk as
well as that of probability are relevant to our conclusion [concerning
the preferable course of action]. It seems natural to suppose that they
should exert some influence in other cases also, the only difficulty in
this being the lack of any principle for the calculation of the degree
of their influence.’ [32, p360]

labour: experts or scientists are responsable for the probab-
ilities; the utilities or values should be those of the policy
makers or society. The other is a clear language for uncer-
tainty communication: the language of probabilities is one
that, in principle, is fully understood by all parties. When
an expert reports the probability of a major natural disaster
in the next 20 years in New York as 20%, policy makers
(in theory) understand that assessment the same way as the
expert.

Of course, the picture is not so rosy in practice: the
fact-value distinction is often portrayed as more fragile
as it would be in principle under the Bayesian framework
[10, 47], and communication of probabilities is rarely as
faithful and unambiguous as theory would suggest [7, 8, 6].
However, any account of uncertainty capable of supporting
real decision making should at least possess these charac-
teristics in theory. We now consider how the confidence
approach fairs on each.

3.1. Belief-Taste Separation

Compared to Bayesianism, the confidence-based approach
involves two novel elements: the confidence ranking and
the cautiousness coefficient.11 As explained in Section 2.1,
the confidence ranking captures the decision maker’s state
of belief, incorporating in particular her confidence in her
beliefs. As for the cautiousness coefficient, it can be under-
stood as a representation of her attitude to choosing in face
of limited confidence. This interpretation is suggested by
its role in the model. It involves a judgement as to the appro-
priate confidence level for the decision at hand, and hence
reflects the extent to which the decision maker is willing to
rely on beliefs held with limited confidence in such a de-
cision. Ann and Bob are each evaluating the bet, with stakes
of $1 billion, on black from an urn about which no informa-
tion has been provided except that it only contains black and
white balls, and suppose that they have the same confidence
ranking. Suppose that Ann’s cautiousness coefficient as-
signs this decision to the set C0 = {p : 0≤ p(black)≤ 1}
in their confidence ranking, whereas Bob’s assigns it to the
smaller set C1 = {p : 0.25≤ p(black)≤ 0.75}. Since C1
is in Ann’s confidence ranking, it represents beliefs that she
holds; however, she feels uncomfortable relying on beliefs
held with that level of confidence in such a high-stakes de-
cision. Bob, by contrast, is less averse to mobilising beliefs
held with this much confidence in decisions of such import-
ance. If you will, he is readier to take the ‘epistemic risk’
of relying on beliefs held with limited confidence when the
stakes are so high. Ann and Bob differ in their attitudes, or
tastes, for choosing on the basis of beliefs held with limited
confidence.

11. The final element is the utility function, which, as standard, can be
interpreted as reflecting the decision maker’s desires for outcomes,
and hence deserves no further discussion here.
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The important point is that the cautiousness coefficient
is conative in character: it reflects a taste or value judge-
ment, rather than something of the order of a belief. The
model thus neatly separates the doxastic element—fully
captured by the confidence ranking—from conative atti-
tudes—reflected entirely by the utility function and the
cautiousness coefficient.

The economic literature on decision suggests that such a
clean separation of doxastic and conative attitudes is gen-
erally lacking from decision models built on IPs. Consider
for illustration the maximin-EU rule, which evaluates an
act f according to:

inf
p∈C

EUp f (3)

where C is a set of probability measures (and the rest of the
notation is as in Section 2.2). A tempting, and perhaps even
popular interpretation of C is as representing the decision
maker’s state of belief: after all, it seems to be the equi-
valent in this model of the Bayesian subjective probability.
Now consider the ‘unknown’ urn from above: on the basis
of the ‘objective’ information available, any composition
of the urn is possible, so the information is summarised by
a set of probability measures C0 = {p : 0≤ p(black)≤ 1}.
Suppose that Ann’s preferences can be represented by this
set, whereas Bob’s preferences adhere to the maximin-EU
rule, but with C1 = {p : 0.25≤ p(black)≤ 0.75}. Where
do these agents differ: in their beliefs or in their tastes?
On the one hand, it could be that Bob has further beliefs,
beyond the available information, that allow him to restrict
the set of probability measures. On the other hand, Bob
could have a greater tolerance of uncertainty—or less cau-
tious attitude. Indeed, he will be more ready than Ann
to choose an uncertain option over one that involves no
uncertainty—behaviour which is standardly taken to be-
tray less uncertainty aversion on his part [15, 16], where
uncertainty aversion, like the sister-notion of risk aversion
[42, 2], is taken to reflect decision makers’ tastes for bear-
ing uncertainty. The use of IPs with the maximin-EU model
is not rich enough to decide the question—or, indeed, to
represent the difference between these two possibilities.
One often concludes that there is no clear interpretation of
the set C : it reflects aspects of both belief and attitude to or
taste for uncertainty [33].

By contrast, the confidence model can deal with this is-
sue quite straightforwardly. If Ann and Bob have different
confidence rankings—if, in particular C1 does not belong to
Ann’s confidence ranking—then they have different beliefs.
If, on the other hand, they have the same confidence rank-
ing, but different cautiousness coefficients—with Ann’s
picking out C0 for a particular decision and Bob’s C1—
then their tastes or values for choosing on the basis of
limited confidence are different. Just as so-called ‘compar-
ative statics’ results on the maximin-EU model and other
IP models in the economic literature tend to point up the
ambiguity in the interpretation of the single set of priors

[15, 16], corresponding results on confidence models cor-
roborate the clear distinction between the belief and taste
elements of the representation [24, 26].12

These issues for IP models could be seen as indicative
of deeper, interrelated problems, concerning uncertainty
communication and incorporation of evidence. For instance,
since the set of probability measures can reflect the decision
maker’s attitude to uncertainty, how are we sure, when an
agent reports a set of probability measures in good faith
for use to guide choice in the context of such a rule, that
she is not inadvertently letting her tastes for uncertainty
contaminate her report, and the subsequent choice? This
echoes concerns raised in the literature on (experimental)
elicitation of imprecise probabilities [46, 51, 52]. Reporting
probability intervals requires subjects to trade-off between
the accuracy of the estimate and its informativeness, so
the interpretation of any intervals elicited depends on how
subjects make these trade-offs. To the extent that they may
involve value judgements (as to whether it is better to be
more precise but wrong, or not, for the decision in hand),
this is basically a consequence of the lack of a clear separa-
tion between doxastic and conative attitudes.

In practice, the sorts of trade-offs just mentioned are
often related to issues raised in Section 2.1 concerning
the incorporation of evidence. More imprecise—and less
informative—credal judgements may benefit from more
support or weight of evidence—and hence be more ac-
curate. This suggests that the accuracy-informativeness
trade-off is related to the balance precision-weight one dis-
cussed above. The problem is that such trade-offs inevitably
involve considerations of which—accuracy or informative-
ness, precision or weight—is more important, and that
brings in value considerations that, moreover, may depend
on the (decision) context. Weight of evidence can only be
incorporated into IPs by trade-offs incorporating values as
well, hence forsaking any clear belief-taste separation, of
the sort important for group decision making.

By contrast, the confidence approach can comfort-
ably separate weight of evidence—or more generally
confidence—from the precision of credal judgements. In
the aforementioned accuracy-informativeness trade-off, the
confidence ranking faithfully represents the solidity of dif-
ferent credal judgements, but without actually relying on
any of the trade-offs actually being made. Perhaps relatedly,
the approach separates this from value considerations about
how much solidity, weight or confidence is appropriate for
a given situation, with the cautiousness coefficient regulat-

12. We focus here on the separation between beliefs and tastes for choos-
ing on the basis of limited confidence—or ‘caution in decision’—at a
given moment. Of course, a full picture would require an account of
update of confidence in beliefs. Such an account is provided in [28],
separating in particular the previous elements from the agent’s inclin-
ation to jump to strong conclusions on the basis of limited data—or
‘caution in learning’.
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ing the extent to which the agent is prepared to sacrifice
confidence for a sharper set of beliefs to guide decision.

The confidence framework thus offers a clear story about
its central elements. As such, it provides simple guidance
for its use in public decision making: one should look to the
experts to provide the confidence ranking, and to the policy
maker to fix the cautiousness coefficient. In so doing, the
experts would not be asked to decide on any trade-offs, but
only report their credal judgements and the confidence in
them—including the weight of evidence supporting them—
while it would fall to the policy maker to decide on how
much confidence is appropriate for the decision at hand. As
noted, some institutional actors currently use a reporting
framework involving the possibility of expressing confid-
ence over probability judgements; [5, 22] relate it to the
confidence approach, bringing out the implications and
recommendations for practice going forward.

3.2. Communication and Calibration

In the previous model, confidence in credal judgements is
ordinal (Section 2.1). This promises to facilitate the use
of the model in situations where confidence assessments
need to be provided by experts [40]. In such cases, only
ordinal confidence judgements are required from experts:
they need only say whether they are more confident in one
credal judgement than another, but not by how much. On
the other hand, it poses a challenge for communication,
where, beyond the confidence ordering of credal judge-
ments, one needs to relate confidence levels across actors.
How can agents know that they are talking about the same
level of confidence? This problem, which has been noted
for various non-Bayesian uncertainty representations [12],
applies de facto for the confidence language currently used
by the IPCC, the U.S. Defense Intelligence Agency and Na-
tional Intelligence Council [38, 13], which involve verbal
confidence qualifiers (e.g. low, medium, high). When two
experts profess ‘high confidence’ in a particular probability
assessment, how are they sure that they are talking about
the same confidence level?

This can be thought of as a calibration problem: the chal-
lenge is to calibrate confidence levels across agents. Our
proposed approach to this challenge is motivated by one
method for calibrating (Bayesian) degrees of belief, which
uses ‘objective probabilities’ or chances. When Ann and
Bob say they have degree of belief 0.25 in an event F , we
know they are expressing the same belief because they both
agree that their degree of belief for the event is the same as
their degree of belief for an event generated by ‘objective
random device’, such as the event that the next ball drawn
from an urn containing 5 red balls and 15 blue ones is red.
Underlying this approach is the assumption that (different)
rational agents agree on their degrees of belief for events
for which they have been told the objective probabilities,
or chances, and nothing else. Indeed, it is a consequence

of the Principal Principle [37] that, for any rational agent
provided with the information that the chance of event E is
x, and no further information relevant to this event, her de-
gree of belief in E, c(E) = x.13 Applying this with E being
the event of drawing red from the aforementioned urn and
x = 0.25, Ann and Bob both give the same degree of belief
for E—cAnn(E) = cBob(E) = 0.25—and hence, since they
agree that this is the same as their degree of belief in F , we
can conclude that they have the same degree of belief in F .

Note that this calibration of the probability language
depends only on the ordinal properties of probabilities.
To see this, consider Ann and Bob’s qualitative probab-
ilities <Ann and <Bob (in the sense of [43]). E <Ann F if
in Ann’s subjective judgement, E is more likely than F .
(In terms of betting behaviour, she prefers betting on E
ceteris paribus to betting on F .) If these agents had real-
valued credence functions, cAnn, cBob, then for any pair of
events E,F , E <Ann F if and only if cAnn(E) ≥ cAnn(F).
(Axioms on <Ann, <Bob guarantee the existence of such
functions; beyond transitivity, no such axioms need be im-
posed here.) Consider events Ex for x ∈ X ⊆ [0,1] with X
closed, where all that is known about Ex is that its chance
is x. For instance, they could be the events that red is drawn
from urns with certain compositions. There is an objective
‘more likely’ order, <l on such events, with Ex <l Ey if and
only if x ≥ y. Note in particular that this relation is trans-
itive and complete on {Ex}x∈X . The map ψAnn : Σ→ [0,1],
defined by ψAnn(E) = min{x ∈ [0,1] : Ex <Ann E}, assigns
a value in X to each event, according to how it compares
to the chance events Ex. It can be thought of as assign-
ing ‘degree-of-belief values’ to events according to Ann’s
beliefs, on the scale represented by {Ex}x∈X . A similar
map can be defined for Bob. If these maps are to calibrate
these agents’ degrees of belief, then the map ψ

−1
Bob ◦ψAnn

needs to be order preserving: for all events E,F and all
E ′ ∈ ψ

−1
Bob ◦ψAnn(E) and F ′ ∈ ψ

−1
Bob ◦ψAnn(F), E ′ <Bob F ′

if and only if E <Ann F . In other words, more likely events
according to one of the agents are assigned to a degree-of-
belief level that is considered more likely according to the
other. It is straightforward to see that:

Fact 1 If, for all x,y ∈ X, Ex <Ann Ey if and only if
Ex <Bob Ey if and only if Ex <l Ey, then ψ

−1
Bob ◦ψAnn is

order-preserving.

The condition Ex <Ann Ey if and only if Ex <l Ey is just
the Principal Principle mentioned above, applied to Ann’s
qualitative probability relation. So this result says that this

13. There has been debate on the Principal Principle in the philosoph-
ical literature, often focussing on its metaphysical implications, and
purportedly turning on issues relating to its proper formulation [e.g.
21, 39]. We only require the special case of the principle applying
to calibration devices here, which is generally uncontroversial: it
avoids metaphysical subtleties and is implied by all reasonable ex-
isting versions of which we are aware. The same holds for the (new)
weight-of-evidence version of the principle proposed below.
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ordinal version of the Principal Principle is sufficient for the
chance events {Ex}x∈X to calibrate Ann’s and Bob’s degree-
of-belief levels. Whilst taking richer scales (X→ [0,1]) and
assuming standard continuity properties of the qualitative
probability relations will yield a full [0,1]-map for each
agent—corresponding to his or her credence function—for
communication and elicitation purposes, a coarser scale
is usually sufficient and maximally feasible. This calibra-
tion argument has been conducted entirely at the ordinal
level, and does not require the additivity or normalisation
properties of probability measures.

The same logic can be applied to confidence, relying on
the relation with the weight of evidence. Recall that, under
the separation of credal judgements and confidence in them
under this model, the former track aspects of the ‘balance of
evidence’—in the typical examples of draws from urns, the
frequency of a given colour—whereas the latter tracks the
weight—often associated to the size of the sample. After
observing 100 draws, 50% of which were red, one may
hold the credal judgement p(Red)≥ 0.4 with a fairly high
level of confidence; if 50% out of two draws were red,
one’s confidence would reasonably be much lower. This
suggests that confidence could be calibrated using a range
of situations where the ‘objective’ weight of evidence—the
number of draws in the example—varies.

More precisely, consider events En, n ∈ N, with each
En being the event that the next ball drawn from a given
urn is red, where the only information possessed about
the urn is: (a) it contains 20 balls, each of which is red or
blue; (b) 2n draws from the urn have been observed (with
replacement), precisely n of which were red. Let Pn be the
credal statement that p(En)≥ 0.4 (Pn = {p ∈ ∆ : p(En)≥
0.4}). Between Pn and Pn′ with n > n′, the credal statement
and the frequency of red remain fixed; only the weight of
evidence changes, being larger for n. In the same way that
it is an objective fact that the chance of picking red from an
urn with 10 red balls out of 20 is larger than the chance of
picking red from an urn with 5 red balls out of 20, it seems
to be an objective fact that the weight of evidence for P50
is greater than the weight of evidence for P5. Using �w.o.e
for the ‘(objectively) has more weight of evidence’ relation,
we have that Pn �w.o.e. Pn′ whenever n≥ n′.

Now let ΞAnn and ΞBob be Ann and Bob’s confidence
rankings, and define the map γAnn : ΞAnn→N by γAnn(C ) =
min{n : C ⊆ Pn}, and similarly for γBob. Confidence levels
are characterised by the lowest n for which the agent holds
the belief Pn with the level of confidence in question. This
can be thought of as assigning ‘confidence values’ on a
numerical scale. As for the probability case above, to be an
appropriate calibration, the map γ

−1
Bob ◦ γAnn relating Ann’s

and Bob’s confidence levels needs to be order-preserving.14

14. For all C ,D ∈ ΞAnn, C ′ ∈ γ
−1
Bob ◦ γAnn(C ) and D ′ ∈ γ

−1
Bob ◦ γAnn(D),

C ′ ⊆D ′⇔ C ⊆D .

Again, we have a condition under which this is the case
(where �Ξ is as defined in Section 2.1).

Fact 2 If, for all n,n′ ∈ N, Pn �ΞAnn Pn′ if and only if
Pn �ΞBob Pn′ if and only if Pn �w.o.e. Pn′ , then γ

−1
Bob ◦ γAnn

is order-preserving.

The condition Pn �ΞAnn Pn′ if and only if Pn �w.o.e. Pn′

can be thought as a weight-of-evidence Principal Principle:
if the only information available supports one credal state-
ment objectively with more weight of evidence than an-
other, then rational agents hold the former with more con-
fidence. As for the Bayesian case, refining the ‘scale’ and
under continuous confidence rankings [24], one can in prin-
ciple obtain a finer distinction in confidence levels; again,
for communication and elicitation practice, there is little
indication that further refinements would be motivated.

The map γ thus defines a numerical scale for confidence,
which, under a weight-of-evidence version of the Principal
Principle, calibrates confidence across agents. In particular,
it permits interpersonal comparison of confidence levels.
Ann and Bob can be said to be professing the same confid-
ence in a given judgement, if each of them judge the confid-
ence to be the same as the confidence in Pn—in other words,
if each of them associate it to the same n on the scale. Such
scales thus resolve the communication problem, in theory.
In fact, confidence can be elicited on such scale—protocols
can be developed allowing one to ‘extract’ agents’ confid-
ence in beliefs on such a scale, using their confidence com-
parisons to the scale judgements Pn. A web tool permitting
elicitation on such a scale has been developed, and is avail-
able here: http://confidence.hec.fr/app/.

We close with some remarks about the choice of
scale. Consider two ‘calibration sets’ of credal statements
{Pn}n∈N and {P′n}n∈N, with the objective weight of evid-
ence increasing in n in both cases. What is the relationship
between them? Recall that, for a set of credal statements
to serve as the basis of a scale, the objective weight of
evidence relation �w.o.e. has to be complete and transitive
on it. Suppose that �w.o.e. is transitive and complete on
{Pn}n∈N∪{P′n}n∈N, so, in particular, it can compare each
P′n on the {Pn}n∈N scale. Then {Pn}n∈N∪{P′n}n∈N (or any
superset on which �w.o.e. is transitive and complete) cal-
ibrates confidence; the previous numerical scales can thus
be compared by translating them into a finer scale. This is
well-known for the credence case: draws from urns with 20
balls and rolls of a fair die each calibrate degrees of belief
(up to the nearest 1

20 and 1
6 ): although events in one do not

directly correspond to those in another, what counts is that
they can be compared in terms of chance, and ‘embedded’
into a richer common scale.

So what really counts for comparing different scales is
whether �w.o.e. is transitive and complete over the union. Is
this the case for any pair of ‘calibration sets’ of credal state-
ments {Pn}n∈N and {P′n}n∈N? Note that the answer may be
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no even for degrees of belief. If each event in {Ex}x∈X or
{E ′x}x∈X ′ has a precise objective chance, then <l is com-
plete and transitive over the union of these families. How-
ever, this would not be universally the case if, as argued
by [20], there are events with indeterminate (yet objective)
chances. The order <l is complete and transitive over each
of the families {E0,E[0.15,0.35],E[0.4,0.6],E[0.65,0.85],E1}
and {E ′0,E ′0.2,E ′0.4,E ′0.6,E ′0.8,E ′1}, but it does not or-
der E[0.65,0.85] (i.e. the event with indeterminate chance
[0.65,0.85]) and E ′0.8, so it is not complete over the union
of these families. Calibrating degrees of belief on chances
cannot and does not use any scale of chance events, but
restricts to a subclass of scales which are comparable in
the previous sense: the scales containing only events with
precise chances.

Similarly, if not all scales {Pn}n∈N and {P′n}n∈N were
comparable (in the sense of their union being completely
ordered by �w.o.e.), one could restrict attention to a maxim-
ally comparable scale. In the end, the issue of comparability
will turn on properties of the objective weight of evidence
relation. For instance, under an account according to which
the weight of evidence for Pn is the posterior Bayesian prob-
ability of Pn after conditionalisation of a uniform prior on
the information received in the En situation, �w.o.e. is com-
plete across any union of such scales, and all such scales are
comparable. The question of objective weight of evidence,
and hence of comparability, goes beyond the scope of this
paper, and must thus be left for future research.

4. Conclusion

In this paper, we have considered how a recently-defended
approach to belief and decision, which gives pride of place
to the notion of confidence in beliefs, can render the Keyne-
sian notion of weight of evidence and mobilise it in un-
certainty reporting. It seems to be able to capture the dis-
tinction between weight and other aspects of evidence, via
the difference between confidence in a credal judgement
and the credal judgement at issue. It does not require that
weight and balance—confidence and credal precision—be
traded off into a single credal set. When connected to de-
cision, this supports a clear separation of the belief and
value factors of the model: an important quality in contexts
where these factors are the responsibility of different agents.
Finally, we consider the communication of confidence, and
propose a resolution to the problem of interpersonal confid-
ence calibration, evoking a weight-of-evidence version of
the Principal Principle.
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