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Abstract
There is considerable interest in designing meta-reinforcement learning (meta-RL) algorithms,

which enable autonomous agents to adapt new tasks from small amount of experience. In meta-RL,
the specification (such as reward function) of current task is hidden from the agent. In addition,
states are hidden within each task owing to sensor noise or limitations in realistic environments.
Therefore, the meta-RL agent faces the challenge of specifying both the hidden task and states
based on small amount of experience. To address this, we propose estimating disentangled belief
about task and states, leveraging an inductive bias that the task and states can be regarded as global
and local features of each task. Specifically, we train a hierarchical state-space model (HSSM)
parameterized by deep neural networks as an environment model, whose global and local latent
variables correspond to task and states, respectively. Because the HSSM does not allow analytical
computation of posterior distribution, i.e., belief, we employ amortized inference to approximate
it. After the belief is obtained, we can augment observations of a model-free policy with the belief
to efficiently train the policy. Moreover, because task and state information are factorized and
interpretable, the downstream policy training is facilitated compared with the prior methods that
did not consider the hierarchical nature. Empirical validations on a GridWorld environment confirm
that the HSSM can separate the hidden task and states information. Then, we compare the meta-RL
agent with the HSSM to prior meta-RL methods in MuJoCo environments, and confirm that our
agent requires less training data and reaches higher final performance.
Keywords: Meta-reinforcement learning, Partially observable Markov decision process, State
space models, Amortized inference, Disentanglement

1. Introduction

The combination of reinforcement learning (RL) with deep learning has led to the rapid progress
in difficult sequential decision making problems with high-dimensional observations (Mnih et al.,
2015). However, because conventional deep-RL methods learn a separate policy per task, it can lead
to computationally intensive learning, requiring millions of interactions with one task. Fortunately,
many of the tasks tasks that we would like our agents to solve share common structure. For example,
in navigation tasks, an agent needs abilities to explore its surroundings, localize its location, and
accurately map the environment, regardless of where the goal exists (that is, whatever the task is).
Meta-RL (Duan et al., 2017; Finn et al., 2017) is a promising approach that exploits this structure
to learn new tasks more quickly. By training a policy using large quantities of experience collected
across a distribution of tasks, it can quickly adapt to new tasks given a small amount of experience.
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Figure 1: Comparison of Meta-POMDP, Meta-MDP, and POMDP. Note that the reward rt and ac-
tion at are omitted for simplicity. (a) In meta-POMDP, the state st and task information
z are hidden from the agent. (b) In meta-MDP, only the task information z is hidden. (c)
In (single-task) POMDP, only the state st is hidden.

To efficiently train the policy and enable fast adaptation in realistic environments, estimating
both hidden task z and states st is significant. First, meta-RL can be interpreted as a partially ob-
servable multi-task RL problem in which task specification (such as reward function and transition
probability) is hidden from the agent (Humplik et al., 2019; Zintgraf et al., 2020). Moreover, in real-
istic settings, sensor noise or sensor limitations may limit the agent’s perceptual abilities, regardless
of what the task is (Duan et al., 2016; Igl et al., 2018). Therefore, both z and st can be unobservable
from the agent, that is, each task can be partially observable Markov decision process (POMDP,
Figure 1-(c)). We refer to such an environment as meta-POMDP (Figure 1-(a)) and distinguish it
from meta-MDP (Figure 1-(b)), in which states st are observable within each task. In meta-POMDP,
it is not guaranteed that prior methods that assume meta-MDP structure (Rakelly et al., 2019; Zint-
graf et al., 2020) will work well. In addition, while some methods (Duan et al., 2017; Zhao et al.,
2020) were shown to work reasonably well in meta-POMDP, they did not distinguish z and st and
treated them as a single “hidden state.” However, incorporating an inductive bias that z and st have
hierarchical structure of Figure 1-(a) may facilitate training and adaptation of the policy.

To support meta-RL in a realistic setting, we propose a natural and effective method for esti-
mating disentangled belief states about z and st, leveraging an inductive bias that the task and states
can be regarded as global and local features of each task, respectively. Specifically, we train a hier-
archical state space model (HSSM) parameterized by deep neural networks (DNNs), which has the
same data generating process as shown in Figure 1-(a). That is, our HSSM has a global latent vari-
able z̃ and a local latent variable s̃t, which correspond to z and st, respectively. Then, its posterior
distribution for z̃ and s̃t approximates the belief, which summarizes past experience regarding the
current task and states. Although the posterior distribution cannot be analytically computed, we can
approximate it using amortized inference (Kingma and Welling, 2014). After the belief is obtained,
we can augment observations of a model-free policy with the belief to efficiently train the policy,
as performed in prior studies (Zintgraf et al., 2020; Zhao et al., 2020). However, because task and
state information are encoded into separate latent variables, which are factorized and interpretable,
the training and adaptation of the policy are facilitated compared with the prior methods.

In the meta-POMDP setting, (i) we experimentally confirm that our HSSM can disentangle
hidden task information, using a GridWorld navigation environment. Then, using the GridWorld
and standard benchmark MuJoCo environments (Todorov et al., 2012), we compare our method with
prior meta-RL methods in terms of adaptation ability and training efficiency, following Rakelly et al.
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(2019). The results show that, (ii) the proposed method requires less training data and reaches higher
final performance compared with the prior methods. These experiments support our claim that the
disentangled belief is a key ingredient for improving training efficiency and adaptation ability in the
realistic meta-RL setting where both task and states are hidden. Therefore, it is potentially beneficial
for developing general-purpose robots that can solve various tasks with few trials.

2. Meta-POMDP setting

Meta-POMDP is defined by task distribution p(z) and a tuple (S,O,A,R, T, T0, F, γ,H
+), which

depends on the realization of task z ∈ Z (such as, a goal position or natural language instruction).
Here, st ∈ S, ot ∈ O, at ∈ A, γ, and H+ denote state, observation, action, discount factor, and
episode length, respectively. In addition, R = p(rt|st, st−1, at−1; z), T = p(st|st−1, at−1; z), T0 =
p(x0|z), and F = p(ot|st; z) denote distribution of reward, transition, initial state, and observation,
respectively. Because these distributions can vary across tasks, they are conditioned on task z.
However, the agent cannot observe task z as well as state st. Moreover, meta-POMDP assumes the
realistic environments where S, Z R, T , T0, and F are also unknown. This assumption distinguishes
meta-POMDP from Bayes-adaptive POMDP (Ross et al., 2008). Although Bayes-adaptive POMDP
assumes almost the same data generating process as meta-POMDP, it considers relatively small
environments where S and O (state and observation spaces) are finite and known.

Because we adapt the standard meta-RL setting, a policy is first trained with experience col-
lected across a distribution of tasks. Then, the trained policy is evaluated on whether it can obtain
higher rewards within the first N POMDP episodes or at the N -th (final) episode. Here, N POMDP
episodes with length H are sampled from one meta-POMDP episode, that is, H+ = N ×H . When
a single POMDP episode ends, the agent’s state is reset based on the initial probability T0, but task
z remains fixed until one meta-POMDP episode ends.

3. Proposed method

3.1. Optimal policy in meta-POMDP with belief state

The solution for a meta-POMDP is a policy π∗(st|τ0:t) that maximizes discounted returns, i.e.,
π∗ = argmaxπ Epπ [

∑H+

t=0 γ
trt]. However, using the entire trajectory τ0:t = (o0:t, a0:t−1, r0:t−1)

as an input is difficult to handle. Fortunately, meta-POMDP can be regarded as a special case of
POMDP by defining a new state v∗t = [st, z], i.e., regarding task as a type of hidden state. This
formulation enables the exploitation of belief states, which has been well-studied in the POMDP
literature (Kaelbling et al., 1998). Belief bt(v) is a sufficient statistic for optimal at in the sense
that there exists a policy π(at|bt) that satisfies π∗(at|τ0:t) = π(at|bt). Because the belief can be
represented in a lower dimension than τ0:t, the policy π(at|bt) can be trained efficiently.

Then, to efficiently train a policy in a meta-POMDP environment, the critical challenge is the
estimation of the belief state. The simplest way might be using the posterior distribution of the true
environment model bt(v) = p(v∗t = v|τ0:t), which is known to satisfy the property of belief state
(Kaelbling et al., 1998; Zintgraf et al., 2020). In a small environment (Bayes-adaptive POMDP),
the analytical method for calculating the posterior distribution is provided by Ross et al. (2008).
However, we consider a more realistic situation where the true environment model is unknown and
the observation and state spaces could be infinite and unknown. Therefore, we train an environment
model to estimate the belief state, which is described in the next section
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3.2. Estimating belief state with hierarchical state space model

Because we assume that the true environment model is unknown, we propose learning the envi-
ronment model of Figure 1-(a) from data, and then, using posterior distribution of the model as
the estimate of the belief. To address this, we first parameterize the models of reward, transition,
and observation with a DNN, and then, define the joint distribution of those models as a HSSM. In
designing the HSSM, we consider a situation where S and Z are unknown. Then, we heuristically
introduce alternative Euclidean spaces S̃ and Z̃ with ds̃ and dz̃ dimensions, respectively. Using
the S̃, Z̃, and model parameter θ, we design reward model Rθ, transition model Tθ, initial state
probability Tθ,0, observation model Fθ, and task distribution Z̃θ as follows:

Rθ = pθ(rt|s̃t, s̃t−1, at−1, z̃) = N(fr,µ(s̃t, z̃), fr,σ(s̃t, z̃)), (1)

Tθ = pθ(s̃t|at−1, s̃t−1, z) = N(fs̃,µ(at−1, s̃t−1, z̃), fs̃,σ(at−1, s̃t−1, z̃)), (2)

Fθ = pθ(ot|s̃t, z̃) = N(fo,µ(s̃t, z̃), fo,σ(s̃t, z̃)), (3)

Tθ,0 = pθ(s̃0) = N(0, I), (4)

Z̃θ = pθ(z̃) = N(0, I), (5)

where s̃t ∈ S̃ and z̃ ∈ Z̃. Here, each f is a feedforward neural network with parameter θ, and
represents normal distribution using a reparameterization trick (Kingma and Welling, 2014). In
addition, Tθ, Rθ, and Fθ are conditional on z̃, i.e., they may change depending on the task. Note
that, for simplicity, we assume that Rθ only depends on s̃t and z̃, i.e., pθ(rt|s̃t, s̃t−1, at−1, z̃) =
pθ(rt|s̃t, z̃). In addition, we parameterize Fθ as normal distribution here, but other distributions
such as Bernoulli distribution can be appropriate depending on the environment.

Using these distributions, the joint distribution of the models can be expressed as follows:

pθ(τ0:T |a0:T−1) =

∫ ∫
pθ(z̃)pθ(s̃0) (6)

T∑
t=1

pθ(s̃t|s̃t−1, at−1, z̃)pθ(rt|s̃t, s̃t−1, at−1, z̃)pθ(ot|s̃t, z̃)dz̃ds̃0:T . (7)

Then, when the generative model pθ(τ0:T |a0:T−1) is trained and approximates the true environment
well, the posterior distribution of the model b̂t := pθ(s̃t, z̃|τ0:t) can be used as the estimate of the
belief bt. However, this approach has two challenges: (i) the posterior distribution pθ(s̃t, z̃|τ0:t)
cannot be calculated analytically, and then (ii) the likelihood of the model is intractable.

To address these issues, we employed amortized inference that performs approximate inference
on the two latent variables. We prepare two encoders qϕ(z̃|τ0:t) and qϕ(s̃t|τ0:t) parameterized by ϕ,
which represent normal distribution using a reparameterization trick. Specifically, the encoders first
compress trajectories τ0:t into hidden state ht with recurrent neural networks (RNNs). Then, they
output the mean and variance from ht using feedforward neural networks g as follows:

qϕ(s̃t|τ0:t) = N(µs̃ = gs̃,µ(ht), σs̃ = gs̃,σ(ht)), (8)

qϕ(z̃|τ0:t) = N(µz̃ = gz̃,µ(ht), σz̃ = gz̃,σ(ht)). (9)
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Using qϕ, the evidence lower bound (ELBO) of the likelihood can be calculated as follows:

L =Eqϕ(z̃|τ0:T )ΠT
t=0qϕ(s̃t|τ0:t)

T∑
t=0

(
[log pθ(ot|s̃t, z̃) + log pθ(rt|s̃t, s̃t−1, at−1, z̃)] (10)

−DKL

[
qϕ(s̃t|τ0:t)|pθ(s̃t|s̃t−1, at−1, z̃)

]
−DKL

[
qϕ(z̃|τ0:T )|pθ(z̃)

])
. (11)

To optimize the ELBO, we approximate the expectation over qϕ(z̃|τ0:T ) and qϕ(s̃t|τ0:t) with Monte
Carlo sampling, as performed in standard variational autoencoders (VAEs) (Kingma and Welling,
2014). Then, the reconstruction losses (the first and second terms) and the Kullback-Leibler (KL)
divergences (the third and fourth terms) can be computed analytically; therefore, the environmental
model can be trained with the gradient ascend to maximize the ELBO.

After we obtain the learned environment model, we can approximate the belief using the en-
coders. First, as in standard VAEs, the encoder distribution qϕ(s̃t, z̃|τ0:T ) := qϕ(s̃t|τ0:t)qϕ(z̃|τ0:T )
approximate the posterior distribution of the model pθ(s̃t, z̃|τ0:T ) = pθ(s̃t|τ0:T , z̃)pθ(z̃|τ0:T ) be-
cause the ELBO and the likelihood have the following relationship:

L = log pθ(τ0:T |a0:T )−DKL[qϕ(z̃, s̃0:T |τ0:T )|pθ(z̃, s̃0:T |τ0:T )]. (12)

Thus, the minimization of the ELBO not only increases the likelihood, but also minimizes the
approximation error DKL[qϕ(z̃, s̃0:T |τ0:T )|pθ(z̃, s̃0:T |τ0:T )]. When the encoder well approximates
pθ(s̃t, z̃|τ0:t), it also approximates the belief, that is, true posterior bt = p(st, z|τ0:t), as follows:

bt ≈ b̂t = pθ(s̃t, z̃|τ0:t) ≈ qϕ(s̃t|τ0:t)qϕ(z̃|τ0:t) =: b̃t. (13)

Here, qϕ(s̃t|τ0:t) and qϕ(z̃|τ0:t) represent ds̃- and dz̃-dimensional normal distributions, respectively.
Then, in practice, we use 2(ds̃ + dz̃)-dimensional vector b̃t = [µz̃, σz̃, µs̃, σs̃] as the estimate of bt.
The architectural diagram of the HSSM is illustrated in Figure 2.

Finally, we note that b̃t has two approximation errors as shown in eq. 13: (i) the difference
between model pθ and true environment p, and (ii) the difference between model posterior pθ and
amortized posterior qϕ. This study does not consider the errors because the scope of this study is
to propose a natural method for estimating belief state in the realistic meta-RL environment where
both task and state are hidden. However, it could be possible to reduce the errors by (i) using deeper
neural networks (Vahdat and Kautz, 2020) to increase the model capacity, or (ii) using normalizing
flows such that the amortized posterior can express more flexible distribution (Kingma et al., 2016).

3.3. Training policy with disentangled belief

As explained in Section 3.1, bt is a sufficient statistic for the optimal at as well as lower dimensional.
Then, we propose training a policy πψ(at|b̃t, ot) parameterized by feedforward neural networks ϕ,
which receives b̃t as inputs. Because this approach separates learning decision making (policy) from
learning representation (HSSM), the policy can be efficiently trained with a model-free algorithm
such as PPO (Schulman et al., 2017) or SAC (Haarnoja et al., 2018). Moreover, belief b̃t is also
factorized and interpretable, that is, task and state information are hopefully contained in z̃ and s̃,
respectively. Such disentangled representation helps in efficient learning of the policy, compared
with the method that does not distinguish the hidden task and states (Zhao et al., 2020) (further
discussed in Section 4). We refer to this meta-RL method of ours as HSSM-agent (HSSMA).
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Figure 2: The proposed HSSM architecture. When training the HSSM, an RNN produces the pos-
teriors over task qϕ(z̃|τ0:T ) and state qϕ(s̃t|τ0:t) by encoding the entire history of s̃t, at,
and rt. The posteriors are trained with reconstruction and KL losses, along with transition
Tθ, reward Rθ, and observation model Fθ. When the agent acts in the environment, the
observation is augmented by b̃t = qϕ(z̃|τ0:t)qϕ(s̃t|τ0:t), which is calculated online.

Because the approach in which the belief state is inputted to a model-free policy has already
succeeded in POMDP (Han et al., 2020), meta-MDP (Zintgraf et al., 2020), and meta-POMDP
(Zhao et al., 2020) environments, we adapt some training techniques from them. First, we optimize
the policy and the model (HSSM) using different optimizers alternately, without backpropagating
the RL loss through the encoder (i.e., end-to-end training). Specifically, the update of the pol-
icy πψ(at|b̃t, ot) originally depends on the encoder parameter ϕ because b̃t is calculated using ϕ.
However, as Zintgraf et al. (2020) reported, we found that the end-to-end training is typically un-
necessary in practice. Second, as in Han et al. (2020), we condition the policy with raw observations
ot in order to stabilize the early stage of the training in which b̃t has not approximated bt well.

3.4. Posterior collapse and β-VAE objective

In practice, we observe that the optimization of the HSSM sometimes suffers from posterior col-
lapse. The posterior collapse often occurs in hierarchical VAEs like our HSSM, in which the higher
latent variable z̃ becomes uninformative as the data distribution is solely modeled by the lower latent
variables (Hsu et al., 2017; Maalø e et al., 2019). To alleviate this problem, we employed β-VAE
objective proposed by Alemi et al. (2018), which regularizes mutual information between z̃ and τ0:T
to be large such that z̃ becomes informative. Specifically, we modify the objective function (Eq. 11)
using a weighting parameter β < 1 as follows:

Lβ =Eqϕ(z̃|τ0:T )ΠT
t=0qϕ(s̃t|τ0:T )

T∑
t=0

(
[log pθ(ot|s̃t, z̃) + log pθ(rt|s̃t, s̃t−1, at−1, z̃)] (14)

−DKL

[
qϕ(s̃t|τ0:T )|pθ(s̃t|s̃t−1, at−1, z̃)

]
− βDKL

[
qϕ(z̃|τ0:T )|pθ(z̃)

])
(15)
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Note that, Alemi et al. (2018) use β < 1 to regularize mutual information to be large, although β-
VAE was originally invented to encourage the independence of each dimension of z̃ with β > 1 by
Higgins et al. (2017a). The effect of this weighting parameter is confirmed through our experiments.

4. Related work

Most relevant to this study is the belief-based approach for meta-RL. An early method RL2 (Duan
et al., 2017) aggregated past experience using RNN and implicitly extracted the belief. However,
it requires simultaneously learning task representation and decision making using only reward sig-
nal, making the optimization difficult. Following this, PEARL (Rakelly et al., 2019) and VariBAD
(Zintgraf et al., 2020) decoupled the learning of task representation from that of decision making.
However, they estimated the belief regarding only the task, assuming that the states could be ob-
served. In addition, because meta-POMDP is a special case of POMDP, the methods proposed in
the POMDP literature (Igl et al., 2018; Lee et al., 2019; Han et al., 2020; Gregor et al., 2019) could
in principle be applied to meta-POMDP. Then, Zhao et al. (2020) proposed MELD, which applied
deep SSM of Lee et al. (2019) to estimate the belief. Unlike these methods, our method has both
z̃ and s̃t, which allows us to disentangle (Bengio et al., 2013) the task and state information. Dis-
entangling factors of variation facilitates the learning of classifier and RL agent, as shown in the
experiments of Higgins et al. (2017a,b) and ours. In addition, it allows the reasoning about task-
level uncertainty, which might facilitate active learning and safety-critical applications (Finn et al.,
2018), while we do not experiment with these in this paper.

The approaches, including ours and MELD, in which observations are compressed to improve
the sample efficiency of a policy, are called state representation learning (SRL) (Lesort et al., 2018).
In the literature on SRL, some studies have proposed methods that consider a hierarchical property
of time. For example, Böhmer et al. (2013); Jonschkowski and Brock (2015) proposed extraction of
features that are slowly varying, assuming that interesting features fluctuate slowly and continuously
through time. The proposed method is similar to these studies in incorporating the hierarchical
property of time, but it focuses on the meta-POMDP environment where a single task is composed
of time-invariant global features (task information) and time-variant local features (states).

From a technical perspective, our HSSM relates to the literature on the deep sequential latent
variable models. Including our study, many studies have proposed to disentangle time-invariant and
time-variant features using the latent variable models and amortized inference, in the domains of
text (Bowman et al., 2016), image (Chen et al., 2017), movie (Hsieh et al., 2018), and speech (Hsu
et al., 2017; Yingzhen and Mandt, 2018). The architecture of our HSSM is inspired from Yingzhen
and Mandt (2018), although some details are different (e.g., our transition model is conditioned on
the global latent variable). In addition, these studies found that a global latent variable tends to be
ignored owing to posterior collapse, which motivates us to employ β-VAE objective in Section 3.4.

Although this study assumes that task information is hidden in line with the meta-RL litera-
ture, many studies also consider the multi-task RL setting where task information is available. For
example, Humplik et al. (2019) argued that auxiliary information about task (such as task ID) is
sometimes available, and proposed to exploit them in estimating the belief. In addition, many stud-
ies (e.g., Jiang et al. (2019); Chevalier-Boisvert et al. (2019)) have tried to use language instructions
as task specifications that define the environment model (such as reward function). While using such
auxiliary information about the task can improve the performance of the agent, it can be expensive.
However, since the proposed model treats the task as latent variables, it could be extended to balance
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the performance and the labeling cost. That is, our method can be extended to the semi-supervised
setting in which the task information is occasionally available in a similar way to Kingma et al.
(2014), which is also the potential merit of disentangling task information from states.

5. Experiment

5.1. Setting

We design the experiments to answer the following questions: (i) Can the proposed HSSM disen-
tangle task information into the global latent variable z̃ in meta-POMDP environments? (ii) Does
the disentangled belief facilitate the adaptation and training of a meta-RL policy?

To address this, we compared HSSMA with the following methods: (i) RL2 is a meta-RL
method using a RNN policy. It was shown to work reasonably well in meta-POMDP. (ii) VariBAD
is a state-of-the-art meta-RL method, which outperformed RL2 in a meta-MDP setting. (iii) SSM-
agent (SSMA) is an ablation method, which is the same with HSSMA except for not having z̃. In
addition, SSMA is very similar to MELD, although their architectural details are different. In all the
methods, we train a PPO policy parameterized by feedforward neural networks with 1e+8 frames.

We evaluated the methods using the following environments, following Zintgraf et al. (2020):
GridWorld: Here, the task is to reach a goal in a 5 × 5 gridworld. The goal position is randomly
chosen per task, and the agent gets a sparse reward signal: － 0.1 on non-goal cells and +1 on the
goal cell. Therefore, reward function R varies across tasks. In addition, the observation of the agent
is 3 x 3 cells around the agent. Specifically, the agent only knows whether an adjacent cell is a
wall or a floor. The horizon within one POMDP episode is H = 15, and the agent is reset to the
initial position after the H = 15 steps. Also, each task consists of four POMDP episodes, i.e.,
N = 4. Furthermore, we employed two MuJoCo (Todorov et al., 2012) locomotion environments
commonly used in the meta-RL literature. HalfCheetahVel: Here, the agent has to run at different
velocities per task, i.e., the agent gets a reward defined by the distance between its velocity and the
target one. Therefore, R varies across tasks. Walker2DRandParam: Here, the system parameters
are randomized per task. Then, transition probability T varies across tasks. In these environments,
we set H = 200 and N = 2. In addition, following Duan et al. (2016), we make these MuJoCo
environments partially observable by limiting sensors; we restrict the observations to only provide
positional information (including joint angles), excluding velocities.

HSSMA primarily has three hyperparameters: the dimension size of s̃t and z̃, (ds̃ and dz̃), and
the β value in β-VAE objective (Section 3.4). In GridWorld, we set ds̃ = 5 and dz̃ = 5. In addition,
in MuJoCo environments, we set ds̃ = 64 and dz̃ = 32. The baseline methods also have a dimension
size of hidden state as a hyperparameter. For fair comparison, we designed them to be equal to the
sum of dz̃ and ds̃ in most cases. However, the dimension size of RL2 in GridWorld is set to 32 in
accordance with the experiment of Zintgraf et al. (2020). Regarding β, we tested (1, 1e− 1, 1e− 2)
in GridWorld. As noted later, HSSMA with β = 1e− 1 achieved better performance than that with
β = 1, so we set β = 1e − 1 in MuJoCo environments. In the experiments, we reported that the
scores averaged over three random seed trials for GridWorld, and five trials for MuJoCo

5.2. Contribution of global latent variable on fast adaptation

We first evaluate whether the HSSM can disentangle task information into the global latent variable
z̃, using GridWorld. Specifically, we used the learned encoder qϕ(z̃|τ0:T ) to extract its mean µz̃ from
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Table 1: Accuracies of logistic regression from la-
tent variables to goal position (task infor-
mation) in GridWorld. The ↑ and ↓ indicate
that the purpose was to obtain high and low
scores, respectively.

Model β ds̃ z̃-accuracy ↑ s̃-accuracy ↓ z̃-KL

HSSM 1e-0 5 44.00 47.00 2.12
HSSM 1e-1 5 80.67 33.50 5.48
HSSM 1e-2 5 90.67 44.17 12.3
SSM N/A 5 N/A 48.00 N/A
SSM N/A 10 N/A 50.17 N/A

Figure 3: A reward (y-axis) for each timestep
(x-axis) within single task in Grid-
World. One POMDP episode is re-
set for each 15-timestep.

1000 trajectories where T = N ×H = 60. At the same time, we prepared true task information z
for the trajectories. Here, z (goal position) is a 21-class discrete variable, which can be anywhere
except around the starting cell at the bottom left. Then, we split the pairs of (µz̃, z) into 800 training
and 200 test samples, and evaluated the accuracy of logistic regression from µz̃ to z (denoted as
z̃-accuracy). Here, we chose to use the simple logistic classifier because it is likely that when the
classifier perform well with a small number of samples, a downstream policy can be efficiently
trained. In addition, to confirm that z̃ and s̃t are disentangled, that is, s̃t has no task information, we
performed classification from µs̃ at time T to z (denoted as s̃-accuracy). In addition, s̃-accuracy was
also evaluated for SSM (the environment model of SSMA). Furthermore, we evaluated the value of
the KL term for z̃ (denoted as z̃-KL), which approximates the amount of information in z̃.

Table 1 shows the results of the experiment. The table shows that, (i) when the value of β is
extremely high, β = 1, z̃-accuracy, and z̃-KL are low. In contrast, when β = 1e − 1 or 1e − 2, z̃-
accuracy increases. This indicates that z̃ is ignored owing to posterior collapse when β is extremely
large, but we can alleviate the problem and obtain meaningful z̃ with appropriate β values. In
addition, (ii) z̃-accuracy and s-accuracy of the HSSM are higher and lower than the s̃-accuracy of
SSM, respectively. This may be due to the fact that the baseline SSM do not explicitly separate the
hidden task from the hidden state, so its latent representation is entangled.

Next, in GridWorld, we evaluate the adaptation abilities of HSSMA with various β values and
SSMA. Figure 3 shows a reward for each timestep within single task, consisting of four POMDP
episodes. This figure shows that although all the methods have roughly the same rewards for the
first episode, HSSMA with β = 1e − 1 achieved higher rewards in the third to fourth episodes. In
other words, SSMA and HSSMA with β = 1, which suffer from posterior collapse, have unstable
and lower rewards in the later episodes. This indicates that these methods are not appropriate for
making use of knowledge about task based on past experience when facing a new episode because
they do not explicitly retrieve task information. Also, note that the returns for β = 1e − 1 and
β = 1e− 2 are almost the same; therefore, we omitted the result for β = 1e− 2 here.

5.3. Comparing meta-RL performance with prior methods

Here we evaluated the training efficiency and the final meta-RL performance of the methods, as per-
formed in Rakelly et al. (2019). The training efficiency is also significant because meta-RL policies
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(a) GridWorld (b) HalfCheetahVel (c) Walker

Figure 4: Learning curves for the (a) GridWorld, (b) HalfCheetahVel, and (c) Walker environments.
The x-axis shows the number of frames used to train the policy whereas the y-axis shows
the return (cumulative rewards) at the N -th episode (N = 4 for (a) and N = 2 for (b, c)).

typically require massive amounts of experience collected across a distribution of tasks, while the
trained policies adapt to new tasks with only a few trials. Figure 4 shows the learning curves of the
returns at N -th episode. It shows that, (i) RL2 performed better (requires fewer training data and
reaches higher final performance) than VariBAD in our meta-POMDP settings, although the oppo-
site result had been reported in Zintgraf et al. (2020) in their meta-MDP settings. This indicates
that considering the meta-POMDP structure is significant because the performance of VariBAD,
which assumes the meta-MDP structure, drops in the meta-POMDP. In addition, the figure shows
that (ii) HSSMA achieved competitive or better results than the baseline methods. Specifically, in
GridWorld (4(a)), HSSMA has higher returns than SSMA and VariBAD, and competitive to RL2.
Furthermore, in HalfCheetahVel (4(b)) and Walker (4(c)), HSSMA has the highest return. This is
consistent with the past observations that RL2 has difficulty in learning representation and decision
making together as the observation and action space become larger. In addition, HSSMA performed
better than SSMA probably because the disentangled representation facilitates the policy training.

6. Discussion and future work

In this paper, we proposed estimation of the disentangled belief about the hidden task and states,
and efficiently training a model-free policy with it. In the experiments, we showed that the pro-
posed method can learn the representation of task in the meta-POMDP environments, and that it
outperformed the prior meta-RL methods. Although we use the on-policy method (PPO) for fair
comparison with the baseline methods, using the off-policy method (SAC) is an orthogonal approach
that may further improve training efficiency of the policy. Other future studies may reduce the gap
between amortized distribution and posterior distribution by using normalizing flows, or apply the
method to the semi-supervised situation where task information (such as language-instruction) is
occasionally given by exploiting the disentangled representation of our model.
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