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Abstract
We study the estimation of policy gradients for continuous-time systems with known dynamics.
By reframing policy learning in continuous-time, we show that it is possible to construct a more
efficient and accurate gradient estimator. The standard back-propagation through time estimator
(BPTT) computes exact gradients for a crude discretization of the continuous-time system. In
contrast, we approximate continuous-time gradients in the original system. With the explicit goal
of estimating continuous-time gradients, we are able to discretize adaptively and construct a more
efficient policy gradient estimator which we call the Continuous-Time Policy Gradient (CTPG).
We show that replacing BPTT policy gradients with more efficient CTPG estimates results in faster
and more robust learning in a variety of control tasks and simulators.
Keywords: differentiable physics, neural ODEs, reinforcement learning, optimal control, policy
optimization

1. Introduction

Many robotic control problems can be reduced to finding a desirable trajectory through a physical
system governed by piece-wise smooth dynamics, e.g. control of ground vehicles, robot arms,
quadrotors, and so forth. When the dynamics of a system are known we can efficiently optimize a
trajectory via first-order methods, constructed using explicit gradients of the dynamics. We can use
these gradients to solve open-loop trajectory optimization problems (Carius et al., 2019; Orsolino
et al., 2018; Carius et al., 2018) or to train a closed-loop feedback controller, i.e. a policy (Hirose
et al., 2019; Faulkner et al., 2018; Kim et al., 2018). In this paper we focus on the latter problem of
policy learning, although our insights can be applied equally well to trajectory optimization.

Computing exact policy gradients for most continuous-time dynamical systems proves intractable.
Policy gradient algorithms rely on discrete numerical methods to estimate a robot’s trajectory un-
der a policy, and the sensitivity of this trajectory to the robot’s actions dictated by the policy. The
standard numerical estimate of policy gradients is back-propagation through time (BPTT); this al-
gorithm abandons study of the continuous problem and immediately discretizes time, computing
exact policy gradients with respect to discretized dynamics. The discretization step-size controls
the accuracy of BPTT, resulting in a tradeoff between the accuracy of the gradient estimates and the
computational cost of computing an estimate.

In this paper we defer discretization and begin by characterizing the continuous-time policy
gradient. Rather than computing an exact gradient of a discretized system, we instead compute an
approximate gradient of the continuous system. When we discretize to compute this approximation,
we do so with the explicit goal of constructing an efficient estimate of the continuous-time policy
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gradient. This approach takes inspiration from the numerical ODE literature, as well as the neural
ODE (Chen et al., 2018). We are motivated by the following questions:

Q1: Can we compute more accurate estimates of the policy gradient? BPTT introduces
numerical error by discretizing the robot trajectory under a policy. This error injects variance into
the learning process, which could slow down learning. By computing a more accurate estimate of
the policy gradient, can we optimize a policy in fewer iterations?

Q2: Can we compute policy gradient estimates more efficiently? Suppose we want a target
level of accuracy for our policy gradient estimates. We can achieve the target accuracy by controlling
the discretization step-size for BPTT. By using better numerical algorithms, can we achieve the same
accuracy with a smaller computational budget?

We give affirmative answers to both Q1 and Q2. We propose a new policy gradient estimator
(Section 3) which we call the Continuous-Time Policy Gradient (CTPG). This estimator strictly
improves upon the BPTT estimator, in the sense that the tradeoff curve between gradient accuracy
and computational budget for CTPG Pareto-dominates the tradeoff curve for BPTT. In the spirit of
algorithms like SGD, we ask: is it possible to sacrifice accuracy of the gradient estimates in order
to optimize more efficiently? We find that a certain amount of numerical accuracy is required of
our policy gradient estimator in order for optimization to succeed: unlike SGD, poor numerical
estimates of policy gradients are not unbiased. However, in a variety of experimental settings (Sec-
tion 4) we demonstrate that replacing expensive BPTT estimates with relatively inexpensive CTPG
estimates of comparable accuracy results in faster overall learning.

2. Learning with Policy Gradients

Our goal is to learn how to act within a deterministic physical system while minimizing a cost
functional. Given a model of the dynamics f : Rd ⇥ Rk ! Rd and time-varying control inputs
(actions) u : [0,1) ! Rk, the state of the system x : [0,1) ! Rd is governed by a first-order
ordinary differential equation

dx(t)

dt
= f(x(t), u(t)). (1)

Guided by a local cost (reward function) w : Rd ⇥ Rk ! R of taking action u in state x, and a
terminal cost J : Rd ! R, we seek controls u that minimize the global cost over a trajectory of
length T :

minimize
u(t)

Z T

0
w(x(t), u(t)) dt+ J(x(T ))

subject to
dx(t)

dt
= f(x(t), u(t)).

(2)

We are interested in learning feedback controllers in the form of policies u(t) = ⇡✓(x(t)) with
parameters ✓. For any fixed initial conditions x(0) = x0, the optimization Eq. (2) is a trajectory op-
timization problem with parameters ✓. For any fixed policy ⇡✓(x(t)), computation of the trajectory
x(·) is an initial value problem that is completely determined by the starting state x0. The global
loss of following the policy ⇡✓ along a trajectory x(·) is given by

L(x(0), ✓) ,
Z T

0
w(x(t),⇡✓(x(t))) dt+ J(x(T )). (3)
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Figure 1: Comparing policy gradient estimators. Neural ODE (Sec. 3.3) approximates continuous
trajectories, but accumulated error in its adjoint estimates. Neural ODE with checkpoint-
ing mitigates this error, but still accumulates error between checkpoints. Euler integration
with BPTT (Sec. 3.2) stores a discretized trajectory, which prevents error accumulation,
at the cost of a naive discretization. CTPG (Sec. 3.1) discretizes adaptively, and stores a
spline approximation of the trajectory to avoid error accumulation in the adjoint.

We seek to learn a policy that generalizes over a distribution of initial states x0 ⇠ ⇢0, motivating us
to minimize the expected loss L(✓) , Ex0⇠⇢0 L(x0, ✓).

Adjoint sensitivity analysis (Pontryagin et al., 1964) characterizes @L(x0,✓)
@✓ in a form that is

amenable to computational approximation. Consider the adjoint process ↵(t) , @L(x0,✓)
@x(t) ; the evo-

lution of this adjoint process for a trajectory x can be described by the dynamics

d↵(t)

dt
= �↵(t)> @f

@x(t)
� dw(x(t),⇡✓(x(t)))

dx(t)
. (4)

These dynamics can be compared to Chen et al. (2018), with the notable distinction that the loss
in Eq. (3) is path-dependent. This causes the instantaneous loss w(x(t), u(t)) to accumulate con-
tinuously in the adjoint process ↵(t). The adjoint process itself is constrained by the final value
↵(T ) = @J

@x(T ) . Sensitivity of the loss to the parameters ✓ is given by

@L(x0, ✓)
@✓

=

Z T

0
↵(t)>

@f

@u

@u

@✓
+

@w

@u

@⇡✓(x(t))

@✓
dt. (5)

The integral in Eq. (5) is amenable to estimation using various numerical techniques, each of which
is susceptible to different forms of numerical error; a stylized illustration of the behaviour of various
gradient estimators is presented in Figure 1.
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3. Numerical Policy Gradient Estimators

Policy gradients can be calculated via the integral described in Eq. (5). This integral in turn depends
upon the trajectory x(t) and the adjoint process ↵(t). To estimate a policy gradient, we require
solutions to the following three sub-problems:

1. The trajectory x(t), governed by the dynamics in Eq. (1).

2. The adjoint process ↵(t), governed by the dynamics in Eq. (4).

3. The policy gradient accrued along x(t) and ↵(t), described by the integral in Eq. (5).

The accumulated ✓ gradients, Eq. (5), can be described as the value at t = 0 of the process g(t),
with final value g(T ) = 0, defined by the dynamics dg(t)

dt = �↵(t)> @f
@u

@u
@✓ �

@w
@u

@⇡✓(x(t))
@✓ . Collec-

tively, the trajectory process x(t), the corresponding adjoint process ↵(t), and the accumulated loss
g(t) comprise the following two-point boundary value problem (BVP):

Initial Value Dynamics Final Value

x(0) = x0,
dx(t)

dt
= f(x(t), u(t)), (6)

d↵(t)

dt
= �↵(t)>@f

@x
� dw

dx(t)
, ↵(T ) =

dJ

dx(T )
, (7)

dg(t)

dt
= �↵(t)>@f

@u

@⇡✓

@✓
� @w

@u

@⇡✓

@✓
, g(T ) = 0. (8)

To understand how various subsystems of the policy gradient estimator interact, we highlight quan-
tities computed by the physics simulator in red and quantities computed by automatic (or symbolic)
differentiation in blue.

The most common approach to estimating g(0) = @L(x0,✓)
@✓ in the controls community is back-

propagation through time (BPTT). The idea is to discretize the dynamics x(t) with a constant time
step h, after which sensitivities to the policy parameters ✓ are computed by the standard backprop-
agation algorithm. In Section 3.2 we describe how this algorithm can be interpreted as an approx-
imate solution to the continuous boundary-value problem, using Euler integration to estimate the
dynamics x(t), ↵(t), and g(t). The numerical ODE community widely eschews Euler integration
in favor of more sophisticated solvers. A natural question arises: can we improve upon naive Euler
integration to construct better gradient estimates?

In Section 3.1 we introduce a new, general class of gradient estimators for this boundary value
problem that we call the Continuous-Time Policy Gradient. In Section 3.2 we show how BPTT
can be viewed as an instantiation of Continuous-Time Policy Gradients, using Euler integration as
a numerical solver. The CTPG generalization allows us to replace Euler integration with a more
sophisticated solver; in our experiments we opted for Runge-Kutta (RK4) and adaptive Adams-
Moulton methods but these solvers can be seamlessly replaced by whatever solver is most suitable
for a particular problem. In Section 3.3 we discuss the Neural ODE estimator and its inadequacy for
use with stabilizing control problems. And in Appendix C we discuss alternate methods for solving
the BVP that may be of interest in specialized settings.
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3.1. Continuous-Time Policy Gradients

We propose to solve the boundary value problem described by Eqs. (6), (7), and (8) using a forward-
backward meta-algorithm, which is analogous to (but distinct from) the forward and backward
passes of an automatic differentiation system (and more generally, the forward-backward approach
to dynamic programming). First, we use a numerical solver to estimate the solution to the initial
value problem given by Eq. (6) (the forward pass). Crucially we store the estimated trajectory for
later use, incurring a storage cost off O(s) where s is the number of steps visited by the numerical
solver. Second, we use a numerical solver to estimate the solution to initial value problem given
by Eq. (7) (the backward pass) using the cached trajectory computed in the forward pass. As we
compute the backward pass we accumulate an estimate of the integral in Eq. (8), the total sensitivity
of the loss to ✓ along the estimated trajectory. Details are presented in Algorithm 1.

Figure 2: Approaching the Pareto frontier: Euler integra-
tion and other methods are Pareto dominated by
CTPG. Lower and to the left is better.

Figure 2 illustrates performance
of Continuous-Time Policy Gradients
(using the RK4 solver) and several
other algorithms. The dynamics are
given by the linear-quadratic regula-
tor (LQR) and the policy is fixed to
be the optimal LQR policy. By ad-
justing the error tolerance of the RK4
solver, we construct a trade-off curve
between the accuracy of the CTPG
estimates and the computational cost
of computing an estimate. The CTPG
estimator Pareto-dominates the other
estimators. In this sense, we argue
that the other estimators are inadmis-
sible: e.g. for any BPTT estimator,
there is a CTPG estimator that is ei-
ther (1) more accurate at the same
level of performance or (2) more efficient at the same level of accuracy.

The effectiveness of CTPG is attributable to the efficiency of the RK4 solver, which can estimate
the trajectory and adjoint paths while visiting many fewer states than a comparably accurate Euler
solver (BPTT). This also means that CTPG is more memory efficient than BPTT: both algorithms
require storage that grows linearly in the number of states visited in the forward pass. The (possibly
surprising) under-performance of the Neural ODE estimator is explained in Section 3.3.

3.2. Backpropagation Through Time
Backpropagation through time (BPTT) is simply the application of reverse-mode automatic differ-
entiation (AD) to computations involving a “time” axis. Like CTPG, AD proceeds with a forward
and backward pass. In the forward pass, the trajectory x(t) is approximated using discrete, fixed-
length linearized steps (see Figure 1); this is equivalent to using the Euler numerical integration
method to solve the initial value problem Eq. (6). States computed in the forward pass are stored,
incurring an O(1/h) memory cost, and avoiding the need to recompute these values in the backward
pass. In the backward pass of AD computes adjoints of the forward computation graph, using the
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Algorithm 1 Continuous-Time Policy Gradients

Given: Differentiable physics simulator f(x, u), cost/reward function w(x, u), and a numerical
ODE solver Solve[initial conditions, dynamics]

Input : Policy ⇡✓(x), initial state x0

Result: An approximation of @L(x0,✓)
@✓

Forward pass: (compute and store an approximation of the trajectory x : [0, T ]! Rd)

x̃(·) Solve

x(0) = x0,

dx(t)

dt
= f(x,⇡✓(x))

�
.

Backward pass: (compute an approximation of the Pontryagin adjoints ↵ : [T, 0]! Rd)

↵̃(·) Solve

↵(T ) =

dJ

dx̃(T )
,
d↵(t)

dt
= �↵(t)> @f

@x̃(t)
� dw

dx̃(t)

�
.

Return:Z T

0
↵̃(t)>

@f

@u

@u

@✓
+

@w

@u

@⇡✓

@✓
dt as an approximation of

@L(x0, ✓)
@✓

.

values x(t) stored during the forward pass. This is equivalent to using Euler integration to solve the
final value problems described by Eqs. (7) and (8).

Backpropagation is an exact algorithm, in the sense that it computes exact gradients of the loss
for the discretized dynamics. But these dynamics are only an approximation of the continuous
trajectory x(·), and therefore the gradients only approximate the desired value g(0). Computing an
accurate estimate of the continuous trajectory using Euler integration requires an excessively small
step size h, and a correspondingly large memory allocation. Furthermore, the resulting computation
graph is very deep, which could make learning difficult (Quaglino et al., 2020).

3.3. The Neural ODE Algorithm

To efficiently compute the backward pass, we rely on a stored spline of states s visited from the
forward pass, leading to an algorithm with O(s) space complexity. For many physical systems, the
dynamics f(x, u) are “invertible”; this invites us to consider algorithms with constant space com-
plexity, recomputing the state variables x(t) in the backward pass following the reverse dynamics
�f(x, u) (Chen et al., 2018). Constant-memory algorithms are intriguing, but we observe that their
results are numerically unstable for stabilizing control problems. We visualize this instability for an
LQR system in Figure 3.

In principle, a trajectory x(t) is uniquely defined by either its initial value x(0) thanks to the
Picard-Lindelöf theorem. But for control problems that seek to stabilize the system towards some
fixed goal-point, it is numerically unstable to reconstruct the trajectory from its final state; moreover,
this instability becomes more pronounced as the policy learns to more effectively achieve its goal,
and computing the inverse trajectory becomes increasingly chaotic.

To better formalize this notion, we appeal to linear stability theory. For a system dx
dt = �(x),

linear stability analysis suggests inspecting the eigenspectrum of d�
dx : if d�

dx has all eigenvalues with
negative real part the system is said to be linearly stable, and if there exists an eigenvalue with
positive real part it is said to be linearly unstable. Stabilizing control problems by their nature
demand solutions such that the system has negative eigenvalues �� ⌧ 0, as small as possible
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Figure 3: Left: The Neural ODE estimator used to learn an LQR policy. The trajectory loss L(x0, ✓)
is shown in blue, and the discrepancy ||x(0) � x̃(0)||2 is shown in red where x̃(t) is the
“recovered” path taken by the adjoint process. The discrepancy between the forward and
reverse paths is negligible until the control learns to stabilize the system, at which point
it becomes impossible to recover x(0) from x(T ). Right: The same problem, but with
CTPG. Unlike the Neural ODE, CTPG records a lightweight spline estimate of x(t).

subject to control costs. This becomes catastrophic in the reverse-direction when we are faced with
a linearly unstable system with eigenvalues �� 0! Furthermore, as we discuss in Appendix B, the
neural ODE backpropagation dynamics are in fact linearly unstable everywhere.

4. Experiments

To better understand CTPG’s behavior, we compare CTPG with BPTT for a variety of control
problems. We restrict our experiments to settings in which first-order policy gradients optimization
can effectively discover the optimal policy; extension of these local search algorithms to global
policy optimization is beyond the scope of this work. We begin with a relatively straightforward
control problem in Sec. 4.1 for which we wrote a simple differentiable simulator. We then evaluate
CTPG for a task defined in an existing differentiable physics engine from Hu et al. (2020) in Sec. 4.2.
In Sec. 4.3 we evaluate CTPG for a task defined in the MuJoCo physics simulator, using finite
difference approximations to the gradients of the physical system. We conclude in Sec. 4.4 with
a challenging quadrotor control problem running in a purpose-built differentiable flight simulator.
Code to reproduce our experiments is available at https://github.com/samuela/ctpg.

4.1. Differential Drive Robot

The differential drive is a “Roomba-like” robot with two wheels that are individually actuated to
rotate or advance the robot. We use the dynamics defined in LaValle (2006), but control the torque
applied to each wheel rather than directly controlling their angular velocities. We initialized the
robot to random positions and rotations throughout the plane and learn a policy that drives it to the
origin. See Figure 4 for a visualization of results. Both CTPG and BPTT are able to learn working
policies, but CTPG is able to do so more efficiently. Videos of the training process are available in
the supplementary material.

4.2. DiffTaichi Electric Field Control

To test CTPG’s ability to work with third-party differentiable physics simulators, we integrated and
compared against the DiffTaichi (meta) physics engine (Hu et al., 2020, 2019). DiffTaichi (now
part of Taichi) is a differentiable, domain-specific language for writing physics simulators. We
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CTPG (ours) CTPG (ours) CTPG (ours)

Figure 4: Stages of training policies to control a differential drive robot to stabilize towards the ori-
gin. Each curve denotes the trajectory of the robot in the (x, y) plane under the respective
policies. A full video is available in the supplementary material.

tested against their electric field control experiment in which eight fixed electrodes placed in a 2-D
square modulate their charge driving a red ball with a static charge around the square. The red ball
experiences electrostatic forces given by Coulomb’s law, F = ke

q1q2
|r|2 r̂ (Zangwill, 2013).

We evaluate performance both in terms of wallclock time and in terms of the number of oracle
function calls made to the simulator, namely the combined evaluations of f , @f/@x, and @f/@u.
Calls to the simulator constitute the vast majority of the run time, so we find this to be the most
accurate hardware-independent measure of performance. We present the results in Fig. 5. We find
that CTPG reliably outperforms BPTT both in terms of wallclock time and number of function
evaluations, even with DiffTaichi’s exact BPTT configuration.

Figure 5: The DiffTaichi electric experiment involves modulating the charges of the 8 yellow elec-
trodes to push the red charge to follow the blue dot (right). We found that CTPG per-
formance was dominant in terms of the number of function evaluations (left) as well as
wallclock time (center) across 32 random trials.

4.3. MuJoCo Cartpole

MuJoCo (Todorov et al., 2012) is a widely used physics simulator in both the robotics and rein-
forcement learning communities. In contrast to DiffTaichi (Section 4.2) MuJoCo models are not
automatically differentiable, but rather they are designed to be finite differenced. We demonstrate
that BPTT and CTPG can be applied to such black-box physics engines. These finite difference
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Figure 6: Visualization of all states visited by a policy trained with BPTT (left) and CTPG (middle).
Fewer states are visited by CTPG during training leading to more efficient learning (right).
Error bars on the training plot show the 0.25-0.75 quantile range of 5 random seeds.

derivatives are used in Eqs. 7 and 8 alongside the automatically differentiated policy derivatives.
We test on the Cartpole swing-up task specified by the dm control suite (Tunyasuvunakool et al.,
2020), a classic non-linear control problem. This model was re-implemented in the Lyceum frame-
work (?) with the Euler integration timestep used for BPTT kept the same as the model specification
(0.01 seconds). Total dynamics evaluations included those used for finite differencing.

Results are presented in Fig. 6. We find that CTPG needs significantly fewer dynamics evalu-
ations than BPTT per learning instance. While both techniques eventually reach a similar level of
performance for this task, CTPG demonstrates substantial efficiency gains.

4.4. Quadrotor Control

Figure 7: CTPG learns policies to stabilize the quadro-
tor towards the origin, while Euler integration
and BPTT–with the same number of function
evaluations–can not.

Quadrotors are notoriously difficult
to control, especially given the strict
real-time compute requirements of a
flying aircraft, and tradeoffs between
compute power, weight, and power
draw. As such, they make for a strong
use case of the policy learning tools
that CTPG brings to bear. We test
CTPG’s ability to learn a small, ef-
ficient neural network controller that
flies a quadrotor.

We implemented a differentiable
quadrotor simulator based on the dy-
namics from Sabatino (2015), and
train policies to stabilize a quadrotor
at the origin from a wide distribution of initial positions, orientations, and velocities. Our experi-
mental setup is similar to that of Tang et al. (2018). Results are presented in Fig. 7. As a flying
robot, the quadrotor dynamics are inherently unstable. As a result, we found that Euler integration
is often not able to integrate trajectories to sufficient accuracy for policy learning using a similar
sample budget to CTPG.
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5. Related Work

Neural ODEs. Chen et al. (2018) introduced neural ordinary differential equations, based on the
adjoint sensitivity analysis method of Pontryagin et al. (1964) and using backwards dynamics to
reconstruct x(t) as described in Eq. 6. Recent work by Du et al. (2020) and ? studied using Neural
ODEs for system identification as opposed to policy learning. Gholaminejad et al. (2019) explored
a gradient checkpointing scheme for Neural ODEs.

Differentiable physics. Differentiable physics engines have recently attracted attention as a
richer alternative to conventional “black-box” simulators. de Avila Belbute-Peres et al. (2018) in-
troduced a differentiable rigid-body physics simulator based on analytic derivatives through physics
defined via a linear complementarity problem. Qiao et al. (2020) expanded on the types of physical
interactions that could be efficiently simulated and differentiated. Li et al. (2020, 2019) and Battaglia
et al. (2016) proposed developing differentiable physics engines by learning them from data. Schenck
and Fox (2017, 2018) built a differentiable simulator for liquids with applications to robotics. Hu
et al. (2019, 2020) created a differentiable domain-specific language for the creation of physics
simulators, enabling backpropagation through a variety of different physical phenomena.

Trajectory optimization and control theory. Pontryagin et al. (1964) introduced necessary
conditions for optimality of a continuous trajectory, drawing from the calculus of variations. An
alternative perspective, the Hamilton-Jacobi-Bellman equation, provides necessary and sufficient
conditions for optimality of policies (Speyer and Jacobson, 2010). Prior work describes the analytic
adjoints for backpropagation through time (Tedrake; Robinson and Failside, 1987; ?; Mozer, 1989).
Unlike the majority of work in trajectory optimization and control, we use Pontryagin’s maximum
principle to learn global feedback policies instead of fitting single trajectories. Concurrently Jin
et al. (2020) explored differentiating through Pontryagin’s maximum principle. However, they still
considered standard time discretizations, eg. BPTT. Other works have investigated similar forward-
backward schemes for solving the adjoint equations (McAsey et al., 2012).

Numerical methods for ODEs. The study of numerical methods for solving ODEs has a long
and rich history, dating back to Euler’s method (Hairer et al., 1993). In this paper we leveraged
higher-order explicit solvers with adaptive step sizes, especially Runge-Kutta (Wang et al., 2021;
Tsitouras, 2011) and Adams-Moulton methods (Shampine and Watts, 1979; LeVeque, 2007). For a
thorough treatment of ODE solvers we refer the reader to Hairer et al. (1993).

6. Discussion

We introduced Continuous-Time Policy Gradients (CTPG), a new class of policy gradient estimator
for continuous-time systems. By leveraging advanced integrators developed by the numerical ODE
community, CTPG enjoys superior performance to the standard back-propagation through time
(BPTT) estimator. Although we studied policy gradients in this work, it’s worth noting that CTPG
is general enough to operate as a “layer” within any larger differentiable model. This work could
be extended to other related scenarios: systems with non-deterministic dynamics (using stochastic
ODE solvers) infinite-time planning problems (using steady state ODE solvers) and sensor/actuation
latency (using delay differential equations solvers). Adjoints for these alternatives have already been
implemented in Rackauckas and Nie (2017). Another compelling direction for future work would be
the incorporation of value function learning via extension to the Hamilton-Jacobi-Bellman equation.
We are interested in the following questions: (1) When and why do policy gradient optimizations
fail? (2) How can we properly incorporate policy gradient estimates into a global policy search?
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