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Abstract

Robots equipped with rich sensing modalities (e.g., RGB-D cameras) performing long-horizon
tasks motivate the need for policies that are highly memory-efficient. State-of-the-art approaches
for controlling robots often use memory representations that are excessively rich for the task or
rely on hand-crafted tricks for memory efficiency. Instead, this work provides a general approach
for jointly synthesizing memory representations and policies; the resulting policies actively seek
to reduce memory requirements. Specifically, we present a reinforcement learning framework that
leverages an implementation of the group LASSO regularization to synthesize policies that employ
low-dimensional and task-centric memory representations. We demonstrate the efficacy of our
approach with simulated examples including navigation in discrete and continuous spaces as well
as vision-based indoor navigation set in a photo-realistic simulator. The results on these examples
indicate that our method is capable of finding policies that rely only on low-dimensional memory
representations, improving generalization, and actively reducing memory requirements.
Keywords: Memory-Efficiency, Navigation, Reinforcement Learning

1. Introduction

Consider a robot given a coverage task on a building floor. For example, it could be tasked
with performing a safety inspection or collecting data. With the increasing availability and use
of high-resolution sensors such as cameras and LiDAR, such tasks require the robot to process
high-dimensional observations for real-time decisions. Current navigation approaches typically in-
volve constructing and utilizing a high-fidelity map of the robot’s environment (Cadena et al., 2016;
Sun et al., 2018; Doherty et al., 2019; Vasilopoulos et al., 2020). However, is a map necessary for
the task? Does the map-based representation satisfy the robot’s onboard memory constraints? Are
there representations that are more memory efficient? These fundamental and practical questions
motivate the need to have principled methods for finding memory representations that are not only
sufficient for the task at hand but also reduce the robot’s memory requirements.

In order to illustrate the potential benefits of memory-efficient policies, consider a robot tasked
with covering an n X n maze (a simplified version of the building floor coverage task). Blum and
Kozen (1978) show that there is a control policy — a clever, handcrafted, wall-following and zig-
zagging routine — that only utilizes O(log n) bits of memory. This policy thus requires significantly
less memory than one that relies on building and using a map of the environment (a map-building
strategy requires at least O(n?) memory). Beyond memory efficiency, such a policy also affords
additional important advantages including (i) computational efficiency, and (ii) improved gener-
alization/robustness. For example, Blum and Kozen’s policy does not need to perform real-time
computations with the entire map as an input. Additionally, a policy that requires O(log n) memory
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Figure 1: A depiction of the maze navigation problem with continuous state and action spaces described in Section
5.2. The Husky robot needs to navigate from the southwest corner to the goal (green). (a) A sample maze
used in training. The red and blue obstacles are placed within the respective shaded regions. (b) New maze
introduced during testing. The paths on the floor illustrate the policies found by a standard policy gradient
(PG) method (solid orange) and the approach presented here (dotted blue). The latter (wall-following) policy
is significantly more memory efficient and is also robust to changes to the distribution of obstacle colors.

is inherently task-centric; irrelevant geometric details of the environment (e.g., the exact positions
or colors of obstacles in the environment) do not affect the robot’s behavior. The policy can thus be
highly robust to uncertainty or noise in these task-irrelevant features.

An important feature of memory-efficient policies is that they can be qualitatively different
from ones that utilize map-based representations. As a simple example, consider the navigation
problem demonstrated in Figure 1. A policy that chooses to follow the wall can be significantly
more memory-efficient than one that navigates through the environment diagonally (since the wall-
following strategy does not need to maintain information pertaining to obstacle locations). This
motivates the need to jointly synthesize the memory representation and the control policy; such a
joint synthesis can lead to policies that actively reduce memory requirements.

Statement of Contributions. The goal of this paper is to synthesize low-dimensional, task-
centric memory representations and control policies. Our primary contribution is a reinforcement
learning framework for finding policies that achieve active memory reduction (AMR). In particular,
we leverage a group LASSO regularization scheme (Yuan and Lin, 2006; Scardapane et al., 2017) to
enforce low-dimensional memory representations while simultaneously finding policies via a policy
gradient (PG)-style algorithm that we refer to as AMR-PG. To our knowledge, this is the first work to
find AMR policies in continuous state and action spaces. Lastly, we demonstrate the efficacy of our
approach on three simulated examples that demonstrate our method’s ability to find AMR policies
that reduce the dimension of the required memory representation and improve generalization as
compared to standard PG methods.

2. Related Work

Memory-Efficient Representations. There are several approaches that consider memory-efficient
representations for robot navigation tasks including gap navigation trees (Murphy and Newman,
2008; Tovar et al., 2005), compact maps (Srivastava and Michael, 2016), and graph-like topometric
maps (Ort et al., 2020). While each of these share this work’s goal of memory efficiency, these
memory representations are hand-crafted for certain applications or domains. In contrast, we aim
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to provide a general approach for finding memory-efficient representations and policies. Recent
work by O’Kane and Shell (2017) takes a step in this direction by automatically designing minimal
memory representations and policies via combinatorial filters. However, their formulation defines
memory with respect to the number of nodes in a policy graph and is restricted to discretized state
and action spaces. Instead, our work defines memory complexity as the dimension of a continuous
representation and is applicable to continuous state and action spaces.

Map-Free Representations in RL. End-to-end reinforcement learning (RL) of policies pro-
vides one avenue towards generating task-centric representations that avoid explicit geometric rep-
resentations such as maps (see, e.g., Levine et al. (2016, 2018); Zhu et al. (2017)). Recurrent neural
network (RNN) architectures allow one to incorporate memory into policies learned via RL (Heess
et al., 2015). For example, in the context of navigation, Chen et al. (2017) use a long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) architecture to navigate mazes with cul-de-
sacs. While these approaches are able to find policies that maintain task-centric representations in
memory, they do not try to explicitly minimize the memory. In practice, such approaches often
choose the dimension of the memory with little to no knowledge of the appropriate size for the task.

Memory-Efficient Representations in RL. Recent work in RL utilizes self-attention (Vaswani
et al., 2017) before recurrent memory layers. For example, Baker et al. (2019) use this method in
their policy architecture to train agents to play hide-and-seek games over a long time horizon. In
work by Tang et al. (2020), they highlight the value of self-attention for memory-efficient repre-
sentations. Specifically, they show how self-attention can be used as a bottleneck to promote the
memory representation to only use task-centric features. They also demonstrate that such a bottle-
neck allows them to only use a small number of memory dimensions, e.g., an LSTM with only 16
memory state dimensions in a third-person perspective navigation task. While this type of approach
is capable of finding task-centric representations that are low-dimensional, the memory dimension
still needs to be specified a priori. In contrast, we present a regularization scheme that explicitly
seeks to minimize the memory dimension.

A different line of work learns task-centric memory representations via information bottle-
necks (Achille and Soatto, 2018; Pacelli and Majumdar, 2020). These approaches seek policies with
“low complexity” as defined in terms of the information contained in the memory representation.
For example, in work by Pacelli and Majumdar (2020), the objective is to minimize the information
content about the state in the memory representation. Our work, instead, defines memory complex-
ity in terms of the dimension; such a measure of complexity is more physically meaningful and tied
to the robotic system’s onboard memory constraints.

3. Problem Formulation

Our goal is to find a policy that utilizes a low-dimensional, task-centric memory representation.
To formalize this, we focus on robot tasks that can be defined with cost functions of the form
Z?:o ct(wy, ur) where z; € X, uy € U, and y; € ) represent the robot’s state, control action, and
sensor observation at time ¢ respectively. Note that 7" is fixed a priori. The state space X, action
space U, and observation space ) may be continuous or discrete. Additionally, the robot’s dynamics
and sensor model are described by unknown conditional distributions p(x¢41|z¢, us) and s(y|xy)
respectively.

We focus on partially-observable settings where the robot may need to choose actions based
on the history of observations (i.e., where the Markov property does not necessarily hold if only
considering observations). We thus structure our policies in the form 7;(u|m;), where m; is the
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memory state at time-step ¢. Here, m; is a function of the current observation and previous memory
state, i.e., m¢ = q¢(y¢, my—1). Ideally, the memory state m; should (i) contain enough information
about the sequence y1ys ... y;—1 of past observations in order choose good actions, and (ii) have
minimal dimension d, where m; € R4Vt = 0, ... ,T. To formalize the above desiderata, we

introduce the matrix zero norm’.

Definition 1 (Matrix Zero Norm) Let a' € RP represent the transposed i-th row of matrix A €
R™*P, Additionally, let

: 0, if [la'llo=0
1(fla’llo > 0) :==q 7 i
Lo ifo<la’lo<p

indicate if there exists a non-zero element in a'. Then, the matrix zero norm is defined as the number
of non-zero rows, i.e.,

n

140 := > 1(lla’lo > 0).

i=1

Thus ||M||p, where M := [mgm; ... mp]|, corresponds to the number of effective dimensions
needed by the memory states across the trajectory. If | M||o = d < D, where m; € RP, then the
memory representation is effectively reduced from dimension D to d.

To find a memory representation that is both low-dimensional and task-centric, we minimize the
memory representation dimension subject to an upper bound on the expected cost of the trajectory:

T

minimize HMHO s.t. E[th(xt,ut)} < oM (1)
qt(yt,mi—1) t=0
e (ut|me) -

where C™#* € R is the maximum allowable expected cost. Since actions are conditioned on the
memory state, requiring the matrix zero norm of the memory states to be small means that the
policy may need to take actions leading to lower dimensional ones. In other words, the policy
actively reduces memory requirements. We call this an active memory reduction (AMR) policy.

4. Learning AMR Policies

In this section, we present our approach for the AMR policy synthesis problem (1). We pose the
problem as a reinforcement learning problem where ¢ and 7 are parameterized using neural net-
works: RNN, ¢ (y¢, m¢—1), connected to a feedforward network that outputs 7* (us|m;). We use
w to refer to the combined set of weights corresponding to ¢ and 7, and the output is treated as a
distribution that the control action, w¢, is sampled from; see Figure 2. The primary challenges with
(1) then come from (i) the non-differentiability of the matrix zero norm, and (ii) the hard constraint
on the expected cost. To tackle these, we relax the matrix zero norm with a regularizer used in group
LASSO problems and soften the hard constraint. We discuss these steps, describe our overall policy
gradient (PG)-style algorithm, and discuss memory-efficiency below.

1. Note that, like the zero norm for vectors in Euclidean spaces, the matrix zero norm is not a proper norm because it is
not homogeneous.
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Figure 2: Effective dimensionality reduction
of m; that occurs from applying
the AMR regularizer defined in
Section 4.1. The regularizer is ap-
plied to the incoming weight ma-
trix of the memory layer (blue).
The network structure shown takes
y: and m¢_1 as input and outputs
a distribution for u: to be sampled
from.
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4.1. Dimensionality Reduction Based on the /5 ;-norm

A well-known and widely-used convex relaxation of the vector zero norm is the /;-norm. However,
since (1) aims for sparsity of entire matrix rows, this relaxation cannot be used directly. Instead, we
use the /2 1-norm seen in group LASSO (Yuan and Lin, 2006) to capture this desired behavior. The
l3,1-norm for matrix A € R"™*P is written as:

All21 =Y [la’[|2. 2)
=1

Notice that for A € R™*!, (2) is the I;-norm. Hence, we can expect that minimizing the l2 1-norm
will promote sparsity of entire matrix rows similar to how minimizing the /;-norm promotes sparsity
of elements in a vector.

The [> 1-norm is also effective as a regularizer on groups of weights in neural networks (Scar-
dapane et al., 2017) and for promoting sparsity of hidden states in LSTMs (Wen et al., 2018). Our
insight is to now apply it in an RL context to learn memory-efficient policies. First notice, for the
time-invariant case, that || M ||o is equivalent to the matrix zero norm of the incoming weights at the
memory layer as shown in Figure 2. Here, “memory layer” refers to the last layer of a standard
RNN, ¢"(y¢, mi—1), that gives output m;. More formally, let d,,, and dj, be the number of neurons
at the memory layer and preceding hidden layer respectively and define the incoming memory layer
weight matrix to be W,,, € R4m*dn We then relax the matrix zero norm with the la 1-norm, i.e.,
|Wll2,1. Intuitively, minimizing this will promote entire rows of W, to be sparse which in turn,
effectively drops out neurons (i.e., dimensions of m;).

After we relax the matrix zero norm, we soften the hard constraint on the expected cost. Our
new reinforcement learning objective then becomes:

T
minimize J (1) := E[Z e ut)] + )\HWm‘ 3)
t=0

2,1

where A € R, is a tradeoff parameter between cost and memory efficiency and can be interpreted
as the inverse of the Lagrange multiplier.

The regularizer, which we refer to as the AMR regularizer, can additionally be used in time-
varying recurrent neural network structures. We achieve this by stacking the memory layer weight
matrices to define Wy, := [Wing, Winy, - - -, Wiy and penalizing ||W,, ||2,1. This ensures that the
same number of memory dimensions are reduced at each time step.
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4.2. AMR Policy Gradient Algorithm

Now we describe the algorithm we use to tackle (3). First, we write the gradient of (3) with respect
to the network parameters, w, as

Vol (w) =E [(ng log (ut|qw(yt, mtl))> <§ct(:ﬁt, ut)>

In this form, we extend the canonical policy gradient algorithm, REINFORCE (Williams, 1992),
to include the AMR regularizer. We refer to our method as AMR-PG and outline it in Algorithm 1.
For network parameter updates, we use the ADAM optimizer (Kingma and Ba, 2014).

+)\vaWmH2,1' “@

Algorithm 1: Active Memory Reduction Policy Gradient (AMR-PG)
repeat
Rollout NV trajectories { (27, uf)i_o} V=" sampled using 7% (ue|q® (yz, mi—1))
Vol (w) = Zn (Zt Vy log 7% (u?\qw(y?a m?—l))) ( Et ce(zf, u?)) + AVy HWmHQJ
w4 w — aVyJ(w)
until Convergence of J;

Once we train a policy using AMR-PG, it remains to determine the reduced memory representa-
tion dimension. In our networks used in Section 5, we apply a tanh nonlinearity to the outputs pre-
ceding the memory layer. This allows us to upper bound the value of the memory state at dimension ¢
with the sum of the magnitudes of the incoming weights at dimension i, i.e., m (i) < Zji 1 lw(i, 5)]
— we refer to the value of the upper bound as the “memory saliency”. Thus as a general rule for
determining top contributing dimensions, we discard any dimensions whose memory saliency is
at least two orders of magnitude smaller than the highest memory saliency. After determining the
dimension reduction, the network can be trained for several epochs with the cut dimensions and reg-
ularizer removed. This will provide a hard dimensionality reduction if desired, i.e., explicitly force
all incoming weights at a dimension to be zero. In our results discussed in Section 5, we test with
the raw trained network to give qualitative insight for how well the memory representation reduced
its dependency on task-irrelevant features.

4.3. Discussion on Memory Usage and Reduction

It is important to discuss the efficacy of our approach for reducing a policy’s memory requirements.
In our approach, we specifically choose to focus on minimizing the RNN memory dimension as this
directly determines the complexity of the memory representation for the task (motivated by Blum
and Kozen (1978)’s O(log n) representation versus a map’s O(n?)). At initial glance, though, it
may seem that the size of the network, i.e., size of RNN ¢* and policy 7%, can be arbitrarily large
(in terms of number of layers and number of neurons/layer).

This could potentially outweigh memory reductions achieved at the memory layer. However,
there are significant memory savings when viewing our approach holistically and applying it in a
principled manner. Specifically, consider a simple RNN that has memory size: (dimension of the
robot’s observations) X (time horizon). Such a network avoids preemptively losing task-centric
information, since the network has the space to copy each observation to memory (i.e., maintain
all information the robot has received). As the time horizon increases (a large horizon is realistic
for robotic tasks), the size of the memory layer becomes a key contributor to the overall size of the
network. Thus, reducing the dimension of this layer becomes impactful for reducing the overall
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Figure 3: Discrete navigation results. (a) Number of memory states needed by AMR-PG and PG policies across 20
seeds. (b) A sample memory-optimal Moore machine recovered by AMR-PG where S and T are start and
terminal states respectively and m4 and m~ are the two memory states used by the AMR-PG policy. The
transitions are the robot’s observations as described in Section 5.1. (¢) The paths taken by AMR-PG (blue)
and PG (various orange) policies. The line weight indicates the frequency of the path across the 20 seeds.

memory requirements. If the overall network size is a concern, one can apply additional techniques
with our method such as regularization (Scardapane et al., 2017), dropout (Srivastava et al., 2014),
or distillation (Hinton et al., 2015). However, we emphasize that this is a different objective than
ours; we specifically reduce the complexity of the memory representation needed for the task.
While applying our regularizer to the aforementioned network (with dimension: (dimension of
the robot’s observations) x (time horizon)) is the principled method for finding a minimal dimen-
sion, task-centric memory representation, that network may be impractically large in practice. The
network designer may instead choose the memory dimension to be approximately several times
(e.g., 2-5x) greater than the observation dimension; this allows for the potential to store several
complete observations in memory if needed for the task. This approach is typical for standard RNN
design in RL since there is little to no knowledge of what the appropriate memory dimension is.

5. Examples

Here we illustrate the efficacy of our AMR-PG algorithm described in Section 4 with three ex-
amples: (i) an illustrative discrete navigation problem, (ii) a continuous navigation problem with
synthetic environments, and (iii) vision-based navigation in an apartment using iGibson, a photo-
realistic simulator (Xia et al., 2020). In these examples, we show that AMR-PG significantly reduces
the dimension of the memory representation, improves generalization, and finds qualitatively dif-
ferent policies (i.e., policies that actively reduce memory) as compared to policy gradient® with the
same parameterizations. Details regarding the networks and training procedures are discussed for
each example in Appendix A of our extended version (EV) (Booker and Majumdar, 2020).

5.1. Discrete Navigation

In this first example, we specialize our method to discrete spaces in order to illustrate policies that
achieve AMR. Specifically, we consider an illustrative example from O’Kane and Shell (2017),
where a robot must navigate to a goal location in a grid as shown in Figure 3(c). The robot is
equipped with a goal indicator, e.g., y; = 1 means that the robot is at the goal. The robot’s

2. In our examples, the policy gradient baseline is not intended to have pre-minimized memory. Rather, the maximum
RNN memory size, D, is chosen as it is in practice and as described in Section 4.3. To verify the dimensional-
ity reduction achieved by AMR-PG, one potential baseline is to perform a binary search. However, this takes a
prohibitively long time as it requires O(log D) full training runs (whereas AMR-PG accomplishes this in one).
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state, x;, is described by its cell position. Additionally, the robot takes discrete actions u; €
{[-1,01%,[0,1)%, [1,0)T, [0, —1]T,[0,0]7]} corresponding to up, right, down, left, and
stop respectively. The state evolves with dynamics x;41 = x; + us. The cost for this scenario is
ci(ze,up) = ||oe — glli/l|wo — gl|1 for t = 0,..., T where the robot is initialized at zo = [5,1]7
and must navigate to goal g = [1,5]7.

The goal here is to synthesize a policy that takes the form of a deterministic, Moore-style finite
state machine as described by O’Kane and Shell (2017) and shown in Figure 3(b). In this context, a
memory-optimal policy is defined as one that requires the fewest number of memory states. For this
task, an example of a memory-optimal policy is one that simply alternates between actions up and
right until the goal is observed (O’Kane and Shell, 2017). This policy only requires two memory
states (not including the starting and terminal states): one for action up and one for action right;
see Figure 3(b). In contrast, a policy that chooses to repeat {up, up, right, right} is
more complex as it requires keeping track of how many times an action has been applied; such a
policy needs at least four memory states. We demonstrate that our approach recovers the memory-
optimal two-state policy identified by O’Kane and Shell (2017). However, our method also handles
continuous state, action, and observation spaces (considered in subsequent examples).

Training and Results. We model the memory representation with a one-hot encoding vector
that indicates which memory state the robot is using (as opposed to the continuous memory states
described in Section 4). For the memory representation mapping, ¢" (y¢, m¢—1), we pass the obser-
vations to the memory layer of size 10, where 10 is the maximum number of memory states this task
could have (a start state, a state for each time step, and a terminal state). We use the 5-Softmax acti-
vation function on the memory layer with 8 = 100 to encourage concentration around one explicit
state for m;. Then we pass m; to a fully connected layer with 5 neurons activated by a Softmax
function. The output is treated as a categorical distribution that we sample the actions from.

We summarize our training results for 20 seeds in Figure 3. To count the memory states used
and recover the Moore machine, we took the argmax of the memory and action layer outputs. For
each seed, PG found a cost-optimal policy to the goal (see Figure 3(c)) but required between two
and five memory states. In contrast, AMR-PG always found the memory-optimal policy.

5.2. Maze Navigation with RGB-Depth Array

Our next example focuses on a differential-drive robot z:;_ * — dimension cutoff
navigating through a maze (Figure 1). The maze is 05 +

10m x 10m with one red and one blue obstacle sam- = |

pled within the shaded regions indicated in Figure 1(a). E 03]

The robot is given a fixed linear velocity of 2m/s and W~ 0]

has 7' = 80 time steps (0.1s each) to reach the green 0]

goal in the upper right corner of the maze. We model 0.0 S
the cost as the Euclidean distance between the robot’s i

position and the goal location normalized by the initial Dsimension in%i?ex i "
distance to the goal for all time steps. Additionally, the

robot has control of its angular velocity and is equipped

with a 90° fov RGB-depth sensor that outputs colors and .

. . maze example. Pictured are the top
depths along 17 rays. The simulations are performed us- 15 memory saliency values (see Sec-
ing Pybullet (Coumans and Bai, 2018). tion 4.2) averaged across five seeds;

Qualitatively, there are two policies that are suffi- the error bars represent the standard
cient for navigating to the goal: (i) diagonally navigat- deviation.

Figure 4: Memory dimension reduction for the
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ing through the obstacles to the goal (cost-optimal), and (ii) following the maze wall to the goal
(memory-optimal). Notice that the latter policy differs from minimizing the memory needed for the
cost-optimal policy. See Figure 1(b) and our video® for an illustration of these policies.

Results. We compare AMR-PG with a standard PG method that uses the same neural network
parameterization (hyperparameters are provided in the Appendix of the EV). The average cost and
final normalized distance to the goal (across five seeds) for training and testing scenarios are sum-
marized in Table 1. For four out of five seeds, PG found the cost-optimal solution of diagonally
navigating through the obstacles. (The other seed found the wall-following policy as a result of
minimal exploration outside of the far left portion of the maze). In contrast, AMR-PG consistently
found the wall-following policy and significantly reduced the required memory dimension from 300
to at most 4 as shown in Figure 4. Thus, the policy found by AMR-PG only utilizes at most 1.33%
of the memory used by the policy found using PG. We further evaluate the benefits in terms of
generalization afforded by our approach. In particular, we test the policies on environments with
obstacle colors that differ from ones seen during training. The performance of the PG policies de-
graded significantly. In contrast, the performance of the policies found using AMR-PG remained
almost entirely unaffected. This result combined with the compact memory representation sug-
gests that AMR-PG finds policies for this problem that actively reduce memory and only maintain
task-centric representations that utilize the distance values to the wall.

Scenario Policy Gradient AMR-PG
Cost Dist. Cost Dist.
Training 35.09+ 3.22  0.11+0.05 | 41.95£2.86 0.17£0.11
Testing 3499+ 3.25 0.11+0.04 | 42.71£3.36 0.19£0.13
Testing (Swapped Colors) | 52.44+5.77 0.53+0.20 | 43.93+3.35 0.21+ 0.14
Testing (New Colors) 51.03+£4.24 0.53+0.12 | 43.35+:3.38 0.21+0.14

Table 1: Average costs and final normalized distances to the goal across five seeds. We used a fixed training set of 250
mazes and the same 20 testing mazes across three testing instances: (i) same color scheme used in training,
(ii) swapped blue and red obstacle colors, and (iii) unseen colors on the walls and obstacles (the specific colors
used are shown in Figure 1(b)).

5.3. Vision-Based Navigation

The goal of our last example is to demonstrate AMR-PG’s ability to scale to a more realistic sce-
nario: vision-based navigation in a photo-realistic simulation environment. In this example, a
TurtleBot is randomly initialized in the hallway of the Placida apartment in iGibson (Xia et al.,
2020) and needs to navigate to the kitchen as shown in Figure 5(a). Specifically, the TurtleBot’s
initial « position is sampled uniformly between the set [xg — 2m, zy + 2m] while the y position
and yaw are fixed such that the TurtleBot is centered in the hallway and facing the tables. The cost
is described by a weighted sum of a sparse goal reward, a reward for progress towards the goal
(as measured by geodesic distance), a collision cost, and an angle (yaw) cost. The control actions
specify linear and angular velocities. Additionally, the TurtleBot is equipped with a 90° fov RGB-D
camera with a resolution of 128 128. We preprocess these observations with a convolutional neural
network before passing them to our AMR network. For more details, see Appendix A in the EV.
Results. For this example, AMR-PG found a significant memory reduction from 100 dimen-
sions down to 34 consistently across five seeds — a memory savings of 66% (see Figure 5(b)).

3. https://youtu.be/x5yYhLoG67jY
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Figure 5: (a) Vision-based navigation in Placida apartment in iGibson (Xia et al., 2020). The TurtleBot is randomly
initialized in the hallway (red circle) and must navigate to the kitchen (blue circle). The green path visualizes
the robot’s shortest path to the goal. Both AMR-PG and PG found policies that roughly follow this path. (b)
Dimensionality reduction achieved by AMR-PG for this task (vision-based navigation). Averaged across five
seeds, AMR-PG is able to reduce 100 dimensions down to 34; the error bars represent the standard deviation.

Importantly, these savings did not impact the performance of the policy. On average, AMR-PG ob-
tained a reward of 263.7 = 34.1 on 20 initial states sampled from the same x range seen in training,
while PG obtained a similar reward of 257.6 4= 49.4 on the same initial states. We also initialized
the robot from 20 states drawn from an enlarged set of initial conditions: [zo — 2.5m, zg + 2.5m] x
[yo—0.1m, yp+0.1m] x [fy —40°, 6y +40°]. In this case, the TurtleBot only collided once using the
AMR-PG policies from the five seeds. The policies found using PG resulted in five collisions (using
the same set of initial states). Thus, the policies found by AMR-PG achieve effective dimensional-
ity reduction and show potential for improved generalization across different initial conditions. We
refer the reader to the video of these results.

6. Conclusion

We presented a reinforcement learning approach for jointly synthesizing a low-dimensional memory
representation and a policy for a given task. This joint synthesis allows one to find policies that ac-
tively seek to reduce memory requirements. The key insight of our approach is to leverage the group
LASSO regularization to encourage drop-out of neurons at the memory layer while simultaneously
finding policies via a policy gradient approach. We refer to this new algorithm as AMR-PG. Addi-
tionally, we demonstrate our approach on discrete and continuous navigation problems, including
vision-based navigation in a photorealistic simulator. Comparing AMR-PG and standard PG, we
demonstrate that our approach can find low-dimensional representations, improve generalization,
and find qualitatively different policies.

Future Work. There are several interesting future directions for this work. One immediate
extension is to find AMR policies with actor-critic architectures (e.g., using PPO (Schulman et al.,
2017)), and more complex memory network architectures (e.g., LSTMs (Hochreiter and Schmidhu-
ber, 1997)). On the practical front, we are excited to work towards the employment of AMR policies
on resource-constrained robotic platforms such as micro aerial vehicles. An important step for this
is demonstrating that the AMR policies scale well to long-horizon tasks. Lastly, a particularly excit-
ing direction is to explore whether our approach leads to policies that are more interpretable (since
they only maintain low-dimensional memory representations) by visualizing features that impact
the memory representation (e.g., using saliency maps (Simonyan et al., 2013)).
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