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Abstract
Causal domain adaptation approaches aim to find sta-
tistical relations in a source domain, that will still hold
in a target domain, using the assumption that a com-
mon causal graph underlies both domains. For many
such problems, the available information is insufficient
to uniquely identify the target domain distribution, and
we find a set of distributions instead. We propose to
use a worst-case approach, picking an action that per-
forms well against all distributions in this set. In this
paper, we study a specific diagnostic instance of this
problem, and find a sufficient and necessary condition
that characterizes the worst-case distribution in the
target domain. We find that the Brier and logarithmic
scores lead to different distributions, and consequently
to different recommendations for the decision maker.
Keywords: domain adaptation, causal graph, minimax
decision making, robust Bayes, scoring function

1. Introduction
Many approaches in statistics and machine learning rely
on the assumption that the training data are drawn from
the same distribution as the test data. Domain adaptation
considers situations in which this assumption is violated:
we have access to training data from a source domain and
want to make decisions in a target domain, but the data in
the two domains may come from different distributions.

Our interest is in a proactive approach, which uses no
data at all from the target domain during training. Of course,
this is only possible if the source and target domain distribu-
tions are in some way related. In causal domain adaptation,
this relation takes the form of a common causal graph
[5, 10].

Consider the following motivating example, taken from
Subbaswamy et al. [12]. Suppose we want to diagnose lung
cancer (X). Lung cancer causes chest pain (Z), while aspirin
(Y ) relieves chest pain. Further, we know that people who
smoke have an increased risk of lung cancer as well as of
heart disease, and due to this risk they may be prescribed as-
pirin. (Our data does not include whether a person smokes.)
Now we gather data from one hospital and use it to train
a model, which is used successfully for the diagnosis of
lung cancer. However, when used at a different hospital,
this same model may give worse performance. This can
happen because the different hospitals may follow differ-
ent policies for the prescription of aspirin, so that the data

distributions are not the same. Yet, it may be reasonable to
expect that the probability of lung cancer, and the effects of
lung cancer and aspirin on chest pain, do not vary between
hospitals. A causal domain adaptation method would use
these aspects of the source domain to make predictions in
the target domain.

Subbaswamy et al. [11, Section 4.2] (an earlier version of
[12]) suggest addressing this problem using a robust Bayes
approach [1]. In this paper, we investigate the underlying
mathematical optimization problem for a specific graph,
under different probability distributions and loss functions.
The graph represents a simple diagnostic setting with only
three variables, but as we will see, the optimization problem
has some interesting properties.

Following Grünwald and Dawid [2], we model this situa-
tion as a zero-sum game between two players, the decision
maker and the (imaginary) adversary. In this game (de-
scribed in more detail in Section 2), the adversary chooses
a distribution P for the target domain, constrained by the
requirement to be consistent with the invariant parts of the
source domain. Then X = x, Y = y and Z = z are drawn at
random according to P. Seeing only y and z, the decision
maker chooses an action Ay,z (e.g. treat vs. do not treat).
Then x is revealed and the action is evaluated according to
a loss function L. The adversary and decision maker aim to
respectively maximize and minimize the expected loss

∑
x,y,z

P(x,y,z)L(x,Ay,z) . (1)

If the decision maker plays this game optimally, they have
the best guarantees on the expected loss; other strategies
are less robust because for some distribution P the adver-
sary might pick, they obtain a larger expected loss. Van
Ommen et al. [14, 13] recently applied the same worst-case
approach to the Monty Hall problem [9], and the present
paper can be seen as a generalization of their work to the
setting of causal domain adaptation.

Transportability (see e.g. Pearl and Bareinboim [6]) can
be seen as an approach to causal domain adaptation. This
paper complements that line of work as follows: If it is
found that the relations of interest are not transportable
from the source to the target domain, our approach can find
the safest action to take.

Two other approaches to causal domain adaptation have
been proposed recently [3, 8]. Unlike [12] and the present
paper, these approaches only search for feature sets S such
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Figure 1: Directed acyclic graph for the Bayesian network
that relates the random variables X , Y and Z, and
the context variable C.

that a regression model trained on these features will be
invariant between the source and target domains. We will
see below that this is a strong limitation for some causal
graphs, in particular for the one we consider. Their setting
is more challenging in a different respect: they do not take
the causal graph to be known, and must learn about it from
the available data.

2. Problem Definition
In this paper, we will consider a specific setting with four
discrete variables, related by a Bayesian network whose
structure is depicted in Figure 1.1 This network structure
represents that the distribution of discrete variables X , Y
and Z given C can be factored as

P(X ,Y,Z |C) = P(X)P(Y |X ,C)P(Z |X ,Y ). (2)

Here C is a context variable [4] (also called selection vari-
able by Subbaswamy et al. [12]; the two concepts are dif-
ferent in general but their meanings coincide for this graph).
Data points in the source domain have C = 0, and those
in the target domain have C = 1. Because Y is a child
of C in the graph, we say Y is mutable: the distribution
P(Y |X ,C = 1) in the target domain may be completely
different from the distibution P(Y |X ,C = 0) we saw in the
source domain. The two other factors in Equation (2) are
the same regardless of C, and so these distributions can be
learned using data from the source domain.

We write P for the set of all joint distributions on X ×
Y ×Z that can be obtained by varying P(Y |X ,C = 1),
while leaving the other factors in Equation (2) the same.
Thus P represents both our aleatory uncertainty about the
random outcomes, and our epistemic uncertainty about the
mechanism that produces Y .

Our main result (Theorem 1) applies to arbitrary P, but
for concreteness, consider the following instantiation of

1. The graph in Figure 1 differs from the one in Subbaswamy et al.
[12, Figure 1(a)], in that it has a directed edge between X and Y ,
while in the lung cancer example, the corresponding variables (lung
cancer T and aspirin A respectively) share a common confounder.
This difference is not relevant in the present paper, so we opted for
the simpler graph without latent variables.

Table 1: General form of P(X ,Y,Z |C = 1) consistent with
Equation (3).

P(X ,Y,Z |C = 1) X = 0 X = 1

Y = 0, Z = 0 α0/4 0
Y = 0, Z = 1 α0/4 1

2 −α1/2

Y = 1, Z = 0 0 α1/4
Y = 1, Z = 1 1

2 −α0/2 α1/4

the problem (that we will return to in Section 3). In this
example, all variables are binary, and we observe in the
source domain that

P(X = 1) = 1
2 ;

P(Z = 1 |Y,X) =

{
1
2 if Y = X ;
1 otherwise.

(3)

Introducing parameters α0,α1 to define the unknown
P(Y = x |X = x,C = 1) = αx, we can compute expressions
for any joint distribution P ∈ P as given in Table 1.

This graph entails that X is independent of C given the
empty set, but not entail independence given any other set
(this can be verified by checking d-separation [5]). This
implies that if we want to learn a distribution P(X |S) (for
some S ⊆ {Y,Z}) from the source domain data, the only
safe choice is S =∅: for any other S, the distribution in the
target domain may be very different from the distribution
we learned. The choice S = ∅ would result in a method
for predicting X that ignores the information in Y and Z,
which in many circumstances can not be expected to result
in good predictions (though in practice, this comparison
may fall out differently if it is hard to learn P(Z |X ,Y ) from
the data).

From now on, we will only be interested in the possible
distributions given C = 1, so we omit C from the notation.

2.1. Loss Functions and Entropy

To make precise what the ‘best’ decision is, we need to pick
a loss function L :X ×A→ [0,∞], where A is the decision
maker’s action space. We will focus on two loss functions
in our examples: Brier loss and logarithmic loss. Both loss
functions are defined on the same action space A = ∆X ,
the set of all probability distributions over X . Such loss
functions (also called scoring rules) can be used to elicit
the decision maker’s belief about X . They are defined as

LBrier(x,Q) = ∑
x′∈X

(
1x′=x−Q(x′)

)2 ;

Llog(x,Q) =− logQ(x).
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For a given loss function L and a distribution P ∈ ∆X ,
Grünwald and Dawid [2] define the generalized entropy
as the expected loss when the decision maker, knowing P,
chooses Q optimally:

HL(P) := inf
Q∈∆X

∑
x

P(x)L(x,Q) = inf
Q∈∆X

EX∼P L(X ,Q).

(4)
In our setting, we take a further expectation over the two ad-
ditional variables Y and Z. If the adversary chooses distribu-
tion P and the decision maker always chooses Q optimally
in response, the game’s value is given by

∑
(y,z)∈Y×Z:

P(y,z)>0

P(y,z)HL(P(· |y,z)). (5)

Equation (5) considers the game from the adversary’s
side. In [2, 14], the game is also examined from the deci-
sion maker’s side: how can the decision maker minimize
the worst-case expected loss against any distribution P the
adversary might choose? The theoretical results in those
papers give conditions under which the game has a Nash
equilibrium, in which case knowing the adversary’s optimal
strategy largely solves the problem of finding an optimal
strategy for the decision maker. Finding the precise condi-
tions under which such results hold is beyond the scope of
this paper, but we will see that once Equation (5) is solved
for a problem instance of interest, finding the decision
maker’s optimal strategy becomes much easier.

We conclude this section by presenting an intuition
for why maximizing Equation (5) is difficult. For any
symmetric loss function [14] (such as Brier and logarith-
mic loss), the generalized entropy of a Bernoulli random
variable is maximized at probability 1

2 . In our example,
P(X = 1 |Y = 0,Z = 1) = P(X = 1 |Y = 1,Z = 1) = 1

2 can
be simultaneously achieved by setting α0 = α1 = 2

3 . (It
is clear that the entropy of X given Y and Z = 0 is fixed,
regardless of the choice of distribution.) However, by re-
ducing α0 and α1, the probability that the ‘easy-to-predict’
rows occur is reduced, at the expense of a smaller entropy
for the ‘hard-to-predict’ rows. The trade-off makes the
problem nontrivial.

3. Results
We now present our main result, which shows that under
very general conditions, a distribution exists that is optimal
for the adversary. Additionally, the theorem gives a neces-
sary and sufficient condition for recognizing such optimal
distributions.

This theorem is adapted from Van Ommen et al. [14,
Theorem 3]. Its proof can be found in Appendix A.

Theorem 1 (Existence and characterization of P∗) For
HL finite and continuous, a P ∈ P maximizing Equation (5)

exists, and P∗ is such a maximizer if and only if there exists
a λ ∗ ∈ RX such that

(i) for every y ∈ Y with P∗(y)> 0,

∑
z∈Z:

P∗(y,z)>0

P∗(z |y)HL(P∗(· |y,z)) = ∑
x

P∗(x |y)λ ∗x ;

(6)

(ii) for every y ∈ Y , for all P′ ∈ ∆X , let P′(x,z |y) :=
P′(x)P(z |x,y); then

∑
z∈Z:

P′(z |y)>0

P′(z |y)HL(P′(· |y,z))≤∑
x

P′(x |y)λ ∗x . (7)

The conditions in the theorem can be understood geometri-
cally: the expression on the left-hand side of Equation (7)
describes a concave function f mapping P′ ∈ ∆X to R,
while the right-hand side describes a linear function. By
Equation (7), the linear function must be nowhere below f ,
and for y with P∗(y)> 0, by Equation (6), they must touch
at P′(X |y) = P∗(X |y). If this point is in the interior of ∆X
and f is differentiable there, then the linear function and
thus λ ∗ are completely determined. Specifically, if addi-
tionally L is strictly proper, the infimum Q in Equation (4)
is attained by Q = P∗(X |y,z), and we find that

λ
∗
x = ∑

z∈Z:
P∗(y,z)>0

P∗(z |y)L(x,P∗(· |y,z)) (8)

(compare [14, Theorem 9]). If f is not differentiable or
L is not (strictly) proper, as long as the game has a Nash
equilibrium, Q can still be determined from P∗ and λ ∗,
though it is no longer a matter of simply reading it off (see
[14, Theorem 7]).

We illustrate Theorem 1 by using it to find analytic ex-
pressions for P∗ in the case that P(X) and P(Z |X ,Y ) are
given by Equation (3), for Brier and logarithmic loss. These
optimal distributions are displayed in Tables 2 and 3 respec-
tively.

For both examples, combining Theorem 1 and Equa-
tion (8) tells us that P∗ is optimal if and only if for all x∈X ,
the right-hand side of Equation (8) is equal for y = 0 com-
pared to y = 1. In words, for an optimally playing decision
maker who knows P∗, the expected loss given X = 0,Y = 0
must equal that given X = 0,Y = 1, and similarly for X = 1.

For Brier loss, doing so gives a system of polynomial
equations whose solution is displayed in Table 2. The loss
given X = 0,Y = 1 (then Z = 1 with probability 1) equals
6−4

√
2; for X = 0,Y = 0,Z = 1 it is twice that, while for

X = 0,Y = 0,Z = 0 it is zero, and these cases have the same
probability so that the expectations over Z are equal.

For logarithmic loss, the terms from the sum in Equa-
tion (8) will be of the form−p1 log p2. We can rewrite each
equation so the sum becomes a product with factors pp1

2 .
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Table 2: P∗(X ,Y,Z) optimal under Brier loss ( 1
2 −

1
4

√
2≈

0.146, − 1
2 +

1
2

√
2≈ 0.207)

P∗(X ,Y,Z) X = 0 X = 1

Y = 0, Z = 0 1
2 −

1
4

√
2 0

Y = 0, Z = 1 1
2 −

1
4

√
2 − 1

2 +
1
2

√
2

Y = 1, Z = 0 0 1
2 −

1
4

√
2

Y = 1, Z = 1 − 1
2 +

1
2

√
2 1

2 −
1
4

√
2

Table 3: P∗(X ,Y,Z) optimal under logarithmic loss ( 1
4 −

1
20

√
5≈ 0.138, 1

10

√
5≈ 0.224)

P(X ,Y,Z)∗ X = 0 X = 1

Y = 0, Z = 0 1
4 −

1
20

√
5 0

Y = 0, Z = 1 1
4 −

1
20

√
5 1

10

√
5

Y = 1, Z = 0 0 1
4 −

1
20

√
5

Y = 1, Z = 1 1
10

√
5 1

4 −
1
20

√
5

For our example, the exponents are 1 or 1
2 , so the equation

can then be re-expressed as a quadratic polynomial, and the
solution is displayed in Table 3. For arbitrary rational p2,
the degree of the polynomial could be much higher; if p2
is not rational, then the equations in the system would not
even be polynomials.

Knowing P∗ is usually enough to also determine an opti-
mal strategy for the decision maker. In particular, for strictly
proper loss functions such as Brier and logarithmic loss,
the optimal response to any y,z with P∗(y,z) > 0 will be
P∗(· |y,z). This allows us to compute the decision maker’s
actions from the expressions in Tables 2 and 3.

We note that the optimal P∗ (and in particular P∗(· |y,z),
the relevant part for the decision maker) is different for
the two loss functions we considered, so it is important to
choose an appropriate loss function before taking a decision
in this framework. We also find that finding P∗ involved
solving systems of polynomial equations (and could even
require more general equations), so that Tables 2 and 3
include many irrational numbers, even though in our case,
all inputs into the problem from Equation (3) were rational.

In practice, an analytic solution for this problem might
have little additional value over an accurate numerical so-
lution. Because finding P∗ can be formulated as a concave
optimization problem (see the proof of Theorem 1), many
numerical optimization tools are available that can effi-
cienty find such a numerical solution.

4. Conclusion

We studied a special case of causal domain adaptation, for a
specific graph representing a diagnostic prediction problem.
For this problem, we saw how it can be solved in a robust
Bayesian way. We observed that the optimal solution may
depend on the loss function, even when comparing two
strictly proper scoring rules.

Subbaswamy et al. [12] address the question of how to
determine invariant parts of P for arbitrary causal graphs,
with possibly multiple mutable variables, and even in the
case where the graph has latent confounders, or where
the target variable (X in our setting) is itself mutable. For
such graphs, the optimization problem we discussed in the
present paper may take a quite different form. Extending
our results along those lines is an important direction for
future work.

We did not formally address the question of how an opti-
mal strategy for the decision maker can be found, and did
not give conditions under which the two players’ strategies
form a Nash equilibrium. This and other questions were
addressed in a similar setting by Van Ommen et al. [14,
Lemma 4 to Theorem 9], and it is likely that they can be
adapted to the causal domain adaptation setting, in the same
way that we adapted their Theorem 3 in the present paper.

Appendix A. Proof of Theorem 1

Proof of Theorem 1. We rewrite the problem of maxi-
mizing Equation (5) to a convex optimization problem
where the solution variable µ comes from RX×Y

≥0 (so
µ does not need to sum to one). For convenient nota-
tion, we extend µ to X ×Y ×Z by defining µ(x,y,z) :=
µ(x,y)P(z |x,y). We still use notation for marginal and
conditional distributions, e.g. µ(y,z) := ∑x µ(x,y,z) and
µ(x |y,z) := µ(x,y,z)/µ(y,z). Note that the latter defines a
probability distribution (i.e. it sums to one) for any y,z with
µ(y,z)> 0, because any scale factor cancels out.

The following function extends the adversary’s objective
function given in Equation (5) (the expected generalized
entropy of P ∈ P) to the domain RX×Y

≥0 :

f0(µ) := inf
(Qy,z)y∈Y ,z∈Z

∑
(x,y,z)∈X×Y×Z:

µ(y,z)>0

µ(x,y,z)L(x,Qy,z)

= ∑
(y,z)∈Y×Z:

µ(y,z)>0

inf
Qy,z∈∆X

∑
x∈X

µ(x,y,z)L(x,Qy,z)

= ∑
(y,z)∈Y×Z:

µ(y,z)>0

µ(y,z)HL(µ(· |y,z)).
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Using this concave function (infimum of linear functions),
the convex optimization problem is given by

maximize f0(µ)

subject to ∑
y∈Y

µ(x,y) = P(x) for all x ∈ X ,

with µ ∈ RX×Y
≥0 . Write Pµ ⊂ RX×Y

≥0 for the set of µ’s that
satisfy this constraint. We see that µ ∈ Pµ if and only if
µ(X ,Y,Z)∈P , because µ(z |x,y) = P(z |x,y) by definition
of µ(x,y,z). In this sense, Pµ is isomorphic to P .

Rockafellar [7, Theorem 27.3] gives conditions under
which a convex minimization problem has a solution at-
taining the infimum. These are satisfied by Pµ and − f0:
Pµ is nonempty, closed, convex, and bounded (thus has
no direction of recession), and − f0 is convex, finite for
all µ ∈ Pµ (thus proper) by finiteness of HL, and lower
semi-continuous (thus closed) by continuity of HL.

By Rockafellar [7, Corollary 28.2.2], a KT-vector λ ∗

exists, so that for the remaining claims of the theorem,
it suffices to show that P∗ = µ(X ,Y,Z) (with µ ∈ Pµ ) is
worst-case optimal and λ ∗ is a KT-vector if and only if the
conditions on (P∗,λ ∗) given in the theorem hold.

By Rockafellar [7, Theorem 28.3], µ ∈ RX×Y
≥0 is an op-

timal solution to the optimization problem and λ ∗ ∈ RX is
a KT-vector if and only if µ ∈ Pµ and at µ , the zero vector
is a supergradient to

f0(µ)− ∑
x∈X

λ
∗
x

(
∑

y∈Y
µ(x,y)−P(x)

)
. (9)

The term being subtracted is linear, with gradient λ̄ ∈
RX×Y given by

λ̄x,y :=
∂

∂ µ(x,y) ∑
x∈X

λ
∗
x

(
∑

y∈Y
µ(x,y)−P(x)

)
= λ

∗
x . (10)

By Rockafellar [7, Theorem 23.8], 0 is a supergradient to
Equation (9) if and only if λ̄ is a supergradient to f0 at µ .

For any µ that is not everywhere zero, we have for all
c≥ 0 that f0(cµ)= c f0(µ), so that a supporting hyperplane
to f0 at any µ ∈ Pµ must go through the origin. Then the
supporting hyperplane with gradient λ̄ is defined by the
linear function ν 7→ ∑x,y ν(x,y)λ̄x,y.

If ∑x,y ν(x,y)λ̄x,y defines a supporting hyperplane to f0
at µ (recall that P∗ = µ(X ,Y,Z)), then

1. at every y ∈ Y with P∗(y) > 0, it is a supporting
hyperplane to ∑z∈Z:P∗(y,z)>0 P∗(z |y)HL(P∗(· |y,z)) at
P∗(· |y), and

2. for every y, ∑z∈Z:P′(y,z)>0 P′(z |y)HL(P′(· |y,z)) ≤
∑x P′(x)λ̄x,y for all P′ ∈ ∆X .

The converse also holds: we have for all y ∈ Y and P′ ∈
∆X that ∑z∈Z:P′(y,z)>0 P′(z |y)HL(P′(· |y,z)) ≤ ∑x∈y P′λ̄x,y,

with equality if P∗(y) > 0 and P′ = P∗(· |y); taking the
convex combination with coefficients P∗(y) shows that the
hyperplane defined by ∑x,y P(x,y)λ̄x,y is nowhere below f0
and touches it at ν = P∗.

For λ̄ of the required form given by Equation (10), this
is in turn equivalent to the characterization given in the
statement of the theorem.
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