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Abstract
This paper surveys models and human intuitions about
incompletely known “sample spaces” (Ω). Given that
there are very few guidelines for how best to form such
beliefs when Ω is incompletely known, and there is
very little research on the psychology behind beliefs
about Ω, this survey is preliminary and brings in ideas
and models from probability and statistics, biology,
and psychology. Pilot experimental studies of how
people estimate the cardinality of Ω when given sam-
ple information from it are presented, demonstrating
that to a surprising extent their estimates correspond
with those produced by normative statistical models.
The paper concludes by outlining future directions for
a research program on this topic.
Keywords: sample space, cardinality, capture-
recapture sample, Dirichlet process, imprecise Dirich-
let model, human intuition

1. Introduction
Many real-world decisions must be made when we do not
know all of the possible relevant states beforehand or the
outcomes that could result. The collection of possible states
is called the “sample space” and often denoted by Ω. Ra-
tional decision-making frameworks require that we base
our decisions on whatever beliefs we have about Ω, and
these frameworks often assume we have a complete elabo-
ration of Ω. However, there are very few guidelines for how
best to form such beliefs when Ω is incompletely known,
and there is very little research on the psychology behind
beliefs about Ω. In practice, we drastically delimit the set
of possibilities. Humans do so in a context-dependent and
localized way, even for simple situations where they be-
lieve they fully know Ω. For example, when modelling the
outcome of a coin toss, Ω will typically taken to be {heads,
tails}; and when modelling the outcome of a die toss, Ω

will typically be {1, 2, 3, 4, 5, 6}. Neither of these sets is
exhaustive. The coin could land on its edge; the die could
fall down a drain before it finishes rolling. Yet we happily
discount such possibilities, even if one of them occurs. At
the other extreme where we do not know Ω, for example
at the advent of a new technology we may not foresee all
of its eventual uses and applications, but we should not
neglect possibilities such as it being weaponized.

Why is this topic important? Ignoring the potential oc-
currence of unanticipated possibilities can have serious

consequences. For instance, the Australian Department of
Agriculture is concerned with all the ways that Australia’s
crops could be endangered. We may do our best to list them,
but our list will inevitably be incomplete. Probability theory
and expected utility theory give us no advice on what this Ω

should be or how to construct it. Standard frameworks for
risk management, such as ISO 31000, do not address this
type of unknown. Even if an event in our Ω never has been
observed (e.g., foot-in-mouth disease invading Australia),
we still should want to estimate how likely it is to occur.
Likewise, if we become newly aware of a possibility that
should be added to Ω (e.g., a new plant disease), we need
to know how to adjust the probabilities already assigned to
the other possibilities in Ω. Finally, we should be interested
in the likelihood that threats unknown to us in Ω might
nonetheless occur. Again, standard probability theory is of
little use here.

A reasonable task to pose in the face of ignorance about
Ω is estimating how large it might be. We may also want
to make predictions about samples from Ω, such as the
probability of observing a novel state in the next sample,
the expected number of observations to occur before the
next novel state is observed, or the number of novel states
expected to be observed in the next n samples. Likewise,
we may want to estimate probabilities of hypothetical states
that have yet to be observed in Ω. This paper surveys pre-
scriptive methods for estimates and predictions regarding
an incompletely known Ω and presents preliminary empiri-
cal comparisons of some properties of these methods with
human intuition.

The main interest in our survey of methods for estimates
and predictions about Ω is the nature of the assumptions un-
derpinning these methods. Various models differ on crucial
assumptions, and these can result in substantial differences
among model estimates, prescriptions for decision makers,
and predictions.

We will examine two sources of human intuition about
Ω. The first is the literature on the topic of species diver-
sity estimation, containing debates among biologists and
biostatisticians. These debates also have underpinned the
development of the alternative models discussed in the next
section. The second source is laypeople’s responses in ex-
perimentally controlled tasks. We will focus on two primary
questions:
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1. What assumptions about Ω are people inclined to
make, and what are the properties of their resulting
priors? How do their assumptions compare with those
in formal models?

2. Humans tend to be highly suggestible when they must
make judgments or decisions in an informational vac-
uum. How severely are people’s predictions or esti-
mates about Ω affected by “extraneous” influences
such as priming and/or anchoring, versus sample in-
formation from Ω itself?

First, however, we will survey statistical approaches to esti-
mating the size and related properties of Ω when samples
are taken from it.

2. Methods for Estimating Properties of a
Partially Known Sample Space

There are three well-established types of statistical models
that may be applied to estimating properties of an Ω whose
states are only partially known. Capture-recapture sampling
models employed in biology provide methods of estimating
the cardinality of Ω [3]. Sample prediction models such
as the Pitman-Yor process model [19] provide estimates
of the probability that a novel state will be observed in
future samples. Imprecise sample prediction models such
as Walley’s imprecise Dirichlet model [31] provide lower
and upper estimates of such probabilities. An exhaustive
review of these models is beyond the scope of this paper,
so instead we shall focus on comparing the assumptions
entailed by the models and forming a program of research
on human intuitions that ascertains which assumptions are
compatible with human cognition.

2.1. Capture-Recapture Sampling Models

Capture-recapture models estimate population sizes and/or
species abundance from so-called “capture-recapture” sam-
pling processes, i.e., sequential sampling with replacement.
Sampled species are “marked” so that they are identifiable
as having been observed previously when they turn up in
subsequent samples. The questions about the structure of
Ω typically addressed are its size, and the expected num-
ber of observations (or amount of time) required before an
exhaustive list of species is accumulated. Beginning with
the simplest model, we have K j distinct species captured
on the jth sampling occasion out of a total sample size n j,
with π j the proportion of the total number of species that
would be expected to be retrieved on this occasion. Denot-
ing the total number of species existing on this occasion
by κ j, if we have an estimate of π j then we may estimate
κ j by κ̂ j = K j

/
π̂ j. The classic Lincoln-Petersen [16]; [18]

estimate of π j exploits the capture-recapture process, under
the assumption that the sample observations are indepen-
dent and identically distributed. Given a sample whose

species were marked and replaced into the population, the
proportion of marked species turning up in the next sample,
M2

/
K1 gives an estimate of π2, so we now have

κ̂2 = K2/π̂2 = K2K1/M2. (1)

This model also provides an estimate of the number of new
species, U , we should expect to be still undiscovered. Let
S2 = K1 +K2−M2, the total number of species observed
in the first and second samples. Then the expected number
of species still to be discovered is U = π̂2(κ̂2−S2).

Generalizations of the Lincoln-Petersen estimator al-
low multiple samples and capture probabilities that differ
among species, sites, and/or over time. These models have
a log-linear or logistic form [3], so they can be expressed
via a logistic regression approach. The most sophisticated
among them also relax the assumption that Ω is a closed
population, thereby modeling rates of species introduction
and disappearance.

2.2. Sample Prediction Models

Sample prediction models, unlike capture-recapture mod-
els, begin with a single sample of observed species and
predict the prevalence of observed and as-yet unobserved
species in future samples. These models date back to at
least the mid-twentieth century ([11] and [13]), with more
concentrated efforts beginning in the 1970’s (e.g., [2]; [5];
[14]). The most popular sample prediction models are based
on Dirichlet process models as introduced in [8].

The Dirichlet pdf is defined as

f (x,λ ) =
1

B(λ )

K

∏
i=1

xλi−1
i , (2)

where B(λ ) =

K
∏

i=1
Γ(λi)

Γ

(
K
∑

i=1
λi

) , λi > 0, and
K
∑

i=1
xi = 1. Dirichlet

process (DP) models split the λi parameters so that they
are the product of a “base” distribution, H, and “concen-
tration” parameter α > 0. Random samples, X1,X2, . . . are
drawn from H in a so-called “size-biased” fashion, via the
following steps. First, draw X1 from H. For n > 1:

1. With probability nk
/
(α +n−1) set Xn = xnk , where

nk is the number of times xnk has been observed so far;
otherwise

2. With probability α
/
(α +n−1) draw Xn from H.

The simplest DP model is the “Chinese Restaurant Process”
(CRP), wherein n−1 customers occupy K tables and the
nth customer arrives. The probability that the nth customer
will sit at an occupied table is nk

/
(α +n−1), where nk is

the number of customers at the kth table, and because the
nk sum to n−1, the probability of the nth customer sitting
at a new table is α

/
(α +n−1).
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The probability of generating a new table (i.e., observing
a new state) in the CRP is not influenced by the number
of observed states, K. There are situations where this re-
striction is counter-intuitive and criticisms have been raised
in several places regarding its validity. The Pitman-Yor
process (PYP) generalizes the CRP so that larger K, e.g.,
greater species diversity, increases the probability of ob-
serving a new state. In the PYP, the probability of observing
a new state on the sample is (α +Kβ )

/
(α +n−1), where

0≤ β ≤ 1 and α ≥−β . The PYP model boosts this proba-
bility most strongly when n is small and when K is close
to n. However, the PYP is insensitive to the distribution of
the nk across the states. For instance, it does not distinguish
between nk = {20,20,20,20,20} and nk = {96,1,1,1,1}.

A more fundamental criticism raised against DP mod-
els generally is that they do not represent the prior state
of ignorance adequately. The Bayesian prior proposed by
[22] is the limiting DP as α → 0. This prior is not a non-
informative prior, and it also assigns zero probability to
any unobserved species. Imprecise DP models have been
proposed to overcome this criticism.

2.3. Imprecise Prediction Models

Imprecise DP models were initiated by [30] and [31] and
have been extended by [1]. The key idea is to provide a
fixed value for α and let the base distribution H span the set
of all probability measures. Walley’s imprecise Dirichlet
model (IDM) is readily generalizable to the CRP and PYP
models. It provides a non-Bayesian way of updating lower
and upper probabilities for previously observed events and
for the catch-all.

Coolen and Augustin [4] present a nonparametric in-
ference model (NPI) that differs from the IDM in several
important respects, which I briefly describe here without
going into detail about their model. First, lower-upper prob-
abilities of categories in Ω may be influenced by the advent
of new categories, regardless of whether those new cate-
gories are evidentially relevant to the categories already
in Ω. The NPI also permits the difference between the
lower and upper probabilities (i.e., the precision of these
probability assignments) to be influenced by the advent of
new categories. In the NPI, the effect of new categories on
lower-upper probability assignments differs depending on
whether the refinement occurs within a focal or a non-focal
category. Finally, lower-upper probability assignments may
be differently affected by whether we are considering the
prospect of a heretofore undiscovered category being added
to Ω or the prospect of observing a defined but heretofore
unobserved category already belonging to Ω.

Our brief survey of methods for estimating properties of
an Ω whose states are only partially known provides a rich
set of alternative assumptions and hypotheses to compare
with human intuitions in this domain. For instance, esti-
mates of the cardinality of Ω may or may not be sensitive

to the diversity of observed states and/or the distribution of
sampled cases across the states. These and other testable
characteristics will be elaborated in the next section.

3. Human Intuitions Regarding Partially
Known Sample Spaces

This section begins by outlining a research program, and
then presents results from preliminary experiments. The
psychological literature contains three primary findings
about how people deal with a partially known Ω:

1. They tend to under-estimate the probability that undis-
covered alternatives exist in Ω. This literature refers
to this phenomenon as the catch-all underestimation
bias (CAUB; see [10]; [23]).

2. They tend to anchor on the number of salient states,
and their probability assignments are influenced by
this (partition dependence; see [12]).

3. The greater the number of ways they think an outcome
could occur, the higher the probability they assign to
it (support theory; see [29]; [21]).

The third claim has been the most widely disputed (e.g.,
[24]). There also is some debate over whether the expla-
nations of the first and third findings lie in actual biases
among judges, artefacts of sampling error (e.g., [9]), or
partition-dependence due to judges applying the principle
of indifference.

There are two empirical papers addressing sample-space
ignorance directly: [27] and [25]. Briefly, [27] finds that
sample space ignorance is aversive, and that people are
slower to become more precise in their probability assign-
ments as they acquire data than some imprecise probability
assignment schemes recommend. Smithson and Segale [25]
demonstrate experimentally that lower-upper probability
assignments exhibit partition dependence to a similar de-
gree as precise probability assignments (again, contrary to
recommendations from some imprecise probability frame-
works).

Other research literature in psychology that is related to
our topic includes the large body of work comparing human
choices in the presence of “described” versus “experienced”
samples from a population. An informative overview of
findings and theory development in this domain is pro-
vided by [20]. The main theme in this line of research has
been highlighting the differences between decisions and
preferences under described samples versus experienced
sampling. For instance, several researchers such as [7] have
claimed that ambiguity aversion disappears when people
are able to sample from a population. However, [28] pro-
duce evidence that ambiguity aversion does not disappear
when ambiguity is located in the sampled cases themselves
rather than in their probabilities, which was the focus of the

369



INCOMPLETELY KNOWN SAMPLE SPACES: MODELS AND HUMAN INTUITIONS

earlier experiments that were the source of claims about am-
biguity vanishing. The complexities involved in studying
the impacts of description and experience on preferences
and uncertainty attitudes are highlighted by the failure of
any single model to win in all types of decision scenarios a
model competition organised by [6].

Biologists’ descriptions and models of species diversity
also are instructive for our purposes because they motivate
caution regarding universal models or methods for estimat-
ing the size and structure of Ω. Biological diversity mod-
els are strongly informed by Ω-specific knowledge, e.g.,
inter-species competition or predator-prey and parasite-host
relations within a site versus between-site differences in
resources or other conditions that enhance the survival of a
species in one site but not in another.

A recent development in debates about estimating bio-
diversity is “dark diversity”. Pärtel et al. [17] initiated a
discussion about whether to include species that are unob-
served in an ecosystem but nevertheless “belong” there, i.e.,
species that relevant experts believe ought to or could read-
ily exist in that ecosystem. They argue that these additional
absent species need to be considered in any serious attempts
to estimate theoretical carrying capacities of environments
or to make meaningful comparisons of biodiversity across
similar habitats in which one or more may have suffered
local species extinctions. This is a special case of consider-
ing propositions or events that are believed to belong in Ω

but have yet to be observed, similar to the Coolen-Augustin
[4] distinction between a “defined” unobserved event and a
hypothetical unspecified unobserved event.

And then there are behavioural influences from the biol-
ogists themselves:

1. Unequal taxonomic effort: More effort often is
devoted to capturing rare or elusive species than
frequently-observed ones. More effort also is ex-
pended in accessible habitats.

2. Discovery capability and rate: Technological innova-
tions can alter capture probabilities and habitat acces-
sibility.

3. Amendments to species classification: Taxonomists
can argue amongst one another indefinitely about
which species an organism belongs to.

The combination of insights from biologists, psychologi-
cal research on human intuitions about incomplete Ω, and
the variety of capture-recapture and sample prediction mod-
els presents a rich set of competing testable hypotheses to
guide research on how humans deal with sample space ig-
norance. To begin, the CAUB and the original claims from
support theory and the partition dependence literature are
now open questions to be asked afresh. For instance, under
appropriate conditions can humans produce the Lincoln-
Petersen estimate? When (and how) does K, the number of

states known thus far, influence the subjective probability
of discovery of new states? We have models (e.g., the CRP)
suggesting no influence, models (e.g., Pitman-Yor) suggest-
ing that greater K will increase this probability, and models
(e.g., partition dependence) suggesting that greater K will
decrease this probability. Moreover, according to [13] [3],
and [9], the prevalence of rare species (e.g., singletons)
rather than K will influence this probability.

Second, if judges are permitted to provide lower and
upper estimates, the literature disagrees on the impact of
K on the spread of those estimates. Walley’s IDM and
the imprecise CRP imply that K does not influence the
difference between P and P̄, whereas the Coolen-Augustin
model implies that higher K will increase this difference.

A third set of issues concern the extent to which domain-
specific prior information may influence judges’ assess-
ments of the size and structure of Ω, including how they
react to samples from Ω. In addition to domain-specific
knowledge or prior beliefs (such as “dark diversity”), there
are potential influences from priming (e.g., making partic-
ular states more salient than others), anchoring (where an
initial estimate strongly influences subsequent estimates),
and beliefs about the underlying mechanisms generating
states or events.

We now turn to the preliminary experiments to be re-
ported here, which address the following questions:

1. Can “untutored” humans produce the Lincoln-
Petersen estimator, and if so, under what conditions?
When presented with capture-recapture sample infor-
mation, what heuristics do people use to estimate the
cardinality of Ω?

2. When are people’s estimates of the likelihood of ob-
serving a novel state influenced by the diversity of
states observed so far?

3.1. Capture-Recapture Estimator Experiments

Two experimental studies included investigations into
whether people can produce the Lincoln-Petersen estimator
when presented with the required capture-recapture infor-
mation. Both studies were conducted online with samples
from Prolific, a crowd-sourcing platform based in the UK.

Study 1 recruited 400 adult participants, with 207 fe-
males and mean age 31.7 (s.d. = 10.3). Participants were
given a description of an estimation problem, as in the
following example.

A biologist is trying to estimate the popu-
lation of carp in a small lake. The carp don’t
swim in groups but instead are evenly scattered
throughout the lake. She drags a large net through
the length of the lake and catches 100 carp. She
tags them and releases them back into the lake.
Shortly thereafter, she drags the net through the
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lake a second time and again catches 100 carp.
She finds that 10 of these are carp she had tagged
from the first catch. What should be her estimate
of the total number of carp in the lake?

The experiment had a 2x2x2 between-subjects design. The
factor was whether the biologist was estimating carp popu-
lation or the number of fish species in the lake. The second
factor was whether the resample information was a fre-
quency (e.g., 10 carp from the first catch) or a percentage
(e.g., 10% of the carp from the first catch). The third fac-
tor was whether the number (percentage) of recaptured or
newly captured carp (species) was given.

The primary hypotheses were that the rate of correct
responses would be higher if the recapture information was
a percentage instead of a frequency, and higher if the sample
information was about recaptured than newly-captured fish
numbers. Although it is widely held that humans are better
at computing with frequencies than with probabilities, the
percentage-vs-frequency hypothesis is suggested by the
requirement in the problem of having to convert frequencies
to probabilities or percentages and then convert those to
frequencies in order to arrive at an estimate. Being given
the initial information as a percentage eliminates one of
the steps and therefore should reduce the likelihood of
computational errors.

Also of interest was whether correct response-rates
would depend on whether the problem was estimating a fish
population or estimating number of species. Based on a pre-
vious pilot study, it also was expected that the most popular
response would be to add the numbers of fish (or species)
unique to each sample together (i.e., 100+90 = 190), in-
stead of the Lincoln-Petersen estimate, 100 ∗ 10 = 1000;
and that two other popular responses would be 100+ 10
and 90∗10.

The numbers in the scenario were intended to make com-
putation easy. Participants were given a multiple-choice
response format, although they also could enter their own
estimate. Both of these features were intended to provide
ideal conditions, enhancing the chances of participants re-
turning the correct answer. Logistic regressions found sup-
port for the percentage vs frequency hypotheses, but not
for the recaptured vs newly-captured hypothesis (details
are available from the author). It also turned out that the
correct response rate was higher for the fish population
problem than for the number-of-species problem. Table 1
displays the most popular response alternatives, along with
the numbers and percentages of participants choosing each
of them, for the fish vs species and frequency vs percentage
comparisons. The strongest effects in both sub-tables are
the opposing differences between conditions in percent-
ages of participants opting for the 190 estimate versus the
correct 1000 estimate. In the more favorable conditions,
approximately 30% of the participants chose the correct
estimate.

Table 1: Study 1 Population Estimation Task Responses
species fish

estimate freq. % freq. %
110 22 11.9 14 6.7
190 87 47.0 62 29.8
900 24 13.0 42 20.2
1000 33 17.8 62 29.8
other 19 10.2 28 13.5

freq. percent
estimate freq. % freq. %
110 16 8.5 20 9.8
190 83 43.9 66 32.4
900 34 18.0 32 15.7
1000 32 16.9 63 30.9
other 24 12.7 23 11.3

Study 2 obtained 324 participants with 147 females and
mean age 33.4 (s.d. = 12.1). This experiment included
a partial replication of the task used in Study 1. Partici-
pants were asked for estimates of a fish population with
the same sample information as the Study 1 task, in a
2x2x2 between-subjects design whose experimental vari-
ables were (non)recapture rate as a frequency vs percentage,
the recapture vs non-recapture rate, and multiple-choice
vs free text-entry response format. The purpose of com-
paring the multiple-choice vs text-entry conditions was to
evaluate the impact of providing the correct answer in the
multiple-choice list. The main hypotheses were that the
rate of correct responses would be lower in the text-entry
than the multiple-choice condition, higher if the recapture
information was a percentage instead of a frequency, and
higher if the sample information was about recaptured than
newly-captured fish numbers.

Logistic regressions revealed support for the recapture
vs non-recapture hypothesis (details are available from the
author), and partial support for the other two hypotheses
via effects on the odds of participants choosing the 900
estimate (the 90∗10 alternative) and the 190 estimate. Table
2 displays the relevant frequencies and percentages. The
frequency vs percentage effect from Study 1 is replicated
for the 190 estimate, but there is little evidence of its impact
on the choice of the 1000 estimate. The multiple-choice
vs text-entry effects are mainly a tradeoff between “other”
estimates and choosing the 110 and 900 estimates. It is
noteworthy that providing respondents with a free text-
entry format did not decrease the percentage producing the
Lincoln-Petersen estimate.

3.2. Probability of Novel State Experiments

Studies 1 and 2 also contained tasks in which participants
were asked to estimate the probability of heretofore un-
observed states occurring in a sample subsequent to the

371



INCOMPLETELY KNOWN SAMPLE SPACES: MODELS AND HUMAN INTUITIONS

Table 2: Study 2 Population Estimation Task Responses
text-ent. multi-ch.

estimate freq. % freq. %
110 3 1.8 13 8.3
190 36 21.4 38 24.4
900 8 4.8 29 18.6
1000 51 30.4 55 35.2
other 70 41.7 21 13.5

freq. percent
estimate freq. % freq. %
110 8 4.8 8 5.1
190 44 26.3 30 19.1
900 15 9.0 22 14.0
1000 51 30.5 55 35.0
other 49 29.3 42 26.8

capture recapt.
estimate freq. % freq. %
110 9 5.8 7 4.1
190 41 26.5 33 19.5
900 18 11.6 19 11.2
1000 40 25.8 66 39.1
other 47 30.3 44 26.0

sample provided to them. The main motivation for these
tasks was to examine the effects of people’s prior intuitions
about Ω on their estimates of its cardinality when given
sample information about Ω. A specific goal was to de-
termine whether people’s estimates of the cardinality of
an unknown Ω covary with the number of states, K, they
have observed thus far, depending on whether people have
had prior familiarity with Ω in general. The “unfamiliar” Ω

used in both studies was the proverbial large bag of marbles
with unknown distribution of colors, and the “familiar” Ω

was an unknown distribution of colors of automobiles in a
large city.

In Studies 1 and 2, the marbles scenario consisted of two
tasks.

Imagine that you are a contestant participat-
ing in a game-show. The game-show’s contest
is about how well contestants can predict future
outcomes when they’re given only a small sam-
ple of information. The host shows you a large
bag full of thousands of marbles, but doesn’t re-
veal anything about the kinds of marbles in the
bag. She then takes 20 marbles from the bag,
sorts them into groups with the same colors, and
shows these to you and the other contestants. The
question she asks is: “If I take 100 more marbles
from this bag, how many of them will be colors
that are different from the colors we’ve seen so
far?” The contestant whose estimate is closest to
the outcome wins this part of the game. Please
use the slider to make your best estimate.

In the first task the sample of 20 marbles either contained
4 colors or 15 colors. The second task was identical, but this
time the 20 marbles contained either 15 colors or 4 colors,
i.e., the 4 vs 15 colors conditions were counterbalanced.

The host now shows you another large bag
full of thousands of marbles. She then asks an
audience member to take 20 marbles from this
bag, sorts them into groups with the same colors,
and shows these to you and the other contestants.
The question she asks is: “If I take 100 more
marbles from this bag, how many...”

In Studies 1 and 2 the automobile tasks also had two
parts, with 4 vs 15 colors counterbalanced between them.
The scenario in Study 1 was as follows.

Imagine that you are a marketing researcher
in a large city, studying the popularity of automo-
bile colors. You are with a colleague, counting
the colors of automobiles at a busy intersection.
You’ve seen 20 automobiles, sorted them into
groups with the same colors, and recorded them
on a tablet in the graphic displayed here. Your
co-worker asks: “As we observe 100 more au-
tomobiles going through this intersection, how
many of them will be colors that are different
from the colors we’ve seen so far?” The two of
you decide to each estimate this number and bet
10 dollars that theirs is the most accurate. Whose
estimate is closest to the outcome wins the bet.
Please use the slider to make your best estimate.

In the second part, in one condition the participant was
told that they had gone to a different intersection in the
same city to sample automobiles. In another condition they
were told that they had gone to another city. The rationale
for this experimental manipulation was that it should seem
more plausible to see, say, 15 colors out of 20 automobiles
in one city and just 4 colors in a different city, than to see
such different outcomes in the same city.

You and your colleague have moved to an-
other busy intersection, in the same city (in a
different city). As before, you’ve seen 20 automo-
biles going through this intersection, sorted them
into groups with the same colors, and recorded
them on a tablet in the graphic displayed here.
You and your coworker decide to bet 10 dollars
on the same question as before: “As we observe
100 more automobiles going through this inter-
section, how many ...”

A summary of the results from this part of Study 1 is
presented here. Details of the statistical analyses on which
this summary is based are available in [26]. For the marbles
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condition 59% of participants behaved as though they were
PYP agents (qualitatively, in the sense that they gave higher
estimates if they saw 15 colors than if they saw 4 colors),
while 38% did the opposite. In the automobile conditions,
29% behaved like PYP agents and 67% did the opposite,
so preconceptions about automobile colors appears to have
reversed the majority tendency, thereby supporting both
primary hypotheses. Interestingly, only small percentages
(3% and 4%) gave equal estimates.

Table 3 displays evidence supporting both of the primary
hypotheses. For the marbles task, regardless of whether the
15-color or the 4-color sample is presented first, the mean
estimate of the proportion of a new sample that will consist
of new colors is greater when the number of previously
observed colors is 15 than when it is 4. Conversely, the
automobile task produces a trend in the opposite direction:
Seeing only 4 different colors in 20 automobiles prompts
predictions of more new colors in a subsequent sample than
15 colors does. This effect occurs regardless of whether the
scenarios take place in the same city or two separate cities.

Table 3: Study 1 Novel State Probability Mean Estimates
4 colors first 4 colors 15 colors
marbles 0.238 0.325
automobiles same city 0.319 0.226
automobiles diff. cities 0.264 0.171
15 colors first 4 colors 15 colors
marbles 0.270 0.364
automobiles same city 0.358 0.258
automobiles diff. cities 0.299 0.197

The automobile scenario in Study 2 differed from Study
1 by having the participant either go to another unspecified
city, or to Hanoi. The rationale for this experimental manip-
ulation was that Western participants might expect a city
like Hanoi to have a smaller variety of automobile colors
than a European city. Otherwise, this part of Study 2 was
a replication of Study 1. A summary of the results from
this part of Study 2 is presented next, and again, details of
the statistical analyses on which this summary is based are
available in [26].

For the marbles conditions 64% of participants behaved
as though they were PYP agents, while 30% did the op-
posite and 6% returned equal estimates. These results are
fairly similar to those from Study 1. However, in the auto-
mobiles conditions 45% behaved as PYP agents, while 49%
did the opposite and 6% returned equal estimates. Thus,
foreknowledge about automobile colors lowered the rate of
PYP-like responses again, but not as strongly as the effect
in Study 1.

Table 4 displays the mean estimates from Study 2. The
marbles task replicates the effect found in Study 1, again
suggesting that human judges predict a greater variety of

Table 4: Study 2 Novel State Probability Mean Estimates
4 colors first 4 colors 15 colors
marbles 0.158 0.324
automobiles city X 0.197 0.208
automobiles Hanoi 0.174 0.230
15 colors first 4 colors 15 colors
marbles 0.221 0.304
automobiles city X 0.270 0.193
automobiles Hanoi 0.240 0.214

colors in a subsequent sample if they have seen 15 rather
than 4 distinct colors in the initial sample of 20 marbles.

The automobiles task results are somewhat more com-
plex than those in Study 1, and they only partially replicate
the Study 1 findings. For the unspecified-city condition,
the 15-colors-first condition replicates the effect found in
Study 1, i.e., the reverse of the pattern seen in the mar-
bles task. However, in the 4-colors-first condition the mean
estimates do not significantly depend on how many automo-
bile colors are seen in the initial sample of 20 automobiles.
When the new city is identified as Hanoi, there is a mild
trend toward the kind of pattern found in the marbles task
in the 15-colors-first condition but this is reversed in the
4-colors-first condition.

Roughly speaking, as mentioned earlier the majority pat-
terns in Studies 1 and 2 of the estimates in the marbles task
are those we might expect if the judges were PYP agents.
Indeed, it is possible to estimate the PYP parameters corre-
sponding to PYP-like participants’ new-colors estimates by
dividing them by 100 (treating them as probabilities, say,
π1 > π2). Then we have two equations in two unknowns:

α +βK1

α +n−1
= π1

α +βK2

α +n−1
= π2

(3)

Given K1 = 15, K2 = 4, and n = 20, it can be shown that
β ≥ 1 if π1 ≥ 11/15 and 15π1 − 4π2 ≥ 11. Out of 149
potential PYP cases in Study 1, only 11 (7%) displayed
these pathological characteristics, so for all others 0 <
β < 1, compatible with a PYP model. However, for 34 of
the 149 cases (23%) α < −β . Note, however, that these
probability assignments in themselves are not pathological
or irrational. In Study 2, of the 163 potential PYP cases,
only 7 (4%) cases had β ≥ 1 but 56 (34%) cases had α <
−β . Our results suggest that a substantial majority of PYP-
like agents are returning estimates that are compatible with
a PYP model. However, at present we lack a model that
would account for the others’ estimates. Including a “think-
aloud” procedure in a future study should reveal more about
how people arrive at their estimates.
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4. Conclusions and Future Directions

Our investigations have revealed some promising avenues
for advancing our understanding of human intuitions re-
garding the size of Ω, and how they compare with formal
methods for estimating this cardinality. First, we found that
some people are capable of producing the Lincoln-Petersen
estimate when given capture-recapture sample information,
and even without prompting. Reasonable questions to raise
at this point for future research are what distinguishes these
people from those who use a different heuristic (e.g., are
they more numerate?), and when even the Lincoln-Petersen
estimators may be persuaded to use different strategies
for estimating the size of Ω (e.g., as in the “dark diver-
sity” concept from biology). For instance, given that the
most popular automobile colour is white, would people add
“white” to their predicted count of automobile colours even
if capture-recapture samples of automobile colours in, say,
London did not include any white automobiles?

Likewise, we found that greater diversity in a sample
from Ω induces either a Pitman-Yor-like heuristic or its
opposite. A clear candidate explanation for which heuris-
tic people use is their prior intuitions about the size of Ω.
Those who believe its potential size could be much larger
than K will tend to behave as PYP-like agents, while those
who believe its size is close to K will behave in the oppo-
site way. It is remarkable that none of the formal models
referenced by this paper explicitly incorporate a prior on
K, and this would seem to be a path for further develop-
ment in this type of model. The experiments reported here
manipulated cues for prior beliefs about size of Ω in a
rather crude way (marble vs automobile colors). In the next
round of studies this will need to be more systematically
manipulated and people’s prior estimates of Ω’s cardinality
will need to be elicited for comparison with their updated
estimates. Finally, the experiments reported here did not
permit participants to give imprecise estimates. The next
round of studies will do so, and imprecise DP models can
be deployed for comparison with human intuitions.

Several additional lines of research on this topic could be
pursued. This paper concludes by briefly considering one of
them, namely the effects of adding or subtracting states in Ω

on existing probability assignments. Analogical examples
in biology would be the appearance of new species in a
habitat or the extinction of current species from the habitat.
Standard probability frameworks, including Bayesian, are
silent about how an agent should revise probabilities when
new states are added to or existing states subtracted from
Ω.

One suggestion regarding probability assignment revi-
sions [15] is a “reverse-Bayes” principle that the ratios of
probabilities of states, P(Xk)

/
P(X j), for Xk and X j already

in Ω should not be affected by the addition of new states to
Ω or the removal of other states from it. This would be a
very convenient principle to adopt, because it would enable

modelers to make inferences about compositional aspects
of an incompletely known Ω by making inferences based
on odds and odds-ratios involving the states that are known.
However, it is not difficult to find counter-arguments or
examples against this idea, and a potentially interesting de-
bate about when and how this principle should be applied
has yet to take place. Moreover, some probability models
dealing with the issue of probability reassignments under
alterations of Ω do not adhere to this principle (e.g., [4]).

One consideration is that novel states in Ω could amount
to an expansion (tacking another state, XK+1, onto the
K old states) or a refinement (splitting a previously uni-
tary state, Xk, into two or more states, say, Xk1 and Xk2).
An obvious hypothesis regarding the effect of a refine-
ment is that P(Xk) remains as it was, and we simply have
P(Xk1)+P(Xk2) = P(Xk) . But the refinement may yield a
change in P(Xk). Likewise, an expansion could introduce
a state that is evidentially linked with a previously known
Xk, thereby changing P(Xk). In either case, the reverse-
Bayes condition cannot hold. In any case, we have plenty
of motivations for experimentally investigating the effects
of adding (or subtracting) states from Ω on people’s prior
probability assignments, for both expansion (or contraction)
and refinement (or coarsening).
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