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Abstract
Applied real-world decisions are frequently guided by
the outcome of hypothesis-based statistical analyses.
However, most often relevant information about the
phenomenon of interest is available only imprecisely,
and misleading results might be obtained, in particular,
by either ignoring relevant information or pretending a
level of knowledge that is not given. In order to be able
to include (partial) information authentically in the im-
precise form it is available, this paper tries to extend
the framework of hypothesis-based Bayesian decision
making with simple hypotheses to be able to deal with
imprecise information about the three relevant quan-
tities: hypotheses, prior beliefs, and loss function. Al-
though straightforward at first glance, it appears that
by specifying the hypotheses imprecisely, Bayesian
updating of the prior beliefs might be inconsistent. In
that, this paper provides the basic mathematical for-
mulation to further extend imprecise hypothesis-based
Bayesian decision theory to more elaborate contexts,
such as those involving composite imprecise hypothe-
ses, and in addition highlights the necessity of paying
particular attention to the depicted updating issues.
Keywords: Hypotheses, Likelihood Ratio, Imprecise
Probabilities, Bayesian Decision Theory, Sequential
Updating, Inconsistency, Statistics in Psychological
Research

1. Introduction

In the face of the currently discussed reproducibility cri-
sis in psychological research (Ioannidis, 2005), Bayesian
statistics is gaining popularity (e.g. Van De Schoot et al.,
2017) also in this area. Classical hypotheses tests are ar-
gued to be replaced by the so called Bayes factor (e.g. Kass
and Raftery, 1995; Gönen et al., 2005; Rouder et al., 2009),
a Bayesian quantity for hypothesis comparisons, which
might be seen as a generalization of the likelihood ratio to
include prior information about the parameter of interest by
employing prior distributions on it. If these distributions are
degenerate, i.e. have all mass on a single parameter value,
the Bayes factor equals the likelihood ratio.

In addition to the prior distributions on the parameter,
a Bayesian analysis in the context of statistical hypothe-
ses requires prior probabilities of these hypotheses, which

might be interpreted as subjective belief in the respective
hypotheses and get updated by the data. It is the Bayes
factor, which quantifies the change in these subjective prob-
abilities (e.g. Morey et al., 2016), and therefore the Bayes
factor is interpreted as quantification of the evidence in the
data w.r.t. the hypotheses. The posterior probabilities of the
hypotheses might then be used to guide a decision together
with an appropriately specified loss function in the context
of Bayesian decision theory (see e.g. Berger, 1995; Huntley
et al., 2014).

In that, the changing focus onto Bayesian statistics within
psychological research might be seen as a step towards ris-
ing awareness of the distinction between evidence, belief
and decision in the context of an analysis of statistical
hypotheses (see e.g. Lavine and Schervish (1999) and espe-
cially Royall (2004)).

Naturally, statistical hypotheses depend on the real-world
research question, which might not always be unambigu-
ously formalized mathematically. Prior probabilities of the
hypotheses are subjective in nature and only rarely accessi-
ble as precise numerical values. The loss function depends
on a putative real-world decision problem such that a pre-
cise specification of the loss function might not be given by
the researcher.

Yet, certain potentially incomplete information about
hypotheses, prior beliefs and the loss function might be
available, such that both ignoring these information or spec-
ifying the respective quantities in an overly precise way
might yield misleading results or decisions. In order to
avoid untrustworthy results, it is thus necessary to allow
researchers to include information into a statistical analysis
specifically in the imprecise form it is available. Therefore,
this paper intends to formulate the simplest case (using
simple hypotheses) of hypothesis-based Bayesian decision
theory in a way to include partial information about hy-
potheses, prior beliefs and the loss function. This might
be seen as a fundamental, but necessary step to extend
the imprecise probability framework (Walley, 1991) to the
Bayes factor analyses that are recently applied in psycho-
logical research, working at the interface between statistical
developments and empirical sciences.

As mentioned above, there are two different types of
prior distributions inherent to a Bayes factor analysis:
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(hypothesis-based) priors on the parameters and a prior
on the hypotheses that is used to further guide decisions.
In that, the Bayes factor analysis might be generalized
within the framework of imprecise probabilities at these
two distinct parts. Allowing the priors on the parameter to
be specified imprecisely is restricted to the Bayes factor
analysis itself and given an account by Ebner et al. (2019).
However, considerations about allowing imprecise priors
on the hypotheses and imprecise quantities relevant for a
corresponding decision might apply to more situations than
typically addressed in a Bayes factor analysis. Therefore,
it will be given a separate account within this paper and
discussed by referring to the likelihood ratio, which might
be seen as both special case (using degenerate priors on the
parameters) and foundational basis (see e.g. Royall, 2004)
of the Bayes factor.

The present paper is structured as follows. Section 2 col-
lects the basic ingredients of the classical case of Bayesian
decision making based on two precise simple hypotheses.
This framework will in Section 3 be powerfully extended
to the situation where single hypotheses are interval-valued
and the loss functions and prior odds are imprecise. Sec-
tion 4 warns that, however, in this context some inconsis-
tency issues may arise under updating and assess them in
greater detail. Section 5 provides a numerical example as
illustration and Section 6 concludes with a brief outlook.

2. Precise Hypothesis-Based Bayesian
Decision Making

Assume a parametric statistical model, such that observed
data x = (x1, . . . ,xn) are modeled as realizations of inde-
pendent and identically distributed random variables Xi,
i = 1, . . . ,n, with parametric probability density f (xi|θ),
θ ∈Dθ , which specifies the joint density as

f (x|θ) =
n

∏
i=1

f (xi|θ) . (1)

All considered parameter vales θ are comprised within the
parameter space Dθ and, for the sake of simplicity (espe-
cially w.r.t. notation), the parameter is assumed to be a
single real-valued scalar here. Generalizations to multidi-
mensional parameters are possible, but are left to further
research.

Further assume two precise simple hypotheses

H0 : θ = θ0 vs. H1 : θ = θ1 , (2)

where θ0 and θ1 are precise hypothesized parameter val-
ues, which implies that one of these two values is con-
sidered to be true. In a Bayesian context there is a sub-
jective prior distribution on the hypotheses (p(H0) and
p(H1) = 1− p(H0)), forming the prior odds

π :=
p(H0)

p(H1)
. (3)

The prior odds can be updated by the observed data x via
Bayes rule to the posterior odds

p(H0|x)
p(H1|x)

=

f (x|θ0)·p(H0)
f (x)

f (x|θ1)·p(H1)
f (x)

= LRx(θ0,θ1) ·π , (4)

where

LRx(θ0,θ1) =
f (x|θ0)

f (x|θ1)
(5)

is the likelihood ratio and frequently referred to as Bayes
factor (see e.g. Liu and Aitkin, 2008), as both hypotheses
in equation (2) might be formulated by degenerate proba-
bility distributions with all probability mass on θ0 and θ1,
respectively.

In order to guide a decision between two actions a0 and
a1, a loss function

L : H ×A → R+
0

(H,a) 7→ L(H,a) (6)

with H = {H0,H1} and A = {a0,a1} need to be specified,
quantifying the “badness” of choosing a if H is true. The
expected posterior loss

ρ : A → R+
0

a 7→ p(H0|x)L(H0,a)+ p(H1|x)L(H1,a) (7)

can be used to find the optimal action(s)

a∗ = argmin
a∈A

ρ(a) . (8)

Assume that, as is common practice in empirical re-
search, the decision problem is formulated in regret form,
where a0 is associated with H0 and a1 with H1 such that
the correct decisions are evaluated to have zero loss, i.e.
L(H0,a0) = L(H1,a1) = 0. Then it is only necessary to
specify the ratio

k :=
L(H0,a1)

L(H1,a0)
(9)

in order to calculate the ratio of expected posterior losses

r :=
ρ(a1)

ρ(a0)
= π ·LRx(θ0,θ1) · k (10)

to determine

a∗ =

{
a0 if r > 1
a1 if r < 1

. (11)

For r = 1 any action might be chosen.
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3. Imprecise Hypothesis-Based Bayesian
Decision Making

Within applied research, it is typically extremely difficult to
specify the quantities θ0, θ1, π and k, which are necessary
to determine a∗, as precise values. This is due to the fact
that commonly some (potentially imprecise) information
is available and several choices of precise values for these
quantities are in accordance with it. Both ignoring the avail-
able relevant information and arbitrarily choosing among
those plausible values, can hardly be an optimal strategy.
Therefore, these quantities shall be specified imprecisely
as an interval of values. Following Dubois’ distinction (cp.
Dubois, 1986, Section 1.4), these intervals have to be in-
terpreted as conjunctive sets: they must be treated as a
generalization of a single value and thus as an entity of its
own. In that, as the interval of values replaces the respective
precise value, the distribution is parametrically constructed
by an interval (e.g. Augustin et al., 2014, Section 7.3.2).
Also note that all four quantities θ0, θ1, π and k might
be specifiable independently of each other, which allows
subsequent calculations to be straightforward.

3.1. Imprecise Simple Hypotheses

Instead of a precise parameter value θ , the (imprecise)
density of the data x is now dependent on an imprecise
interval-valued parameter Θ = [Θ,Θ], i.e.

f (x|Θ) = { f (x|θ)|θ ∈Θ} (12)

with Θ and Θ being precise valued bounds on the parameter
that are considered as defining the imprecise parameter Θ.
Accordingly, the parameter space of Θ is now the set of all
closed parameter intervals

DΘ = {[Θ,Θ]|Θ ∈Dθ ,Θ ∈Dθ ,Θ≤Θ} . (13)

Consider imprecise, but simple hypotheses

H0 : Θ = Θ0 vs. H1 : Θ = Θ1 , (14)

where

Θ0 = [Θ0,Θ0] , (15)

Θ1 = [Θ1,Θ1] (16)

and Θ0 (or Θ1) is the lower bound as well as Θ0 (or Θ1)
the upper bound for the simple hypothesized parameter
value Θ under H0 (or H1). Although specified as intervals
within this paper, simple imprecise hypotheses might also
be generalized to hypothesize (convex) sets of parameters
in general. Note that these hypotheses are not composite,
as they consist only of one single, but imprecisely speci-
fied value. In contrast, composite hypotheses, for instance
specified as

H0 : θ ∈ [Θ0,Θ0] vs. H1 : θ ∈ [Θ1,Θ1] , (17)

would contain all precise parameter values within the re-
spective intervals. That is exactly the crucial difference in
interpreting composite and simple imprecise hypotheses.
While the latter states that there is only one single parame-
ter value which represents the hypothesis, yet there is not
enough information available to precisely specify this sin-
gle value, the former states that all the different parameter
values, as a whole, represent the hypothesis. In that, com-
posite hypotheses bound the unknown parameter value of
a precise sampling model, while an imprecise parameter
specifies an imprecise sampling model (e.g. Augustin et al.,
2014, Section 7.2.5). As an outlook, composite imprecise
hypotheses would be subsets of DΘ containing more than
one parameter interval.

The Bayesian account to composite hypotheses is to em-
ploy a prior distribution on the hypothesized values and to
calculate the respective marginal density of the observed
data (as in a typical Bayes factor analysis (e.g. Morey et al.,
2016)). While this prior is on the parameter values them-
selves within a precise composite hypothesis, it is on param-
eter intervals within an imprecise composite hypothesis. A
simple imprecise hypothesis might therefore be described
by a degenerate distribution with all mass on the respective
parameter interval.

Accordingly, the fundamental technical difference be-
tween precise composite and simple imprecise hypotheses
within the Bayesian framework is that only former requires
the specification of a prior distribution on the hypothesized
parameter values. In that, former might be incorporated
within the Bayesian analysis by means of a marginal den-
sity and latter by means of the imprecise-valued density as
in equation (12).

3.2. Imprecise Likelihood Ratio, Imprecise Prior
Odds, and Imprecise Loss Function

Given data x, instead of a precise likelihood ratio, there is
an interval-valued likelihood ratio

LRx = [LRx,LRx] , (18)

with

LRx = min
θ0∈Θ0
θ1∈Θ1

LRx(θ0,θ1) , (19)

LRx = max
θ0∈Θ0
θ1∈Θ1

LRx(θ0,θ1) . (20)

Note that within this paper a precise likelihood ratio
value is denoted with its dependence on θ0 and θ1, whereas
a interval-valued likelihood ratio is denoted without this
dependence.

In addition, the prior odds

[π,π] (21)
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might be interval-valued with π being the lower bound and
π being the upper bound of the subjectively specified prior
odds, leading to the imprecisely defined posterior odds

[LRx ·π , LRx ·π] . (22)

The loss function might also be specified imprecisely by

[k,k] , (23)

where, analogously, k is the lower bound and k is the up-
per bound for stating, in generalization of (9), how much
"worse" a1 would be under H0 than a0 would be under
H1, if deciding correctly has 0 "badness" (for a more gen-
eral account on robust loss functions see Dey and Michaes
(2000)).

In contrast to the precise case, the ratio of expected
posterior losses r, which was used to determine the optimal
action, is not precise anymore:

[r,r] , (24)

where

r = π ·LRx · k (25)

r = π ·LRx · k (26)

can be calculated from the respective lower and upper
bounds of π , LRx and k, as all these quantities are posi-
tive, and they vary independently. If one of these quantities
is still precise, its lower and upper bounds are equal, for
instance for a precise k it holds that k = k = k.

The optimal action is

a∗ =

{
a0 if r ≥ 1
a1 if r ≤ 1

, (27)

however, for r < 1 < r, the decision cannot be guided un-
ambiguously and more information is required. This might
be accomplished by collecting more data, such that the
imprecise likelihood ratio interval will become smaller, or
by obtaining more information about the decision problem,
such that θ0, θ1, π or k might be specified more accurately,
i.e. by smaller intervals. With this additional information,
the resulting imprecise ratio of expected posterior losses
[r,r] might become smaller and with sufficient information
might exclude 1, allowing the determination of the opti-
mal action a∗. This will be illustrated by an example in
Section 5.

Certainly, not being able to determine an optimal action
in the context of a given data set might at first glance seem
to be a disadvantage of the imprecise framework. However,
this might only occur if some of the available information
is imprecise, such that specifying precise values for the
necessary quantities is arbitrary, can be characterized as
overprecision and might yield potentially misleading, en-
forced decisions. Nevertheless, if necessary, enforcing a
decision is still possible for r < 1 < r, yet the researcher
is now aware of its spuriousness, which might have been
masked due to the overprecision within the precise case.

4. Potential Bayesian Updating Issues with
Imprecise Hypotheses

Although within the last section simple hypotheses were
allowed to be imprecisely specified, this might be accom-
panied by Bayesian updating inconsistencies that appear
while sequentially considering two separate data sets. On
that note, (e.g. Seidenfeld, 1994; Huntley et al., 2014) al-
ready emphasized the importance of being cautions with
sequential decision problems in the context of imprecise
probabilities.

4.1. Precise Case

Consider the presence of a second data set y = (y1, . . . ,ym)
being modeled analogously to x, i.e.

f (y|θ) =
m

∏
i=1

f (yi|θ) , (28)

and denote z = (x,y) as the merged data set with

f (z|θ) =
n+m

∏
i=1

f (zi|θ) = f (y|θ) · f (x|θ) . (29)

Therefore, with precise simple hypotheses as in equation
(2) it holds that

LRz(θ0,θ1) = LRy(θ0,θ1) ·LRx(θ0,θ1) (30)

and the posterior odds after seeing all the data z

LRz(θ0,θ1) ·π = LRy(θ0,θ1) ·LRx(θ0,θ1) ·π (31)

(as well as the ratio of expected posterior losses r) do not
depend on whether the data was merged or not.

4.2. Imprecise Case

However, in the context of the imprecise hypotheses from
equation (14), define

(θ x
0 ,θ

x
1 ) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRx(θ0,θ1) , (32)

(θ y
0 ,θ

y
1 ) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRy(θ0,θ1) , (33)

(θ z
0,θ

z
1) := argmin

(θ0,θ1):
θ0∈Θ0,θ1∈Θ1

LRz(θ0,θ1) (34)

as the respective tuples of hypothesized parameter values,
which lead for each data set to the respective minimal like-
lihood ratio. As in general

θ
x
0 6= θ

y
0 6= θ

z
0 , (35)

θ
x
1 6= θ

y
1 6= θ

z
1 , (36)

it follows that

f (z|θ z
0) 6= f (y|θ y

0 ) · f (x|θ x
0 ) , (37)
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f (z|θ z
1) 6= f (y|θ y

1 ) · f (x|θ x
1 ) (38)

and accordingly

LRz 6= LRy ·LRx . (39)

Analogue considerations lead to

LRz 6= LRy ·LRx , (40)

and an example of this inequality is provided within Sec-
tion 5.

Therefore, in general, the imprecise posterior odds after
considering the merged data

[LRz ·π , LRz ·π] 6= [LRy ·LRx ·π , LRy ·LRx ·π] (41)

differ from those after subsequently considering both data
sets separately, which treats the posterior odds after the first
data set x as prior odds for the second data set y.

Accordingly, it might seem that the imprecise ratio of
expected posterior losses and the resulting decision might
depend on whether the data was merged or not. In that, the
Bayesian updating procedure for the odds on the hypotheses
might be characterized as ‘inconsistent’ in terms of Rüger
(1998, p. 190)’s work on the foundations of statistics.

4.3. Evaluation

Evaluating these updating inconsistencies in greater detail,
two characteristics emerge.

First, although the interval-valued likelihood ratio LRx of
the data set x might be outlined by its bounds LRx and LRx,
consistent updating dictates to also consider the dependence
of the likelihood ratio values within LRx on the parameter
values θ0 and θ1 as the result of the analysis.

This can be seen based on the following considerations.
The interval-valued likelihood ratio LRx of equation (18)
consists of all likelihood ratio values obtained with param-
eters θ0 ∈Θ0 and θ1 ∈Θ1, i.e.

LRx = {LRx(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} . (42)

In this regard, the values within the interval-valued likeli-
hood ratio of the merged data z might be decomposed using
equation (30) to

LRz = {LRz(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} (43)
= {LRy(θ0,θ1) ·LRx(θ0,θ1)|θ0 ∈Θ0,θ1 ∈Θ1} . (44)

It appears that for each value within LRz the complete data
set has to be evaluated using the same parameter values θ0
and θ1. However, for calculating e.g. LRy ·LRx, the first part
of the data x was evaluated with different parameter values
(θ x

0 and θ x
1 ) than the second part of the data y (evaluated

with θ
y
0 and θ

y
1 ). Accordingly, the value LRy ·LRx might not

be contained within LRz and updating might be inconsistent.

To enable consistent updating, from the first analysis of data
set x, all values within the interval-valued likelihood ratio
LRx together with their dependence on θ0 and θ1, not only
the bounds LRx and LRx, are necessary to calculate the final
interval-valued likelihood ratio LRz in a subsequent analysis
of both data sets x and y using equation (44).

Second, the values LRy ·LRx and LRy ·LRx might be con-
sidered as approximation of the interval LRz by providing
outer bounds, i.e.

LRz = [LRz,LRz]⊆ [LRy ·LRx,LRy ·LRx] . (45)

This becomes apparent by considering the lower bound LRz,
which is obtained with parameter values θ

z
0 ∈Θ0 , θ

z
1 ∈Θ1.

Applying equation (30) leads to

LRz = LRz(θ z
0,θ

z
1) = LRy(θ z

0,θ
z
1) ·LRx(θ z

0,θ
z
1) (46)

and as LRx and LRy are minima, it also holds that

LRx ≤ LRx(θ z
0,θ

z
1) (47)

LRy ≤ LRy(θ z
0,θ

z
1) , (48)

so that together (as all likelihood ratios are positive)

LRy ·LRy ≤ LRy(θ z
0,θ

z
1) ·LRx(θ z

0,θ
z
1) = LRz . (49)

Analogue considerations lead to

LRy ·LRy ≥ LRz , (50)

finally allowing the approximation in equation (45).

5. Example
A short fictitious example shall serve as illustration (repli-
cable with the R code in the electronic appendix).

Person A provides a huge amount of allegedly fair coins
and offers a bet to person B for 1C: Person A will randomly
take one of the coins and flip it. If tails, then person B will
get back 4C. Naturally, person B is suspicious about the
coins being fair and eventually obtains the permission to
examine some coins. Based on the outcome of that sample,
person B will have to decide whether to accuse person A
of cheating (action a1) or not (action a0).

Modelling the coin flips as independent Bernoulli experi-
ments with parameter p for the probability of heads, person
B considers the possibility of the coins being fair with the
precise null hypothesis H0 : p = 0.5. However, person B is
unsure about the parameter p if person A is cheating. Due
to the offer of person A, p might be at least 0.75, but on
the other hand, if p might be too high, say p > 0.9, it might
be too suspicious. Person B regards those parameter values
[0.75,0.9] as plausible, but is not able to further describe
the plausibility of each of these parameter value. Further-
more, person B considers the possibility that different coins
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might have (slightly) different probabilities of heads and,
therefore, chooses as alternative hypothesis the imprecise
simple hypothesis H1 : p = [0.75,0.9].

The loss L(H1,a0) of not doing anything if the coins
are truly biased is not too high, as the price of the bet is
only 1C. Accusing person A of cheating if the coins are
actually fair (L(H0,a1)), however, might result in a rather
unpleasant situation. Naturally, both these losses are on a
different scale, but need to be expressed in relation to each
other. As this is rather difficult, Person B figures out that
k might be somewhere between 8 and 20, being unable to
further specify this value.

In a situation before checking the coins, person B is also
not exactly sure what to belief about the coins. Certainly,
with the offer of person A, the alternative hypothesis is at
least as plausible as the null hypothesis. However, the coins
look normal and so the null hypothesis is not absolutely
implausible. After some consideration, person B determines
that the prior odds are captured by π = [1,4].

Now, person B flips n = 10 coins, yielding heads x = 9
times. Based on this observation and the specifications
given, person B calculates the interval-valued likelihood
ratio

LRx = [0.025,0.052] (51)

and the ratio of expected posterior losses

[0.202,4.162] , (52)

which does not unambiguously favor one of the actions, as
it contains the value 1.

Additional information is necessary to do so and person
B flips another m = 10 coins, yielding heads y = 5 times.
The corresponding interval-valued likelihood ratio is

LRy = [4.214,165.4] . (53)

Combining those interval-valued likelihood ratios yields

[LRy ·LRy,LRy ·LRy] = [0.105,8.601] , (54)

but knowing of the updating inconsistencies, person B treats
this interval only as an approximation, resulting in an ap-
proximation of the ratio of expected posterior losses by

[0.843,688.1] . (55)

Still the value 1 is included within the interval and this
approximation does not allow an unambiguous decision.

In order to account for the updating inconsistencies, per-
son B merges both data sets z= 9+5= 14 with n+m= 20,
leading to the interval-valued likelihood ratio

LRz = [0.219,4.169] , (56)

which is truly different to and included by the interval in
equation (54). The resulting ratio of expected posterior
losses is

[1.754,333.5] , (57)

which finally favors to not accuse person A of cheating
(action a0).

By providing the data (n, m, x and y), sufficient infor-
mation is available for subsequent analyses to consider the
dependency of respective likelihood ratio values on the
parameter θ1.

Person B specified the relevant quantities as best as possi-
ble to the partially available knowledge and the analysis of
the first data set indicated a lack of information for guiding
the decision. A precise account of the situation, on the other
hand, might have pretended a precision, which is not avail-
able. For example, person B might have arbitrarily chosen
H1 : p = 0.8, k = 8 and π = 1 of those possible values that
are in accordance with the available knowledge, leading
to a precise likelihood ratio of LRx(0.5,0.8) = 0.036 and a
ratio of expected posterior losses of r = 0.29 that favoured
a1.

Accordingly, person B would have accused person A
of cheating, although the available information are rather
ambiguous. Even worse, person B would not even be aware
of the lack of information, as it was masked by the false
precision of the arbitrarily chosen values.

6. Concluding Remarks

This paper elaborated on how to include partial information
about simple hypotheses, prior beliefs and the loss function
in the context of hypothesis-based Bayesian decision the-
ory and depicted inconsistencies within the procedure of
Bayesian updating that might arise from the use of impre-
cise simple hypotheses.

Typically, there is only one data set for the statistical
analysis of an empirical study, so that the updating incon-
sistencies as depicted in Section 4 might not become visible.
Furthermore, for guiding the decision based on a single data
sets, within the context employed in this paper, only the
bounds of the interval-valued likelihood ratio are necessary.
Nevertheless, properly reporting the results of the analysis
also requires to include the dependence of the likelihood ra-
tio values within the interval-valued likelihood ratio on the
parameter values. Naturally, as an alternative, the data can
be made publicly accessible, so that all relevant informa-
tion necessary for subsequent analyses might be extracted
directly from the data.

Although two data sets were considered to outline the
updating inconsistencies, this cannot be regarded as an
unnatural approach, as one of the central characteristics
of Bayesian learning is to employ a posterior distribution
obtained from previous data as prior distribution for a sub-
sequent analysis. Certainly, this reflects the natural way to
accumulate information.

In addition, remark that within this paper, the (imprecise)
prior odds are updated first to obtain the posterior odds
before determining a potentially optimal decision. How-
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ever, a different procedure might be possible as well. For
each hypothesis a decision strategy might be calculated,
which maps the potentially observed data to the optimal ac-
tion. In that, a decision strategy might be chosen first based
on the prior odds and then the optimal decision might be
determined based on the observed data. While this equiva-
lence of prior risk optimality and posterior loss optimality
holds in the traditional case of precise probabilities and
loss functions, it is no longer satisfied in more general set-
tings (see explicitly Augustin (2003) and more generally
the references in Section 4).

Sometimes, an applied researcher is not primarily in-
terested in guiding a decision, but just in investigating a
real-world phenomenon. In this case, a hypothesis-based
statistical analysis might be superfluous and descriptive
statistics seem to be sufficient (see also the literature about
“new statistics”, e.g. Cumming, 2014). Nevertheless, all
information should be provided, such that other researchers
are able to guide a decision.

Furthermore, the only quantities treated imprecisely
within this paper were the hypotheses, the prior odds and
the loss function, however, also the data themselves might
be available imprecisely, representing ambiguity in the data
values. Although, most commonly, data values in psycho-
logical research represent scores that are designed to be
precise, extending this framework to allow imprecise data
looks very promising, as the data are independent of the
other imprecisely specified quantities.

In summary, this paper addressed the imprecise gener-
alization of hypothesis-based Bayesian decision making
using simple hypothesis and, therefore, employed the likeli-
hood ratio. A Bayes factor analysis typically employs com-
posite hypotheses as well and might therefore be considered
as more complex than the context depicted here. Yet, even
within this simple context updating inconsistencies might
occur, emphasizing the importance of investigating them in
greater detail particularly with regard to their presence in
analyses using Bayes factors.

Appendix A. R Code

R code to replicate the example is provided electronically.
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