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Abstract

Robust weighted aggregation schemes taking into ac-
count imprecision of the decision tree estimates in
random forests and in random survival forests are pro-
posed in the paper. The first scheme dealing with the
random forest improves the classification problem so-
lution. The second scheme dealing with the random
survival forest improves the survival analysis task so-
Iution. The main idea underlying the proposed modifi-
cations is to introduce the tree weights which take si-
multaneously into account imprecision of estimations
as well as aims of the classification and regression
problems. The imprecision of the tree estimates is de-
fined by means of imprecise statistical inference mod-
els and interval models. Special modifications of loss
functions for the classification and regression tasks
are proposed in order to simplify minimax and max-
imin optimization problems for computing optimal
weights. Numerical examples illustrate the proposed
robust models.

Keywords: classification, survival analysis, random

forest, decision tree, deep forest, imprecise Dirichlet
model, imprecise probabilities

1. Introduction

The ensemble methodology can be regarded as one of the
efficient machine learning approaches to classification and
regression. These methods are based on constructing the
so-called weak or base classifiers from training data and
on aggregating their predictions when classifying unknown
samples in order to obtain a strong classifier that outper-
forms every single one of them. A comprehensive descrip-
tion of ensemble-based models is presented in Zhou’s book
[35]. One of the best known and most effective ensemble-
based models is the random forest (RF) [9], which uses a
large number of randomly built individual decision trees in
order to combine their predictions. RFs reduce the possible
correlation between decision trees by selecting different
subsamples of the feature space.
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Outputs of decision trees in classification problems are
the class probability distributions, which are estimated by
the percentage of different classes of examples at the leaf
node where the concerned example falls into, and these are
combined in order to get the class probability distribution of
the corresponding RF. The common combination procedure
is the standard averaging of all tree distributions. In order
to improve the RF, some weights are assigned to decision
trees in accordance with their classification performance.
These weights are used in order to replace the standard
averaging by weighted averaging of the class probability
distributions across all trees. The weights are viewed as
additional training parameters.

The main problem of the class probability distributions is
that they are assumed to be precise. This is quite restrictive,
in particular if there is only a small amount of training data.
This makes it interesting to consider the generalization
by using imprecise probabilities or imprecise statistical
inference models [31].

One of the first ideas of applying imprecise probability
theory to decision trees was presented in [2] where proba-
bilities of classes at decision tree leaves are estimated by
using an imprecise model, and the so-called Credal Deci-
sion Tree model is proposed. Following this work, several
papers devoted to applications of imprecise probabilities
to decision trees and RFs were presented [3, 4, 25], where
the authors developed new splitting criteria taking into
account imprecision of training data and the noise data.
In particular, the authors consider the application of the
Walley’s imprecise Dirichlet model (IDM) [32]. The main
advantage of the IDM in its application to the classification
problems is that it produces a convex set of probability
distributions, which has nice properties and depends on a
number of observations. Another interesting RF called the
fuzzy RF is proposed in [7]. As an alternative to the use of
the IDM, nonparametric predictive inference has also been
used successfully for imprecise probabilistic inference with
decision trees [1]. Imprecise probabilities have been also
used in classification problems in [13]. The main focus of
interest in this paper is not the decision trees or RFs, but the
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weighted averaging procedure which is used to combine
the class probability distributions. We study how the use
of imprecise distributions may impact on the choice of the
corresponding weights of trees.

Another interesting application of RFs is survival anal-
ysis [17] when we have censored data, in particular, right-
censored data, i.e., times to event of interest for a part of
observations or instances are unknown because the events
might not have happened during the period of study. Follow-
ing the well-known Cox proportional hazards model [11],
many interesting models using machine learning methods
and tools have been proposed (for a comprehensive review
see [33]). They include neural networks [14], deep neu-
ral networks [27], SVM survival modifications [5], Lasso
modification [29], ensemble-based modifications [18].

Due to many advantages of decision trees for classifi-
cation and regression, several tree-based methods for sur-
vival analysis problems have been proposed, for example,
[10, 12, 15, 23]. It turned out that a very powerful, efficient
and popular tool for survival analysis is the random survival
forest (RSF) [8, 19, 20, 21, 26], which can be regarded as
a regression model. RSFs require only three tuning param-
eters to be set (the number of randomly selected predictors,
the number of trees grown in the forest, and the splitting
rule) [20]. Moreover, RSFs are highly data adaptive and can
deal with both low and high dimensional data. The output
of a RSF is the cumulative hazard function, which can be
computed as the weighted average of the hazard functions
obtained as outputs of survival decision trees. Therefore,
we also consider how the imprecision of the tree hazard
function estimates impact on the weighted procedure of the
RSFE.

It is important to emphasize that we do not change trees
in order to take into account the available imprecision of
estimates, but we determine weights in the weighting ag-
gregation procedures to account the imprecision. This is
the main idea underlying the proposed robust models. So,
we propose robust modifications of RFs and RSFs taking
into account imprecision of the decision tree estimates. The
important ideas underlying the methods presented in this
paper are as follows:

1. Aggregation procedures for computing the RF class
probability distributions (classification task) and for
computing the RSF cumulative hazard functions (re-
gression task) are modified by introducing the weights
of trees.

The imprecision of the tree estimates is defined by
means of imprecise statistical inference models and
interval models, for example, by using the IDM for
the classification task and confidence intervals for the
regression task of survival analysis.

. Special modifications of loss functions for the clas-
sification and regression tasks are proposed in order
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to simplify minimax and maximin optimization prob-
lems for computing optimal weights.

4. The obtained optimization problems are linear or
quadratic with linear constraints.

2. Weighted Averages in Random Forests

In order to consider weighted averaging in random forests,
we formally state the standard classification problem.
Given N training data (examples, instances, patterns) S =
{(x1,%1),---, (Xn,¥n§)}, in which x; may belong to an arbi-
trary set 2" and represents a feature vector involving m
features and y; € {1,...,C} represents the class of the asso-
ciated examples, the task of classification is to construct
an accurate classifier ¢ : R — {1,...,C} which can predict
the unknown class label y of a new observation X using
available training data as accurately as possible, where the
accuracy of classification depend on a loss function.

RFs can be regarded as a powerful nonparametric statis-
tical method for both regression and classification prob-
lems. Suppose that the RF consists of 7 trained trees.
One of the important peculiarities of decision trees is a
probability distribution of classes at each leaf node. This
probability distribution is used for computing probabili-
ties of classes for the RF and for making decision about a
class label of a testing example. Formally, each leaf node
1 € CL ={1,...,L} stores votes for the class labels de-
noted as n; = (ny1,...,n;c). Here n; . is the number of
feature vectors from the class ¢ which fall into the /-th
leaf node. This is equivalent to storing a categorical prob-
ability distribution over classes ¢ € {1,...,C} in a vector
pi=(p1s-pic) € [0,1]C. If vector x falls into the /-th
leaf node in a tree, then the prediction of the decision tree
for feature vector X to be of class c is given by p; . =n; . /ny.
Here n; is the number of all feature vectors which fall into
the [-th leaf node.

One of the ways to improve RFs is to assign weights to
decision trees. The weights are used in order to compute
the weighted average of the class probability distributions
across all trees. They are regarded as training parameters.
Their values should minimize the difference between class
labels of training examples and values of the RF class distri-
butions. This objective stems from the following reasoning.
If an example x; has the label y; = ¢, then we ideally expect
that the c-th element of the forest class probability distribu-
tion should be close to 1, and other elements of the vector
are close to 0. Of course, this condition may be violated.
However, this violation could be reduced by controlling
the weights for computing the forest class distributions. So,
we could find weights of trees in order to minimize the
mean difference between class vectors of all examples and
the corresponding forest class probability distributions, i.e.,
the weights can be trained by solving the corresponding
optimization problem.
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The c-th element v; . of the class probability distribution
produced by the RF for x; is determined as

()
Vl',C = T lel p[7c7
Q)

where p; . is the probability of class ¢ for x; produced by
the z-th tree from the RF.

Denote the obtained RF class probability distribution
as v; = (vi1,...,vic). We propose to change the method
for computing v; ., namely, the averaging operator (1)
is replaced with the weighted sum with weights w =
(w1,...,wr) of the form:

T
vie=Y1 plwi. @)

Here w; is a weight of the ¢-th tree. The weights do not
depend on the class c. They are identical for all classes, but

ey

different for trees. The weights also do not depend on x;.

They are restricted by the following obvious condition:

Yo

Here 1 is a vector having T unit elements.

w=w-1T=1,w,>0,t=1,...,T. (3)

3. Training the Weighted Random Forest
Classifier

The ideal RF output for x;, which we denote by o; would
be when the class probability distribution v; is such that it
contains a single unit element and C — 1 zero elements. If
the feature vector x; belongs to the class y;, then the class
vector is

0;=(0,...,0,1,,,0,...,0).

Of course, we cannot construct the ideal RF for all training
elements, but we can supplement the trees by a weighted
averaging procedure that could try to approximate the class
probability distribution of the RF to o; for every example
x;. We find weights w such that vectors v; will be as close
as possible to vectors 0; whose unit element has the index
yi coinciding with the class label of x;. This can be done
by minimizing the loss function which is defined by the
distance d(v;,0;) between v; and o;, i.e.,

J(w) = ngnzji  d(¥i,0;) + AR(W).

Here R(w) is a regularization term, A4 is a hyper-parameter
which controls the strength of the regularization. We take
the regularization term of the form R(w) = ||w||* in order
to get the quadratic optimization problem.

A simple way is to use the Euclidean distance between
two vectors. As a result, we rewrite the loss function for
every RF as follows:

N C
Jw)=min}" Y (piew—1(0)* + AW, )

i=lc=1
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subject to (3). Here I.(y) is the indicator function taking
the value 1 if y = ¢, otherwise it is 0; p; . = (pglc), ...,pg)).
This is a standard convex optimization problem with linear
constraints whose solution does not meet any difficulties.

Generally, we can restrict the set of weights by some con-
vex subset # (u) of the unit simplex in order to improve the
regularization. Here u is another regularization parameter
which defines the size of the subset %, for example, the
hyperparameter of the imprecise Dirichlet model [32] if
this model is used for producing the subset # (u). One of
the aims of regularization is to restrict a set of solutions to
the optimization problem and to smooth it in order to avoid
some outliers. The introduction of the restriction # (u) for
the set of weights plays the same role as the regularization.
In sum, the we will assume that constraints to problem (4)
are of the form w €% (u).

4. Probabilities of Classes for Trees and
Imprecise Probability Models

It is obvious that estimates of class probabilities cannot be
considered precise by a small number of training data. Even
if we have a lot of training examples, it does not guarantee
that many examples fall into a certain leaf node, i.e., n; is
large for all / € CL. This implies that interval-valued or
imprecise probabilities p; . should be taken in place of the
precise ones.

Suppose that training example x; produces a class prob-
ability distribution P(i,t) = (p1(i,?),...,pc(i,t)) at leaf
nodes of the ¢-th decision tree which is unknown precisely,
but we know that it belongs to a set &;,(s). Here s is a
parameter defining the set &7;,. It is assumed that the sets
;4 (s) are different for different / and ¢, and they are in-
dependent each other. One of the well-known ways for
dealing with the imprecise data is to use the minimax or
maximin (pessimistic or robust) strategy. In accordance
with this strategy, we select a probability distribution from
every set of distributions &7, (s) such that the loss function
J(w) achieves its largest value for fixed values of weights
w. It should be noted that the selected “optimal” probabil-
ity distributions may be different for different values of
weights w. In fact, the minimax strategy selects the “worst”
distribution providing the largest value of the loss func-
tion J(w). Therefore, it can be interpreted as an insurance
against the worst case because it aims at minimizing the
expected loss in the least favorable case [28]. Robust mod-
els have been widely exploited in classification problems
due to the opportunity to avoid some strong assumptions
underlying the standard classification models [34]. Another
“extreme” strategy is optimistic. It selects the “best” distri-
bution providing the smallest value of J(w). It can also be
viewed as a direct opposite to the minimax strategy. The
optimistic strategy cannot be called robust. Therefore, we
do not study it below.
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By applying the robust strategy, we write the problem
(4) as the maximin optimization problem of the form:

J(w)

max min
Vit P(i,t) €D (s) WEH (u)

N C
XY Y (piew —Le(v)* + A |Iw] .

i=lc=1

(&)

Unfortunately, the maximization problem for every i and
t is convex. Therefore, its solution can be found on bounds
of Z;,(s). Moreover, attempts to write a dual optimization
problem in order to get the minimization problem lead to
a non-linear optimization with quadratic constraints. This
implies that the direct way for considering the imprecise
relaxation of the RF class probability calculation and for
computing the optimal weights cannot be applied in a gen-
eral case except for some simplest cases of the classification
problem statement.

Let us diverge from the standard definition of the loss
function as the Euclidean distance between vectors v; and
o; and consider an example of the weighted averaging for
a RF consisting of 7' = 3 trees and solving two-class clas-
sification problem. Suppose that y; = 2. This implies that
the vector o; is (0,1). Let us suppose that the output of
the trees for example x; are p; = (0.1,0.9), p» = (0.6,0.4),
p3 = (0.3,0.7). We would like to make the weighted sum
vi.1 = 0.1w1 +0.6w, 4 0.3w3 as close to 0 as possible, and
the weighted sum v;5 = 0.9w; + 0.4w, +0.7w3 as close
to 1 as possible. It is important for us to make the second
class probability v;» close to 1. We concentrate only on
this objective. In other words, we propose to consider only
the weighted sum which corresponds to y; and should be
close to 1. Other weighted sums are not considered. This
means that we replace the loss function given above with

the following loss function:
<1 — Z Py (,1)w, )

W&

One can see from (6) that every term in the objective
function contains only the weighted sum corresponding
to y;, i.e., to the unit element of the vector o;. It should
be noted that we do not use the regularization term here
because we assume that its function is taken by the subset
# (u). At the same time, a similar problem with the explicit
regularization term will be studied later.

(6)

4.1. The Linear Programming Problem

The maximin problem can be written now as follows:

min ZZpyl i t wt,

S)WEH (u 1 11—

J(w)=N-— max
Vit P(it)e P (
which is equivalent to

min

J(w) =
( ) Vit P(it) €D (s)

max Zw,Zp)l it).

YWEH (u

N
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Suppose that the set % (u) is produced by the following
linear constraints:
a; SW; S bh t= 1,...,T, W'IT =1.
These constraints correspond to most imprecise statistical
models. Let us fix the variables P(i,#) and write the dual

optimization problem for the primal form (7) with w. It is
of the form:

T
m“}g <f0+2(ﬁbt_gtaf)> ) (®)
! t=1
subjectto f;,g: >0, =1,...,T
N
fo+fi—g>Y pylit), t1=1,..T )
i=1

Hence, we have two minimization problems (over P(i,)
and over fy, f¢,8.) which can be combined into a single
problem taking into account the problem with variables
P(i,z). It is of the form:

T
it (0 L) a0
subject to f;,g, >0, P(i,t) € Z;,(s), and (9).

We have got a linear optimization problem with NT +
2C + 1 variables. Since subsets Z;,(s) are assumed to be
different for allt =1,...,T and i = 1,..., N, then we take
the smallest value of p,,(i,r) for every ¢ and i in order
to provide the minimum of the objective function. This
follows from the fact that the smallest values of py,(i,?)
make the set of feasible solutions larger. In other words,
we can take an extreme point of Z;,(s) such that py, (i,7)
is minimal. This implies that we have to find all extreme
points of the subset &7;,(s). It should be noted that several
extreme points may have identical largest values of py, (i,1).
It does not matter because only one probability py,(i,t)
from all probabilities of the class probability distribution
P(i,r) is used for every i and 7.

Let us denote the smallest values of py,(i,t) as pj, (i,?).
In sum, the smallest probabilities pj, (i,¢) have to be found
among elements of extreme points. The probabilities do
not depend on other variables fy, f., g.. Therefore, we can
return to the primal form (7) and use the smallest values
py,(i,t) in (7). Hence, optimal weights are computed from
the linear optimization problem (7) by using the extreme
points of &Z;,(s).

4.2. The Quadratic Programming Problem

So far, we have studied how to compute optimal weights
of trees under condition that constraints for weights play a
role of the regularization. Let us now consider the explicit
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regularization ||w||> added to the set % (u). In this case, we
get the following quadratic programming problem:

J(w)

= max min
Vit:P(it)€ P (s) weW (u)

T N
X <l||w|22w,2pyi(i,t)>. (11)
=1 i=1

If we fix the variables P(i,7), then we have a standard
convex quadratic programming problem with linear con-
straints with respect to w. The problem (11) can be viewed
as an extension of (4). Let us again find the dual problem
in order to prove that the optimal solution for probability
distribution P(i,#) should be found among largest elements
with the index y;. The dual problem for the minimization
problem jointly with the optimization problem over P(i,?)
can be written as

T

<—7L HV||2 —fo— Z (fibr _gtat)> )

max max

Vit P(it)€ P (s) Vofo. 18t =1

subject to f;,g, > 0,t=1,...,T, and

N
fo+ fi—g+2Av >Y py(it).
i=1

Here v = (vy,...,vr) is a vector of T slack variables,
fi,&: are non-negative optimization variables, t = 1,...,T,
fo is the optimization variable.

We do not consider the dual form in detail because it
is obtained by means of a standard formal procedure. It is
important for us to see that the maximum of the objective
function is achieved when sums Y'¥ | py, (i,¢) are minimal.
Hence, we substitute the smallest values py (i,¢) into (11)
and solve the following standard quadratic optimization
problem for computing optimal wights:

T N
min [A[w]P=Y w, Y pi(it)]. (12
wem)< [[wll ,; ri;m,( ))

J(w)

4.3. A Special Case: The IDM and the
Linear-Vacuous Mixture

‘We consider the IDM [32] and the linear-vacuous mixture
or imprecise €-contaminated models [31, Subsections 2.9.2
and 3.3.5] as special cases of models for defining subsets
2P;+(s) and subset # (u), respectively. Let us return to the
definition of the tree class probability assuming that the
i-th training example (x;,y;) falls into a leaf node with
number /(z) of the ¢-th decision tree of a RF. If the vector
of stored votes corresponding to this leaf node is ny;) =
(My(1),15 s (1), )» then we can find bounds for probability
Pi(1),c in accordance with the IDM. It follows from the
definition of the IDM that the bounds for the probability
are of the form:

(1) e
(1) + s

n(),c T8
S Pi)e < e 70

a(r),c =

bir) -
n 15 L0
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Here s is the hyperparameter which determines how
quickly upper and lower probabilities of events converge as
statistical data accumulate [32]. Smaller values of s produce
faster convergence and stronger conclusions, whereas large
values of s produce more cautious inferences. The detailed
discussion concerning the parameter s and the IDM can
be found in [6, 32]. In the framework of classification, the
hyperparameter s can be regarded as a tuning parameter.

The subset of probability distributions Z;,(s) has C
extreme points (qi (), ...,qc(t)) such that the c-th extreme
point, ¢ = 1,...,C, is determined in a simple way as follows:

qk(t) :bl(t),ca qC(t) =Aai(t),cs €= 17"'7C7 C#k

Itis obvious that the smallest probability pj (i,7) is equal
0 aj(y) -

Let us suppose that the set # (u) is produced by
means of the linear-vacuous mixture [31, Subsections
2.9.2 and 3.3.5] with the elicited probability distribution
(T~1,...,T~") and the parameter € € [0, 1], i.e., u = €. This
model can be viewed as another form of the IDM. In par-
ticular, there is a connection between parameters s and &,
which is € = s/(T +5). It has T extreme points denoted as
& (W (€)), which are all of the same form: the k-th element
is given by (1 —&)T~! + € and the other T — 1 elements
are equal to (1—€)T 71, ie.,

(1-¢)
T

(1-¢)
T

qr(t) = +e, q(t)= Jt=1,...,T, t #k.

Let us denote

Then problem (7) can be rewritten by taking into account
the extreme points of #/(¢€) as

T T

(1-
T

The above implies that the optimal weight vector consists of
T —1 elements (1—¢&)T ! and one element (1—¢&)T~! +¢.
At that, the tree, which provides the largest value of A;, is
assigned by the weight (1 —&)7~! + &. This solution is
trivial and does not take into account a difference between
trees except for one tree with the largest value of Ag. It
is given here as an example. The quadratic problem (12)
solves this problem and provides better results.

5. Random Survival Forests and Imprecise
Models

Let us consider another important problem which deals with
survival analysis and is solved by means of RFs. In survival
analysis, a patient / is represented by a triplet (x;, 6, D;),
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where x; = (x;1, ..., Xin ) is the vector of the patient parame-
ters (characteristics) or the vector of features; D; indicates
time to event of the patient, it is assumed to be non- neg-
ative and continuous. If the event of interest is observed,
D; corresponds to the time between baseline time and the
time of event happening, in this case §; = 1, and we have
an uncensored observation. If the instance event is not ob-
served and its time to event is greater than the observation
time, D; corresponds to the time between baseline time and
end of the observation, and the event indicator is 6; = 0,
and we have a censored observation. Suppose a training
set G consists of n triplets (x;,6;,D;), i = 1,...,n. The goal
of survival analysis is to estimate the time to the event of
interest T for a new patient with feature vector denoted by
x by using the training set G.

The survival function S(z), the hazard function A(z), and
the cumulative hazard function H(r) are key concepts in
survival analysis for describing the distribution of event
times. One of the best models for survival analysis is the
RSF due to its properties. A general algorithm for training
RSFs is given in detail by Ishwaran et al. [22]. Therefore,
we do not consider peculiarities of RSFs and their training.

Let {t;} be the N(k) distinct death times in terminal
node k of the g-th tree such that 7y y <t < ... <ty and
Z; r and Y; ;. equal the number of deaths and patients at risk
at time #; ;. The cumulative hazard estimate for node k is
defined as (the Nelson—Aalen estimator):

Hi(t) =Y., < Zik/Yjx-

If the i-th patient with features x; falls into node &, then
we can say that H (¢|x;) = Hy(¢). The ensemble cumulative
hazard estimate for the i-th patient (the output of the RSF)
is obtained by averaging cumulative hazard estimates of all
T trees, i.e.,

13)

1

f (14)

HM’*]

H(t[x;) = q(f|Xi)-

The survival function can be obtained from H (¢|x;) as

follows:
S(t[x;) = exp (—H(t[x;)). (15)

To compare the survival models, the C-index proposed
by Harrell et al. [16] is used. The C-index estimates how
good the model is at ranking survival times. It estimates
the probability that, in a randomly selected pair of patients,
the patient that fails first had a worst predicted outcome. In
order to define the C-index, we consider admissible pairs
{(xi,6;,Di), (x,6;,D;)} for i < j. A pair is not admissible
if the events are both right-censored or if the earliest time
in the pair is censored. Then the C-index is calculated as
the ration of the number of pairs correctly ordered by the
model to the total number of admissible pairs. If the C-
index is equal to 1, then the corresponding survival model
is supposed to be perfect. Let f{,...,7; denote predefined
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time points, for example, #1, ..., #y, where N is distinct event
times. If the output of a survival algorithm, for example, a
RSF or a survival tree, is the predicted survival function
S(t), then the C-index is formally calculated as [33]:

c=y L X1

i:8;=1 jiti<tj

(17 1xi) > S(7|x;)] . (16)

Here M is the number of all admissible pairs; 1[a] is
the indicator function taking the value 1 if a is true, and 0O
otherwise; S is the estimated survival function.

5.1. Weights of Survival Decision Trees

In contrast to the classification problem where we assigned
weight to minimize the distance between the class distri-
bution and an ideal class vector, in survival analysis, we
assign weights to trees in the RSF in order to maximize
the C-index. Let us write the C-index as a function of the
weights

cw=Y ¥

i:8=1jiti<t;

X 1[S(tf, wlxi) = S(t7,wlx;) >0].  (17)

Here S(tf,w|x;) is the ensemble survival function ob-
tained by weighted averaging survival function estimates of
all T trees taking into account weights w. By maximizing
the C(w) over the non-negative weights w under constraints
w € # (u), we can get optimal weights.

First we use (15) to rewrite the C-index through

H(t7,wlx;) as
= Y Y L[H(,wx)— H(,wlx;) > 0].
i8=1 jii<t;

Let us denote the set of all admissible pairs (i, j) in (17)
as J. Then we get the optimization problem:

C(w) = max

we (u) (i,

jet

XI[Z g q(t;|xj)—Hq(r;*|xi))>o}. (18)

In order to solve the problem (18), the indicator function
is replaced [30] with the hinge loss function of the form
1(x) = max (0,x). By adding the regularization term, we
can write the optimization problem as

min

WEAT g=

o (87 |xi) — q(fﬂxj)))

19)

Z max (0 qu
(i.)e]

+ A [|w]%.
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5.2. Confidence Intervals for the Nelson—-Aalen
Estimator

The Nelson—Aalen estimator (13) evaluated at a given time
t has a standard 100(1 — o) % confidence interval for Hy(z),
which is of the form:

Hi(t) £21 g2 Ok(t),

where z;_q /5 is the | —a /2 fractile of the standard nor-
mal distribution, o (¢) is the variance of the Nelson-Aalen
estimator, which is estimated as

(Yix—Zjx) Zjx

Orlt) = — -
) 1<t (Yjak - 1) Yj%k

The above implies that H () has some lower H,(¢) and
upper H(t) bounds which have to be taken into account
in the problem of computing the weights. By applying the
robust strategy, we rewrite the problem (18) as the minimax
optimization problem of the form:

min max
Hy(t]x)€[H , (t|x),Hg (11x)] W (1)

Y1 qu

(i.j)es

Unfortunately, the representation (19) cannot be applied
because it leads to the quadratic optimization with quadratic
constraints. Therefore, we propose to replace the indicator
function in (20) with the linear function /(x) = x. Note that
the C-index increases when the difference of two ensemble
cumulative hazard estimates in (20) is positive, and it is not
changed when the difference is negative. If we replace the
indicator function with the linear one, then we additionally
penalize the C-index for the negative difference of the esti-
mates. As a result, we get a more strong condition for the
ensemble cumulative hazard estimates. This replacement
is not used in classification and regression problems. How-
ever, we apply it to the problem of the weight assignment.
By using the replacement, we get

C(w

Hy(77[x;)) > 0| . (20)

o (t71%7) —

C(w)= max min
Hg(t]x)€[H (1) Hy(tx)] WeW (u)
T
Yova Y (Hy(lx) —Hy(Gjlx)) . @D)
=1 (i.j)es
If we denote
By= Y. (Hy(|x) — Hy(t]x;)) (22)

(i,j)et

and add the the regularization term A ||w]|,
problem similar to (11):
( T
q

then we get the

2) .23

C(w) = max min

wgBy+ A ||w
By€BygweW (u) ; - H ||
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Here %, is a set of B, obtained from intervals
[H,(t|x), Hy(t[x)]. It is obvious that the maximum over B,
is achleved by largest B,;. Therefore, if we find the largest
values of B, then we get a simple quadratic optimization
problem for computing optimal weights, whose solution
does not meet any difficulties.

Let us represent B as

q—zbkq

keK

Here by , are integers, K is a set of non-identical indices
which make up the set J. If b , is negative (positive), then
we take lower (upper) bound for computing B,.

6. Numerical Experiments

In order to illustrate the robust classification random forest
model, we compare it with the original random forest by
using datasets from UCI Machine Learning Repository
[24], including Breast Cancer Wisconsin (Diagnostic) (m =
30, N =569, C = 2), Wholesale Customer Region (m = 8,
N =440, C = 3), Connectionist Bench (m = 60, N = 208,
C = 2), Ionosphere (m = 34, N = 351, C = 2). A more
detailed information can be found from the data resources.
Accuracy measure A used in experiments is the proportion
of correctly classified cases on a sample of data. To evaluate
the average accuracy, we perform a cross-validation with
100 repetitions, where in each run, we randomly select
Ny = ¥YN training data and Ny = (1 — ¥)N testing data,
Y € [0,1] is a parameter which will be used in numerical
experiments. We solve the quadratic optimization problem
(12) by using the imprecise Dirichlet model with s = 2
for Z;,(s), parameter € of the set # (&) is selected to get
the best accuracy. Different values for the regularization
hyper-parameter A have been tested, choosing those leading
to the best results. The RF consists of 100 decision trees.
Different values for the RF tuning parameters, including
the depth of decision trees, the number of used features
for constructing decision trees, have been tested, choosing
those leading to the best results.

Numerical results of comparison of classifiers are shown
in Figs. 1-3, where the dashed line with triangular markers
and the solid line with the circle markers correspond to the
original RF and the proposed model, respectively. The fig-
ures illustrate accuracy measures of the considered models
by different number of training examples, i.e., by different
values of ¥ which changes from 0.05 till 0.95. One can see
that the proposed imprecise model outperforms the original
RF. The same results are obtained for the Connectionist
Bench dataset.

Another interesting question is how the value of s im-
pacts on the accuracy measure. Fig. 4 shows 6 lines corre-
sponding to different s for the Connectionist Bench dataset.
This experiment uses € = 0.5. Moreover, the testing data
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Breast Cancer Wi

—e— Imprecise RF
-+~ Random Forest
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&
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Figure 1: Accuracy measures as a function of y for the

Breast Cancer Wisconsin dataset
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-+~ Random Forest
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Mean accuracy
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0.35 0.45 0.55

Train size

0.65 0.75 0.85 0.95

Figure 2: Accuracy measures as a function of y for the
Wholesale Customer Region dataset

are noised such that every feature is randomly changed by
using the normal distribution with zero mean and addition-
ally 75% of the feature standard deviation. One can see
from Fig. 4 that the accuracy increases with s when the
training set is very small. At the same time, large values
of s provide worse results by the large amount of training
data.

7. Conclusion

An approach taking into account a lack of sufficient data
which are required for using precise values of probabilities
and hazard functions in ensemble-based models, namely,
RFs and RSFs, has been presented. It differs from many
available approaches to classification and regression be-
cause it does not change trees as week learners, but impacts
on their weights which are used for combining the tree
outputs. The simple linear and quadratic optimization prob-
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Figure 3: Accuracy measures as a function of y for the
Tonosphere dataset
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Figure 4: Accuracy measures as a function of s and y for
the Connectionist Bench dataset
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lems have been obtained for computing weights optimal to
some extent. Only two types of models have been studied:
the classification RF model and the regression RSF model.
However, the idea underlying the considered models can
be simply extended on other ensemble-based models. This
is a direction for further research.

By introducing new loss functions, we tried to separate
optimization problems in order to simplify the solution and
to avoid the useless extremely complex non-linear optimiza-
tion problems which are unsolvable. Of course, we pay for
this simplification by the too pessimistic decision. Perhaps,
we would hypothetically get better results by using original
loss functions and solving complex non-linear optimization
problems. However, our numerical experiments have illus-
trated that the proposed replacements lead to outperforming
results.

It should be noted that we also have applied only two
specific loss functions for computing the optimal weights.
However, functions different from the given ones can be
also applied to simplifying the obtained optimization prob-
lems and to getting better results. This is a direction for
further research.

We have not provided numerical experiments for the
Random Survival Forest due to limited size of the paper.
However, they are similar because the corresponding pro-
posed model is based on the same ideas.

Finally, we would like to point out that the idea of intro-
ducing the weights for taking into account imprecision can
be extended on the functions different from the weighted
averaging, for example, on some non-linear functions of
a special form or on neural networks which can be also
viewed as some complex functions of weights.
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