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Abstract
We propose a novel controller synthesis involving feedback from pixels, whereby the measurement
is a high dimensional signal representing a pixelated image with Red-Green-Blue (RGB) values.
The approach neither requires feature extraction, nor object detection, nor visual correspondence.
The control policy does not involve the estimation of states or similar latent representations. Instead,
tracking is achieved directly in image space, with a model of the reference signal embedded as
required by the internal model principle. The reference signal is generated by a neural network
with learning-based scene view synthesis capabilities. Our approach does not require an end-to-end
learning of a pixel-to-action control policy. The approach is applied to a motion control problem,
namely the longitudinal dynamics of a car-following problem. We show how this approach lend
itself to a tractable stability analysis with associated bounds critical to establishing trustworthiness
and interpretability of the closed-loop dynamics.
Keywords: Pixels, Feedback Control, View Synthesis, Visual Servoing, Car-Following, Stability

1. Introduction

Our aim is to investigate the integration of visual signals into feedback loops for the purpose of
controller synthesis and analysis, and without requiring a perception module in the loop. We
treat the camera as a high-dimensional sensor and propose a principled approach grounded in
mathematical control theory to investigate stability and associated theoretical limitations of the
closed-loop performance.

In this paper, we consider output regulation class of problems where the output measurement
includes a pixelated image. We feel the contribution of this paper is as follows:

• We treat each RGB pixel as a measurement and do not attempt to grayscale or threshold the
image and can handle an arbitrary image size or resolution.
• Compared to visual servoing approaches, our work does not involve hand-crafted geometrical

feature extractions, correspondence or matching, pose estimation, or an interaction matrix.
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• Unlike most existing approaches, we integrate vision into reactive low-level control without a
need for a perception module, end-to-end imitation learning, the estimation of states or similar
latent representations.
• Our approach works for moving targets and non-stationary environments.
• Embedded in our controller is an internal model of the tracked visual reference. This is

achieved by incorporating a view synthesizer in the loop at inference or execution time.
• We show a systematic way to synthesize static output feedback controllers, such as a propor-

tional controller, via necessary and sufficient conditions in the literature.
• Our approach does not require discretizing the action space or the state space, and works in

continuous-time synthesis and analysis.
• Our work is amenable to stability analysis.
• In the car-following example, our approach maintains physically interpretable representations

of the underlying dynamics, e.g. state-space variables from first principles.

In Section 1.1, we provide a context to our contribution by reviewing related work. Section 1.2
covers notational remarks. Section 2 introduces the problem statement concisely in the context of an
application domain, while Section 3 presents the main result. In Section 4 we provide conclusions
and future directions. Appendix B shows simulations using CARLA from Dosovitskiy et al. (2017).

1.1. Related Work

Several recent results for vision-in-the-loop control attempt to leverage learning-based approaches
via end-to-end learning, mainly imitation learning, to essentially map pixels to actions via a static
map as in Bojarski et al. (2016) and Amini et al. (2018) in the context of driving. Another body of
work attempts to first get a latent representation of the underlying dynamics of the process from
visual input as in Watter et al. (2015), Banijamali et al. (2018), Hafner et al. (2019) and structured
latent representations as in Johnson et al. (2016). In Zhang et al. (2019), such latent representations
are used in model-based reinforcement learning in the context of manipulation.

In Collewet and Marchand (2011), geometric feature extraction or matching was alleviated by
using the luminance of all pixels in 2D direct visual servoing. However, such methods require
computing explicitly an interaction matrix and solving a nonlinear optimization problem resulting
in a small region of convergence. Therefore, in Saxena et al. (2017) and Bateux et al. (2018), the
relative pose error is learned from a current and reference images for the purpose of posed-based
visual servoing. While these methods alleviate the need for camera parameters and scene geometry,
servoing is done towards a non-moving target.

In Amini et al. (2020), a data-driven simulator is used to train a policy via reinforcement learning
from an initial stable policy provided by a human driver. The simulator generates perturbations along
an initial policy by taking a 2D image captured along the initial trajectory, creating a depth map and
a 3D point cloud, applying a desired viewpoint transformation on the 3D data, then synthesizing a
novel 2D view of the scene. The view synthesizer is not deployed at inference time; only the learned
policy is.

A different body of work leverages video prediction in the form of visual foresight and scene
view synthesis Hirose et al. (2018) and Hirose et al. (2019a) along with model predictive control as
in Hirose et al. (2019b) in the context of robot navigation.

Closed-loop stability is emphasized in Nagai and Sakai (2013) in the context of sloshing dy-
namics, where no geometric feature extraction is done. Instead, a single-input multi-output system
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identification is used to approximate and map linearly the input to a matrix representing a reduced
grayscale image of the liquid surface. The linear time-invariant (LTI) system is then converted to
a port-Hamiltonian system where a passivity-based controller is applied. To reduce computational
intensity, Sakai and Ando (2014) applies model reduction on the matrix space to reduce output size
then performs LQG control, while Sakai and Sato (2014) uses feature extraction to map the liquid
surface to polynomial space.

Another recent approach by Dean et al. (2020a) proposes to learn a perception map from high-
dimensional data, the image, to a low dimensional latent representation as a state or partial state
observation. Robust control is applied on the low dimensional latent representation, resulting in a
dynamic output feedback controller and stability is shown under specific conditions, and extended by
Dean and Recht (2020) and Dean et al. (2020b) to show safety.

In Suh and Tedrake (2020), Lyapunov stability to a target set is shown for an approach based
on image visual foresight using linear models to solve a quasi-static pile manipulation problem.
The state represents a grayscale image of the pile and image-to-image transitions are learned via
switched-linear models. The action space is discrete and switching among actions corresponds to
switching among linear models.

1.2. Notation

R denotes the real line. Given multidimensional array Y ∈ Rp×q×r, vec(·) orderly stacks the q × r
columns of Y one slice at a time until r. An all one-entries n×mmatrix is denoted by 1n×m, and by 1
when the size is context-dependent. A continuous vector function f of dimension m that is a function
of an n dimensional vector is represented by C(Rn×1,Rm×1) = {f : Rn×1 → Rm×1|f ∈ C}.
ICam ∈ RW×H×C denotes an RGB image from a camera, and ISyn ∈ RW×H×C is an RGB image
from a synthesizer, of width, height and channel sizes denoted by W , H and C respectively.

2. Problem Formulation — Car-Following

v2
v1

s

Figure 1: Car-following.

v1(t) ∈ R leader speed,
v2(t) ∈ R follower speed,
f2(t) ∈ R follower force,
s(t) ∈ R spacing,
v̄ leader desired speed,
s̄ desired spacing,
f̄2 steady-state force.

error signals:
x1(t) = ṽ1(t) = v̄(t)− v1(t),
x3(t) = ṽ2(t) = v̄(t)− v2(t),
x2(t) = s̃(t) = s̄− s(t),
u(t) = f̃2(t) = f̄2(t)− f2(t),
m1,m2 > 0 mass of vehicles,
α1, α2 > 0 drag coefficients.

We formulate the problem in the context of a concrete example from the application domain of
autonomous driving, namely car-following as depicted in Figure 1. In this case, the objective is for
the autonomous blue car to follow a leading red car by matching its speed and keeping a desired
longitudinal inter-vehicle spacing. The error dynamics can be written as follows:

ẋ1(t) = − α1
m1
x1(t), (1a) ẋ2(t) = x1(t)− x3(t), (1b)

ẋ3(t) = − α2
m2
x3(t) + 1

m2
u, (1c) y(t) = ICam(s̄− x2,Θ,Ω), (1d)

e(t) = ȳ − y = ICam(s̄,Θ,Ω)− ICam(s̄− x2,Θ,Ω). (1e)
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Equations (1a) to (1c) follow from Levine and Athans (1966). Equation (1d) is a measurement
model where ICam(s,Θ,Ω) represents an image captured by a front-facing camera attached to the
follower, and where Θ represents specific parameters of the leader, while Ω represents specific param-
eters of the driving environment background. Moreover, ICam(s̄,Θ,Ω) in (1e) is a reference image
for the same Θ and Ω had the spacing been the desired spacing s̄. In some sense ICam(s̄,Θ,Ω) can
be thought of as imagined instead of measured unlike ICam(s,Θ,Ω) which is measured. This builds
on neuroscientific concepts of analysis-by-synthesis where it is believed that mental imagery plays a
role in human vision Yildirim et al. (2020). We show in Section 3.2 how to obtain ICam(s̄,Θ,Ω).

Assumption 1 Background Invariance: Assume that

e(t) = ICam(s̄,Θ,Ω)− ICam(s̄− x2,Θ,Ω) = H(x2, s̄,Θ). (2)

This says that e(t) is invariant to background changes Ω.

Assumption 2 Null Space: For H(x2, s̄,Θ) in (2), assume that H(x2, s̄,Θ) = 0 ⇐⇒ x2 = 0.
Then it follows that for a given s̄,Θ

ker(e(x)) = {x ∈ Rn×1 : x2 = 0}. (3)

Assumption 3 Error Direction: Let h(x2, s̄,Θ) = vec(H(x2, s̄,Θ)). Without loss of generality,

s̄− s ≥ 0 ⇐⇒ 1ᵀ · h(s̄− s, s̄,Θ) ≥ 0. (4)

Assumption 4 Monotonic: For a given s̄ and Θ, consider h(x2, s̄,Θ) in (4). If β ≥ α ≥ 0 or
−β ≥ −α ≥ 0, then

h(β, s̄,Θ)ᵀh(β, s̄,Θ) ≥ h(α, s̄,Θ)ᵀh(α, s̄,Θ). (5)

Assumption 5 Locally Quadratic: For a given s̄ and Θ, consider h(x2, s̄,Θ) in (4). We assume
that over a local domain D ⊂ Rn×1, where x = 0 ∈ D, that

h(x2, s̄,Θ)ᵀh(x2, s̄,Θ) ≈ c2(s̄,Θ)x2
2, (6)

for some nonzero constant c(s̄,Θ) ∈ R.

Definition 1 Uniformly Ultimately Bounded (UUB) Khalil (2002): A solution of ẋ(t) = f(t, x) is
said to be UUB with an ultimate bound of ε if ∃ε > 0,∆ > 0 such that ∀δ ∈ (0,∆), ∃T (δ, ε) ≥ 0 :

‖x(t0)‖2 ≤ δ =⇒ ‖x(t)‖2 ≤ ε, ∀t ≥ t0 + T (δ, ε).

Problem 1 Output Regulation Solvability: Consider the car-following dynamics (1). Determine the
existence of a static policy

u = F (y, ȳ), (7)

such that the regulated output vec(e(t)) is asymptotically stable with x1, x2, and x3 bounded.

Note that the static control policy (7) does not require knowledge of v̄.

Problem 2 Learning-Based Output Regulation: Find a static policy (8) for the dynamics (1), where
ˆ̄y is learned to approximate ȳ, such that vec(ê(t)) = vec(ˆ̄y − y), x1, x2, and x3 are UUBs:

u = F (y, ˆ̄y). (8)
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3. Main Result

In Section 3.1 we show the existence of solutions to Problem 1 by casting the problem as a static
output feedback problem. In Section 3.2, we show the architecture of a view synthesizer that will be
used to provide reference images needed to compute the tracking error and regulated output (1e).
In Section 3.3, we show a block diagram of the proposed controller, and discuss how to treat the
RGB values so that generality is not lost as stated in Assumption 3. Later in Section 3.4, we show
closed-loop stability with the camera and the reference view synthesizer in the loop.

3.1. Existence of Solutions

To address Problem 1, we first note that (7) is a static policy. One direction to follow is therefore to
reduce Problem 1 into the following problem.

Problem 3 Static Output Feedback: Consider the car-following dynamics (1). Determine the
existence of a static policy (9) such that x1, x2, and x3 are asymptotically stable:

u(t) = F (e(t)). (9)

Problem 3 is a state-regulation problem. The next theorem shows the existence of a solution to
this state-regulation Problem 3, and thus to the output regulation Problem 1.

Lemma 1 For a fixed s̄, Θ, consider writing (1a), (1b) and (1c) in the form ẋ = f(x) + g(x)u(x)
and h(x) = h(x2, s̄,Θ). There exists V (x) = xᵀPx with P = P ᵀ ≥ 0 andG(x) ∈ C(Rn×1,Rm×1)
such that over a domain D ⊂ Rn×1, where x = 0 ∈ D:

0 =
dV (x)

dx

ᵀ

f(x)− 1

4

dV (x)

dx

ᵀ

g(x)gᵀ(x)
dV (x)

dx
+ hᵀ(x)h(x) +Gᵀ(x)G(x), (10a)

0 =
dV (x)

dx

ᵀ

f(x), ∀x ∈ ker(h(x)). (10b)

Theorem 1 A static output feedback policy (9) exists that solves Problem 3, and thus Problem 1.

Proof First, if Problem 3 has a solution, this implies that Problem 1 is solvable because u(t) =
F (y, ȳ) = F (e(t)) and limt→∞ x2(t) = 0 =⇒ limt→∞H(x2(t), s̄,Θ) = 0 by Assumption 2 and
local continuity from Assumption 5. From Lemma 1 there exists a positive semi-definite solution to
(10) over a domain D ⊂ Rn×1. It follows from Astolfi and Colaneri (2002) and Astolfi and Colaneri
(2001) that there exists a stabilizing state-feedback policy

u(x) = G(x)− 1

2
gᵀ(x)

dV (x)

dx
, (11)

and using the rank theorem, (11) can be written as a static output feedback policy u(h(x)) = F (e(t))
over a region around the equilibrium point. Thus Problem 3 has a solution.

3.2. Reference View Synthesis

We show how to synthesize an imagined reference image ȳ = ICam(s̄,Θ,Ω) that places the leading
car at the desired inter-vehicle spacing s̄ as would be viewed by the following car. In doing so, ȳ
needs to ideally satisfy Assumption 1. To do so, we consider an approach based on appearance flow
Zhou et al. (2016) which has been proposed in the context of 3D view transformation Tatarchenko
et al. (2016). However, our objective herein is not to transform the entire view, but rather to generate
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a view that corresponds to moving an object in the scene closer to or farther away from the observer
through a frozen background. Moreover, unlike other work subsequent to Zhou et al. (2016), namely
Park et al. (2017), we do not worry about occlusion issues that are more relevant in the rotation of
3D objects and the need to inpaint the hidden sides of the object by hallucinating a view completion.

s̄

y

ˆ̄y

Figure 2: Reference View Synthesizer.

Our reference view synthesizer is shown in
Figure 2 which takes as input a raw camera RGB
image and the desired inter-vehicle spacing, and
generates as output a view placing the leading
vehicle at the desired spacing away from the
following vehicle. The raw camera image is an
input to an autoencoder that is trained to gen-
erate an appearance flow as its output based on
s̄, where this appearance flow determines which
pixels from the camera raw image to copy from
as opposed to generating pixels from scratch.
The generated appearance flow and the raw cam-
era image are both fed to a bilinear sampler and
the output is an RGB image representing the synthesized view. Note that the camera raw image is an
input to both the autoencoder, and the bilinear sampler. The bilinear sampler is differentiable for
backpropagation purposes as shown in Jaderberg et al. (2015).

The encoder is constructed from 8 convolutional neural networks (CNNs) each followed by a
rectified linear unit (RELU) and with the last layer flattened. All have a stride of 2, padding of 1 and
kernel of 4 except for the first layer which has a kernel size of 3, stride of 1 and padding of 1.

The decoder is constructed from 7 convolutional transpose neural networks with stride 2, padding
1 and kernel of 4, each followed by a RELU and a CNN with kernel 3, stride 1 and padding 1
followed by a tangent hyperbolic function. The last layer clearly outputs values between -1 and 1,
representing the appearance flow. The input to the decoder is the flattened output of the encoder in
addition to the desired spacing s̄.

The bilinear sampler takes as input the raw camera RGB tensor and the appearance flow-field
tensor which acts on an identity sampling grid to form a modified sampling grid. The modified
sampling grid determines, for each output pixel, the location of the input pixels to copy from. Almost
all background pixels are copied from their original locations as is to ensure background invariance,
while the pixels representing the current location of the leading car and the desired location are
impacted. The reference image can therefore be represented as

ˆ̄y = ISyn(s̄, ICam(s̄− x2,Θ,Ω)), (12)

which will be assumed to satisfy Assumptions 1 to 5, and the following assumption.

Assumption 6 View Synthesis Error: For a given Θ and s̄, ∃ε1 > 0 such that

‖vec( ICam(s̄,Θ,Ω)︸ ︷︷ ︸
ȳ

− ISyn(s̄, ICam(s,Θ,Ω))︸ ︷︷ ︸
ˆ̄y

)‖2 ≤ ε1. (13)

3.3. Block Diagram of the Feedback Loop

We start by showing a block diagram of the proposed controller with a camera and a reference view
synthesizer in the loop as shown in Figure 3.
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s̄

y ˆ̄y ˆ̄y − y u s y

y

Figure 3: Block Diagram of Feedback Loop.

s̄

y

s0
y

ˆ̄y

y0

|ˆ̄y − y0|

|y − y0| −|
ˆ̄y − y0|+ |y − y0|

u s y

y

Figure 4: Block Diagram of a Generalized Feedback Loop.

As straightforward as this may seem, the block diagram of Figure 3 may loose the generality
Assumption 3 states. To see this, consider a case where s̄− s ≥ 0 and the following two 3-by-3 pixel
images where we show a single color channel only, e.g. Green:

z̄ =

B O B
B B B
B B B

 , (14a) z =

B B B
B B B
O O O

 . (14b)

The reference image z̄ has 1 pixel in the first row denoted by the letter O representing the color
of an object traversing a background of color denoted by B. The image z has 3 pixels in the last
row representing the same observed object at a closer distance to the observer thus occupying more
pixels. From (4), we get

1ᵀ · vec(z̄ − z) = (O −B) + 3(B −O) = 2(B −O). (15)

If the object is black moving in a green background, then we have O = 0 and B = 1 and thus
1ᵀ · vec(z̄ − z) ≥ 0, otherwise if the object is green and moving through a black background, then
O = 1 and B = 0 and thus 1ᵀ · vec(z̄ − z) ≤ 0.

To enforce the generality of Assumption 3, we need an expression that is invariant to the polarity
of (B −O), in other words a function of |B −O|. Consider a 3-by-3 pixel image z0 representing the
background only whose elements are all B values. By adding and subtracting z0 to (15) and taking
absolute values, we get the following

1ᵀ · vec(−|z0 − z̄|+ |z0 − z|) = −|B −O|+ 3|B −O| = 2|B −O|, (16)
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which is the desired expression. Equation (16) provides a clear breakdown to how the error signal can
achieve the desired error directionality and magnitude. We therefore reorganize the block diagram in
Figure 3 as shown in Figure 4 to ensure the generality of Assumption 3 is not lost.

Note that we may use the view synthesizer to generate a background by choosing s0 to be a large
value, thus the leading car essentially is vanishing from the view.

3.4. Stability Analysis of the Learning-Based Controller

The stability analysis will be discussed for the block diagram of Figure 3. We treat the following
nonlinear controller which has a proportional gain acting on a neural network based error signal

u = vec(K)ᵀ · vec(ˆ̄y − y) = vec(K)ᵀ · vec(ê), (17)

which relates to (7) and mainly (9); and where ˆ̄y − y = ISyn(s̄, ICam(s,Θ,Ω)) − ICam(s,Θ,Ω).
Note that ˆ̄y reflects an internal model principle. ê enables background invariance, thus generalization
to backgrounds. Generalization and sample efficiency are key performance issues Chen et al. (2020)
and Sax et al. (2019).

We first note that the dynamical system (1) can be decomposed into two subsystems, a stable
uncontrollable subsystem governing the dynamics of x1(t) and a controllable subsystem governing
the dynamics of x2(t) and x3(t). By decoupling the stable uncontrollable subsystem, we have:

ẋ2(t) =− x3(t), (18a)

ẋ3(t) =− α2

m2
x3(t) +

1

m2
u, (18b)

y(t) =ICam(s̄− x2,Θ,Ω), (18c)

ê(t) =ˆ̄y − y = ISyn(s̄, ICam(s,Θ,Ω))− ICam(s̄− x2,Θ,Ω). (18d)

The following theorem demonstrates stability and thus addresses Problem 2.

Theorem 2 Consider controller (17) and let K = 1. The dynamics (18) for a fixed Θ is UUB.

Proof We first construct an appropriate Lyapunov function candidate. Let u∗(x2) = vec(K)ᵀ ·
vec(H(x2, s̄,Θ)). Consider the following positive definite function for subsystem (18)

V (x2, x3) = w1x2
2 + w2x2x3 + w3x3

2 + w4

x2∫
0

u∗(z)dz, (19)

where w1 > 0 is arbitrary, and w3 > 0, and w2 are chosen appropriately and such that w1x
2
1 +

w2x2x3 + w3x
2
3 is positive definite in x2 and x3. Moreover w4 > 0 will be chosen appropriately

noting that the integral term is nonnegative due to Assumption 3 and K = 1.
From Assumption 5, u∗(z) is locally continuous in z. Differentiating V (x2, x3) along the

trajectories of (18), we get

V̇ (x2, x3) =2w1x2ẋ2 + w2ẋ2x3 + w2x2ẋ3 + 2w3x3ẋ3 + w4ẋ2u
∗(x2),

=

(
−2w1 −

α2

m2
w2

)
x2x3 +

(
−w2 − 2

α2

m2
w3

)
x2

3 +
w2

m2
x2u+

(
2
w3

m2
u− w4u

∗
)
x3.

(20)
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Adding and subtracting w2
m2
x2u

∗ to (20), we get

V̇ (x2, x3) =

(
−2w1 −

α2

m2
w2

)
x2x3 +

(
−w2 − 2

α2

m2
w3

)
x2

3

+
w2

m2
x2(u− u∗) +

w2

m2
x2u

∗ +

(
2
w3

m2
u− w4u

∗
)
x3.

(21)

Choosing w2 = −2m2
α2
w1 to cancel the x2x3 term, and choosing w4 = 2 w3

m2
we get

V̇ (x2, x3) =

(
2
m2

α2
w1 − 2

α2

m2
w3

)
x2

3 − 2
w1

α2
x2(u− u∗(x2))− 2

w1

α2
x2u

∗(x2)

+ 2
w3

m2
x3(u− u∗(x2)).

(22)

We finally choose w3 > (m2
α2

)2w1 to force the coefficient of the first term in the right-hand side
of (22) to be negative. We therefore write (22) as follows

V̇ (x2, x3) ≤
(

2
m2

α2
w1 − 2

α2

m2
w3

)
|x3|2 + 2

w3

m2
|x3||u− u∗(x2)|

− 2
w1

α2
|x2||u∗(x2)|+ 2

w1

α2
|x2||u− u∗(x2)|,

=− |x3|
((

2
α2

m2
w3 − 2

m2

α2
w1

)
|x3| − 2

w3

m2
|u− u∗(x2)|

)
− 2

w1

α2
|x2| (|u∗(x2)| − |u− u∗(x2)|) .

(23)

From Assumption 6, it can be shown that ∃ε2 > 0 such that |u − u∗(x2)| < ε2, which when
substituted in (23) we get

V̇ (x2, x3) ≤ −|x3|
((

2
α2

m2
w3 − 2

m2

α2
w1

)
|x3| − 2

w3

m2
ε2

)
− 2

w1

α2
|x2| (|u∗(x2)| − ε2) . (24)

It can be shown that ∃r > 0 and a ball B([x2, x3], r) around the origin such that if [x2, x3] /∈
B([x2, x3], r) then V̇ (x2, x3) ≤ 0.

4. Conclusion

We demonstrated that stable feedback control directly from raw pixels is plausible and promising,
and that introduced assumptions hold reasonably well for the application domain considered within a
simulator environment. For further improvements and scalability, we need to investigate approaches
to relax strong assumptions and have the theory encompassing of more practical scenarios and
different types of motions and tracked objects, and to further provide quantitative and qualitative
assessments on generalization and sample complexity. The method generalized well to different
driving backgrounds that have not been seen before due to the ability of the synthesizer to be
reasonably invariant to background changes. The approach provides a more clear path to apply
control theory directly to pixels and establish safe and trustworthy dynamical systems that are more
interpretable compared to purely end-to-end learning approaches. The approach can extend to various
automatic control applications where a cheap camera sensor can be deployed for motion control.1

1. Code is available at https://github.com/abukhalaf/FeedbackFromPixels_L4DC2021
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Appendix A. Proof of Lemma 1

Proof Note that h(x) = h(x2, s̄,Θ), and therefore from Assumption 2, it follows that ker(h(x)) =
{x ∈ Rn×1 : x2 = 0}. Moreover, by writing f(x) = Ax, g(x) = B, and locally hᵀ(x)h(x) = c2x2

2

from Assumption 5, and G = [G1, G2, G3], and where

A =

− α1
m1

0 0

1 0 −1
0 0 − α2

m2

 , (25a) B =

 0
0
1
m2

 , (25b) C =
[
0 c 0

]
, (25c)

we can replace the Hamilton-Jacobi (HJ) equation (10a) and (10b) over domain D ⊂ Rn×1 with

0 =AᵀP + PA− PBBᵀP + CᵀC +GᵀG, (26a)

0 =N(AᵀP + PA)N, N = I − Cᵀ(CCᵀ)−1C. (26b)

From the kernel condition (26b), we have

P =


p11

α1
m1
p11 −

α1
m1

p11+
α2
m2

p33
α1
m1

+
α2
m2

α1
m1
p11 p22 − α2

m2
p33

−
α1
m1

p11+
α2
m2

p33
α1
m1

+
α2
m2

− α2
m2
p33 p33

 . (27)

From the algebraic Riccati equation (26a), we obtain the following for p11, p22, p33 and G:

p11 =
|c|α2 + |c|2m2

α2 − |c|
2

m1
α1

m2
α2

m1
α1

+
m1
α1

|c| α1
α1m2+α2m1

+ α1
2

m1
2

, (28a)
G1 = −α1m2p11 + α2m1p33

α1m2
2 + α2m1m2

, (28b)

p22 = |c|α2 + |c|2m2

α2
, (28c) G2 = 0, (28d)

p33 = |c|m2
2

α2
, (28e) G3 = |c|m2

α2
. (28f)

Substituting (28a), (28c) and (28e) in (27), it follows that the principal minors of (27) are
nonnegative; hence P ≥ 0.

For specific numerical values of α1, α2, m1 and m2, a numerical procedure shown in Kučera
and Souza (1995) and Gadewadikar et al. (2006) can be used to numerically solve (26).

Appendix B. Simulation Results

Due to space limitations, these results are provided in the technical report Abu-Khalaf et al. (2021).
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