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Abstract
We study the problem of adaptively controlling a known discrete-time nonlinear system subject to
unmodeled disturbances. We prove the first finite-time regret bounds for adaptive nonlinear control
with matched uncertainty in the stochastic setting, showing that the regret suffered by certainty
equivalence adaptive control, compared to an oracle controller with perfect knowledge of the un-
modeled disturbances, is upper bounded by Õ(

√
T ) in expectation. Furthermore, we show that

when the input is subject to a k timestep delay, the regret degrades to Õ(k
√
T ). Our analysis

draws connections between classical stability notions in nonlinear control theory (Lyapunov stabil-
ity and contraction theory) and modern regret analysis from online convex optimization. The use
of stability theory allows us to analyze the challenging infinite-horizon single trajectory setting.
Keywords: Adaptive control, online convex optimization, matched uncertainty.

1. Introduction

The goal of adaptive nonlinear control (Slotine and Li, 1991; Ioannou and Sun, 1996; Fradkov et al.,
1999) is to control a continuous-time dynamical system in the presence of unknown dynamics; it
is the study of concurrent learning and control of dynamical systems. There is a rich body of
literature analyzing the stability and convergence properties of classical adaptive control algorithms.
Under suitable assumptions (e.g., Lyapunov stability of the known part of the system), typical results
guarantee asymptotic convergence of the unknown system to a fixed point or desired trajectory.

On the other hand, due to recent successes of reinforcement learning (RL) in the control of
physical systems (Yang et al., 2019; OpenAI et al., 2019; Hwangbo et al., 2019; Williams et al.,
2017; Levine et al., 2016), there has been a flurry of research in online RL algorithms for continuous
control. In contrast to the classical setting of adaptive nonlinear control, online RL algorithms
operate in discrete-time, and often come with finite-time regret bounds (Wang et al., 2019; Kakade
et al., 2020; Jin et al., 2020; Cao and Krishnamurthy, 2020; Cai et al., 2020; Agarwal et al., 2020).
These bounds provide a quantitative rate at which the control performance of the online algorithm
approaches the performance of an oracle equipped with hindsight knowledge of the uncertainty.

In this work, we revisit the analysis of adaptive nonlinear control algorithms through the lens
of modern reinforcement learning. Specifically, we show how to systematically port matched un-
certainty adaptive control algorithms to discrete-time, and we use the machinery of online convex
optimization (Hazan, 2016) to prove finite-time regret bounds. Our analysis uses the notions of con-
traction and incremental stability (Lohmiller and Slotine, 1998; Angeli, 2002) to draw a connection
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between control regret, the quantity we are interested in, and function prediction regret, the quantity
online convex optimization enables us to bound.

We present two main sets of results. First, we provide a discrete-time analysis of velocity gra-
dient adaptation (Fradkov et al., 1999), a broad framework which encompasses e.g., classic adap-
tive sliding control (Slotine and Coetsee, 1986). We prove that in the deterministic setting, if a
Lyapunov function describing the nominal system is strongly convex in the state, then the corre-
sponding velocity gradient algorithm achieves constant regret with respect to a baseline controller
having full knowledge of the system. Our second line of results considers the use of online least-
squares gradient based optimization for the parameters. Under an incremental input-to-state sta-
bility assumption, we prove Õ(

√
T ) regret bounds in the presence of stochastic process noise. We

further show that when the input is delayed by k timesteps, the regret degrades to Õ(k
√
T ). Im-

portantly, our bounds hold for the challenging single trajectory infinite horizon setting, rather than
the finite-horizon episodic setting more frequently studied in reinforcement learning. We conclude
with simulations showing the efficacy of our proposed discrete-time algorithms in quickly adapt-
ing to unmodeled disturbances. Proofs and more details can be found in the full version of the
paper (Boffi et al., 2020).

2. Related Work

There has been a renewed focus on the continuous state and action space setting in the reinforcement
learning (RL) literature. The most well-studied problem for continuous control in RL is the Linear
Quadratic Regulator (LQR) problem with unknown dynamics. For LQR, both upper and lower
bounds achieving

√
T regret are available (Abbasi-Yadkori and Szepesvári, 2011; Agarwal et al.,

2019a; Mania et al., 2019; Cohen et al., 2019; Simchowitz and Foster, 2020; Hazan et al., 2020),
for stochastic and adversarial noise processes. Furthermore, in certain settings it is even possible to
obtain logarithmic regret (Agarwal et al., 2019b; Cassel et al., 2020; Foster and Simchowitz, 2020).

Results that extend beyond the classic LQR problem are less complete, but are rapidly growing.
Recently, Kakade et al. (2020) showed

√
T regret bounds in the finite horizon episodic setting for

dynamics of the form xt+1 = Aφ(xt, ut)+wt whereA is an unknown operator and φ is a known fea-
ture map, though their algorithm is generally not tractable to implement. Mania et al. (2020) show
how to actively recover the parameter matrixA using trajectory optimization. Azizzadenesheli et al.
(2018); Jin et al. (2020); Yang and Wang (2020); Zanette et al. (2020) show

√
T regret bounds for

linear MDPs, which implies that the associated Q-function is linear after a known feature transfor-
mation. Wang et al. (2019) extend this model to allow for generalized linear model Q-functions.
Unlike the stability notions considered in this work, we are unaware of any algorithmic method of
verifying the linear MDP assumption. Furthermore, the aforementioned regret bounds are for the
finite-horizon episodic setting; we study the infinite-horizon single trajectory setting without resets.

Very few results categorizing regret bounds for adaptive nonlinear control exist; one recent ex-
ample is Gaudio et al. (2019), who highlight that simple model reference adaptive controllers obtain
constant regret in the continuous-time deterministic setting. In contrast, our work simultaneously
tackles the issues of more general models, discrete-time systems, and stochastic noise. We note that
several authors have ported various adaptive controllers into discrete-time (Pieper, 1996; Bartolini
et al., 1995; Loukianov et al., 2018; Muñoz and Sbarbaro, 2000; Kanellakopoulos, 1994; Ordóñez
et al., 2006). These results, however, are mostly concerned with asymptotic stability of the closed-
loop system, as opposed to finite-time regret bounds.
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3. Problem Statement

In this work, we focus on the following discrete-time1, time-varying, and nonlinear dynamical sys-
tem with linearly parameterized unknown in the matched uncertainty setting:

xt+1 = f(xt, t) +B(xt, t)(ut − Y (xt, t)α) + wt . (3.1)

Here xt ∈ Rn, ut ∈ Rd, f : Rn × N → Rn is a known nominal dynamics model, B : Rn × N →
Rn×d is a known input matrix, Y : Rn × N → Rd×p is a matrix of known basis functions, and
α ∈ Rp is a vector of unknown parameters. The sequence of noise vectors {wt} ⊆ Rn is assumed
to satisfy the distributional requirements E[wt] = 0, ‖wt‖ 6 W almost surely, and that ws is
independent of wt for all s 6= t. We further assume that α ∈ C := {α ∈ Rp : ‖α‖ 6 D}, and that
an upper bound for D is known. Without loss of generality, we set the origin to be a fixed-point
of the nominal dynamics, so that f(0, t) = 0 for all t. Because the nominal dynamics is time-
varying, this formalism captures the classic setting of nonlinear adaptive control, which considers
the problem of tracking a time-varying desired trajectory xdt

2.
We study certainty equivalence controllers. In particular, we maintain a parameter estimate

α̂t ∈ C and play the input ut = Y (xt, t)α̂t. Our goal is to design a learning algorithm that updates
α̂t to cancel the unknown and which provides a guarantee of fast convergence to the performance
of an ideal comparator. The comparator that we will study is an oracle that plays the ideal control
ut = Y (xt, t)α at every timestep, leading to the dynamics xt+1 = f(xt, t) + wt. To measure the
rate of convergence to this comparator, we study the following notion of control regret:

Regret(T ) := E{wt}

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
. (3.2)

Here, the trajectory {xat } is generated by an adaptive control algorithm, while the trajectory {xct} is
generated by the oracle with access to the true parameters α. Our notation for xat and xct suppresses
the dependence of the trajectory on the noise sequence {wt}. Our goal will be to design algorithms
that exhibit sub-linear regret, i.e., Regret(T ) = o(T ), which ensures that the time-averaged regret
asymptotically converges to zero. For ease of exposition, in the sequel we define Yt := Y (xat , t)
and Bt := B(xat , t), and we use the symbol α̃t to denote the parameter estimation error α̂t − α.

3.1. Parameter Update Algorithms

We study two primary classes of parameter update algorithms inspired by online convex optimiza-
tion (Hazan, 2016). The first is the family of velocity gradient algorithms (Fradkov et al., 1999),
which perform online gradient-based optimization on a Lyapunov function for the nominal system.
The second obviates the need for a known Lyapunov function, and directly performs online opti-
mization on the least-squares prediction error. Here we discuss the discrete-time formulation, but a
self-contained introduction to these algorithms in continuous-time can be found in the full paper.

1. Discrete-time systems may arise as a modeling decision, or due to finite sampling rates for the input, e.g., a
continuous-time controller implemented on a computer. In the full paper, we study the latter situation, giving bounds
on the rate for which a continuous-time controller must be sampled such that discrete-time closed-loop stability holds.

2. To see this, consider a system yt+1 = g(yt, t) + B(yt, t) (ut − Y (yt, t)α) and a desired trajectory ydt satisfying
ydt+1 = g(ydt , t). Define the new variable xt := yt − ydt . Then xt+1 = g(xt + ydt , t) − g(ydt , t) + B(xt +
ydt , t)

(
ut − Y (xt + ydt , t)α

)
, so that the nominal dynamics f(xt, t) = g(xt+y

d
t , t)−g(ydt , t) satisfies f(0, t) = 0

for all t. If the original yt system is non-autonomous, the time-dependent desired trajectory will introduce a time-
dependent nominal dynamics in the xt system.
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3.1.1. VELOCITY GRADIENT ALGORITHMS

Velocity gradient algorithms exploit access to a known Lyapunov function for the nominal dynam-
ics. Specifically, assume the existence of a non-negative function Q(x, t) : Rn × N→ R>0, which
is differentiable in its first argument, and a constant ρ ∈ (0, 1) such that for all x, t:

Q(f(x, t), t+ 1) 6 Q(x, t)− ρ‖x‖2 . (3.3)

Given such a Q(x, t), velocity gradient methods update the parameters according to the iteration

α̂t+1 = ΠC [α̂t − ηtY (xt, t)
TB(xt, t)

T∇Q(xt+1, t+ 1)] , ΠC [x] := arg min
y∈C
‖x− y‖ , (3.4)

which can alternatively be viewed as projected gradient descent with respect to the parameters after
noting that Y (xt, t)

TB(xt, t)
T∇Q(xt+1, t+ 1) = ∇α̂tQ(xt+1, t+ 1). As we will demonstrate, the

use of∇Q(xt+1, t+ 1) instead of∇Q(xt, t) in (3.4) is key to unlocking a sublinear regret bound.

3.1.2. ONLINE LEAST-SQUARES

Online least-squares algorithms are motivated by minimizing the approximation error directly rather
than through stability considerations. For each time t, define the prediction error loss function

`t(α̂) :=
1

2
‖B(xt, t)Y (xt, t)(α̂− α) + wt‖2 . (3.5)

Unlike in the usual optimization setting, the loss at time t is unknown to the controller, due to its
dependence on the unknown parameters α. However, its gradient ∇`t(α̂t) can be implemented
after observing xt+1 through a discrete-time analogue of Luenberger’s well-known approach for
reduced-order observer design (Luenberger, 1979):

∇`t(α̂t) = Y (xt, t)
TB(xt, t)

T(xt+1 − f(xt, t)) . (3.6)

The simplest update rule that uses the gradient∇ft(α̂t) is online gradient descent:

α̂t+1 = ΠC [α̂t − ηt∇ft(α̂t)] , (3.7)

while a more sophisticated update rule is the online Newton method:

α̂t+1 = ΠC,t[α̂t − ηA−1t ∇ft(α̂t)] , At = λI +
t∑

s=0

MT
s Ms , Ms = B(xs, s)Y (xs, s) . (3.8)

Above, the operator ΠC,t[·] denotes projection w.r.t. theAt-norm: ΠC,t[x] := arg miny∈C‖x−y‖At .

4. Regret Bounds for Velocity Gradient Algorithms

In this section, we provide a regret analysis for the velocity gradient algorithm. Here, we will assume
a deterministic system, so that wt ≡ 0. Unrolling the Lyapunov stability assumption (3.3) and using
the non-negativity of Q(x, t) yields

∑T−1
t=0 ‖xct‖2 6 Q(x0,0)

ρ , which shows that the contribution

of
∑T−1

t=0 ‖xct‖2 to the regret is O(1). Therefore, it suffices to bound
∑T−1

t=0 ‖xat ‖2 directly. The
key assumption that enables application of the velocity gradient method in discrete-time is strong
convexity of the Lyapunov function Q(x, t) with respect to x. Recall that a C1 function h(x) is
µ-strongly convex if for all x and y, h(y) > h(x) + 〈∇h(x), y − x〉+ µ

2‖y − x‖
2. Our first result

is a data-dependent regret bound for the velocity gradient algorithm.
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Theorem 1 Fix a λ > 0. Consider the velocity gradient update (3.4) with α̂0 ∈ C and learning rate
ηt = D√

λ+
∑t

i=0‖Y T
i B

T
i ∇Q(xai+1,i+1)‖2

. Assume that the Lyapunov stability condition (3.3) is verified,

and that for every t, the map x 7→ Q(x, t) is µ-strongly convex. Then for any T > 1:

T−1∑
t=0

‖xat ‖2 +
µ

2ρ

T−1∑
t=0

‖BtYtα̃t‖2 6
Q(x0, 0)

ρ
+

5
√
λD

ρ
+

3D

ρ

√√√√T−1∑
t=0

‖Y T
t B

T
t ∇Q(xat+1, t+ 1)‖2 .

By Theorem 1, a bound on
∑T−1

t=0 ‖Y T
t B

T
t ∇Q(xat+1, t + 1)‖2 ensures a bound on the control

regret. One way to obtain a bound is to assume that ‖Y T
t B

T
t ∇Q(xat+1, t + 1)‖ 6 G for all t, in

which case Theorem 1 yields the sublinear guarantee Regret(T ) 6 O(
√
T ). However, this can be

strengthened by assuming that both∇Q(x, t) and f(x, t) are Lipschitz continuous.

Theorem 2 Suppose that for every x and t, ‖∇Q(x, t)‖ 6 LQ‖x‖ and ‖f(x, t)‖ 6 Lf‖x‖.
Further assume that supx,t‖B(x, t)‖ 6M and supx,t‖Y (x, t)‖ 6M . Then, under the hypotheses
of Theorem 1, for any T > 1:

T−1∑
t=0

‖xat ‖2 +
µ

2ρ

T−1∑
t=0

‖BtYtα̃t‖2 6
3

2

(
Q(x0, 0)

ρ
+

5
√
λD

ρ

)
+

27D2

ρ2
M4L2

Q max

{
L2
f ,

2ρ

µ

}
.

Theorem 2 yields the constant bound Regret(T ) 6 O(1), which mirrors an earlier result in the
continuous-time deterministic setting due to Gaudio et al. (2019).

5. Regret Bounds for Online Least-Squares Algorithms

In this section we study the use of online least-squares algorithms for adaptive control in the stochas-
tic setting. A core challenge in this setting is that neither E

∑T−1
t=0 ‖xat ‖2 nor E

∑T−1
t=0 ‖xct‖2 con-

verges to a constant, but rather each grows as Ω(T ). Our approach couples the trajectories {xat }
and {xct} together using the same noise realization {wt}, and then utilizes incremental stability
to compare trajectories of the comparator and the adaptation algorithm. We first provide a brief
introduction to contraction and incremental stability, and then we discuss our results.

5.1. Contraction and Incremental Stability

To prove regret bounds for our least-squares algorithms, we use the following generalization of
input-to-state stability, which allows for a direct comparison between two trajectories of the system
in terms of the strength of past inputs.

Definition 3 (cf. Angeli (2002)) Let constants β, γ be positive and ρ ∈ (0, 1). The discrete-time
dynamical system f(x, t) is called (β, ρ, γ)-exponentially-incrementally-input-to-state-stable (E-
δISS) for a pair of initial conditions (x0, y0) and signal ut (which is possibly adapted to the history
{xs}s6t) if the trajectories xt+1 = f(xt, t) + ut and yt+1 = f(yt, t) satisfy for all t > 0:

‖xt − yt‖ 6 βρt‖x0 − y0‖+ γ
t−1∑
k=0

ρt−1−k‖uk‖ . (5.1)

A system is (β, ρ, γ)-E-δISS if it is (β, ρ, γ)-E-δISS for all initial conditions (x0, y0) and signals ut.

5



REGRET BOUNDS FOR ADAPTIVE NONLINEAR CONTROL

Definition 3 can be verified by checking if the system f(x, t) is contracting.

Definition 4 (cf. Lohmiller and Slotine (1998)) The discrete-time dynamical system f(x, t) is con-
tracting with rate γ ∈ (0, 1) in the metric M(x, t) if for all x and t:

∂f

∂x
(x, t)TM(f(x, t), t+ 1)

∂f

∂x
(x, t) 4 γM(x, t) .

We note that contraction, much like Lyapunov stability, can be verified for a particular system using
e.g., sum-of-squares programming (Aylward et al., 2008).

Proposition 5 Let f(x, t) be contracting with rate γ ∈ (0, 1) in the metric M(x, t). Assume that
for all x, t we have 0 ≺ µI 4M(x, t) 4 LI . Then f(x, t) is (

√
L/µ,

√
γ,
√
L/µ)-E-δISS.

Furthermore, contraction is robust to small perturbations – if the dynamics f(x, t) are contract-
ing, so are the dynamics f(x, t) + wt for small enough wt.

Proposition 6 Let {wt} be a fixed sequence satisfying supt>0‖wt‖ 6 W . Suppose that f(x, t) is
contracting with rate γ in the metric M(x, t) with M(x, t) < µI . Define the perturbed dynamics
g(x, t) := f(x, t) +wt. Suppose that for all t, the function x 7→M(x, t) is LM -Lipschitz. Further-
more, suppose that supx,t‖

∂f
∂x (x, t)‖ 6 Lf . Then as long as W 6 µ(1−γ)

L2
fLM

, we have that g(x, t) is

contracting with rate γ +
L2
fLMW

µ in the metric M(x, t).

Note that if the metric is state independent (i.e., M(x, t) = M(t)), then we can take LM = 0
and hence the perturbed system g(x, t) is contracting at rate γ for all realizations {wt}.

5.2. Main Results

Our analysis proceeds by assuming that for almost all noise realizations {wt}, the perturbed nominal
system f(x, t) + wt is incrementally stable (E-δISS). We apply incremental stability to bound the

control regret directly in terms of the prediction regret, Regret(T ) 6 O(
√
T
√∑T−1

t=0 E‖BtYtα̃t‖2).
Because online convex optimization methods provide explicit guarantees on the prediction regret,
we can apply existing results from the online optimization literature to generate a bound on the
control regret. To see this, recall that the sequence of prediction error functions {`t} from (3.5) has
the form `t(α̂) = 1

2‖BtYt(α̂− α) + wt‖2. Hence:

1

2
E
T−1∑
t=0

‖BtYtα̃t‖2 = E

[
T−1∑
t=0

`t(α̂t)− `t(α)

]
6 E

[
sup
α∈C

T−1∑
t=0

`t(α̂t)− `t(α)

]
.

In this section, we make the following assumption regarding the dynamics.

Assumption 7 The perturbed system g(xt, t) := f(xt, t) + wt is (β, ρ, γ)-E-δISS for all realiza-
tions {wt} satisfying supt‖wt‖ 6W . Also supx,t‖B(x, t)‖ 6M and supx,t‖Y (x, t)‖ 6M .

We define the constant Bx := β‖x0‖+ γ(2DM2+W )
1−ρ and G := M2(2DM2 +W ). A key result,

which relates control regret to prediction regret, is given in the following theorem.
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Theorem 8 Consider any adaptive update rule {α̂t}. Under Assumption 7, for all T > 1:

E

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
6

2Bxγ

1− ρ
√
T

√√√√T−1∑
t=0

E‖BtYtα̃t‖2 .

We can immediately specialize Theorem 8 to both online gradient descent and online Newton.
Both corollaries are a direct consequence of applying well-known regret bounds in online convex
optimization to Theorem 8 (cf. Hazan (2016)). Our first corollary shows that online gradient descent
achieves a O(T 3/4) control regret bound.

Corollary 9 Suppose we use online gradient descent (3.7) to update the parameters, setting the
learning rate ηt = D

G
√
t+1

. Under Assumption 7, for all T > 1:

E

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
6 2
√

6Bx
γ

1− ρ
√
GDT 3/4 .

This result immediately generalizes to the case of mirror descent, where dimension-dependence
implicit in G and D can be reduced, and where recent implicit regularization results apply (Boffi
and Slotine, 2020). Next, the regret can be improved to O(

√
T log T ) by using online Newton.

Corollary 10 Suppose we use the online Newton method (3.8) to update the parameters, setting
η = 1. Suppose furthermore that M > 1. Under Assumption 7, for all T > 1:

E

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
6

2Bxγ

1− ρ
√
T
√

4D2(λ+M4) + pG2 log(1 +M4T/λ) .

We also note that in the deterministic setting, online gradient descent to update the parameters
achieves O(1) prediction and control regret, which is consistent with the results in Section 4 and
with the results in Gaudio et al. (2019). We give a self-contained proof of this in the full paper.

5.3. Input Delay Results

Motivated by extended matching conditions commonly considered in continuous-time adaptive con-
trol (Krstić et al., 1995), we now extend our previous results to a setting where the input is time-
delayed by k steps. Specifically, we consider the modified system:

xt+1 = f(xt, t) +B(xt, t)(ξt − Y (t)α) + wt , ξt = ut−k . (5.2)

Here, we simplify part of the model (3.1) by assuming that the matrix Y (t) is state-independent.
With this simplification, the certainty equivalence controller is given by ut = Y (t + k)α̂t. The
baseline we compare to in the definition of regret is the nominal system xct+1 = f(xct , t) + wt,
which is equivalent to playing the input ut = Y (t + k)α. Note that the gradient ∇`t(α̂t) can be
implemented by the controller as∇`t(α̂t) = Y T

t B
T
t (xt+1 − f(xt, t)−Bt(ξt − Ytα̂t)).

Folk wisdom and basic intuition suggest that nonlinear adaptive control algorithms for the ex-
tended matching setting will perform worse than their matched counterparts; however, standard
asymptotic guarantees do not distinguish between the performance of these two classes of algo-
rithms. Here we show that the control regret rigorously captures this gap in performance. We begin
with online gradient descent, which provides a regret bound of O(T 3/4 + k

√
T ).
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Theorem 11 Consider the online gradient descent update (3.7) for the k-step delayed system (5.2)
with step size ηt = D

G
√
t+1

. Under Assumption 7 and with state-independent Yt, for all T > k:

E

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
6 kB2

x +
2BxM

2Dγ

(1− ρ)2
+

2
√

6Bxγ
√
GD

1− ρ
T 3/4 +

4BxγM
2D

1− ρ
k
√
T .

Furthermore, the regret improves to O(k
√
T log T ) when we use the online Newton method.

Theorem 12 Consider the online Newton update (3.8) for the k-step delayed system (5.2) with
η = 1. Suppose M > 1. Under Assumption 7 and with state-independent Yt, for all T > k:

E

[
T−1∑
t=0

‖xat ‖2 − ‖xct‖2
]
6 kB2

x +
2BxM

2Dγ

(1− ρ)2
+

2BxγGk

1− ρ

√
pT

λ
log(1 +M2T/λ)

+
2Bxγ

1− ρ
√
T
√

4D2(λ+M4) + pG2 log(1 +M4T/λ) .

5.4. Is Incremental Stability Necessary?

The results in this section have crucially relied on incremental input-to-state stability (Definition 3).
A natural question to ask is if it possible to relax this assumption to input-to-state stability (Sontag,
2008), while still retaining regret guarantees. In the full paper, we provide a partial answer to this
question. Inspired by Rüffer et al. (2013), we show that if a system is exponentially input-to-state
stable (which we define similarly to Definition 3, but in reference to a single trajectory), then it
is E-δISS on a compact set of initial conditions, but only for certain admissible inputs. Next, we
prove that under a persistence of excitation condition, the disturbances {BtYtα̃t} due to parameter
mismatch yield an admissible sequence of inputs with high probability. Combining these results,
we show a

√
T log T regret bound that holds with constant probability. We are currently unable

to recover a high probability regret bound since the (β, ρ, γ) constants for our E-δISS reduction
depend exponentially on the original problem constants and the size of the compact set. We leave
resolving this issue, in addition to removing the persistence of excitation condition, to future work.

6. Simulations

6.1. Velocity Gradient Adaptation

We consider the cartpole stabilization problem, where we assume the true parameters are unknown.
Let q be the cart position, θ the pole angle, and u the force applied to the cart. The dynamics are:

q̈ =
u+mpsθ(`θ̇

2 + gcθ)

mc +mps2θ
, θ̈ =

1

`(mc +mps2θ)

(
−ucθ −mp`θ̇

2cθsθ − (mc +mp)gsθ

)
.

Here, cθ = cos θ and sθ = sin θ. We discretize the dynamics via RK4 with timestep ∆t = .01. The
true (unknown) parameters are the cart mass mc = 1g, the pole mass mp = 1g, and pole length
` = 1m. Let the state x = (q, q̇, θ, θ̇). We solve a discrete-time infinite-horizon LQR problem
(with Q = I4 and R = .5) for the linearization at xeq := (0, 0, π, 0), using the wrong parameters
mc = .45g, mp = .45g, ` = .8m. This represents a simplified model of uncertainty in the system
or a simulation-to-reality gap. The solution to the discrete-time LQR problem yields a Lyapunov
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Figure 1: (Top left) Sample trajectory for online gradient descent (solid) and the comparator (dotted). Inset shows a
close-up view near convergence. (Top right) Sample trajectory for online gradient descent (solid) and the comparator
(dotted). Inset shows poor performance of the system without adaptation. (Bottom left) Prediction error for gradient
descent (main figure) and parameter estimation error (inset). The parameters do not converge due to a lack of persistent
excitation, but the prediction error still tends to zero. (Bottom right) LQR experiment with random features. Main figure
shows the performance of one trajectory with adaptation. The right inset shows the empirical CDF of average control
performance with adaptation. The left inset shows divergent behavior of one trajectory without adaptation.

function Q(x) = 1
2(x−xeq)TP (x−xeq), and a control law ut = −K(xt−xeq) that would locally

stabilize the system around xeq if the parameters were correct.
We use adaptive control to bootstrap our control policy computed with incorrect parameters to

a stabilizing law for the true system. Specifically, we run the velocity gradient adaptive law (3.4) on
the LQR Lyapunov functionQ(x) with basis functions Y (x, t) ∈ R1×400 given by random Gaussian
features cos(ωTx+ b) with ω ∼ N(0, 1) and b ∼ Unif(0, 2π) (cf. Rahimi and Recht (2007)). Note
that Q(x) is only an approximation to the true Lyapunov function (due to model-misspecification).
We rollout 500 trajectories initialized uniformly at random in an `∞ ball of radius 1

2 around xeq,
and measure the performance of the system both with and without adaptation through the average
control regret 1

T

∑T
t=1‖xt − xeq‖2. The results are shown in the bottom-right pane of Figure 1.

Without adaptation, every trajectory diverges, and an example is shown in the left inset. On the
other hand, adaptation is often able to successfully stabilize the system. One example trajectory
with adaptation is shown in the body of the pane. The right inset shows the empirical CDF of the
average control cost with adaptation, indicating that ∼ 60% of trajectories with adaptation have
an average control regret less than 0.1, and ∼ 80% less than 1. More generally, our approach of
improving the quality of a controller through online adaptation with expressive, unstructured basis
functions could be used as an additional layer on top of existing adaptive control algorithms to
correct for errors in the structured, physical basis functions originating from the dynamics model.

9



REGRET BOUNDS FOR ADAPTIVE NONLINEAR CONTROL

6.2. Online Convex Optimization Adaptation

To demonstrate the applicability of our OCO-inspired discrete-time adaptation laws, we study the
following discrete-time nonlinear system

xt+1 = xt + τ

(
−yt +

xt√
x2t + y2t

− xt + Yx(xt, t)
Tα̃t

)
+
√
τσwt,1 ,

yt+1 = yt + τ

(
xt +

yt√
x2t + y2t

− yt + Yy(yt, t)
Tα̃t

)
+
√
τσwt,2

(6.1)

for τ = 0.05, σ = 0.1, and wt,i ∼ N(0, 1). The nominal system for (6.1) is a forward-Euler
discretization of the continuous-time system ẋ = −y+ x√

x2+y2
−x, ẏ = x+ y√

x2+y2
− y. In polar

coordinates, the nominal system reads ṙ = −(r − 1), θ̇ = 1, which is contracting in the Euclidean
metric towards the limit cycle θ̇ = 1 on the unit circle. This shows that the system in Euclidean
coordinates is contracting in the radial direction in the metric M(x, y) = ∂g

∂x(x, y)T ∂g∂x(x, y), where
g is the nonlinear mapping (x, y) 7→ (r, θ). The basis functions are taken to be Yz(zt, t)T =
sin(ω(zt + sin(t))) where z ∈ {x, y}, the outer sin is taken element-wise, and ω ∈ Rp is a vector
of frequencies sampled uniformly between 0 and 2π. The estimated parameters α̂t are updated
according to the OCO-inspired adaptive laws (3.7) or (3.8) analyzed in Section 5.2.

Results are shown in Figure 1. In the top-left pane, convergence of a sample trajectory towards
the limit cycle is shown for gradient descent in solid, with the limit cycle itself plotted in dots. The
inset displays a close-up view of convergence. In the top-right pane, convergence is shown for the
online Newton method, which converges significantly faster and has a smoother trajectory than gra-
dient descent. The inset displays a failure to converge without adaptation, demonstrating improved
performance of the two adaptation algorithms in comparison to the system without adaptation. The
bottom-left pane shows convergence of the two components of the prediction error Ytα̃t for gra-
dient descent in the main figure, and shows parameter error trajectories in the inset. Note that the
parameters do not converge to the true values due to a lack of persistent excitation.

7. Conclusion and Future Work

We present the first finite-time regret bounds for nonlinear adaptive control in discrete-time. Our
work opens up many future directions of research. One direction is the possibility of logarithmic
regret in our setting, given that it is achievable in various LQR problems (Agarwal et al., 2019b;
Cassel et al., 2020; Foster and Simchowitz, 2020). A second question is handling state-dependent
Y (x, t) matrices in the k timestep delay setting, or more broadly, studying the extended matching
conditions of Kanellakopoulos et al. (1989); Krstić et al. (1995) for which timestep delays are a
special case. Another direction concerns proving regret bounds for the velocity gradient algorithm
in a stochastic setting. Furthermore, in the spirit of Agarwal et al. (2019a); Hazan et al. (2020),
an extension of our analysis to handle more general cost functions and adversarial noise sequences
would be quite impactful. Finally, understanding if sublinear regret guarantees are possible for a
non-exponentially incrementally stable system would be interesting.
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